Finding the Right Order
in Compositional Aggregation

Background

The theory of communicating processes [4, 6] allows us to implicitly specify
how hierarchical systems behave, by defining how their components behave.
The explicit model of the behavior of a system can be found by combining the
behaviors of its components. The size of the resulting model, however, grows
exponentially with the number of components. This problem is know as the
state space explosion problem.

Large models can often be replaced by smaller, equivalent, models. Of course
it is then necessary to define what we mean by ”equivalent”. Usually we differ-
entiate between observable and unobservable behavior and use as our definition
of equivalence the concept of observational equivalence [6]. In general we call
two models equivalent based only on how we observe their behaviors. We do
not care about differences in internal behvaior. However, it is often expensive
to compute the minimized (or aggregated) equivalent of a model, so it is im-
perative to avoid the construction of these large models altogether. If a system
is defined as the composition of some component models we can use the tech-
nique of compositional aggregation. In compositional aggregation we alternate
between combining models and minimizing them to find the minimized model
of the entire system in an iterative way. But for purely communicating systems
this technique often fails as is described in [5].

In [2] Hermanns introduces interactive Markov chains (IMCs), which com-
bine communicating processes with stochastic behavior. This formalism can be
used to find the stochastic behavior of systems, i.e. the resulting model also
contains information about timing. It turns out that for stochastic models com-
positional aggregation can be very successful in avoiding large state spaces [3, 1].
However, the effectiveness of compositional aggregation is determined largely by
the order in which the components of the system are combined. For instance,
in a three-component system we can ask the question: should we first combine
components A and B and then add component C or should we instead start
by combining B and C? So far, the question of how we should order the com-
positions has usually been answered by the researchers themselves. In [1] for
instance, the authors used intuitive heuristics and trial-and-error to find the
best composition orders. In order for the compositional aggregation method to
be fully automatic the composition order must be found in a mechanical way.
In [7] various formal heuristics are proposed to find good composition orders for
communicating finite state machines (CSFM).

The Assignment

The assignment is to define formal composition-order heuristics for input/output
interactive Markov chains (I/O-IMCs, a variation on IMCs) based on the heuris-
tics proposed by Tai and Koppol for CSFMs [7] and implement them in the tool



chain of Boudali, Crouzen and Stoelinga [1]. The programming language used
in this tool is C. The heuristics must then be applied to a number of case studies
and compared to the results of intuition-based heuristics. Finally, the student
will draw conclusions from this comparison and will, possibly, suggest ideas for
other composition-order heuristics.

Prerequisites

Required Experience in programming with C or C++.

Optional Some knowledge of automata theory.

Optional Some knowledge of interactive processes (labelled transition systems).

Optional Some knowledge of stochastic modelling (Markov chains)

References

[1]

H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault tree analysis
using input/output interactive markov chains. In International Conference
on Dependable Systems and Networks, 2007.

H. Hermanns. Interactive Markov Chains. Springer, 2002.

H. Hermanns and J.-P. Katoen. Automated compositional markov chain
generation for a plain-old telephone system. Science of Computer Program-
ming, 36:97 127, 2000.

C.A.R. Hoare. Communicating Sequential Processes. 1985.

K.G. Larsen and R. Milner. Verifying a protocol using relativized bisimu-
lation. In Automata, Languages and Programming, volume 267 of Lecture
Notes in Computer Science, 1987.

R. Milner. A Calculus of Communicating Systems. 1989.

K.-C. Tai and P.V. Koppol. An incremental approach to reachability analysis
of distributed programs. In International Workshop on Software Specifica-
tions € Design. IEEE, 1993.



