Seminar Concurrency Theory Initial Meeting

Luis María Ferrer Fioriti Hernán Baró Graf Hassan Hatefi Dr. Martin Neuhäußer Dr. Andrea Turrini

> Chair for Dependable Systems & Software Saarland University neuhaeusser@cs.uni-saarland.de http://depend.cs.uni-sb.de/index.php?concurrency/

Updated version! November 14, 2011 Deadlines have been shifted!

Fioriti, Graf, Hatefi, Neuhäußer, Turrini (Dep

Seminar Concurrency Theory

New schedule, Nov. 14, 2011 1 / 26

Why concurrency theory?

Example of concurrency

- Multi-core processors
- Distributed computing

Challenges

Parallelism induces uncertainty. How to describe concurrent behavior?

- Interleaving semantics
- True concurrency

Learning objectives

Learn about concurrency

What theoretical approaches exist to reason about concurrency?

- Which formalism is best suited to model a specific aspect of a system?
- Different ways to think about concurrency.
- Decidability results.

earn how to work scientifically

- Grasp the essence of a research topic and understand it thoroughly.
- Find references and additional papers in the scope of your topic.
- Write a scientific seminar paper on your topic.
- Give a talk and present scientific results comprehensibly.

Learning objectives

Learn about concurrency

What theoretical approaches exist to reason about concurrency?

- Which formalism is best suited to model a specific aspect of a system?
- Different ways to think about concurrency.
- Decidability results.

Learn how to work scientifically

- Grasp the essence of a research topic and understand it thoroughly.
- Find references and additional papers in the scope of your topic.
- Write a scientific seminar paper on your topic.
- Give a talk and present scientific results comprehensibly.

Interleaving concurrency

One step at a time, completely ordered.

versus

True concurrency (non-interleaving concurrency)

Order of events (transitions, steps, etc.) remains partial, causality.

Fioriti, Graf, Hatefi, Neuhäußer, Turrini (Dep

Seminar Concurrency Theory

New schedule, Nov. 14, 2011 4 / 26

Process calculi: CCS

A complete axiomatisation of observational congruence

- Strong bisimulation is too fine grained.
- Weak bisimulation is too coarse.
- ⇒ Observational congruence!

This topic is on a complete axiomatisation of observational congruence for finite CCS processes.

Barbed bisimulation

- Reduction vs. interaction.
- Another derivation of strong bisimulation.
- Inspired by reduction in term rewrite systems.
- τ -steps and reduction.

Process calculi: CCS

Comparing recursion, replication, and iteration in process calculi

Extend CCS to infinite behaviors: Recursion, Replication, and Iteration.

Questions that arise in this topic are:

- How to extend CCS with iteration?
- How are recursion, replication and iteration related?
- Can one encode the other?
- Decidability results for convergence and weak bisimilarity.

$$\begin{split} P &::= \emptyset \mid \alpha.P \mid P_1 + P_2 \mid \\ &P_1 \mid P_2 \mid P \setminus L \mid \\ &A(x_1, \dots, x_n) \mid !P \mid P^* \end{split}$$

Decidable subsets of CCS

- Strong bisimilarity undecidable for full CCS.
- Which subsets of CCS make it decidable?

 $P ::= \emptyset \mid \alpha.P \mid P_1 + P_2 \mid$ $P_1 \mid P_2 \mid P \setminus L \mid$ $A (x_1, x_2, \dots, x_n)$ $\Delta = \{X_i \equiv P_i \mid 1 \le i \le k\}$

Fioriti, Graf, Hatefi, Neuhäußer, Turrini (Dep

Foundations of the π -calculus• CCS' communication structure is static.
• π -calculus for mobile processes.
• Two entities: names and processes. $P ::= \emptyset \mid$
 $x(y).P \mid$
 $\bar{x} \langle y \rangle P \mid$
 $[x == b] P \mid$
 $P_1 \parallel P_2 \mid$
 $(\nu x)P \mid$
Classical notions of bisimulation in the π -calculus.

Process calculi: π -calculus

A theory of bisimulation for the π -calculus

Classical bisimulations do not preserve all π -calculus operators.

- Ground bisimulation (not preserved under parallel composition) $P \xrightarrow{a} P' \Longrightarrow Q \xrightarrow{a} Q'$ for some Q' s.t. $P' \sim_g Q'$
- Late bisimulation (not preserved under prefixing) $P \xrightarrow{a(x)} P' \Longrightarrow Q \xrightarrow{a(x)} Q'$ for some Q' s.t. for all $y. P' [y/x] \sim_l Q' [y/x]$

Topic: A better bisimulation which

- preserves all π -calculus operators.
- Bisimulation for CCS + X.

$$\begin{array}{ccc} a(x). \left[x == b\right] . \bar{b}b & \stackrel{\sim g}{\not\sim_l} & a(x). \emptyset \\ \\ a(x) & & & & \\ \left[x == b\right] . \bar{b}b & \stackrel{\sim g}{\sim_l} & \emptyset \end{array}$$

$$a(x). [x == b].\overline{b}b||\overline{a}b \not\sim_g a(x).\emptyset||\overline{a}b$$

Process calculi: The spi-calculus

Introduction of the spi calculus

- Extension of the π-calculus to model cryptographic protocols.
- Extend π -calculus with notions of
 - encryption
 - decryption

The theory of the Psi-calculus

- General extension the π -calculus
- With nominal data
- Data terms, conditions and assertions

Mobile ambients

- Mobility: Computing nodes and data!
- Ambient: Where computation happens.
- Agents: Processes.
- Ambients have associated processes.
- Ambients can be nested and move.

Modal transition systems and interface theories

- Modal transition systems
- Modalities (necessary and admissible behavior)
- Refinement.
- Extend process algebra towards specification logic!
- Interface theories

I/O automata

- Automata-based interface language
- Assumptions about environment
- Guarantees about component's behavior
- Extend interface automata to modal I/O automata.

Fioriti, Graf, Hatefi, Neuhäußer, Turrini (Dep

Undecidability of bisimilarity for Petri nets

- Petri nets as a true-concurrency model
- Undecidability of bisimilarity in Petri nets
- Proof by reduction of the halting problem of **counter machines**.
- Further decidability results

Branching processes of Petri nets

- Branching process = initial run of a Petri net
- Partial order on branching processes
- Unfolding of Petri nets
- Basis for event structures.

The relation between CCS and Petri nets

- Usually, CCS has a interleaving semantics.
- $\alpha || \beta$ and $\alpha . \beta + \beta . \alpha$ coincide in classical CCS.
- But not here:
 - CCS semantics defined by Petri nets
 - No linear but a causal order on events

Trace theory and Mazurkiewicz traces

- Traces describe processes
- Not sequential, but partially ordered
- Non-interleaving semantics
- Strings vs. traces

Modeling concurrency with partial orders

- Partial string: partially ordered multiset (Pomset)
- Set of partial strings: Processes

Comparing Pomsets and Mazurkiewicz traces

- Trade-off between Pomsets and Mazurkiewicz traces:
- Mazurkiewicz traces are restricted subclass of Pomsets
- Pomsets more general
- Mazurkiewicz traces have more structure

Event structures

- Processes execute events.
 - consistent (events may prevent others)
 - enabling: (sequence of events)
- Configurations are the state of a process,
- they are partially ordered: progress.

Expectations

Seminar paper

- Prepare a seminar paper of max. 20 pages.
- Include a complete list of references and cite correctly.

• Plagiarism:

Copying content from other sources without citation leads to disqualification.

- Font size 11pt with the usual page dimensions.
- Language is English.
- We expect proper language if you hand in your drafts:
 > 10 typos per page ⇒ no further corrections

The final seminar papers are distributed at least a week before the talks. \implies Read other participants' papers!

Expectations

Seminar talk

- You give a scientific talk of 30 minutes.
- Present your topic according to the audience.
 Goal: Participants should be able to follow you!
- Well structured slides:
 - Not more than ~ 10 lines of text per slide.
 - Sensible use of colors
 - · Select the important aspects and present them formally.
 - Use examples and figures to motivate theory.
- The talk will be given in English.

Be prepared to ask questions and to discuss about the seminar's topics.

Organisation

Schedule for the seminar paper (Attention: Schedule changed!)

November 21:	Last possibility to withdraw from the seminar.
December 5:	Hand in the structure of your paper.
	Be prepared to discuss about your topic!
January 11:	Hand in the seminar paper.
February 1:	Final version of seminar paper due.
February 15:	Hand in preliminary version of slides.
March 7:	Final version of slides due.
March 12 & 13:	"Mini conference" with seminar talks.

Handling of deadlines

- All deadlines in this seminar are strict. Missing a deadline disqualifies from further participation.
- Participation during the talks is mandatory.

25 / 26

Supervision

Supervisors

- Luis María Ferrer Fioriti ferrer@depend.cs.uni-saarland.de
- Hernán Baró Graf

hernanbg@cs.uni-saarland.de

• Hassan Hatefi

hhatefi@depend.cs.uni-saarland.de

- Dr. Martin Neuhäußer neuhaeusser@cs.uni-saarland.de
- Dr. Andrea Turrini turrini@cs.uni-saarland.de