Verification

Lecture 1: Introduction

Mlorint olue o (Pl

System Validation Introduction

Overview

= On the role of system verification

e Formal verification techniques

model-based testing
simulation
deductive approaches

e Model checking in a nutshell

e Practical usage of model checking

System Validation — Introduction 1

System Validation Introduction

The quest for correctness
“It is fair to state, that in this digital era correct systems for d—-L
e

information processing are more valuable than gold.”
p Y 901 Ba MAr
e Rapidly increasing integration of IT In different applications:

— embedded systems
— e-banking and e-shopping
— transportation systems

e Reliability increasingly depends on hard- and software integrity

e Defects can be fatal and extremely costly

— nradycts sithit T

System Validation — Introduction 2

System Validation Introduction

A famous example

The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch due to a
conversion of a 64-bit floating point into a 16-bit integer value

System Validation — Introduction 3

System Validation Introduction

Typical system design trajectory

validation
User /
. s \'

Requirement

k\[Analysis -«— Verification
k[DeS|gn h/ Z

Design]\' /
k\[Reahsatlon]

known as the waterfall model

informal

formal

testing

+—=<7

physical

System Validation — Introduction 4

System Validation Introduction

What is system verification?

System verification amounts to check whether a system fulfills
the qualitative requirements that have been identified

Verification # validation:
Verification = “check that we are building the thing right”

Validation = “check that we are building the right thing”

System Validation — Introduction 5

System Validation Introduction

Software verification techniques

e Peer reviewing

— static technique: manual code inspection, no software execution
— detects betv -~~~ 31 and 93% of defects with median of about 60%
— subtle error nd algorithm defects) hard to catch

e Jesting

— dynamic technique in which software is executed

e Some fiqures

— more tlme UV Uiie . v hw wpoviit Vi v~ et s |StrUCt|On
— accepted defect density: 1,5 defects per 1,000 code lines

System Validation — Introduction 6

System Validation Introduction

Catching software bugs: the sooner, the better

Analysis Cglézei:g;ual Programming Unit Testing System Testing | Operation
50% - 12.5
. detected
introduced
: errors (in %) cost of
40% —+ errors (in %) correction 7~ 10
per error
(in 1,000 US $)
30% T +7.5
20% T 45
10% T—2.5
0% | | | | | 0

Time (non-linear)

[Liggesmeyer et al. 1998]

System Validation — Introduction

System Validation Introduction

The importance of hardware verification

e high fabrication costs
e hardware bug fixes after delivery to customers very difficult

e high-quality expectations (software bugs are anticipated...)

e time-to-market affects potential revenue
1 week delay for high-end p-processor = revenue loss of 20 million US dollar
e techniques: emulation, simulation, testing and structural analysis

considerable effort in fault detection and prevention

design takes just 27% of development time!

System Validation — Introduction 8

System Validation Introduction

Overview

e On the role of system verification

= Formal verification techniques

model-based testing
simulation
deductive approaches

e Model checking in a nutshell

e Practical usage of model checking

System Validation — Introduction 9

System Validation Introduction

Formal methods

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

They offer a large potential for

e obtaining an early integration of verification in the design process
e providing more effective verification techniques (higher coverage)

e reducing the verification time k
xoV ORAWTLS ALY l i X 1

AL AN
U\V v)

System Validation — Introduction 10

System Validation Introduction

Formal verification

e Aim: establish system correctness with mathematical rigour
e Promising techniques accompanied with powerful software tools
e Two brands: deductive methods and model-based techniques

e Starting-point of model-based techniques is a model of the system
under consideration

o — a piece of art — already reveals several inconsistencies
- ,uities

. O UIC TTIC , —cIIl.

—

System Validation — Introduction 11

System Validation Introduction

Formal verification techniques for property ¢

e deductive methods

method: provide a formal proof that ¢ holds
tool: theorem prover/proof assistant or proof checker
applicable if: system has form of a mathematical theory

e model checking

method: systematic check on ¢ in all states
tool: model checker (SPIN, NUSMV, UPPAAL, ...)
applicable if: system generates (finite) behavioural model

e model-based simulation or testing

method: test for ¢ by exploring possible behaviours
tool: simulator/tester
applicable if: system defines an executable model

System Validation — Introduction 12

System Validation Introduction

Simulation and testing
Basic procedure:

e take a model (simulation) or a realisation (testing)
e stimulate it with certain inputs, i.e., the tests
e observe reaction and check whether this is “desired”

Important drawbacks:

e number of possible behaviours is very large (or even infinite)

e unexplored behaviours may contain the fatal bug

—> testing/simulation can show the presence of errors, not their
absence

System Validation — Introduction 13

System Validation Introduction

Model-based testing

Modeling

Test Generation

Test Execution @

System Validation — Introduction 14

System Validation Introduction

Testing

Testing is a very useful techniqgue when, for instance:

e it is difficult to construct a system model

e system parts (physical devices) cannot be formally modeled
when model is proprietary (e.g., third-party testing)

As model checking verifies models and not realisations, testing is an
essential complementary technique

System Validation — Introduction 15

System Validation Introduction

Overview

e On the role of system verification

e Formal verification techniques

model-based testing
simulation
deductive approaches

= Model checking in a nutshell

e Practical usage of model checking

System Validation — Introduction 16

System Validation Introduction

Model checking

breakthrough towards automated verification of concurrent software

— alternative to proof-based approaches
— checks validity of modal logic formula

— based on systematic state-space search

1940 1950 1960 1970 1980 1990 2000 2008

T Edmund Clarke
& Allen Emerson

System Validation — Introduction 17

System Validation Introduction

Model checking overview

.
“‘not biased towards the

l most probable scenarios’”’

Formalizing Modeling

property

specification system model

™| Model Checking |

insufficient

violated +
counterexample

S
. . location
Simulation orror

memory

System Validation — Introduction 18

System Validation Introduction

The model-checking approach

up to 10’- 10%states

Coon >
AO(E ©D) l
Q Formalizing Modeling

O
property
specification system model]

Model Checking ————

violated +
counterexample

"

S
. . location
Simulation error

insufficient

memory

System Validation — Introduction 19

System Validation Introduction

Typical model-check properties

e Is the generated result ok?

e Can the system reach a deadlock situation, e.g., when two
concurrent programs are mutually waiting for each other and thus
halt the entire system?

e Can a deadlock occur within 1 hour after a system reset?

e Is a response always received within 8 minutes?

. _ wc_l\sc .
Model checking reauires a %ﬁﬁ and unambiguous statement of the
| ‘this is typically done in C

System Validation — Introduction 20

System Validation Introduction

The pros of model checking
e widely applicable (hardware, software, protocol systems, ...)
e allows for partial verification (only most relevant properties)
e potential “push-button” technology (software-tools)
e rapidly increasing industrial interest
e in case of property violation, a counter-example is provided
e sound and interesting mathematical foundations

e not biased to the most possible scenarios (such as testing)

System Validation — Introduction 21

System Validation Introduction

The cons of model checking

e mainly focused on control-intensive applications (less data-oriented)

e any validation using model checking is only as “good” as the system
model

e NO guarantee about completeness of results
e Impossible to check generalisations (in general)

Nevertheless:

Model checking can provide a significant increase
in the level of confidence of a system design

System Validation — Introduction 22

System Validation Introduction

Overview

e On the role of system verification

e Formal verification techniques

model-based testing
simulation
deductive approaches

e Model checking in a nutshell

= Practical usage of model checking

System Validation — Introduction 23

System Validation Introduction

—-_—

process Inc = while ¢true do if x < 200 then z := z + 1 od
process Dec = while true do if x > 0 thenx :=x — 1 od

process Reset = while true do if x = 200 then x := 0 od

_ « aiways between 0 and 2007

System Validation — Introduction 24

System Validation Introduction

Case: NewCore-project (AT&T)

e Design of SESS Switching Center at Bell Labs (USA) in 1990-1992
e ISDN User Part protocol, two design teams

e Team 1: 40-50 traditional designers and team 2: 4-5 “verification
engineers”

e 7,500 lines specification "NL (S cification and Description Language)

— 112 (!) design errors we. only counting serious ones)
— 145 formal requirements

— 10,000 verification runs (100/week) with model checker

— 55% of original design requirements were inconsistent

System Validation — Introduction 29

System Validation Introduction

Case: IEEE Futurebus+ cache coherence protocol

e Cache coherence protocol must ensure data consistency:

— If two caches contain a data copy, the copies must be equal
— if the global memory has a “non-modified” data item with value v,
then any copy of this item in any cache has value v

e Protocol has been modeled in 2,300 lines of SMV (after abstraction)
e Configuration: 3 bus segments, 8 processors. 10°° states
e Several non-trivial errors were revealed

e Result: a substantial revision of the original IEEE standard protocol

System Validation — Introduction 30

