System Validation

Lecture 5: Computation Tree Logic

Joost-Pieter Katoen

Formal Methods and Tools Group

E-mail: katoen@cs.utwente.nl

URL: fmt.cs.utwente.nl/courses/systemvalidation/

January 21, 2004

Overview of lecture

⇒ Introduction

- Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
- Model-checking CTL
- Fairness
- The difference between PLTL and CTL
- Practical use of CTL

Linear and branching temporal logic

- Linear temporal logic:
- "statements about (all) paths starting in a state"
 - $s \models \bigcirc (x \leqslant 20)$ iff for all possible paths starting in s always $x \leqslant 20$
- Branching temporal logic:

"statements about all or some paths starting in a state"

- $-s \models (AG)(x \le 20)$ iff for all paths starting in s always $x \le 20$
- $-s \models \mathbf{EG}(x \leqslant 20)$ iff for some path starting in s always $x \leqslant 20$

Why branching temporal logic?

- Expressiveness of linear and most branching temporal logics is incomparable:
 - there are properties that can be expressed in linear, but not in most branching TL
 - there are properties that can be expressed in most branching, but not in linear TL
- The model-checking algorithms are different, and so are their time and space complexities

model checking was originally developed for a branching temporal logic [Emerson & Clarke 1981]

Branching temporal logics

There are various branching temporal logics:

- Hennessy-Milner logic
- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines PLTL and CTL into a single framework
- Alternation-free modal μ-calculus
- Modal μ-calculus
- Propositional dynamic logic

Overview of lecture

- Introduction
- ⇒ Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
 - Model-checking CTL
 - Fairness
 - The difference between PLTL and CTL
 - Practical use of CTL

Propositional linear temporal logic

Is the smallest set of formulas generated by the rules:

- 1. each atomic proposition p is a formula
- 2. if Φ and Ψ are formulas, then $\neg \Phi$ and $\Phi \lor \Psi$ are formulas
- 3. if Φ and Ψ are formulas, then $\mathbf{X}\Phi$ ("next") and $\Phi\mathbf{U}\Psi$ ("until") are formulas.

derived operators **G** (always) and **F** (eventually)

how to specify that for every computation it is always possible to return to the initial state? **G F** start?

Propositional branching temporal logic

Global idea.

- Extend PLTL with path quantifiers:
- $_{
 m /}$ $_{
 m A}$, where $_{
 m A} arphi$ denotes that $_{
 m /}$ holds over all paths
- ${f E}$, where ${f E}\, arphi$ denotes that there exists some path satisfying arphi
- $\mathbf{A} \varphi$ and $\mathbf{E} \varphi$ are called *state*-formulas
- PLTL-formula φ is called a *path*-formula

how to specify that for every computation it is always possible to return to the initial state? **AGEF** start!

Computation tree logic

CTL is the smallest set of formulas generated by the rules:

- 1. State-formulas:
 - (a) each atomic proposition p is a state-formula
 - (b) if Φ and Ψ are <u>state</u>-formulas, then $\neg \Phi$ and $\Phi \lor \Psi$ are state-formulas

2. Path-formulas:

(a) if Φ and Ψ are state-formulas, then $\mathbf{X}\Phi$ and $\Phi\mathbf{U}\Psi$ are pathformulas.

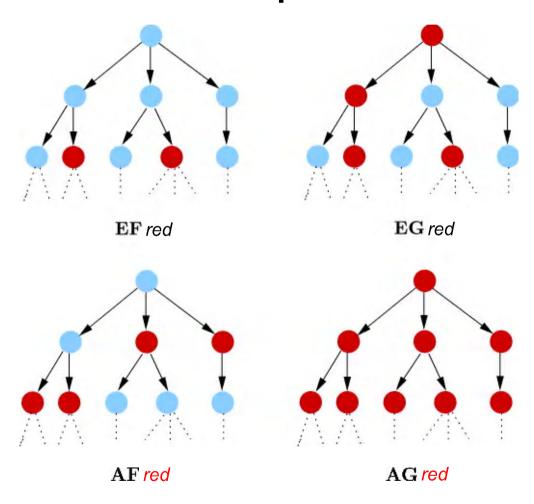
 ${f X}$ and ${f U}$ are always directly preceded by ${f E}$ or ${f A}$ ${\cal M}$

Derived operators

$$\mathbf{F}\Phi \equiv \operatorname{true} \mathbf{U}\Phi \longrightarrow \operatorname{path} \text{ formula}$$
 $\mathbf{G}\Phi \equiv \neg \mathbf{F} \neg \Phi \longrightarrow \operatorname{global} \operatorname{idea}.$
 $\mathbf{E}\mathbf{F}\Phi \equiv \mathbf{E} (\operatorname{true} \mathbf{U}\Phi) \text{ "potentially }\Phi \text{"}$
 $\mathbf{A}\mathbf{G}\Phi \equiv \neg \mathbf{E}\mathbf{F} \neg \Phi \text{ "invariantly }\Phi \text{"}$
 $\mathbf{A}\mathbf{F}\Phi \equiv \mathbf{A} (\operatorname{true} \mathbf{U}\Phi) \text{ "inevitably }\Phi \text{"}$
 $\mathbf{E}\mathbf{G}\Phi \equiv \neg \mathbf{A}\mathbf{F} \neg \Phi \text{ "potentially always }\Phi \text{"}$

the boolean connectives are derived as usual

Derived operators



Some example CTL-formulas

let AP be the set of atomic propositions over variable x, boolean operators <, \geqslant and =, and function x+c for constant c

- the following formulas are legal CTL-formulas over AP:
 - $\neg (x + 7 < 21) \lor (x = 64)$
 - **AF** $(x + 12 \ge 10)$
 - **EG** $(x \ge 0 \land x < 200)$
 - $-x = 10 \Rightarrow \mathbf{AXE}(x \ge 10\mathbf{U}x = 0)$
- the following formulas are illegal CTL-formulas over AP:
 - $\neg (x + x < 21) \lor (x^3 = 64) \smile$
 - $-\mathbf{E}(\mathbf{F}(x \geqslant 10) \bigcirc \mathbf{G}(x \geqslant 0)) -$
 - $-\mathbf{E}(x\geqslant 20) \wedge \mathbf{X}(x=20)$

Interpretation of CTL

Formal interpretation of CTL-formulas is defined in terms of a Kripke structure $\mathcal{M} = (S, I, R, Label)$ where

- S is a countable set of states,
- $I \subseteq S$ is a set of initial states,
- $R \subseteq S \times S$ is a transition relation with $\forall s \in S . (\exists s' \in S . (s, s') \in R)$
- $Label: S \longrightarrow 2^{AP}$ is an interpretation function on S.

Label(s) is the set of the atomic propositions that are valid in s

Semantics of CTL: state-formulas

Defined by a relation \models such that

 $\mathcal{M}, s \models \Phi$ if and only if formula Φ holds in state s of structure \mathcal{M}

$$\begin{array}{lll} -s \models p & \text{iff} & p \in Label(s) \\ s \models -\Phi & \text{iff} & \neg (s \models \Phi) \\ s \models \Phi \lor \Psi & \text{iff} & (s \models \Phi) \lor (s \models \Psi) \\ s \models \mathbf{E} \varphi & \text{iff} & \sigma \models \varphi \text{ for some path } \sigma \text{ that starts in } s \\ s \models \mathbf{A} \varphi & \text{iff} & \sigma \models \varphi \text{ for all paths } \sigma \text{ that start in } s \\ \end{array}$$

Semantics of CTL: path-formulas

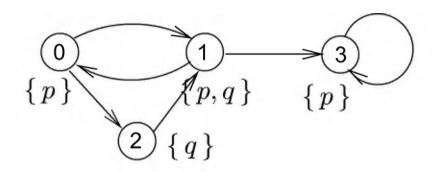
A path in \mathcal{M} is an infinite sequence of states $s_0 s_1 s_2 \dots$ such that $(s_i, s_{i+1}) \in R$ for all $i \geqslant 0$

Define a relation \models such that

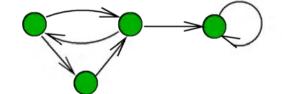
 $\mathcal{M}, \sigma \models \varphi$ if and only if path σ in model \mathcal{M} satisfies formula φ

where $\sigma[i]$ denotes the (i+1)-th state in the path σ

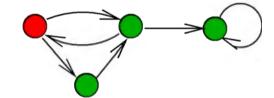
Example of semantics of CTL



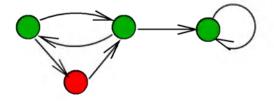
 $\mathbf{EX} p$



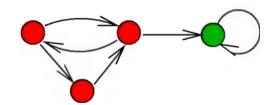
 $\mathbf{AX} p$



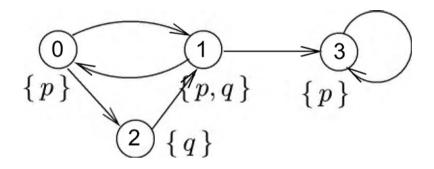
 $\mathbf{EG}\,p$

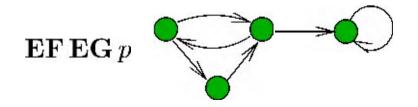


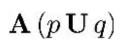
 $\mathbf{AG}\,p$

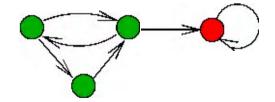


Example of semantics of CTL (cont'd)









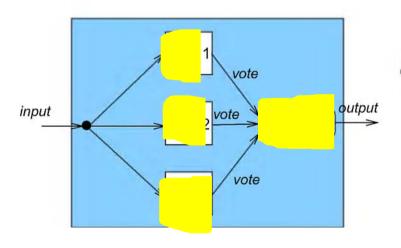
Some important validities for CTL

CTL expansion rules:

$$\begin{array}{ccccc} (\Phi\,\mathbf{U}\,\Psi) & \equiv & \Psi\,\vee\,(\Phi\,\wedge\,\mathbf{EX}\,\mathbf{E}\,(\Phi\,\mathbf{U}\,\Psi)) \\ (\Phi\,\mathbf{U}\,\Psi) & \equiv & \Psi\,\vee\,(\Phi\,\wedge\,\mathbf{AX}\,\mathbf{A}\,(\Phi\,\mathbf{U}\,\Psi)) \\ \mathbf{EF}\,\Phi & \equiv & \Phi\,\vee\,\mathbf{EX}\,\mathbf{EF}\,\Phi \\ \mathbf{AF}\,\Phi & \equiv & \Phi\,\vee\,\mathbf{AX}\,\mathbf{AF}\,\Phi \\ \mathbf{EG}\,\Phi & \equiv & \Phi\,\wedge\,\mathbf{EX}\,\mathbf{EG}\,\Phi \\ \mathbf{AG}\,\Phi & \equiv & \Phi\,\wedge\,\mathbf{AX}\,\mathbf{AG}\,\Phi \end{array}$$

Specifying properties in CTL

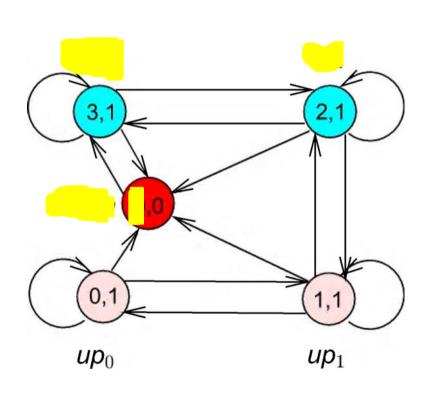
- Triple Modular Redundant system: 3 processors and a single voter
 - processors run same program; voter takes a majority vote
 - each component (processor and voter) is failure-prone
 - there is a single repairman for repairing processors and voter



Modelling assumptions:

- if voter fail s, whole system goes down
- after repair of voter, system starts "as ne_"
- state = (#processors, #voters)

Specifying properties in CTL



- Possibly, the system never goes down: $\mathbf{EG} \neg down$
- Inevitably, the system never goes down: AG ¬ down
- It is always possible to start as new: $\mathbf{AG} \mathbf{EF} up_3$ (not $\mathbf{AF} up_3$)
- The system only goes down while being operational:

$$\mathbf{A}((up_3 \vee up_2) \mathbf{U} down)$$

Overview of lecture

- Introduction
- Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
- ⇒ Model-checking CTL
 - Fairness
 - The difference between PLTL and CTL
 - Practical use of CTL

Model checking CTL

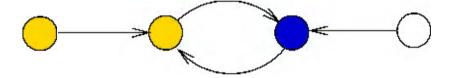
- how to check whether state s satisfies Φ?
 - compute *recursively* the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether state s belongs to $Sat(\Phi)$

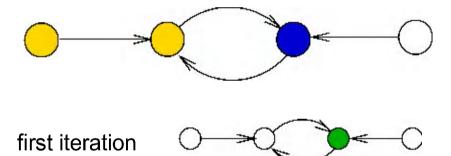
recursive computation:

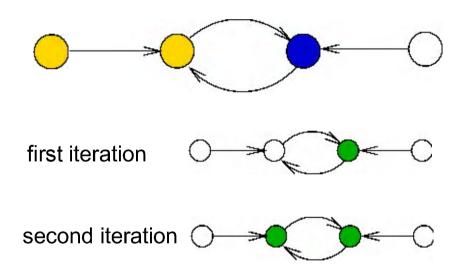
- determine the sub-formulas of Φ
- start to compute Sat(p), for all atomic propositions p in Φ
- then check the smallest sub-formulas that contain p
- check the formulas that contain these sub-formulas
- and so on...... until formula Φ is checked

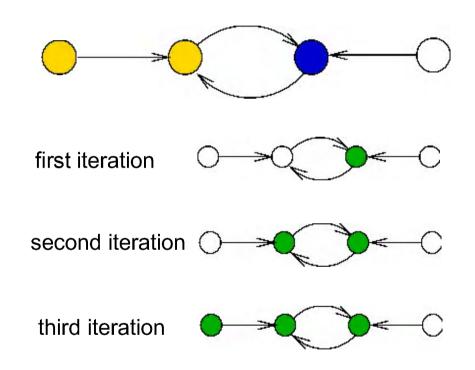
Model checking CTL: pseudo-algorithm

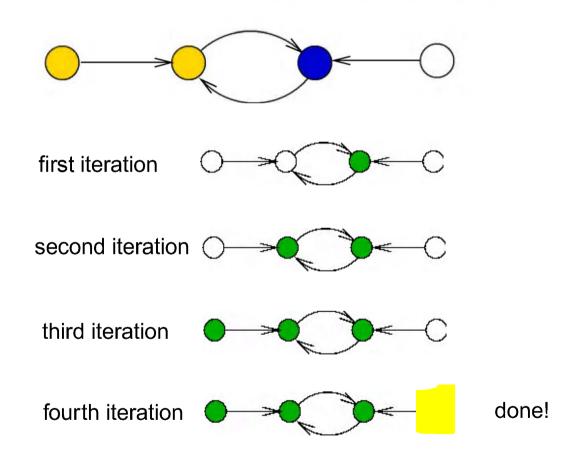
- Sat(p) is the set of states labelled with atomic proposition p
- $Sat(\Phi \vee \Psi)$ is $Sat(\Phi) \cup Sat(\Psi)$
- $Sat(\neg \Phi)$ equals $S Sat(\Phi)$
- $Sat(\mathbf{EX} \Phi)$ is the set of states that can directly move to $Sat(\Phi)$
- $Sat(\mathbf{AX}\Phi)$ is the set of states that can directly only move to $Sat(\Phi)$
- $Sat(\mathbf{E}(\Phi \mathbf{U} \Psi))$ is computed iteratively:
 - $-S^0 = Sat(\Psi)$
 - $-S^1 = S^0 \cup \Phi$ -states that can directly move to $S^0 =$
 - $-S^2 = S^1 \cup \Phi$ -states that can directly move to S^1 -
 - $-\ldots\ldots$ until $S^{k+1}=S^k$











Overview of model-checking CTL

- Algorithm: bottom-up traversal of the parse tree of the formula
- For until-formulas: a fixed-point computation
- For EG-formulas: a more efficient algorithm using detection of strongly connected components
- Special attention has to be devoted to fairness issues
- Worst case time-complexity is $\mathcal{O}(|\Phi| \cdot N^2)$ where $|\Phi|$ is the length of Φ and N is the number of states in the system model
- Tools: NuSMV, Cadence SMV, Uppaal, CADP,

Overview of lecture

- Introduction
- Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
- Model-checking CTL
- ⇒ The difference between PLTL and CTL
 - Fairness
 - Practical use of CTL

Formal Methods and Tools

PLTL versus CTL

there is no equivalent PLTL-formula for AG EF p

- there is no equivalent CTL-formula for ♠ (
 - * each path reaches a point at which p holds for two consecutive moments
 - * and $\mathbf{AF}(p \land p)$ do not express the same
- but common formulas like $\mathbf{A} \ (p \ \mathbf{U} \ q)$ and $\mathbf{AG} \ p$
- Complexity of model checking is different:
 - model checking PLTL is PSPACE-complete: O(System² · 2^{Formula})
 - model checking CTL is in polynomial time: $O(System^2 \cdot Formula)$

don't think that CTL model checking is more efficient as CTL-formulas are sometimes much longer than PLTL-formulas!

Overview of lecture

- Introduction
- Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
- Model-checking CTL
- The difference between PLTL and CTL
- *⇒* Fairness
 - Practical use of CTL

Fairness: modelling concurrency

Consider the parallel execution of two processes: (initially x=0)

process
$$P = \mbox{while} \; \langle \; (x \geqslant 0) \; \mbox{do} \; x := x+1 \; \rangle \; \mbox{od}$$
 process $Q = x := -1$

- Does this parallel program ever terminate?
- Expected runs: PQPQPQ... or PPQPQQPP... or the like
- But not: $PPPPP \dots$ (no Q) or $QQQ \dots$ (no P)
- Fairness is modeled by fair scheduling assumptions described as temporal logic-formulas – over the processes

Typical fairness assumptions (in PLTL)

• Unconditional fairness: property running is true infinitely often:

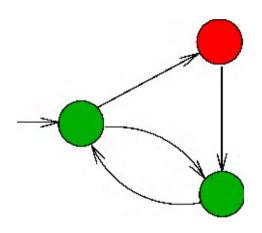
 Weak fairness: if enabled is eventually continuously true, running holds infinitely often:

$$\mathbf{F} \mathbf{G} enabled \Rightarrow \mathbf{G} \mathbf{F} running$$

• Strong fairness: if enabled holds infinitely often, running does so too:

$$\mathbf{G} \mathbf{F} enabled \Rightarrow \mathbf{G} \mathbf{F} running$$

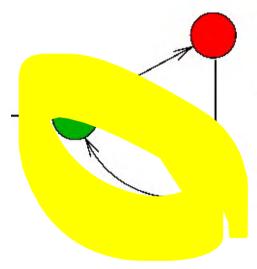
Fair versus unfair computations



do we have $\mathbf{AG}(green \Rightarrow \mathbf{AF} red)$?

Fair versus unfair computations

- no, since there exists an entirely green path!
- but, is this a "fair" path?



- no, as becoming red is possible infinitely often
- how to exclude these *unfair* computations?
- add a fairness assumption, e.g., AG AF red!
- then $\mathbf{AG}(green \Rightarrow \mathbf{AF} red)$ is valid as the unfair computations are ignored
- ⇒ fairness assumptions rule out "unrealistic" runs

Overview of lecture

- Introduction
- Computation tree logic
 - Syntax and semantics
 - Some formulas express the same
- Model-checking CTL
- The difference between PLTL and CTL
- Fairness
- ⇒ Practical use of CTL

Practical properties in CTL

- Reachability
 - simple reachability
 - conditional reachability
 - reachability from any state

$$\mathbf{E} \mathbf{F} \mathbf{\Psi}$$
 } also LTL $\mathbf{E} (\mathbf{\Phi} \mathbf{U} \mathbf{\Psi})$ } also LTL only

- Safety ("something bad never happens")
 - simple safety
 - conditional safety
- Liveness
- Fairness

$$\mathbf{AG} \neg \mathbf{\Phi}$$

$$\mathbf{A} \left(\mathbf{\Phi} \mathbf{U} \mathbf{\Psi} \right) \vee \mathbf{AF} \mathbf{\Phi}$$

$$\mathbf{AG}(\Phi \Rightarrow \mathbf{AF}\Psi)$$

$$\mathbf{AG}(\mathbf{AF}\Phi)$$

Most commonly used specification patterns for CTL

Investigation of 555 requirement specifications reveals that the following patterns are most widely used for state-formulas P,Q and R: (Dwyer et al, 1998)

pattern	scope	PLTL-formula	frequency
response	global	$\mathbf{AG}(P \Rightarrow \mathbf{AF}Q)$	43.4 %
universality	global	$\mathbf{AG} P$	19.8 %
absence	global	$\mathbf{AG} \neg P$	7.4 %
precedence	global	$\mathbf{AG} \neg P \lor \mathbf{A} (\neg P \mathbf{U} Q)$	4.5 %
absence	between		
			3.2 %
absence	after	$AG(Q \Rightarrow AG - r)$	2.1 %
existence	global	$\mathbf{AF} P$	2.1 %
			≈ 80 %

more info at: www.cis.ksu.edu/santos/spec-patterns/

