

Validation and Analysis of Formal Methods using an Airbag Control Unit

10th Feb 2006

Universität des Saarlandes

Overview

Verification by Simulation

Overview

Interesting Point of Investigation

To which extent can simulation be used throughout the analysis using Stochastic Timed **Automata**

Introduction

- The Airbag System
- MoDeST
- Uppaal
- Simulating the ECU (Modeling and Verification)
- Safety Requirements (Markov Analysis)
 - via Simulation in MoDeST
 - Analytical Approach

- Fault Tree Generation
- Importance Analysis (Fussel-Vesely Importance)
- Conclusion

Airbag and Belt Tensioner Deployment depend on configuration determined by

Airbag and Belt Tensioner Deployment depend on configuration determined by

7

Airbag and Belt Tensioner Deployment depend on configuration determined by

MoDeST (Modeling and Description Ianguage for Stochastic Timed systems)

- Definition actions (symmetric), variables, data structures
- Stochastic Distributions
- Probabilistic branching (palt)
- Non-deterministic branching (alt)
- Local Clock variables
- Parallelize Processes (par)


```
PROCESS sender() {
clock t;
   do{
      ::{= t=0, sample=Exponential(lambda) =};
        when (t==sample) urgent(true) sync
   }
}
PROCESS receiver(){
   do {
      ::sync \{= counter + = 1 = \}
   }
}
PAR{ ::sender()
      ::receiver()
}
```


Uppaal (by Universities in Uppsaala and Aalborg)

anable

- Based on Timed Automata
- Collection of non-deterministic processes
- Asymmetric Communication through complementary pairwise actions (a!,a?), broadcast channels, or shared variables
- Checking invariant- and reachability properties by state-space exploration

algo decision?

send unio

BOSCH

Simulation of the ECU

Situation:

Critical behavior of the airbag control unit that could not be verified in Uppaal.

Goal

- Is it feasible to do model checking via simulation?
- How to adopt for broadcasting?

Scenario Overview

Properties of Interest:

P0: A[] NOT deadlock

P1: E<> FiringStage.Fire

P2: E<> (Micro.Firing AND Approver.Enable AND NOT FiringStage.Firing)

Observer

P2: E<> (Micro.Firing AND Approver.Enable AND NOT FiringStage.Firing)

}

Process Observer_Prop1(){

```
when(LocationFiringStage==3)
Property1Satisfied {= Property1+=1 =}
}
```

```
Process Observer_Prop2(){
  when(LocationMicroFiring==1 &&
     enable==1 &&
     LocationFiringStage!=2)
  Property2Violated {= Property2+=1 =}
```


Simulation Results

- 1 000 batches
- Each for 1 million time units

What about Property0?

Conclusion

Pros

- Possible to simulate complex systems where state space exploration is failing
- Nice way to observe a model during execution
- Two valuable outputs usable (Trace Path, Reward Variables)

Cons

- Simulation does never cover the whole state space
- Danger of purely basing results on simulation
- Statements about deadlock behavior are risky
- Awkward to adopt for broadcasting

On-Demand Failure Analysis

- Meet safety integrity requirements
- Does Airbag fails to work at times of an airbag relevant crash
- Determine the company's risk

 Critical point: Unintended or missing airbag deployment

Assumptions

- Overall operation time of one ECU 9.000 hours under normal usage (15 y, 600h/y)
- Total number N_0 of produced ECUs 30.000.000
- An airbag relevant Crash occurs exponentially distributed

$$Lambda_E = 4.0 \cdot 10^{-5} h^{-1}$$

Indicated Failures get repair after 20 hours on average $Mu_{repair} = 5.0 \cdot 10^{-2} h^{-1}$

Sojourn Times

Time spend in each of the states

Variable	Mean Value	Confidence +/-	Prob
OK	9.9991E06	2.5300E03	9,18%
F	1.9930E-01	7.1528E-04	0,00%
IF	0.9890E8	2.5274E05	90,80%
FNI	2.4996E04	6.3255E00	0,02%

Sojourn Times

Time spend in each of the states

Figures of Interest

• MTTF

Mean Time To Failure

• $P(X) \mid_{t=9.000 h}$ one airbag fails after 9000 hours of operation • $EX_F = P(X) \mid_{t=9.000 h} \cdot N_0$

Expected number of failing ECU assuming N_0 are in operation

• $P_{\geq 1} = 1 - (1 - P(X)|_{t=9.000 h})^{N_0}$ at least one of N₀ ECU fails during T₀ of operation

Simulating the Model

- Simulation over 10¹⁵ time units
- 60 million batches

Variable	Mean Value	Confidence +/-
MTTF	1.0108E09	9.9995126E06
P(X) t=9.000h	1.6666E-08	3.2666666E-08
EX_F	0.5	
P>=1	0.3935	No Confidence
		at 95% reached

Markov Chain Representation

$$\mathbf{Q} = \begin{bmatrix} \mathbf{T} & T^0 \\ \mathbf{0} & 0 \end{bmatrix}$$

Interest in transient probabilities of being in state (X) at any time.

BOSC

Phase Type distribution with representation (α , T) where

$$\boldsymbol{lpha}=\left(egin{array}{ccccccc} 1 & 0 & 0 & 0 \end{array}
ight)$$

and

$$\mathbf{T} = \begin{pmatrix} -\sum \lambda_{FI} & \lambda_I & \lambda_{FNI} \\ \mu & -\sum & 0 & \lambda_I + \lambda_{FNI} \\ 0 & 0 & -\sum & \lambda_{FI} + \lambda_{FNI} \\ 0 & 0 & 0 & -\sum \end{pmatrix}$$

Distribution

Comparison of Simulation and Analytical Results

Variable	Simulation	Analytical
P(X) _{t=9.000h}	1,667E-08	9,425E-06
EX _F	0,5000	0,2828
P_>=1	0,3935	0,2463

Conclusion

- Way to simulate Markov Chains
- Drawback of simulation especially when dealing with small rates (many samples needed to reach confidence level)
- A long time spend in state IF (indication failure)

Fault Tree Generation

Fault Tree Generation

- Automate failure analysis of complex systems
- Generation of Fault Trees (FTs) by Simulation in MoDeST
- Using Separated Stochastic Independent Subtree (SIST) for stochastic components
- Implement preprocessor translations for errors using gema

- Modularize Event Groups
- Simulate Probabilistic
 Part for one time unit.
- Add exponential events to SIST

Insertion of Errors into the Simulation Model

Probabilistic Errors for Actions

- delay(a,p,t,clk)
- stuck(a,p)

Probabilistic Errors for Variables

- noise(x, p, m)
- and(x, p, m)


```
Preprocessor Translation:
delay(a,p,t,clk) ::=
  float a timer;
  exception a error;
  {= a timer=t+clk =};
  palt{
       :p:when(clk==a timer)
         urgent(true) throw a error
       :1-p: tau
       }; a
```


Errors injected into the Model

Simulation of the Behavior Model

- 10.000 batches
- Simulating each batch for 1 time unit (cf. SIST)

Use Trace to identity Error Events w.r.t.

- their Frequency
- their Order

Use Trace to identity Error Events w.r.t.

Fault Tree Generation - Conclusion

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Advantages

- Feasibility of automating Fault Tree Generation
- Discrete Event simulation over 1 time unit is fast
- Traces not see during simulation hardly contribute to the final TE probability
- Reflect realistic model behavior including recovery

Drawbacks

Analysis of the simulation trace was done by hand need for appropriate parsing mechanism

Importance Analysis

Importance Analysis Diagnostic Importance Measure

BOSCH

Safe and Failure Critical Systems

- Identity circuits in systems
 which have the greatest
 impact on the proper function
 of the system
- Identify gates within a circuit using Fussel-Vesely

BOSCH

Indicate an event's contribution to the system unavailability

$$I_{\!D}(i) \!=\! \frac{Q_{\!system} \!-\! Q_{\!system}(q_i \!\!=\! 1)}{Q_{\!system}}$$

 Q_{system} Probability of the System failing

$Q_{system}(q_i=1)$ Probability of gate i failing

Example

Obtaining the Diagnostic Importance via simulating 1 million batches

Conclusion

- A way to determine the Diagnostic Importance of gates within a circuit using simulation
- When using small rates many simulation runs are required

Nuts and Bolts of Simulation

- Versatile method for expressing complex systems like STA (Verification, Markov Chains, Failure Analysis, Importance Analysis)
- Even more powerful having a parser at hand
- Alternative approach to analyze system where state exploration fails
- When having small rates (<1.0E-08) many batches are needed for confidence</p>
- No exhaustive state exploration

[Aue05] Marko Auerswald. SRS ECU Behavior Modeling, IST Project AMETIST. Technical report, Bosch Industrial Case Study, March 2005. [BHB+04] Matthias Bretschneider, Hans-Jürgen Holberg, Eckard Böde, Ingo Brückner, Thomas Peikenkamp, and Karriet Spenke. Model-based Safety Analysis of a Flap Control System. Technical report, ICOSE 2004 [BHKK03] Henrik Bohnenkamp, Holger Hermanns, Jost-Pieter Katoen, and Ric Klaren. The MoDeST Modeling Tool and Its Implementation. [Bra01] Kraftfahrzeugtechnik, volume 2. Vieweg Handbuch, 2001. [Buc00] Kerstin Buchacker. Definition und Auswertung erweiterter Fehlerbäume für die Zuverlässigkeitsanalyse technischer Systeme. Dissertation, Universität Erlangen, Juli 2000. Band33, Nummer 3 [DHKK01] P.R. D'Argenio, H. Hermanns, J.P. Katoen, and R. Klaren. MoDeST - a modelling and description language for stochastic timed systems. [Fau05] FaultTree+. Handbook and Demo-Licence, Version 11.0

[Fau05] FaultTree+. Handbook and Demo-Licence at www.isograph -software .com, Version 11.0

[Gra03] David. N. Gray. Gema - a general purpose macro processor.

[Hub03] Thomas Huber. Zuverlässigkeit und Ausfallsicherheit elektronischer

Systeme im Automobil. Technical report, Robert Bosch GmbH, IIR-Konferenz, 2003. Safety First - For Intelligent Restraint System Technologies.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.

Int. Journal on Software Tools for Technology Transfer, October 1997.

[MMT00] J. Mauss, V. May, and M. Tatar. Towards Model-based Engineering: Failure Analysis with MDS. Technical report, ECAI-2000 Workshop on

Knowledge-Based Systems for Model-Based Engineering, August 2000.

[Moc05] Ralf Mock. Risiko und Sicherheit von Netzwerken. Technical report, Laboratorium für Sicherheitsanalytik, Juni 2005. lecture notes.

[Neu81] Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The John Hopkins University Press, 1981.

Thanks for paying attention

