
Validation and Analysis of Formal Methods
using an Airbag Control Unit

S
ou

rc
e:

R
ob

er
tB

os
ch

G
m

bH

Frank Werner <fwerner@cs.uni-sb.de>

Diploma Thesis

Prof. Dr. Ing. Holger Hermanns
Naturwissenschaftlich-Technische Fakultät I

Fachrichtung 6.2 – Informatik
Universität des Saarlandes, Saarbrücken, 2006

This Diploma Thesis is submitted to group ofDependable Systems and Softwarefor the
Validation and Analysis of Formal Methods using an Airbag Control Unitat Universität des
Saarlandes, winter semester 2005/2006. The Airbag Controller and all related material at
hand is designed and developed byRobert Bosch GmbH.

Being of sound of body and mind I hereby declare that the on-hand work was penned singly
and no others but the stated sources and means were used.

Saarbrücken, January 23, 2006

Frank Werner

Acknowledgements
I want to thank Prof. Dr.-Ing. Holger Hermanns for proposing such an interesting and challenging
mission with many various paths to be traversed, many things to learn and to develop on my own, and
for constantly broadening my horizon during meetings.
Much of this success is owed to Marko Auerswald, my supervisor from the research groupCR/AEA
atRobert Bosch GmbH, for providing material, giving the right directions during this work as well as
for help in finding proper information, and especially for patience in reviewing drafts.
In the end I would like to express my gratitude to my family, friends, and all those who gave me the
possibility to complete this diploma thesis.

Contents

0 Introduction 1

1 Synchronization Concepts 5
1.1 Overview . 5

1.1.1 General Concept . 6
1.1.2 Symmetric Communication . 7
1.1.3 Two Sort Synchronization . 7
1.1.4 Derivations . 9

1.2 Semantics ofMoDeST . 13
1.3 Broadcasting inUppaalandMoDeST . 14

1.3.1 Broadcasting inUppaal . 14
1.3.2 Broadcasting using a Channel . 15
1.3.3 “One-to-One” inMoDeST . 15
1.3.4 "N-to-N" inUppaal . 16

1.4 Conclusion . 17

2 Scenario Analysis 19
2.1 Model structure . 19

2.1.1 Environment Model . 20
2.1.2 Micro controllers . 20
2.1.3 External Approver . 21

2.2 Properties and Variables of Interest . 21
2.2.1 Observer Process . 22

2.3 Simulation . 23
2.3.1 Reward Variables . 23
2.3.2 Trace Path . 23

2.4 Observation Results . 24
2.5 Conclusion . 24

3 Detailed System Modeling and Verification 26
3.1 Model Structure . 26

3.1.1 Observer Processes . 27
3.2 Simulation and Observation . 28
3.3 Conclusion . 30

i

CONTENTS

4 Simulink Stateflow 31
4.0.1 StateflowandSimulink . 31
4.0.2 Finite State Machine Representations . 31

4.1 StateflowNotation . 32
4.1.1 StateflowDiagram Objects . 32

4.2 StateflowSemantics . 36
4.2.1 Event Execution . 36
4.2.2 Chart Execution . 37
4.2.3 Transition Execution . 38
4.2.4 State Execution . 39

4.3 Airbag Controller by Means ofStateflow. 41
4.3.1 SimulinkModels . 41
4.3.2 StateflowModels . 43
4.3.3 Simulation . 43
4.3.4 Statistical Analysis . 44

4.4 Conclusion . 44

5 Markov Chain Analysis 46
5.1 Assumptions . 46
5.2 Modeling On-Demand System Failures . 47
5.3 Variables of Interest . 47
5.4 Simulation and Results . 48
5.5 Analytical Approach . 49
5.6 Conclusion . 52

6 Fault Tree Analysis 53
6.1 Representation of Events . 53

6.1.1 Events . 54
6.1.2 Probabilities of mixed Events . 54

6.2 Simulation and Results . 56
6.2.1 Fault Tree + . 57
6.2.2 MoDeST . 59

6.3 Conclusion . 60

7 Fault Tree Generation 61
7.1 Preliminary Concepts . 61

7.1.1 Binary Decision Diagrams (BDDs) . 61
7.1.2 Minimal Cut Sets (MCSs) . 61

7.2 Fault Tree Generation . 62
7.2.1 Representation of Probabilistic Errors . 62
7.2.2 Representation of Exponential Distributed Errors 63
7.2.3 Representation of Nominal Faulty Behavior 64

7.3 Simulation of the Failure Model . 64
7.4 Results . 65
7.5 Conclusion . 65

ii

CONTENTS

8 Importance Analysis 68
8.1 Structural Importance . 68
8.2 Marginal Importance . 70
8.3 Barlow-Proschan Importance . 71
8.4 Fussell-Vesely Importance . 74

8.4.1 Modeling inMoDeST. 75
8.5 Conclusion . 76

9 Single Source Vision 79
9.1 Overview . 79
9.2 Choice of the overarching Language . 80
9.3 Example of a Water Cycle . 81

9.3.1 MoDeSTBehavior Model . 81
9.4 Failure Analysis . 82

9.4.1 Static FTA . 82
9.4.2 Dynamic Failure Analysis . 83

9.5 STA Chain Representation . 84
9.5.1 STA Error Chain inMoDeST. 84

9.6 Conclusion . 84

10 Conclusion 87

A GEMA- a MoDeSTPreprocessor 92
A.1 #for . 92
A.2 #define . 93
A.3 #while . 93
A.4 #invariant . 94
A.5 #do and #alt . 94
A.6 Probabilistic Events in Fault Trees . 95
A.7 Clock Arrays . 96
A.8 Forward Declaration Fix . 97
A.9 Buffer Generation . 98
A.10 Stack Generation . 100
A.11 Rate Conversion . 102
A.12 Failure Generation: Errors for Actions . 103

A.12.1 Probabilistic Errors . 103
A.12.2 Exponential Errors . 105

A.13 Failure Generation: Errors for Integers . 105
A.13.1 Probabilistic Errors . 105
A.13.2 Exponential Errors . 106

B Synchronization Concepts 108
B.1 "One-to-Many" inMoDeST. 108
B.2 "One-of-Many-to-One" inMoDeST . 110
B.3 "One-of-Many-to-Many" inMoDeST. 111

C MatLab Simulink 114

iii

CONTENTS

D Markov Chain Analysis 115
D.1 MoDeSTCode . 115
D.2 Analytical Results . 117

E Fault Tree Analysis 118

F Importance Analysis 120

G Fault Tree Generation 122

H Single Source Vision 125
H.1 Behavior Model . 125
H.2 STA Markov Chain . 126

iv

Chapter 0

Introduction

Many cars are nowadays equipped with a considerable quantity of safety features that protect their
passengers in case of accidents and thus save them from lethal injuries. One of the most prominent to
name in this area is the airbag and its control unit. Due to time criticality, the electronic control unit
(ECU) has to decide within milliseconds whether the car hit a wall or just passed a bump on the road.
Thus dependable safety systems are an important matter with respect to passengers life.
Dependability in this context can be understood as an integrative concept, that encompasses the at-
tributesavailability - the readiness to provide a correct service,reliability in the sense of to continue
providing the correct service, andsafetyalso known as the absence of catastrophic consequences
on the user and the environment. Moreover dependable systems must fulfill requirements likein-
tegrity - understood as the absence of improper system state alterations,confidentialityor the absence
of unauthorized disclosure of information, andmaintainabilityor the ability to undergo repairs and
modifications [LAR01].
All these requirements impose a challenge on the developing engineers as they need to be incorporated
and fulfilled by the system. Especially the concept of maintainability is critical since every change
within a component needs to conform to the proper function of the whole system.

The Airbag System

Modern belt tensioning systems - in particular in combination with an airbag - guarantee its passen-
gers an excellent collision protection. One decisive element for the quality and effectiveness of such
safety critical systems is the optimized interaction of its single components. This means that the per-
fect interaction of the chassis, the seat pattern, the tensioner characteristics, and finally the airbag
determine the optimal system configuration and hereby ensuring maximal occupant protection.
Depending on the severity of the accident, the pyrotechnical belt tensioner deploys, driven by sensors
after passing a defined threshold of procrastination. For example, a vehicle colliding with a solid bar-
rier at a speed of 50 km/h, is causing the belt tensioner to deploy within 20 milliseconds, prestressing
the belt with 1000 N [Bra01].
For the airbag deployment the situation is more complex. Different occupant kinematics - whether
the occupant is belted or not, and the drivers weight - require different airbag system configurations,
which are properly adjusted on the simultaneous interaction of various systems in use. A sensor clas-

1

CHAPTER 0. Introduction

sifies the severity of the accident by using a delay-time-course of the input signal. Once a sensor has
triggered deployment, a fuze incorporated in a pyrotechnical container is activated and the bag inflates
(deploys) within 25 milliseconds.

The restraint system FIRST (For Intelligent Restraint System Technologies) [Hub03] manufactured
by Robert Bosch GmbH consists of sensors and actuators, distinguishable into two classes. One type
is gathering data via sensors from exterior upon which they detect environment changes like front-,
side-, and rear collisions, and rollovers. For this purpose crash sensors like pre-crash and up-front-
crash sensor deliver sensor values to the central airbag control that has an integrated overroll sensing
mechanism. The peripheral collision sensing is handled using side-airbag sensors (PAS).
The second type of sensors is dedicated to occupant sensing which builds the basis for computing
the system configuration. In addition, an occupant classification sensor measuring the drivers weight,
and the Out-of-Position-Sensor (OOP), to determine the optimal deployment configuration. For the
co-driver’s seat a mechanism is sensing mounted children-safety-seats, in which case the airbag de-
ployment for the co-drivers airbag is switched off.

Preliminary Modeling Languages

Languages of frequent use areMoDeSTandUppaal. MoDeST[DHKK01] (MOdeling and DEscrip-
tion language for Stochastic Timed systems) can be viewed as an overarching notation for a wide
spectrum of models, ranging from labeled transition systems, to timed automaton, as well as promi-
nent stochastic processes like Markov chains and decision processes. It contains features such as
simple and structured data types that can be used to define subtypes (like ranges) of existing types,
C-like structures, and also completely new types. In generalMoDeSTsupports most C style expres-
sions, arrays and structures.
In the currentMoTor [BHKK03] (MOdest TOol enviRonment) implementation, which aims to pro-
vide means to analyze and evaluateMoDeSTspecifications, stochastic means to account for Normal,
Uniform, and Exponential distribution are present. Exception handling, usually used to signal errors
via try andcatch in a Java-like style, provides a mean to handle exceptional events. Moreover
constructs for non-deterministic branching (alt), random branching (palt), generic loop construct
(do), and time are admissible. InMoDeSTit is possible for each process to have its own notion of
time provided by aclock , a variable like entity that changes its value linear and continuously over
time.
A guard (when) is a boolean condition describing when an action is allowed to be executed. A
deadline (urgent) in terms of a boolean condition described when an action must fired the latest.
Multiple threads of control or parallelism can be introduced with thepar -statement that enables ac-
tion synchronization between processes. For running simulations, transitions are fired as soon as they
become enabled (maximum progress).

Uppaal [LPY97] - which is accompanying models throughout this thesis - is an integrated tool envi-
ronment for modeling, simulation, and verification of real-time systems. It is appropriate for systems
that can be modeled as a collection of non-deterministic processes with finite control structure and
real-valued clocks, communicating through channels or/and shared variables.Uppaals main focus is
on checking invariant- and reachability properties by exploring the state-space of a system, i.e. reach-

2

ability analysis in terms of symbolic states represented by constraints.
The model-checker is designed to check for invariants and reachability properties, in particular whether
certain combinations of control-nodes and constraints on clocks and integer variables are reachable
from an initial position or not. The query language ofUppaal, used to check specified properties is a
subset of CTL [ACD90](Computation Tree Logic) .
The simulator allows the user to examine in an interactive and graphical fashion the dynamic behavior
of a system. In contrast to the model-checker which explores the whole reachable state of a system,
the simulator explores only a particular execution trace i.e. a sequence of states of the system.
The basis of theUppaal model is the notion of timed automata developed by Alur and Dill as an
extension of the classical finite-state automata with clock variables. AnUppaalmodel consists of a
collection of timed automata extended with integer and clock variables. The edges of the automata
can be optionally decorated with three types of labels: aguard, expressing a condition on the values
of clocks and integer variables that must be satisfied in order for the edge to be taken; asynchro-
nization actionwhich is performed when the edge is taken, and finally a number ofclock resetsand
assignmentsto integer variables. In addition, control nodes may be decorated with so-called invari-
ants, which are conditions expressing constraints on the clock values in order for control to remain in
a particular node.
Guardsexpress conditions on the values of clocks, and integer variables that must be satisfied for the
edge to be taken. Formally, guards are conjunctions of timing and data constraints.
In Uppaal automata may communicate either via global integer variables or using communication
channels. As in CCS [Mil89] communication on channels occur as two-process synchronization. To
identify the action that processes can perform when synchronizing with each other, the notationa!
anda? is used to denote complementary actions of sending and receiving on channela. In addition
the use of keywordbroadcast can be used for modeling a broadcast channel with one sendera!
and multiple receiversa? .

About this Thesis

This thesis explores the possibilities of formal modeling and analysis of the airbag control unit, and
has been carried out in close collaboration withRobert Bosch GmbH, CR/AEAin Frankfurt. The
on-hand work strives for an assessment of the dependability of the airbag control unit manufactured
by Bosch. Due to non-disclosure agreements, some parts of chapter 2 and 3 could not be displayed
within the scope of this thesis.

A general overview of synchronization concepts will be given in chapter 1 where aspects of symmetric
and asymmetric communication are pointed out that will be used later on in the modeling stage. The
focus will be to develop a formal concept, out of which any possible combination of sender/receiver
communication can be derived. In addition it is investigated, how to express certain concepts which
are not natural inMoDeSTor Uppaal. This gives for the remainder of this thesis an overview of
synchronization, how it is understood in modeling languages likeUppaal, andMoDeST, and which
aspects can be easily expressed.
Chapter 2 is a feasibility analysis on verifying properties by simulation withMoDeST. For this pur-
pose a control unit of the airbag controller is analyzed using a critical situation that could lead to
undesirable behavior. This very abstract model is already used in the scope of anAMETISTproject

3

CHAPTER 0. Introduction

conducted by usingUppaal.
In this context an extended model of the ECU is modeled in chapter 3 to analyze the ECU using an
exhaustive setting in order to assess the occurrence of race conditions. As before the main focus is
on confirming results obtaining by the use ofUppaal. SinceMoDeSTis used for modeling, we find
ourselves in the language class ofStochastic Timed Automata(STAs) which enables us to perform
deeper studies with respect to probabilistic and stochastic means.
Chapter 4 will be devoted to rebuild theDetailed System Modeling and Verificationfrom chapter 3 in
MatLab Simulink. Although theStateflowcomponent ofSimulinkis deterministic and no stochastic
and probabilistic means exists, we can use randomized sensor values fromSimulinkto obtain a distri-
bution of the airbag deployment. Beyond that it is possible to predict according to the signal course,
the deployment of the firing stage.

Analysis techniques for simulating the behavior ofContinuous Time Markov Chainsby MoDeSTare
covered in chapter 5 where the simulation outcome is compared with analytical solution approaches
like matrix exponentiation. This insights are in turn used to assess the on-demand safety features of
the airbag controller. In addition numbers likeMean Time To Failure(MTTF) and other probabilistic
figures are computed by simulation inMoDeST.
The way fault trees can be computed is treated in chapter 6. Here a part of the airbag fault tree is
modeled inMoDeSTand outcomes are compared with results gained byFault Tree + [Fau05]. Also
preparing ground forFault Tree Generation, this chapter gives the feasibility of simulating fault trees
and especially to group component failures into logical units.
Automated failure analysis by usingFault Tree Generationis treated in chapter 7. Different possible
points of failure likenoise, delay, etc. are conceptually introduced and later on applied in simulation.
Based on these simulation traces a static fault tree is extracted afterwards, reflecting thestatic failure
behaviorof the system. In addition, a failure translation for the preprocessorGEMA is defined.
Categorizing components within a circuit according to their importance is investigated in theIm-
portance Analysis(chapter 8) by usingstructural, marginal, Barlow-Proschan, andFussell-Vesely
importance measures. These importances give different analysis techniques at hand to survey the im-
pact of failing components on the system behavior. TheFussell-Veselymeasure is later on applied to
an example circuit to show how it can be obtained by simulation inMoDeST.

Chapter 9 is more visionary. It deals with the requirements to be fulfilled by a single source model-
ing formalism. Out of the single source model at hand simulation, verification, static-, and dynamic
failure analysis can be derived. Special emphasis deserves the model of the water tank since it reveals
best the advantage of dynamic over static failure analysis. Dynamic failures are computed according
to a STA chain, reflecting the processes state space under the violating conditions.

Different extensions forGEMA - the MoDeSTpreprocessor - are illustrated in the appendix A, that
were used in models. Due to the macro preprocessor, modeling inMoDeSTis eased by introducing
concepts, that can be used forbuffer generation, for- andwhile loops, invariants, clock arrays, and
rates.
Significant model sources and simulation results can be found in the corresponding appendix at the
end of this thesis for the sake of completeness.

4

Chapter 1

Synchronization Concepts

Synchronization is coordination with respect to time and an important concept in the fields of com-
puter science and electronic engineering. Synchronous operations take place in a fixed time relation-
ship to other operations or events. In general, two notions of synchronization are used which are (1)
the symmetric concept, were all participants are of the same kind and as thus treated equal, and (2)
the asymmetric synchronization, where one differentiates between senders, and receivers.

This chapter investigates different principles of synchronization and tries to put the concepts as used
in Uppaal andMoDeSTinto the right frame. Especially with respect to the electronic control unit
of the airbag controller, different strategies are used to guarantee a synchronous behavior within a
system. Since the concept ofbroadcasting, naturally useable inUppaal is not natural inMoDeST, the
MoDeSTmodels of the airbag control unit have to be adopted for broadcasting.
Later on during this chapter, theMoDeSTsemantic is investigated with respect to symmetric commu-
nication, and common concepts are exemplified using workarounds, for instance to adopt for broad-
casting channels inMoDeST.

1.1 Overview

Many different synchronization strategies are in place to fit specific needs, e.g. when dealing with
a number ofN devices and stressing that some of them are synchronizing at one instance of time,
we refer to this assome-of-N. Furthermore, when having a sending- and a receiving side in terms of
an asymmetric communication scenario we can refer toone-of-M-to-at-least-n-of-Nto state, that one
sender out ofM is synchronizing (sending) with at leastn out of N total receivers. This mechanism
also referred to asmulti-casting, is used to deliver information to multiple destinations simultaneously,
using the most efficient allocation strategy possible. But what have all the concept mentioned so far
in common, and how many participants are involved in asome-of-M, or at-least-3synchronization?
Mainly driven by the diversity of synchronization concepts, we try to formulate a general concept
which comprises all known communication strategies. For example when using a synchronous sce-
nario with5 devices in total (Ω = 5), and constrain thatat least 3synchronize, we can rephrase this

5

CHAPTER 1. Synchronization Concepts

asat-least-3synchronization. The total number of solutions in this case is3, namely that either3, 4,
or 5 devices interact. The condition e.g.“at-least 3” is called predicate over the solution set for the
remainder of this chapter.

1.1.1 General Concept

For investigating the general concept of synchronization, we use a formal approach to define a concept
which has capability of providing a derivation for any elementary communication scheme.Ω is iden-
tified as the set containing all devices present to synchronize on some common action. We define the
setXP(·) v Ω as the solution set containing all participants which are synchronizing assuming that
predicateP(·) holds. The “empty” synchronization where nothing takes place is explicitly forbidden
since it has a rather philosophical character.
A trivial solution for the predicateP to become always true is> that contains all numbers of pos-
sible solutions. This puts basically no constraints on the subset relation and is just mentioned for
completeness.

X> := {i ∈ N | 1 ≤ i ≤ |Ω|}

= {1, . . . , ω} , with ω = |Ω|

For the nontrivial case we writeP(∼ m) where∼∈ {=,≤,≥, 6=}, m ∈ N \ {0}, and demand for the
set of the number of participantsX, thatP(∼ m) holds. Letwj ∈ Ω be the name of device i and
Ai ⊆ Ω set of sizei of devices with

Ai :=
�⋃
j

wj .

It holds, that|Ai| = i and ⋃
1≤i≤|Ω|

Ai = Ω.

X> ⊇ XP(∼m) := {i ∈ N | i ∼ m and 1 ≤ i ≤ |Ω|}

Example

Consider a scenario as mentioned above consisting ofΩ = {a, b, c, d, e} devices and the predicate
P(≥ 3) on setX (XP (≥3)). According to the predicate, we demand each solution of the resulting
set of participants to consist of at least3 participants. The resulting setXP (≥3) contains - as defined
by the nontrivial case from above - elements{3, 4, 5}, and as such there exist three possible solutions
(derivations) for this scenario.

6

1.1. Overview

1.1.2 Symmetric Communication

The concept referred to as symmetric communication is similar to the one being used inMoDeST,
since all parties are equal and one does not differentiate between sender and receiver. A derivation
tree is depicted in the following where> denotes true, meaning that no constrains are requested on
the subset relation.Ω denominates the set of all devices andm a natural number that adds the desired
constraint. We abbreviate as already denoted aboveω = |Ω| and obtain the unconstrained solutions
setX> = {1, . . . , ω} which contains all solutions for synchronizing device combinations.

The derivation tree for thesymmetric synchronizationis depicted in figure 1.1. Solid lines indicate
the different possible derivations. On the root the solution setX is shown on which we either put no
constrains such that we end up with solution setX>, or we restrict the set by the use of a predicate
P (·) over the number participants. When takingx as the cardinality of setX and a natural numberm,
the relationx ∼ m is used to condition the size of the solution set in one of the four possible ways.
By usingx ≤ m, we want the number of participants that result from the predicate to be exactlym.
Furthermore, there exists one single deduction from the tree when using predicateP(x = m) which
is the solution with exactlym synchronization partners. Using the notationx ≥ m, the derivation
contains all combinations with at lestm participants, analog to thex ≤ m case. Finally predicate
P(x 6= m) yields all deductions thatX> supplies except that the number of participants can not be
equal tom.
Dashed lines finally provide the resulting sets that follow out the derivation tree. Out of this concept
all one-sort symmetric synchronizations can be derived.

Notice that two derivations become spare, which are

m = ω =⇒ X> = {1, . . . ,m} = XP (≤m)

because the relation condition is trivially true and

m = ω =⇒ XP (≥m) = {ω} = XP (=m)

sinceω is the maximal number of synchronizing participants.

1.1.3 Two Sort Synchronization

Uppaalhas a perception of apair conceptin which a sending and a receiving side establish a commu-
nication, and hence the symmetric model from above needs to be extended appropriately. In atwo sort
synchronization we differentiate between senders, and receivers, and formulate in general terms that
some numbers ∈ W out of |X| possible senders synchronize with some receiversr ∈ Y out of |Z|
total receivers. Deviating from the model before, two groups of participants are identified as senders
and receivers. This brings up the following shorthand, consisting out of a sending and a receiving side
separated by “to”. Form, n ∈ N we obtain

7

CHAPTER 1. Synchronization Concepts

Figure 1.1: Derivation tree in which all actions need to synchronize instantly. Leaves denote the set
of possible participants.

WP (∼m) v X to YP (∼n) v Z

The derivation tree of asymmetric communication is thus more complex and shown in figure 1.2 with
w = |W | and respectivelyy = |Y |.

As for the symmetric version, we start on the root of the sending and respectively receiving side. For
convenience the trivial case (X>) is omitted since is has less practical use. By using the constraining
set with predicateP(∼ m) where∼ is either=,≤, or≥, we derive the solution sets for the sending-
and the receiving side. Note that the predicateP(6= m) is avoided since is has no practical use. As
before in the symmetric communication some of the derivations become redundant, that is for the
sending side

m = ω =⇒ WP (≥m) = {|X|} = WP (=m)

and the receiving side

m = ω =⇒ YP (≥m) = {|Z|} = YP (=m).

8

1.1. Overview

Figure 1.2: Derivation tree of the asymmetric synchronization consist of a sending and a receiving
side. Dashed lines illustrate the derivation of the sets of possible participants.

1.1.4 Derivations

By having set the theoretic framework we are in the favorable position of building derivation trees that
reflect the behavior of any sort of communication thinkable. Since interest is devoted to languages
already in use we refrain from becoming too general and restrict on already known concepts as being
used inUppaal and MoDeST. Numbers in braces (participants) are connected to the tree using a
dashed line, and denote the possible participating devices for this combination, that results from the
chosen path.

General Symmetric Communication

When having a setΩ consisting of one participant (ω = 1) the following symmetric communication
scheme is thinkable.

9

CHAPTER 1. Synchronization Concepts

XP (∼1) v Ω , for ω = 1

>

jjjjjjjjjjjjjjjjjjjj
x = m

sssssss

x ≤ m x ≥ m

MMMMMMM

x 6= m

UUUUUUUUUUUUUUUUUUUUUU

m = 1 m ≤ 1 m ≥ 1 m 6= 1

{1}

_

_

{1}

_

_

{1}

_

_

{1}

_

_

{}

_

_

ExtendingΩ to contain two participants(ω = 2) we obtain two derivations trees. In the first tree by
using predicateP(∼ 1) and the second tree by the use ofP(∼ 2).

XP (∼1) v Ω , for ω = 2

>

jjjjjjjjjjjjjjjjjjjjj
x = m

sssssss

x ≤ m x ≥ m

MMMMMMM

x 6= m

UUUUUUUUUUUUUUUUUUUUUU

m = 1 m ≤ 1 m ≥ 1 m 6= 1

{1, 2}

_

_

{1}

_

_

{1}

_

_

{1, 2}

_

_

{2}

_

_

10

1.1. Overview

XP (∼2) v Ω , for ω = 2

>

jjjjjjjjjjjjjjjjjjjjj
x = m

sssssss

x ≤ m x ≥ m

MMMMMMM

x 6= m

UUUUUUUUUUUUUUUUUUUUUU

m = 2 m ≤ 2 m ≥ 2 m 6= 2

{1, 2}

_

_

{2}

_

_

{1, 2}

_

_

{2}

_

_

{1}

_

_

Special Case:MoDeST

Due to the fact thatMoDeSTis using a special notion of synchronization on actions, it deserves
special emphasis. SinceMoDeSTimplements symmetric communication in an "all-or-none"-fashion
(m = ω) it is a distinct instantiation from the general symmetric communication concepts. Therefore
the only valid derivation isXP (=ω). As before solid lines indicate the different derivations and dashed
lines the derivation of the final solution set.
The following trees show derivations for differentω’s, ranging from 1 up to 3.

XP (∼m) v Ω , for ω = 1

m = 1

{1}

_

_

XP (∼m) v Ω , for ω = 2

m = 2

{2}

_

_

11

CHAPTER 1. Synchronization Concepts

XP (∼m) v Ω , for ω = 3

m = 3

{3}

_

_

Special Case:UppaalPair

The Uppaal pair synchronization is asymmetric allowing one sender to communicate with one re-
ceiver. Since the presence of senders and receivers is required to establish a synchronization, there
exists only one valid branch.

WP (∼m) v X to YP (∼n) v Z , for |X| ≥ 1, |Z| ≥ 1

m = 1 n = 1

{1}

_

_

{1}

_

_

Special Case:UppaalBroadcast

TheUppaalbroadcast is a specialization of the general asymmetric variant. It allows only1 sender
to send to arbitrary many “ready-to-receive” receivers. In addition to the predicate defined above we

write
◦
> as the property that fulfills all receivers which can synchronize and are ready-to-receive.

◦
>::= P (Y) ⇐⇒ ∀y ∈ Y : can synchronize

∧ ∀z ∈ Z \ Y : can not synchronize

12

1.2. Semantics ofMoDeST

WP (∼m) v X to Y ◦
>
v Z , for |X| ≥ 1, |Z| ≥ 1

m = 1 ◦
>

{1}

_

_

{1, 2, . . . , y}

_

_

1.2 Semantics ofMoDeST

Having a method at hand that subsumes all synchronization concepts we shortly outline the semantics
of MoDeST[DHKK01] and Uppaal to see where the differences in synchronization behavior stem
from. The only construct inMoDeSTthat enables synchronization of processesP1, . . . , Pk is the par-
allel compositionPAR {::P1 . . . ::Pk }. Operator||B denotes parallel composition of processes with
B⊆Sync1, the set of common actions that is acquired by the union of the alphabets.

PAR is defined by

PAR{:: P1 . . . :: Pk} := (. . . ((P1||B1P2)||B2P3) . . . Pk−1)||Bk−1
Pk

This implements the classicalblocking-sender broadcasting synchronizationor so calledsymmetric
synchronization, by which no explicit sender is identified. Synchronizing occurs whenever two or
more processes that run in parallel have a common action on which they must then synchronize.
Hence only actions out of the common synchronizing set are worth considering.

Let in the followingP andQ be two concurrent processes,a∈ B an action out of the shared synchro-
nization setB. SetB consists out of all actions names that appear in processP andQ minusτ -actions.
Expressing the operational semantics in inference rules the following two rules are obtained. The first
rule states in the premise that process P can do ana-step to P‘ (writtenP

a−→ P ′) and similar for Q.
Sincea is in the synchronization alphabet (a ∈ B) both processes can jointly change their states via
actiona to P‘ and Q‘ which is stated in the conclusion of the inference rule.
In case thata/∈B no communication occurs and none of the processes can change its state. This could
for example happen if actiona is as well in the alphabet of a third process, which is not ready for an
a-step. The inference rules shown below denote synchronization of two parties. Only small changes
are required to adopt for more participants.

1Note that for simplicity we only restrict to one type of action, rather than differentiating betweenimpatientandpatient
actionsas in [DHKK01].

13

CHAPTER 1. Synchronization Concepts

P
a−→ P ′ Q

a−→ Q′ (a ∈ B)

P ||BQ
a−→ P ′||BQ′

P
a−→ P ′ Q

a−→ Q′ (a /∈ B)

P ||BQ
a−→ P ||BQ

As shown above no sender or receiver is identified in the semantics ofMoDeSTand processesP andQ
are treated equal. On the opposite when dealing with asymmetric concurrency (Uppaal pair concept)
sending and receiving processes are identified as follows:

P
a!−→ P ′ Q

a?−→ Q′

P ||Q −→ P ′||Q′

Here processP is explicitly identified as sender and processQ as receiver. So wheneverP can com-
municate viaa! to Q where the latter is listening, both processes can move to the next state.

ExtendingMoDeSTto account for the non-blocking sender broadcasting, a sender must have to be
identified within the system, which is then never blocked and always able to execute its action (input-
enableness). Therefore modelling the broadcast behavior inMoDeSTis related to putting some extra
work in modelling. By adding an appropriate extension of theGEMA preprocessor a considerable
amount of work could be removed.

1.3 Broadcasting inUppaaland MoDeST

SinceMoDeSTdoes not support broadcasting by nature, the investigation of the broadcasting ability
seems eligible. Beyond that the analysis shows to what extent modeling broadcasting inMoDeSTis
possible and which of the concepts seen earlier can be expressed inUppaal.

1.3.1 Broadcasting inUppaal

Uppaal has apart from the pairwise synchronization (regular channelchan) an other mean of ex-
pressing synchronization of processes, namely broadcasting.
Binary synchronizationis defined inUppaalby chan c in which a senderc! will synchronize over
a channelc with a receiverc? . A synchronization pair is chosen non-deterministically if several
combinations are enabled.
Broadcast channels(broadcast channel) [BDL02] are defined inUppaalas non-blocking syn-
chronization, where one senderc! can synchronize with an arbitrary number of receiverc? . Receiver
that can synchronize in the current state must do so. If there is no receiver, the sender can sill execute
thec! action since broadcast sending is never blocking.
Since no such concept exists inMoDeST, the question rises whether a work-a-round for broadcast
channels exists, meaning that such a channel can be easily modeled?

14

1.3. Broadcasting inUppaalandMoDeST

1.3.2 Broadcasting using a Channel

Intuitively one can think of broadcasting as a system consisting of senders, receivers, and a common
channel. So whenever a sender has to transmit, the message is passed on to the channel which in turn
tries to distribute it among "ready-to-receive" receivers in a multi-casting fashion. The channel has
thus to maintain a list of currently sending processes and ready receivers and decide upon this knowl-
edge which parties will be included in the communication. Synchronization is done using sender-side
actions that are used to synchronize with sending processes and similar for the receiving side. In other
words modelling a channel inMoDeSTtwo groups of actions are used, one for the sending and one
for the receiving side.
The problem that arises now when trying to model inMoDeSTis, that it lacks constructs that support
atomicity of actions. Atomicity is only possible in variable statements but no construct is given to
execute more than one action at an instance of time. This is rather a design issue of theMoDeST
language, because by synchronization of more than one action atomically at a time, processes might
get stuck.

1.3.3 “One-to-One” in MoDeST

The One-to-One synchronization exists in two variants, where the first is standardbinary synchro-
nizationand the2nd is non-blocking broadcastingwhere the sender is not blocked. Both types can
be modelled easily inUppaal. MoDeSTactions are by nature blocking synchronization which means,
that a workaround has to be applied for modelling the broadcasting feature calledinput enableness.
Input enableness states that in order to overcome the blocking behaviorτ -actions are introduces that
do not change the function but guarantee instead, that every action can be executed at any time. A
τ -transition does not affect the behavior of its containing process and in consequence not the process’s
“state”.

"One-to-Many" in MoDeST

In MoDeSTno broadcast primitive exists, so the system is modelled explicitly using an approach
where the sender has the status of all receivers and decides upon that which receivers take part in the
synchronization. It is desirable to have broadcasting ability atomic, but althoughMoDeSTfeatures an
atomic primitive for variables to ensure atomicity on a sequence of statements, this cannot be used in
our situation, as only non blocking statements are allowed in atomic enclosings.
A model that has the characteristics of a broadcast channel can be modeled inMoDeST, although
being circuitous, it is still possible to do. The atomicity requirement stresses that no sending process
may start a new communication before each listening receiver has obtained the old message. In other
words, we forbid the occurrence of two consecutive sends while capable receivers did not finish to
receive the first broadcasting sequence. This is modeled by allowing the sender to check which of the
participating receivers are ready, before a broadcast is initiated.
The following model consists out of 4 parties, asender and threereceivers . The sender sends
data with a frequency, that is uniformly distributed between 0 and 3. The receivers pick their waiting

15

CHAPTER 1. Synchronization Concepts

times out of different uniform distributions such that they are not ready to receive all at the same time.
Variablesr1, r2, r3, s count the number of packets being received by a receiver or sent by the
sender. The simulation results andMoDeSTmodel of the One-to-One synchronization can be found
in appendix B.1.

"One-of-Many-to-One" in MoDeST

In the following, a model is given that contains three sending processes put in parallel with one re-
ceiver. The actions for sending or receiving are independently obtained from a Uniform distribution.
Appendix B.2 contains simulation results and a summary of the synchronizing events.

"One-of-Many-to-Many" in MoDeST

The concept of "one-of-many-to-many" is exercised inMoDeSTusing two senders and two receivers
which send/receive determined by independent Uniform distributions. Simulations are executed for
100 time units. The sources and simulation results are captured in appendix B.3.

“At-least-m“ in MoDeST

This communication concept is rather seldom used since the user has to know how many parties are
ready to participate in the communication. Nevertheless,Uppaaldoes not have any means to account
for this behavior by nature and so doesn‘tMoDeST, since it would require counting the number of
participants. Nevertheless it is feasible but awkward to put extra guards and constraints into the model
that require a specified number of participants to be ready before the communication is accomplished.
The question popping up here, what should be done if less than M parties are ready, is left open and
depends on the situation.

1.3.4 "N-to-N" in Uppaal

Having a system in which all processes have to synchronize at an instance of time [Figure 1.3] can be
modelled inUppaalby choosing one process to be theleaderwhich does pairwise synchronizations
steps with all other processes involved. In addition committed states are added, that guarantee that no
time is passing, and no other communications takes place in between two consecutive synchronization
steps.
An alternative implementation is to model the leader process additionally, issuing broadcasting to all
N participants. Out of the N participants perspective this will look like N-to-N. This is awkward when
modelling big systems and at the same time not a proper concept of multi-way synchronization since
actions are executed sequentially rather that all in one shot.

16

1.4. Conclusion

In MoDeSTthis principle of N-to-N is rather natural since all actions that have a common action
synchronize unless actions are hidden via thehide-operator or relabeled.

Leader Process // ©
a!

// c©
b!

// c©
c!

// c© . . .

z!
// © // . . .

Process A // © //

a?
// © // . . .

Process B

...

. . . // ©
b?

// © //

...
...

Process Z . . . // ©
z?

// © // . . .

Figure 1.3:UppaalN-to-N synchronization obtained by adding a so called leader process.

1.4 Conclusion

Summing up many different communication concept were studied with respect to their implementabil-
ity and usability. We introduced a formal representation that allows to derive symmetric and asymmet-
ric synchronization of any kind. Models of frequent use are the classicalone-to-onesynchronization,
or one-of-many-to-onewhich can be used for instance for modelling a network with many clients and
one central server. The pure multi-casting (e.g.one-of-many-to-M) is seldom used since it requires
the knowledge of how many receivers are ready to receive.
Table 1.1 depicts some of the concepts with their implement ability inMoDeSTandUppaal. Symbol√

is used to stress that the concept is native in the language. (
√

) denotes that it is possible by putting
some effort in the modelling as shown in the examples above. Concepts labelled with1 are exempli-
fied and can be found on the pages of the appendix of this chapter [App. B].
Where broadcasting exists as an in-house concept inUppaal, it requires some extra work to adopt for
that ability inMoDeST. In contrary, for a non-broadcasting synchronization with more than 2 devices,
MoDeSTis the language of first choice.

17

CHAPTER 1. Synchronization Concepts

Sync Type Formal Definition |X| |Z| Uppaal MoDeST
one-to-one (binary sync) WP (=1) v X - to - YP (=1) v Z 1 1

√ √

one-of-many-to-one WP (=1) v X - to - YP (=1) v Z > 1 1
√

(
√

)1

one-of-many-to-many WP (=1) v X - to - YP (≥2) v Z > 1 > 1
√

(
√

)1

one-of-many-to-M WP (=1) v X - to - YP (=M) v Z > 1 > 1 (
√

) (
√

)
one-of-many-to-at-least M WP (=1) v X - to - YP (≥M) v Z > 1 > 1 (

√
) (

√
)

some-of-all-to-1 WP (≥1) v X - to - YP (=1) v Z > 1 1 (
√

) (
√

)
some-of-all-to-some WP (≥1) v X - to - YP (≥1) v Z > 1 > 1 (

√
) (

√
)

some-of-all-to-M WP (≥1) v X - to - YP (=M) v Z > 1 > 1 (
√

) (
√

)

M-of-all-to-1 WP (=M) v X - to - YP (=1) v Z > 1 1 (
√

) (
√

)
M-of-all-to-some WP (=M) v X - to - YP (≥1) v Z > 1 > 1 (

√
) (

√
)

at-least-M-to-some WP (≥M) v X - to - YP (≥1) v Z > 1 > 1 (
√

) (
√

)
at-least-M-of-all-to-1 WP (≥M) v X - to - YP (=1) v Z > 1 1 (

√
) (

√
)

all-of-N WP (=|N |) v X N (
√

)1 √

Table 1.1: Overview of synchronization concepts and whether they are easy to model inUppaal or
MoDeSTor not.

18

Chapter 2

Scenario Analysis

In this chapter a critical situation of the supplement restraint system (SRS) of the electronic control
unit (ECU), formerly tested inUppaal [Aue05] is modeled inMoDeST[DHKK01]. Intended to for-
tify present analysis of theSRS ECU Behavior Model, this approach is giving insights of how to do
model checking via simulation. In particular, since concepts like broadcasting (cf. chapter 1) are not
natural inMoDeST, different ways are investigated to adopt for a broadcasting-like behavior. By using
probabilistic branching and random variables within the new model we expect to fortify the present
analysis results gained in recent studies whereUppaalwas used.

2.1 Model structure

The model is build in analogy to theUppaalmodel at hand with the following processes. For reasons
of secrecy we only display the model of theObserver Process.

• environment model (Event_1, Event_2, Event_3)

• model of the micro controller that has control for a font bag (FrontBag) and a belt tensioner
(BeltTensioner)

• model of the external approver (Approver)

The following figure [2.1] gives an abridgement of processes used. Rectangles with a solid line
represent single automaton, while dashed line boxes indicate a set of automata, and synchronization
channels are shown as named edges.

19

CHAPTER 2. Scenario Analysis

Figure 2.1: Device setting of the electronic control unit for the scenario analysis.

2.1.1 Environment Model

The environment model describes a simulation scenario of special interest by controlling the model
behavior. Variablewaiting is introduced to delay the execution of two consecutive events and mea-
sure the impact on the correct behavior. It will be increased over simulation runs. The waiting time is
defined as the time between two consecutiveEvent1s.
The environment is modeled as the sequential occurrence of eventsEvent2andEvent3, each immedi-
ately preceded by anEvent1event with no time passing in between.

2.1.2 Micro controllers

The simplified model of the micro controller consists of two automata, one for two-stage front bag and
the other for two-stage belt tensioner deployment. The two stage front bag is modeled to deploy its
1st stage upon eventEvent3with a disposal of the 2nd stage 200ms later. The two stage belt tensioner
is modeled similar where the 1st stage deploys upon eventEvent2and the second stage 60ms later.
TheUppaalModel of the ECU uses four channels (Interaction , Event1, Event2, Event3), declared
as broadcasting. In theMoDeSTmodel the latter three are declared as binary synchronization, since
a interaction between the Environment and FrontBag/BeltTensioner is desirable. Thus Front Bag or
Belt Tensioner have to synchronize always on anEventaction.
The channelInteraction is devoted to be of special interest since it is modeled inUppaal using a
multiple-to-one fashion, meaning the two processesFront BagandBelt Tensionershould not being
blocked when sendingInteraction. An adequate design inMoDeSTis thus adding actionsInter-
action_fb_joined, Interaction_fb_alone, Interaction_bt_joined, andInteraction_bt_aloneindicating,
that the approver synchronizes onInteractionwith a corresponding process or not . By using the
variableready_approver of type integer the approver indicates whether it is ready to do the tran-
sition. By this approach, processBeltTensionerand FrontBag have no capability to synchronize

20

2.2. Properties and Variables of Interest

between each other, but only with the external approver via actionsInteraction_bt_joined, and In-
teraction_fb_joined. If the approver is not ready to synchronize, the processesbelt tensionerandfront
bagare not blocked and can execute the correspondingalone-action (Interaction_bt_alone, Interac-
tion_fb_alone).

2.1.3 External Approver

The design of theApproverprocess is using states, that are represented via a global vector (variable
state) of type integer. A state change is consecutively expressed by a change of this vector, e.g. by
taking transition from state A to B the state variable changes from0 to 1. Possible values for thestate
variable are ranging from 0 to 3 to represent one of possible four states (A, B, C, D).

2.2 Properties and Variables of Interest

Some variables in the model are defined to merely reflect state changes. In theapproverprocess
actionsA, B, C, andD reflect the actual approver state, since the value of the concurrent variable
state can not be inferred during the simulation run. After simulation they appear in the simulation
trace and can be used for analyzing the system behavior. Especially when debugging a model, defining
such variables is beneficial because they have no impact on process synchronization, but help to detect
errors in the model using the trace path.

action A, B, C, D; //Approver States
action FirstStage, FirstStage_fb, FirstStage_bt;
action SecondStage, SecondStage_fb, SecondStage_bt;
action SetEnabled, SetDisabled; //trace purpose

By having some idea about the times spend in a certain location one can easily check the plausibility
of the whole model. This motivated the following timing variables that measure times, or time inter-
vals spent in certain states.

//Abort_X measures the sojourn time in a state X at abort
float Abort_B, Abort_C, Abort_D;
float EnableTimeSpan; //the time for which enable == 1

Finally one is interested in the number of violations, as being declared in property 1 on the following
page that occur during a run. To be able to trace the occurrence of violation, actionviolatedis defined
that appears in the trace whenever a violation actually occurs.

//Counter for violation to test against property 1

21

CHAPTER 2. Scenario Analysis

int violation=0;
action violated;

The waiting time is defined external and increased during the simulation as being the measure of
interest. This is accomplished via the definition of

extern const float waiting;

2.2.1 Observer Process

By having aMoDeSTmodel of the electronic control unit at hand we now strive to verify the results
obtained by theUppaalstudy by means of simulation. This is obtained by definition of an observer
process that guards the desired condition and increments aviolation counter whenever property 1 is
violated.
The property of primary interest is that whenever theFront Bag is at stage one or two, or theBelt
Tensioneris at stage one or two respectively,enableshould be true; or stated vice versa, the vital
system condition is violated whenever property 1 holds. Our particular interest is devoted to the
behavior within a critical interval that has been gained by previous “human” analysis and has been
testified withUppaal. We restrict simulation on this interval plus some overhead, to fortify previous
model checking approaches.

Property 1
E3 (FrontBag.F irstStage ∨ FrontBag.SecondStage∨

BeltTensioner.F irstStage ∨BeltTensioner.SecondStage)
∧ ¬enable

The observer process guards the expression stated at property 1. Besides the violation counter the
trace path [Fig. 2.2] gives an additional mean of detecting violations.

process Observer(){

do{
::alt{

::when (enable== 0)
alt{

::FirstStagebt {= violation+=1 =}
::SecondStagebt {= violation+=1 =}
::FirstStagefb {= violation+=1 =}
::SecondStagefb {= violation+=1 =} 10

}; violated
::when (enable== 1) tau

}
}

}

22

2.3. Simulation

2.3 Simulation

The simulation is carried out using the reward variables set inMöbius[San05] as named below mea-
suring theInstant Of Timevalue at 500 time units.Möbius is a discrete event simulation runtime
environment used to simulateMoDeSTmodels. The values forenabledare measured using theTime
Averaged Intervalof length 500.
The values for variablewaiting are successively incremented starting from 80 up to 296 time units.

2.3.1 Reward Variables

Variables of primary interest isviolation that counts incrementally the number of violations over a
simulation run. In addition four variables (InA , InB ,InC ,InD) are defined to capture the number of
times a state is entered.
Möbiussupports the use of four types ofreward variablesthat measure the variable assignment for
which they are defined. The type of a reward variable determines the point or interval in time when
the reward function is evaluated.

• Instant of Time: The reward function is evaluated at the specified point in time.

• Interval of Time: Returns the weighted sum of all of the values of the reward function, where
each value is weighted by the amount of time the value is in existence within the defined interval.

• Time Averaged Interval of Time: The variable returns the interval of time result, divided by
the length of time for the interval.

• Steady State:The reward function is evaluated after the system reaches a steady state. The
steady state simulation algorithm used is referred to in literature asbatch means. This approach
assumes that there is an initial transient period that must pass before the system reaches its
steady state behavior. Once the system is in steady state, the algorithm evaluates the reward
function multiple times to gather the observations and to compute the statistics. This technique
is appropriate when enough time occurs between the samples to permit the assumption that the
samples are independent of each other.

2.3.2 Trace Path

A clipping showing the firing rules for a simulation trace is given in figure 2.2. The trace path gives
a second method at hand to see how the simulation is carried out. All actions that synchronize are
followed by aSync. Actions which are executed solely are labeled withoutSync.

23

CHAPTER 2. Scenario Analysis

−> A
−> Event 1Sync
−> Event 2Sync
−> FirstStagebtSync
−> SetEnabled
−> B
−> Interactionbt joinedSync
−> C
−> SecondStagebtSync
−> Event 1Sync 10

−> Event 3Sync
−> FirstStagefbSync
−> Interaction fb alone
−> SetDisabled
−> A
−> SecondStagefbSync
−> tau
−> violated

Figure 2.2: One batch of a trace path is depicted for a waiting time of 140. Only the firing rules are
shown for clarity.

2.4 Observation Results

The following results are obtained by simulating 1000 times where repeating lines are dropped out of
the table. Reward variableViolationCount changed over the critical interval to a value above zero as
predicted by previous model checking. This fortifies theUppaal study and proves the feasibility of
expressingUppaalmodels inMoDeST.
Table 2.1 holds the number of times a location is reached. This means for instance, that in a run with
WaitingTime of 257, the approver is twice in stateA, and once in statesB, C, andD.

2.5 Conclusion

One can conclude that property 1 on page 22 is satisfied over the critical interval. On the border region
the property is violated because the violation count is above 0. This observation is coherent with the
findings obtained by present analysis approaches, showing thatMoDeSThas capabilities of expressing
Uppaalmodels.

Using the simulation approach we end up with two means to show the behavior of the model. On the
one hand the simulation trace can be considered to check which process synchronized using which
action. Besides this reward variables allow to extract certain values of the reward function and thus
obtain a second way to investigate the model.
It is worth to mention that simulation has its assets and drawbacks, i.e. simulating a model for one

24

2.5. Conclusion

WaitingTime InA InB InC InD
80 2 1 1 0

...
...

...
...

...
87 2 1 1 0
88 2 1 1 0,344
89 2 1 1 0,499

...
...

...
...

...
256 2 1 1 0,499
257 2 1 1 1

...
...

...
...

...
287 2 1 1 1
288 2 1,514 1,514 0,486
289 2 2 2 0

...
...

...
...

...
296 2 2 2 0

Table 2.1: Simulation results revealing the time spent in each states.

million times and analyzing for an undesirable condition does not refute the fact, that these conditions
do not exist at all. It rather stresses that during one million runs these situation has not occurred in the
system and consequently has not been seen by an observer.

25

Chapter 3

Detailed System Modeling and
Verification

The correct operation of the SRS ECU [Aue05] depends on one channel having current information
about the other channel. Arace conditions(race hazard) could occur if one channel changes its state
while another channel produces its outputs based on outdated information about the first channel.
Thus two simultaneous processes might falsely process inputs upon which they generate different
data. This behavior was analyzed in previous studies usingUppaaland situations in which such race
conditions were examined.
This chapter is a feasibility analysis of presentUppaalmodels that aims to check howUppaalmodels
can be converted intoMoDeST. In particular probabilistic branching and stochastic information are
added to the models. By the use of an observer process the formerUppaalproperties like “a deadlock
free model” etc. are verified.

3.1 Model Structure

The model of the SRS ECU is structured as figure 3.1 shows. The environment is producing sensor
values that are read by the micro controller and approver. By interaction between this two components
they send their commands to the firing stage which then triggers the airbag deployment. The dashed
interaction line represents several actions upon which approver and micro controller synchronize.

Some of the processes used inMoDeST[DHKK01] could be easily derived fromAMETIST Uppaal
report [Aue05], others needed special treatment to adopt for broadcasting behavior, and to guarantee
deadlock free behavior. As shown in chapter 1 we account for broadcasting behavior with two in-
volved processes by using binary synchronization. In case that more than two participants are present,
the behavior is incorporated in several actions that imitate broadcasting, i.e. every sender has several
actions to synchronize on. In case that no receiver is present it does a unique action, on which no
other process can synchronize. If ready-to-synchronize processes are present in the model, an action
is chosen such that interaction is enabled on this. Due to existing non-disclosure agreements the mod-

26

3.1. Model Structure

Figure 3.1: Device setting of the electronic control unit for the detailed system modeling and verifi-
cation.

els that were used for simulation can not be displayed within this thesis.
In many processesτ -actions are introduced over which no synchronization is possible. This is done
using input enablenessto guarantee a deadlock free simulation. Input enableness states that in any
state any action is enabled. InMoDeSTτ (tau) represents an internal step, in particularτ is a local
actions which is not attainable for synchronization. If taking aτ transition the respective process does
not change its state, sinceτ actions have no effect on the behavior of its process.

3.1.1 Observer Processes

The following properties are defined to be of special interest:

• The model is free from deadlocks.

Property 0 A2 ¬deadlock

• The model is able to fire.

Property 1 E3 FiringStage.F ire

• If race conditions occur, the micro controller will not be able to make the correct assumption
about the state of the firing stage. The result will be that although the micro controller wants to
fire (Micro.Firing) and the external approver enables firing (Approver.Enable), the firing stage
will not fire.

Property 2 E3 (Micro.F iring ∧Approver.Enable =⇒ ¬FiringStage.F iring)

27

CHAPTER 3. Detailed System Modeling and Verification

/*
Property1: E<> FiringStageRV1 MV1.Fire

Property2: E<> (Micro.Firing AND Approver.Enable
-> NOT FiringStage.Firing)

*/

process ObserverProp1() 10

{
when(LocationFiringStage== 3)

Property1Satisfied{= Property1+=1 =}
}

process ObserverProp2()
{

when (enable== 1 && LocationMicroFiring==1 && LocationFiringStage!=2)
Property2Violated{= Property2+=1 =} 20

}

Figure 3.2: Sources of the two observer processes.

The observer process [Fig. 3.2] handles validation of property 1 on the preceding page and prop-
erty 2 on the page before. Property 1 on the preceding page is proven by usingprocess Ob-
server_Prop1() which checks if it is possible for process FiringStage to eventually reach location
Fire. When doing so actionProperty1Satisfied is issued and the property counter is incremented.
Violation of Property 2 on the previous page is watched byObserver_Prop2().

3.2 Simulation and Observation

Simulation is done over the variables as mentioned in table 3.1. The variable results were calculated
usinginstant of timeafter one million time units, i.e. that the reward function is evaluated at this spe-
cific point in time, returning the corresponding variable value. VariablesProperty1 andProperty2
[Tab. 3.1] reflects the number of times the properties are satisfied or respectively violated.
1 000 runs of the model are simulated, each for one million time units and the model did not lock up.
This testifies that no deadlock behavior is observable up to the maximum time of simulation which
also hints, that property 0 is not violated. This is a rather vague argumentation but since the simulation
model used was checked for deadlock behavior inUppaal, it is a sanity check. If a deadlock would
exist, the simulation would only doτ -steps up from this point, becauseτ steps can be executed at any
point during a simulation without any constraints. But since this is not the case, the model can be
considered to be deadlock free.

28

3.2. Simulation and Observation

13625.91292472 Event_1_0
13804.08185945 Event_2_1
14000.00000000 fg_interruptSync
14000.00000000 start_foregroundSync
14000.00000000 read_sensor_valueSync
14001.00000000 read_status_algoDecisionSync
14001.00000000 AlgoDecisionUnl
14002.00000000 read_status_approver_bSync
14003.00000000 algo_decisionSync
14003.00000000 AlgoDecisionUnl
14004.00000000 trigger_firingSync
14004.00000000 finished_foregroundSync
14004.00000000 break
14004.00000000 MicroFiringFiring
14004.00000000 send_fireSync
14004.00000000 MicroFiringInitial
14004.00000000 Property1Satisfied
14004.00000000 FiringStageFire
14004.00000000 FiringStageUnl
14500.00000000 fg_interruptSync
14500.00000000 start_foregroundSync
14500.00000000 read_sensor_valueSync
14501.00000000 read_status_algoDecisionSync
14501.00000000 AlgoDecisionUnl
14502.00000000 read_status_approver_bSync
14503.00000000 algo_decisionSync
14503.00000000 send_lockSync
14503.00000000 AlgoDecisionEn
14503.00000000 FiringStageEn
14504.00000000 trigger_firingSync
14504.00000000 finished_foregroundSync
14504.00000000 break
14504.00000000 MicroFiringInitial

Figure 3.3: Part of a simulation trace where theµC is firing and Property1 holds.

Mean Value Confidence Interval +/-
Property1 1 0
Property2 0 0

Table 3.1: Proof of properties that were obtained by the observer process via simulation.

29

CHAPTER 3. Detailed System Modeling and Verification

Results obtained by simulation are the same as shown by the presentUppaalstudy. By simulation we
can prove that property 1 holds on all experiments and conclude that the airbag controller is able to
fire at least once within a simulation run.
A violation of property 2 is never seen by processObserver_Prop2(), meaning that in case the micro
controller wants to fire and firing is enabled by the external approver, the firing stage will fire.

3.3 Conclusion

This detailed system modeling and verification approach shows that it is feasible to obtain the previous
acquired results by simulation inMoDeST. In particular we pinpointed the benefits and drawbacks of
verifying properties by simulation. As a downside it can be stated that simulation does never cover
the complete state space of some model, and as such it can be dangerous to purely base the results on
verification by simulation.
Moreover by the simulation approach as being states in this chapter, simulation trace and reward
variables can be used to analyze the model of concern.

30

Chapter 4

Simulink Stateflow

Stateflowis a graphical design and development tool for control and supervisory logic used in conjunc-
tion with MatLab Simulink[Mat05] which allows to visualize models and simulate complex reactive
systems. Far more the system’s behavior can be verified at any design stage. AsStateflowis part of
theMatLab Simulinkpackage models a variety of components from libraries can be incorporated into
models and used as external stimuli forStateflowdiagrams.

Stateflowis using finite state machine theory, flow diagram notations, and state-transition diagrams
all in the sameStateflowdiagram. Flow diagram notation creates decision-making logic such as for
loops and if-then-else constructs without the use of states.

This chapter gives an introduction toStateflow, providing the notation used, and illustrating how
models are interpreted by theStateflowsemantics. Moreover it strives for a feasibility analysis for
modeling theDetailed System Modeling and Verificationapproach from chapter 3 inStateflow. Spe-
cial interest is put on some statistical figures like a firing distribution of the airbag controller when
using randomSimulinksignals as input.

4.0.1 Stateflowand Simulink

The collection of allStateflowblocks in theSimulinkmodel is a machine (cf. [Mat05]). WhenSimulink
is used withStateflowfor simulation,Stateflowgenerates anS-function(MEX-file) for eachStateflow
machine to support model simulation. This generated code is a simulation target and is called thesfun
target withinStateflow.

4.0.2 Finite State Machine Representations

A finite state machine is a representation of an event-driven (reactive) system. In an event-driven
system, transitions are taken from one state (mode) to another prescribed state, provided that the con-
dition defining the change is true.

31

CHAPTER 4. Simulink Stateflow

A finite state machine(FSM) or finite automatonis a model of behavior composed of states, transitions
and actions. A state stores information about the past, i.e. it reflects the input changes from the system
start to the present moment. A transition indicates a state change and is described by a condition that
would need to be fulfilled to enable the transition. An action is a description of an activity that is to
be performed at a given moment. The way transition labels can be composed and state actions can be
executed is illustrated in figure 4.1.

Figure 4.1: Overview of some basicStateflownotations (cf. [Mat05]).

4.1 StateflowNotation

4.1.1 StateflowDiagram Objects

This part describes most of the graphical and non graphical objects in aStateflowdiagram along with
the concepts that relate them. The following sampleStateflowdiagram [Fig 4.2] displays a summary
of the key graphical objects of aStateflowdiagram. Objects and examples described in following refer
to this diagram.

States

A state describes a mode of an event-driven system. The activity or inactivity of the states dynamically
changes based on events and conditions. Every state has a parent, where as in aStateflowdiagram
consisting of a single state, that state’s parent is theStateflowdiagram itself, also called theStateflow

32

4.1.StateflowNotation

Figure 4.2: SummaryStateflowdiagram revealing some of the key features like parallel composition,
history junction, connective junction, et cetera (cf. [Mat05]).

diagram root. States can be placed within other higher-level states. In figure 4.2,StateA1 is a child
of StateA.

The decomposition of a state defines the way states are incorporated in the next level of containment.
Stateflowprovides two types of states, namelyexclusive(OR), andparallel (AND) states. Exclusive
(OR) states are used to describe modes that are mutually exclusive. A chart or state that contains
exclusive (OR) states is said to have exclusive decomposition. A chart or state with parallel states has
two or more states that can be active at the same time. A chart or state that contains parallel (AND)
states is said to have parallel decomposition. Parallel (AND) states are displayed as dashed rectangles.
The activity of each parallel state is essentially independent of other states. In the figure 4.2,StateA2
has parallel (AND) state decomposition. Its states,StateA2aandStateA2b, are parallel (AND) states.

States can haveentry, during , exit, andon eventactions [Fig. 4.3]. The action language defines the
types of actions you can specify and their associated notations. An action can be a function call, the
broadcast of an event, the assignment of a value to a variable, and so on.

33

CHAPTER 4. Simulink Stateflow

Figure 4.3: Possible events and function calls within a state (cf. [Mat05]).

Stateflowsupports bothMealyandMoorefinite state machine models. In the Mealy model, actions
are associated with transitions, whereas in the Moore model they are associated with states.

Transitions

A transition is a graphical object that, in most cases, links one object to another. One end of a tran-
sition is attached to a source object and the other end to a destination object. The source is where
the transition begins and the destination is where the transition ends. A transition label describes the
circumstances under which the system moves from one state to another. It is always the occurrence
of some event that causes a transition to take place. In figure 4.2 on the preceding page, the transition
from StateA1to StateA2 is labeled with the eventtransitionA1_A2 that triggers the transition.

Default Transitions

Default transitions specify which exclusive (OR) state is to be active when there is ambiguity between
two or more exclusive (OR) states at the same level in the hierarchy. For example, in figure 4.2, the
default transition toStateA1 resolves the ambiguity that exists with regard to whetherStateA1 or
StateA2should be active when state A becomes active. In this case, whenStateA is active, by default
StateA1 is also active.

Note thathistory junctionsoverride default transition paths in super-states with exclusive (OR) decom-
position and in parallel (AND) states, a default transition must always be present to indicate which of
its exclusive (OR) states is active when the parallel state becomes active.

Events

Events drive theStateflowdiagram execution but are non graphical objects and are thus not repre-
sented directly in aStateflowchart. All events that affect theStateflowdiagram must be defined. The
occurrence of an event causes the status of the states in theStateflowdiagram to be evaluated. The
broadcast of an event can trigger a transition to occur or can trigger an action to be executed. Events

34

4.1.StateflowNotation

are broadcast in a top-down manner starting from the event’s parent in the hierarchy.

Data

Data objects are used to store numerical values for reference in theStateflowdiagram. They are non
graphical objects and are therefore not represented directly in aStateflowchart. Data objects have a
property called scope that defines the availability of the object for states.

Conditions

A condition is a Boolean expression specifying that a transition occurs, given that the specified ex-
pression istrue. In the component summaryStateflowdiagram [Fig. 4.2],condition1 represents a
Boolean expression that must be true for the transition to occur.

History Junction

A history junction records the most recently active state of a chart or super-state. If a super-state
with exclusive (OR) decomposition has a history junction, the destination sub-state is defined to be
the sub-state that was most recently visited. A history junction applies to the level of the hierarchy
in which it appears. The history junction overrides any default transitions. In the summaryStateflow
diagram [Fig. 4.2], the history junction inStateA1 indicates that when a transition toStateA1oc-
curs, the sub-state that becomes active (StateA1a, StateA1b, or StateA1c) is based on which of those
sub-states was most recently active.

Actions

Actions take place as part ofStateflowdiagram execution. The action can be executed either as part
of a transition from one state to another or based on the activity status of a state. Transitions ending in
a state can have condition actions and transition actions. In the summaryStateflowdiagram [Fig. 4.2]
the transition fromStateA1b to the connective junction has condition actionfunc1() and transition
actionfunc2().

Connective Junctions

Connective junctionsare decision points in the system and of particular interest. They provide alter-
native ways to represent desired system behavior. In figure 4.2 on page 33, the connective junction is

35

CHAPTER 4. Simulink Stateflow

used as a decision point for twotransition segmentsthat complete atStateA1c.
Transitions connected to junctions are called transition segments. Transitions, apart from default
transitions, must go state to state. However, once transition segments taken completely to the next
state, the accumulation of these transition segments taken forms a complete new transition. Example
in figure 4.4 shows how connective junctions are used to represent the flow of anif-elsestructure
accompanied by pseudo code.

Figure 4.4: Example of a nested if-else condition and its counterpart inSimulink(cf. [Mat05]).

4.2 StateflowSemantics

The semantics ofSimulink/Stateflowis rule based in a sense that transition-taking is deterministic.
This can be seen by having a look at the semantics where e.g. connective junctions completely avoid
the use of non-determinism by considering the angular position of the transition source. Integrating
Stateflowmodels intoSimulink, more expressiveness is gained. Following below, rule- and execution
orders are provided that constitute theStateflowsemantics.

4.2.1 Event Execution

Execution of events occurs in two levels and only in response to the execution of aStateflowchart.
When starting the simulation, first the chart is updated, awakened for execution and second it is re-
sponding to events until all events are processed. SinceStateflowis single threaded, actions that take
place on an event are atomic to that events, i.e. all activity caused by the event in the chart is com-
pleted before returning to activities that were taking place prior to reception of the event.
When an event occurs, it is processed from the top of theStateflowdiagram down through the hierar-
chy. At each level in the hierarchy anyduring andon event actions for the active state are executed,
and completed, and a check for the existence of a transition among children of the state is conduced.

36

4.2.StateflowSemantics

4.2.2 Chart Execution

The execution of charts is triggered by events originating fromSimulink. A chart is inactive when it
is first triggered by an event from theSimulinkmodel and has no active states within. After the chart
is executed and its initial trigger events from theSimulinkmodel are completely processed, it remains
active and goes to sleep. A sleeping chart has active states within it, but no events to process.

Active Charts

After a chart has been triggered the first time by theSimulinkmodel, it is anactive chart. When it
receives another event fromSimulink, it executes again as an active chart. If the chart has no states,
each execution is equivalent to initializing a chart, otherwise the active children are executed. Parallel
states are executed in the same order that they are entered.

Inactive Charts

When a chart is inactive and first triggered by an external event fromSimulink, it first executes its
set of default flow graphs. If this does not cause an entry into a state and the chart has parallel
decomposition, then each parallel state is entered. If executing the default flow paths does not cause
state entry, a state inconsistency error occurs.

Flow Graphs

The flow graph group is executed in the order of group priority until a valid transition is found. The
default transitions group is executed first, followed by the inner transitions group and then the outer
transitions group. Each flow graph group is executed with the following procedure:

1. Order the group’s transition segments for the active state. An active state can have several pos-
sible outgoing transitions, which are ordered before checking them for a valid transition.

2. Select the next transition segment in the set of ordered transitions.

3. Test the transition segment for validity. If the segment is invalid, go to step 2.

4. If the destination of the transition segment is a state, do the following:

(a) No more transition segments are tested and a transition path is formed by including the
transition segment from each preceding junction back to the starting transition.

(b) States that are the immediate children of the parent of the transition path are exited.

(c) The transition action for the final transition segment of the full transition path is executed.

37

CHAPTER 4. Simulink Stateflow

(d) The destination state is entered.

5. If the destination is a junction with no outgoing transition segments, do testing without any
states being exited or entered.

6. If the destination is a junction with outgoing transition segments, repeat step 1 for the set of
outgoing segments from the junction.

7. After testing all outgoing transition segments at a junction, back up the incoming transition
segment that brought you to the junction and continue at step 2, starting with the next transition
segment after the backup segment. The execution of the set of flow graphs is done when all
starting transitions have been tested.

4.2.3 Transition Execution

Transitions play a large role in defining the animation or execution of a system. If the chart has
exclusive (OR) states, its execution begins with the default transitions that points to the first active
state in the chart. Any actions associated with the sources or destinations are related to the transition
that joins them. The type of the source and destination is equally important to define the semantics.

Flow Graph Types

Before transitions are executed for an active state or for a chart, they are grouped by the following
types:

• Default flow graphsare all default transition segments that start with the same parent.

• Inner flow graphsare all transition segments that originate on a state and reside entirely within
that state.

• Outer flow graphsare all transition segments that originate on the respective state but reside at
least partially outside that state.

Each set of flow graphs includes other transition segments connected to a qualifying transition segment
through junctions and transitions.

Ordering Single Source Transitions

Transitions from a single source are ordered for testing according to the following three sorting guide-
lines, which appear in order of their precedence (first step is highest priority):

1. Transitions whose end points are attached to higher hierarchical levels (Endpoint Hierarchy)
are placed first in testing order.

38

4.2.StateflowSemantics

2. Transitions are ordered for testing according to the types of action language present in their
labels. The order of precedence is

(a) Labels with events and conditions

(b) Labels with events

(c) Labels with conditions

(d) No Labels

3. Transitions are ordered for testing based on theangular position of the transition sourceon the
surface of the originating object. Multiple outgoing transitions from states that are of equivalent
label, source, and end point the hierarchy priority are evaluated in a clockwise progression
starting at the upper left corner of the source state.

4.2.4 State Execution

States are either active or inactive. The following subsection describes the stages of state execution
that take place between becoming active and becoming inactive.

Entering a State

A state is entered (becomes active) in one of the following ways:

• Its boundaries are crossed by an incoming executed transition.

• Its boundary terminates the arrow end of an incoming transition.

• It is the parallel state child of an activated state.

When specified, the state performs its entry action when it becomes active. The state is marked active
before its entry action is executed and completed. The execution steps for entering a state are as
follows:

1. If the parent of the state is not active, perform steps 1 through 4 for the parent first.

2. If this is a parallel state, it is checked that all sibling parallel states with a higher execution order
are active. If not, perform all entry steps for these states first in the appropriate order of entry.

3. Mark the state active.

4. Perform any entry actions.

5. Enter children, if needed:

(a) Execute the default flow paths for the state unless it contains a history junction.

39

CHAPTER 4. Simulink Stateflow

(b) If the state contains a history junction and there is an active child of this state at some
point after the most recent chart initialization, perform the entry actions for that child.

(c) If this state has children that are parallel states (parallel decomposition), perform entry
steps 1 to 5 for each state according to its entry order.

6. If this is a parallel state, perform all entry actions that exist for the sibling state next in entry
order.

7. If the transition path parent is not the same as the parent of the current state, perform entry steps
6 and 7 for the immediate parent of this state.

8. The chart goes to sleep.

Executing an Active State

Active states that receive an event that does not result in an exit from that state execute aduring action
to completion if aduring action is specified for that state. Anon event action executes to completion
when the event specified occurs and that state is active. An active state executes itsduring andon
event actions before processing any of its children’s valid transitions.during andon event actions
are processed based on their order of appearance in the state label. The execution steps for executing
a state that receives an event while it is active are as follows:

1. The set of outer flow graphs is executed. If this causes a state transition, the execution of the
state is stopped.

2. during actions and validon event actions are performed.

3. The set of inner flow graphs is executed. If this does not cause a state transition, the active
children are executed, starting at step 1. Parallel states are executed in the same order that they
are entered.

Exiting an Active State

A state is exited and accordingly becomes inactive in one of the following ways:

• Its boundary is the origin of an outgoing executed transition.

• Its boundary is crossed by an outgoing executed transition.

• It is a parallel state child of an activated state.

The state is marked inactive after theexit action has executed and completed. The execution steps for
exiting a state are as follows:

40

4.3. Airbag Controller by Means ofStateflow

1. If it is a parallel state, and one of its sibling states was entered before, exit the siblings starting
with the last-entered and progressing in reverse order to the first-entered.

2. If there are any active children, perform the exit steps on these states in the reverse order they
were entered.

3. Perform any exit actions.

4. Mark the state as inactive.

4.3 Airbag Controller by Means of Stateflow

After having studied the theory ofStateflowit seems eligible to obtain a comprehension how the
previous model from chapter 3 can be transformed intoStateflowsuccessfully. Where attention was
devoted to the verification of certain properties by simulation, we now focus on real-time simulation
and thus exhaust the spectrum of available validation methods. Moreover, by capturing the times
of deployment we will be able to derive some statistical measure reflecting the airbag deployment
distribution.
Simulinkhas apart from basic circuit components a variety of means to address higher mathematical
functionals that will be partly used.

4.3.1 SimulinkModels

Environment

The environment signals [Fig. 4.5] that represent sensor values as seen by micro controller and ap-
prover are generated by a uniform random number generator from theSimulinklibrary. Rand_Env_A
and Rand_Env_B generate values out of interval [-0.4; 2.4] and [-0.4; 1.4] to assure that we obtain
by the post processing round-function integers between [0; 2] and [0; 1]. Gatessample_A andsam-
ple_B (Zero-Order-Hold) sample the delivered data with a fixed frequency of 2 time units. In addi-
tion to the number generation it is possible to use user-defined signal-values fromMatLab workspace
that will be used later on.

ECU Controller

The mainSimulinktemplate [Fig. 4.6] holds all constants as being used in theMoDeSTsimulation.
Besides this, a clock is contained that gives the model a notion of global time. A scope (Scope)
allows to investigate the course of each signal par and post simulation.

41

CHAPTER 4. Simulink Stateflow

Figure 4.5:Simulinkmodel of the environment that generates sensor values

Figure 4.6: SummarySimulinkmodel of the electronic control unit withStateflowcomponents Fir-
ingStage, Approver, and Micro.

42

4.3. Airbag Controller by Means ofStateflow

4.3.2 StateflowModels

Stateflowmodels are based on models from the previousUppaalstudy [Aue05]. Since no option to
define local clocks for each component and no option for clock reset is given, one has to incorporate
time constraints of former clocks into transition guards. All timing constraints and functions from
former local clocks have be incorporated into new guards. Due to existing non-disclosure agreements,
we restrict on giving only the simulation results, rather than displaying theStateflowmodels of the
electronic control unit.

4.3.3 Simulation

Figure 4.7 illustrates the scope during one simulation run, where the first two lines represent random
sensor values. In the last column the signalFireBag is shown that is triggered byFiringStage.
The input signals as being produced by the environment stem from theSimulinkrandom generator.
As a consequence, when repeating the experiments always identical outputs are obtained unless the
seed is changed. This guarantees a better trace-ability of models for repeating runs.

Figure 4.7: Simulation output showing signal values of environment A, B, and in the third row the
deployment of the firing stage.

43

CHAPTER 4. Simulink Stateflow

Figure 4.8: Sensor values as being produced by the environment for 20 simulation runs. Environ-
mentA is a three-valued variable where EnvironmentB can only reach two values.

4.3.4 Statistical Analysis

Since our interest is also devoted to some statistical measures, the macro (M-file) shown in appendix C
will guide the simulation and do the initialization of arrays. Results of 2.000 simulations are thus
obtained that can be used to do the statistical analysis. To ensure real random sensor values for
multiple simulations we pass on using therandom number generatorfrom theSimulinkLibrary since
using the same seed the exactly same environment signals are received.
Motivated by this observation, two two-dimensional arrays (RandA, RandB) are instantiated by real
random values that are renewed every simulation run [Fig. 4.8]. Values from this arrays are sampled
with a frequency of one random sample every 100 time units. This correlated to 100-times scaling on
the X axis and in between the sensor signals retain their values. After each simulation, values from
scope (structure ScopeData) are copied into data structureResults to retain them for further surveys.

The random variables in turn deliver the input to the airbag controller that decides upon some algo-
rithm whether to deploy the airbag or not. The figure below depicts the firing distribution of the firing
stage for 2.000 simulation runs. The Y-axis denotes the probability of deployment at a specific point
in time. Note that the time axis (X-axis) is labeled with simulation time scaled by factor 100.

4.4 Conclusion

The Stateflowsimulation of the ECU shows up a new approach of how the airbag control unit can
be analyzed based on outputs generated by the environment. Valuable information can be gathered
about a model by visualizing the correlation of sensor values generated by the environment, and the
deployment of the firing stage. Moreover this chapter explains how to integrateStateflowdiagrams
into theSimulinkenvironment ofMatLab.
The resulting distribution [Fig. 4.9] gained in the statistical section has a bell-like shape (normal dis-
tribution) with mean around 35. The gaps in the plot - where no data is available - originate from the
fact that scope values are sampled with a sampling time of 500 time units (equal the cycle time of the

44

4.4. Conclusion

Figure 4.9: Distribution of airbag firing, acquired by running 2.000 simulations.

micro interrupt) to reduce the scope data. Notice that the earliest point of deployment is at 3.000µs
because only after that time the mechanism contained in the controller has reached the state where it
allows firing.
Concluding, theStateflowmodeling gives new insights into the airbag controllers behavior. The vi-
sualization of results delivers a new aspect from a totally different point of view, still having in mind
that the statistical analysis is rather a feasibility analysis than intended to bring up new insights into
the topic.

45

Chapter 5

Markov Chain Analysis

In probability theory, aContinuous-Time Markov Chain (CTMC)is a stochastic process that enjoys the
Markov property and takes values from elements of a discrete set called the state space. The Markov
property states, that at any timess > t > 0, the conditional probability distribution of the process at
time s given the whole history of the process up to and including timet, depends only on the state of
the process at timet. In effect, the state of the process at times is conditionally independent of the
history of the process before timet, given the state of the process at timet. Using CTMCs one can
efficiently compute failure behavior, given the fact that failure rates are known, by using steady state
simulation.
This chapter covers on-demand failure analysis of the airbag control unit by analyzing the steady state
behavior with focus on the safety integrity requirements. On demand in this context means that we
focus on critical situations if the airbag fails to work properly at times of an airbag relevant crash,
where failures besides the unintended deployment are more or less accepted if being repaired in time.

5.1 Assumptions

For determining the safety integrity requirements of the airbag control unit the following assumptions
are made. Theoverall operation timeof a single ECU isT0 = 9.000hours, which correlates to a
usage of 15 years with an average duty of600hours

year . The total number of ECUs to be produced is
N0 = 30.000.000 pieces. An airbag relevant crash occurs exponentially distributed with a crash rate
of

λE = 4.0 · 10−5h−1.

Once a failure of the airbag system is indicated, the driver is expected to visit the garage on average
after 20 hours, which correlated to an exponentially distributed repair rate of

µrepair = 5.0 · 10−2 h−1.

46

5.2. Modeling On-Demand System Failures

Variable Name Value Description
λE 4.0E-5 event (crash) rate
λFI 1.0E-9 rate of indicated failure
λFNI 1.0E-12 rate of not indicated failure
λI 1.0E-7 rate of the indication to fail
µ 0.05 repair rate
PTFD 1.0E-9 probability of temporary faults upon process demand
λTFE 4,0E-14 rate of temporary failure on demand

Table 5.1: Failure and repair rates that were used in the Markov Chain analysis.

5.2 Modeling On-Demand System Failures

The considered Markov chain [Fig. 5.1] consists of five states with rates as shown in the table 5.1
below. Each state has transitions, labeled with rates. Transition from stateOK to the fault state (F)
is taken upon occurrence of an indicated fault, where as stateFNI is entered on incident of afailure
not indicated. The indication (warning lamp) permanently fails with a rate ofλI in which case state
IF (indication failure) is reached. Temporary faults are added using probabilityPTFD (probability of
temporary faults upon demand) which directly lead from stateOK to stateX, where the system fails
to respond to external events (crash).

The rate of theλTFD transitions, that represent the rate oftemporary failure on processing demand
are obtained by directly multiplying the probabilityPTFD by the event rateλE :

λTFE = PTFD · λE

5.3 Variables of Interest

Special interest is dedicated to the variables that follow below and in particular how precise they can
be obtained by simulation.

• MTTF (Mean Time To Failure)

• P (X)|t=9.000h

Probability that one airbag fails aftert = 9.000 hours of operation.

• EXF

Expected number of failing ECUs assumingN0 are in operation.

• P≥1

Probability that at least one of theN0 ECUs will fail during an assumed operation time ofT0.

47

CHAPTER 5. Markov Chain Analysis

5.4 Simulation and Results

Simulation of theMoDeSTmodel as shown in appendix D.1 is carried out using variablesTimeBe-
foreX (P (X)|t=9.000h) to account formean time to failureand PofXat9000 (read: probability of
occurrence X at time 9000) which measure the probability that one airbag fails after 9.000 hours of
duty. The variables were captured atInstant of timeat 1015 time units to assure that the majority of
simulation runs reached a stable failing state. For the following table [Tab. 5.2] 60 million batches are
computed at a level of confidence of 95%. Lines labeled by (*) did not reach the confidence Interval
during simulation.

Variable Mean Value Confidence +/-
MTTF 1,0107824732E09 9,9995125920E06
P (X)|t=9.000h 1,6666666667E-08 3,2666666667E-08(*)

Table 5.2: Figures MTTF andP (X)|t=9.000h received via simulation.

The probability of at least one ECU failing during the operation time ofT0 is calculated by

P≥1 = 1− (1− P (X)|t=9.000h)N0 . (5.1)

Figure 5.1: Model of the Markov Chain (CTMC) that is used for the on-demand safety analysis.

48

5.5. Analytical Approach

The expected number of failing ECUs is computed using

EXF = P (X)|t=9.000h ·N0. (5.2)

Since the result forP (X)|t=9.000h did not converge to a significant level, outcomes forEXF andP≥1

are expressed for mean, and values on the border of the confidence interval. Mean and values at the
limit of the confidence interval that can be calculated using equation 5.1 and equation 5.2 are shown
in the table below.

Lower Mean Upper
EXF 0,0100 0,5000 0,9900
P≥1 1,00% 39,35% 62,84%

Table 5.3: Results forEXF andP≥1 for mean and border values.

In addition to the variables of interest, table 5.4 contains the total time spend in each of the states
in addition to the failure measure. Reward variable measurement isInstant of timeat 1 · 1015 time
units. This proofs that on average most of the time is spend in stateIF, where the failure indication
mechanism fails to work.

5.5 Analytical Approach

To verify the simulation results we use, the analytical approach by matrix exponentiation as being
denoted in [Neu81]. A distributionF (·) on [0,∞) is a continuousPhase-Typedistribution iff the
distribution of the time until absorption to staten + 1 in a CTMC of the type described above where
n is finite. The pair(α,T) is called the representation ofF (·).
By translating the Markov model into a transition matrixT, the probability of reaching stateX can be
calculated. Suppose a CTMC withn + 1 states and a generator matrixQ given by

Q =
[

T T 0

0 0

]
,

Variable Mean Value Confidence +/-
tOK 9,9990828441E06 2,5299634979E03
tF 1,9930258776E-01 7,1527508848E-04
tIF 9,9890425697E08 2,5273683107E05
tFNI 2,4996094361E04 6,3254611763E00

Table 5.4: Results obtained by simulation for the time spend in each of the states before entering state
X over a simulation of1015 time units.

49

CHAPTER 5. Markov Chain Analysis

whereT is ann × n non-singular matrix satisfying, for all1 ≤ i ≤ n thatTij ≥ 0 for i 6= j and
Tij ≤ 0 for i = j. Furthermore it holds thatTe + T 0 = 0 with e being a column-vector of sizen
whose elements are all1. We assume that the states1, . . . , n are all transient, so that absorption into
the staten + 1 from any initial state is certain. The initial probability vector of the CTMC is given by
[α, αn+1], with αe + αn+1 = 1.

Let Q denote the matrix that is used to define a continuous Phase-Type distribution (PH) as the under-
lying CTMC. The Cumulative Density Function (CDF) of a PH with representation(α,T) asFPH is
given by

FPH(x) = P (t ≤ x) , for x ≥ 0

= 1−αeTxe

= 1−α

(∞∑
n=0

Tn · xn

n!

)
e

In the model of the on-demand system failures we useQ as generator matrix where
∑

denotes the
sum of all row entries.

Q =
[

T T 0

0 0

]

=


−
∑

λFI λI λFNI λTFE

µ −
∑

0 λI + λFNI λE

0 0 −
∑

λFI + λFNI λTFE

0 0 0 −
∑

λE

0 0 0 0 −
∑



=


−
∑

λFI λI λFNI λTFE

µ −
∑

0 λI + λFNI λE

0 0 −
∑

λFI + λFNI λTFE

0 0 0 −
∑

λE

0 0 0 0 0



We identify

T =


−
∑

λFI λI λFNI

µ −
∑

0 λI + λFNI

0 0 −
∑

λFI + λFNI

0 0 0 −
∑


and

50

5.5. Analytical Approach

T 0 =


λTFE

λE

λTFE

λE

 .

The initial probability mass is completely contained inα1, since we want to investigate a sound device
upon start, and check its failure probability over time. So the resulting vector representing the initial
state probability is

α =
(

1 0 0 0
)
.

By putting in the corresponding rates into matrixT, the time of absorption of the the finite Markov
process at hand can be computed [App. D.2], and accordingly the probability of reaching stateX.

T =


−.00000010100104 .000000001 .0000001 .000000000001

.05 −.050040100001 0 .000000100001
0 0 −.00000000100104 .000000001001
0 0 0 −.00004



By using PH with representation (T,α) the distribution is generated via matrix exponentiation. Fig-
ure 5.2 reveals a distribution for reaching stateX. The exact value at 9.000 hours of operation is

Figure 5.2: Phase type distribution with representation(α,T) showing the relation between the time
on the abscissa and and the resulting probability of reaching stateX.

51

CHAPTER 5. Markov Chain Analysis

p = 9.425010E − 09. Using equations 5.1 and 5.2 on page 49 we compute the failures based on the
analytical approach as shown at table 5.5. This proves, that assuming 30 million ECUs to be build
less that one will fail over an time of duty of 9.000 hours under terms of normal usage.

Variable simulation (mean) matrix exponentiation
P (X)|t=9.000h 1.66666E-08 9.425010E-09
EXF 0,5 0,282750
P≥1 39,3469% 24,6292 %

Table 5.5: Comparison of the results obtained by simulation and matrix exponentiation.

5.6 Conclusion

Simulation showed that for the selected rates the on-demand safety failures are within acceptable
ranges considering the fact, that less then 1 (0,5 piece) ECUs fail out of 30 million produced devices
within time T0. It is worth noticing that the confidence interval of 95% is not achieved within 60
million simulations forP (X)|t=9.000h and hence no accurate forecast can be given.
Considering that a long time on average is spend in stateIF where the indication fails, the security
could be substantially improved by modifying the indication procedure. Mean time to failure is with
1, 011 · 109 hours of operation far beyond the necessary requirements of 9 000 hours.
Rare event simulationcould be used to achieve an even better simulation outcomes. The number of
failing devices obtained bymatrix exponentiationapproved simulation results to be close to the actual
failures and revealed a nice way to compute the failure distribution, thus obtaining an illustrative
overview.

52

Chapter 6

Fault Tree Analysis

Fault Tree Analysis (FTA)[WGRH81] is a technique to determine reliability and safety of complex
systems developed 1962 byBell Telephone Laboratoriesfor the U.S. Air ForceMinutemansystem.
Fault tree analysis is one of many symbolic "analytical logic techniques" found in operation research
and in system reliability by working in the “failure space” and looking at system failure combinations.

This chapter is a feasibility check ofFault Tree Analysisby simulation and its implementation in
MoDeST. Of interest is the way fault trees can be modeled. Special emphasize is devoted to group-
ing of components in a natural way, i.e. that all points of failure that can occur within a device are
modeled as such. This is a quested and desirable feature because the interrelation and dependability
is completely lost in conventional FTA models. Towards the end, simulation results are compared to
results obtained by commercial fault tree tools, likeFault Tree +[Fau05].

6.1 Representation of Events

Fault trees are built using gates and events (blocks). The two most commonly used gates in a fault
tree areAND () andOR () gates. Other gates to account formajority votesor priority are neglected
since they are not used in the model at hand.

As an example, consider two events comprising atop event (TE). If occurrence of either event causes
the top event, then these events are connected using anOR gate. Alternatively, if both events need to
occur to cause the top event to occur, they are connected by anAND gate.
For better understanding, imagine a simple fault tree consisting of seven components [Fig. 6.1],
whereasBE1 to BE4 arebase events (BE). In case of the occurrence of aTop Event, the error is
propagated from the base events byGate2 andGate3 such that either base eventBE1 or BE2 and
BE3 or BE4 contribute to the system failure and final top event occurrence.

53

CHAPTER 6. Fault Tree Analysis

Figure 6.1: Fault tree example with four bottom events which are connected to the top event using
AND- (Gate1) and OR-gates (Gate2, Gate3).

6.1.1 Events

Gates in a fault tree are logic symbols that interconnect contributory events and conditions. The most
prominent to name arefixed rateandfixed probabilityevents. An event (or a condition) block in a
fault tree can have a probability of occurrence or a distribution function, where probabilistic events
are time insensitive in contrary to distribution functions.
Fixed probability events specify unavailabilities which do not vary over time, modeling failure prob-
abilities per demand. Opposing to that, fixed rate events are used to represent events whose failures
are immediately revealed to the system. The underlying failure distribution can be exponential, with
a constant failure rate, but also other distributions like Erlang, Weibull, or others are possible.
An approach to model these events inMoDeSTis depicted in figure 6.2 for the exponential distribution
and figure 6.3 for the fixed probability.

6.1.2 Probabilities of mixed Events

Before starting with the fault tree it seems desirable to have some notion of how probabilities of events
is propagated when using gates. As such consider a fixed rate event that is exponentially distributed
with mean1/λ and a fixed probability event with probabilityp. X and Y are in the following random
variables that define the resulting probabilitiesPexp andPprop

54

6.1. Representation of Events

int EventBE1;

process BE1(){

clock t;
float ExpBE1;

{= ExpBE1=Exponential(rateBE1) =};
when (t==ExpBE1) {= EventBE1=1 =}

10

}

Figure 6.2: Exponential eventBE1 that occurs with rater = rateBE1.

Int EventBE2;

process BE2(){

tau;
//#FTA [1E-2: EventBE2]
palt{

:99: tau
:1: {= EventBE2=1 =}

} 10

}

Figure 6.3:MoDeSTcode of a probabilistic base event with probabilityQ = 1.0E − 2. Notice that
thisMoDeSTconstruct is generated byGEMAon input#FTA [1E-2: EventBE2]

int EventGate1=0;

process Gate1(){

when (EventBE1==1 && EventBE2==1)
{= EventGate1=1 =}

}

Figure 6.4:MoDeSTimplementation of anAND gate. Notice that the guard can be extended easily to
fit arbitrary many sub events.

55

CHAPTER 6. Fault Tree Analysis

Pexp[X ≤ t] = 1− e−λt

Pprob[Y] =
{

p , if Y = ‡
1− p , if Y = †

where† and‡ are mutually exclusive events. The resulting probabilities by interrelatingPexp and
Pprop with AND, and respectivelyOR are

AND gate

P [X ≤ t ∧ ‡] = P [X ≤ t] · P [‡]

=
(
1− e−λt

)
· p

OR gate

P [X ≤ t ∨ ‡] = P [X ≤ t] + P [‡]− P [X ≤ t ∧ ‡]

=
(
1− e−λt

)
+ p−

(
1− e−λt

)
· p

= (p− 1) · e−λt + 1

To obtain a clear and descriptive perception about the gates denoted above, the resulting distributions
are plotted in figure 6.5.

6.2 Simulation and Results

A sub tree of the airbag control unit modeled is shown in appendix E that accounts for general hard-
ware failures of theµC leading to incorrect processing. This branch has probabilistic (fixed probabil-
ity) and exponential (fixed rate) events.

56

6.2. Simulation and Results

Figure 6.5: Figure showing the distribution of a general exponential functiongeneralExp (green) with
parametersλ=1.0E-8 and probability functionPprop (red) with p=10%. The resulting distribution
using an AND-gate is denoted asPand (blue) where as the or gate distribution is labeled byPor
(purple). The constant probability P is time insensitive and hence parallel to the axis of abscissae.

6.2.1 Fault Tree +

The fault tree of concern is evaluated [Fig. 6.6] on first hand usingFault Tree +version 11, available
as unlicensed demo version [Fau05]. The evaluation time used to compute the time insensitive expo-
nential function is one time unit, i.e. the exponential distributed base events are evaluated at time one.
The predicted probability of top event occurrence is1.9702E − 10. Beyond measuring the system
failure at 1 time unit, values to justify breakdowns over an airbag’s life-cycle at 7 500, 9 000, and 12
000 are used. Results are shown in table 6.1.

57

CHAPTER 6. Fault Tree Analysis

Figure 6.6: Clipping of the fault tree as used inFault Tree +. The resultingTOP EVENT probability
by evaluation over one time period is1.9702E − 10.

58

6.2. Simulation and Results

time FT+ Results MoDeSTResults Confidence +/- Batches Process Time
1 1.970200E-10 5.67350E-091 3.93153E-09 1 410M 103.66h

7 500 1.440195E-06 1.41326E-06 1.23754E-07 355M 23.74h
9 000 1.728278E-06 1.73495E-06 1.50725E-07 293M 21.36h

12 000 2.304490E-06 2.23000E-06 1.93542E-07 228M 16.54h

Table 6.1: Comparison of analytical and simulation results for different time values.

6.2.2 MoDeST

Simulation

The fault tree used for FTA analysis viaFault Tree + is identical to the one used for simulation to
have posterior comparable results. To ease the work load aGEMAkeyword (#FTA) that can be used
for adding probabilistic errors into the model.
The simulation is on the first hand done over reward variableTop-Event measuring the top events
seen atInstant of Timeat one time unit. The confidence level is at 95% with a relative confidence
interval of0.1. Due to the very low rates top events show up very rarely. As results failed to converge
when evaluating the exponential function at time one, they converge when increasing times. For more
expressive values, time units are adopted to satisfy ageneral airbag’s life-cycleunder light (7 500h),
normal (9 000h) and heavy (12 000h) usage (operation hours in parenthesis).

In addition, variableTimeTE is added that counts the mean time until the top event occurs, which
is using the same reward variable than experiments before. By this, one can check to what extent
probabilistic events contribute to the overall failure.

Results

Simulation andFault Tree +results are captured in the table 6.1. For instant-of-time at one time unit,
simulation results do not converge even when simulating over the maximal batch size. Attempts to
rescale times did fail to reach confidence too, sinceMoDeSTdoes discrete event simulation which is
indifferent towards the time scale used.
For higher system lifetimes, the results of simulation correspond to the analytical results measured by
Fault Tree +.

Table 6.2 summarized the time until the occurrence of a top event. Since the numbers are relatively
small one can conclude that the number of on-demand errors outperforms the exponential failures,
that occur over time. Consequently we can stress, that under normal usage (9 000 h) the investigated
part is is failing on average at 7.8E-3 hours (28 seconds).

1results did not converge

59

CHAPTER 6. Fault Tree Analysis

time TimeTE Confidence +/-
7 500 5.4485575908E-03 5.4456679875E-04
9 000 7.8003129775E-03 7.7978655632E-04

12 000 1.3119907569E-02 1.3116989964E-03

Table 6.2: Simulation results for time passed until the occurrence of a top event.

6.3 Conclusion

The analysis provided here shows how fault trees can be modeled inMoDeST, where especially group-
ing of components into logical units can be done. This approach is motivated by the fact, that devices
often have more than one point of failure, e.g. 1st the failure of incorrect voltage supply and 2nd the
probability that incorrect voltage is not detected in the system, that should be modeled in the same
fault tree branch.
By defining a preprocessor keyword much of the modeling activity is removed and system models are
more structured and as such better readable. As a draw back it can be stated that when having small
system lifetimes, the times required for simulation are extremely high. Like in the example at hand
for one time unit of operation approximately 5 billion batches would be needed to reach a confidence
at the desired level. This is a general downside of simulation in contrary to analytical computation.

60

Chapter 7

Fault Tree Generation

Economical development and quality of life depend to an increasing extent on a more and more
complex technical infrastructure. This includes all means of technology, transportation, industry pro-
cesses, and energy production. Such systems often carry a significant lethal potential while the pre-
vailing tolerance in society is decreasing. With the entering of these models in the industrial process,
a high demand on adequate and possibly automated analysis techniques come along, leading to a di-
versity of tools for different classes of models [Har87].

Fault tree generation establishes such an attempt to automate failure analysis of complex systems by
deriving fault trees out of the behavior model via simulation. This chapter’s focus is on the automated
generation of fault trees and the way minimal cut sets can be gained via simulation inMoDeST.

7.1 Preliminary Concepts

7.1.1 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD)is a directed acyclic graph representation of a Boolean function,
where each non-terminating vertex is labeled by a variable. It has in addition two directed edges, one is
a zero variable assignment and the other an one-edge. A BDD is derived by reducing a binary decision
tree, which represents the recursive execution ofShannon‘sdecomposition [Bry87]. In contrast to
binary decision trees, a BDD’s children node can have multiple parent nodes. By using BDDs the
cut-sets can be computed efficiently.

7.1.2 Minimal Cut Sets (MCSs)

Among various fault tree analysis methodsminimal cut sets(MCSs) are playing a central role in the
assessment of fault trees. Minimal cut sets define the “failure modes” of the top event and are usually

61

CHAPTER 7. Fault Tree Generation

obtained via fault tree evaluation [WGRH81]. A minimal cut set is the smallest combination of com-
ponent failures which, if they all occur, will cause the top event to occur.
MCSs are the basis for qualitative analysis representing the minimal set of component failure that
cause the failure of the whole system. They can also be used in the quantitative analysis which deter-
mines the probability of the top event occurrence for a given fault tree [TD03].

7.2 Fault Tree Generation

The computation effort to determine the qualitative and quantitative analysis of FT can exponentially
grow by the number ofbase events (BE). To lower computation costs, the FT can before computation
be divided into modules according to thedivide and conquerprinciple. One often differentiates be-
tweenstochastic independent sub trees(SIST), logical combinations of components, and predefined
modules [Buc00]. ASISTis sub tree whose nodes have no edges to vertices outside this sub tree and
which consists solely of stochastic elements that can be evaluated independently from probabilistic
base events.
For doing the quantitative analysis, a module can be analyzed independently from the rest of the tree
and afterward being treated like a new BE with the computed failure behavior. For the qualitative FTA
evaluation, modularization can reduce the complexity drastically. Sub tree modules often reflect parts
in real systems and hence the failure behavior or the impact of modules on prime implicants leads to
a better system understanding.

The model which will be used to investigate fault tree generation is the simple model of the Airbag
Controller from the Scenario Analysis [Ch. 2]. Focus on the first hand is on adding probabilistic
error events, and in the2nd run solely stochastic components that contribute to the SIST are added.
Fortunately, since exponentially distributed errors are independent from the rest, they can be simulated
disjoint. Up to here no assumption about how to continue after the occurrence of an error is made,
since it is unclear how sensitive the model will react on failures. So the simulation is simply stopped
and further investigations are kept as a open quest.

7.2.1 Representation of Probabilistic Errors

Data for the fault tree analysis can be gained by artificially inserting errors into the simulation model
(MoDeSTsources). As noted in [BHB+04] we differentiate the error behavior by the following pre-
processor commands:

Actions

Actions can be manipulated bydelay(a,p,t,clk) andstuck(a,p). This causes on the one hand to delay
actiona with probabilityp for t time units or generates a infinite delay for processa with probability

62

7.2. Fault Tree Generation

p. clk refers to any clock present in the model. In addition, one could think ofranddelay to adopt
for a random action delay in the future but for grasping the principles of fault tree generation the two
error notions for actions should suffice. The preprocessor keywordsdelay(a,p,t,clk) andstuck(a,p)
are explained in detail in appendix A.

Variables

For imitating error behavior of float variables we reservenoise(x,p,n) and rand(x,p,n) to account
for noisy and random values. Noise is defined as a random fluctuation of magnituden around a pre-
defined value of variablex that occurs with probabilityp. With the keywordrand a random value
of magnituden is invoked and assigned to variablex with probabilityp. Note that no restriction to
purely positive values is made, although this might be desirable for some models. Especially negative
values can cause some models to deadlock, if not being considered during design phase.

In addition to the artificial errors inserted into the model, errors have to be labeled with an unique
naming in order to relate the error definition in terms of “when does it occur?” to the corresponding
error event “which component?” and the top event “what happens next?”. This is achieved by defin-
ing exceptions to the corresponding error. All thrown exceptions are caught and lead to an immediate
simulation abort.

7.2.2 Representation of Exponential Distributed Errors

When dealing with exponential distributed errors the preprocessor commands from before have to be
modified by replacing the probabilityp by a rateλ and develop a mean to measure times within each
process.

Actions

For simplicity we stick close to the naming for probabilistic errors and definedelayexp(a,t,lambda)
andstuckexp(a,lambda) as the corresponding exponential versions of the former used definitions.
From the semantic sidedelayexp andstuckexp are similar with the only difference being that the
simulation in the first case can be continued after time t passed.

Variables

Insertion of variable errors is done bynoiseexp(x,lambda,n) andrandexp(x,lambda,n) to account
for noisy and random values. Due to the fact that the new defined processes need to be incorporated
and run in parallel with other processes, aGEMAtranslation is not possible in one shot.

63

CHAPTER 7. Fault Tree Generation

7.2.3 Representation of Nominal Faulty Behavior

Another way to start the fault tree generation is by adding nominal errors into the simulation. That
means, that components contain explicit description of nominal and faulty behavior [MMT00] pos-
sibly stored in a database. This behavior is in turn described using a set of predefined constraints,
relating the local variables of a component to possible failures. For instance a valve model may have
three behavior modes, namely “ok”, “stuck open”, and “stuck closed”, representing the nominal be-
havior of two different failure modes.

7.3 Simulation of the Failure Model

Four errors are inserted into the model according to table 7.1 that represent probabilistic failures. No
reward variables are needed since the resulting simulation traces of 10.000 batches is used for identify-
ing the occurrence of actions before error. A clipping of the simulation trace is illustrated in figure 7.2.

Error Type Prob Values Delay
enable RAND 10 [0,1]
Event1 DELAY 10 5
Event2 STUCK 4
Event3 DELAY 5 19

Table 7.1: Probabilistic failures which are inserted into the behaviorMoDeSTmodel.

The stochastic error side (SIST) of the model is represented by two exponentially distributed errors
[Tab. 7.2] for the delay of in processFrontBag andBeltTensioner. Both failures are of typenoise
with λ = 1E − 4 for BeltTensioner andλ = 5E − 5 for FrontBag. By this, a random delay of
magnitude 30 forBeltTensioner and 100 forFrontBag is induced. The absolute value of noise is
chosen to be half of the predefined delay.
Since the stochastic failure model is independent from probabilistic one, the failure simulation of both
models can simply be merged. Stochastic errors are added into the SIST (Stochastic Independent Sub
Tree) for the fault tree model. The completeMoDeSTsources can be found in appendix [G].

λ noiseless delay noise magnitude
BeltTensioner 1E-4 60 30

FrontBag 5E-5 200 100

Table 7.2: Exponential point of failures with corresponding rates and parameters used for simulating
theMoDeSTmodel.

64

7.4. Results

7.4 Results

The following preliminary failure diagram [Fig. 7.1] is generated out of the simulation trace, where
event denotes a failure of action or variableevent. It is extracted from the simulation trace and re-
veals that for failuresenable_error andEvent2_error two different runs are possible. For clarity
only the branches that will contribute to the minimal cut set are considered.

The failure diagram gained by simulation is now manually inserted intoFault Tree +for doing the top
event analysis. Error eventsenable_error andEvent2_error are expressed in two weighted Boolean
formulas according to the simulation likelihood. By doing the fault tree analysis inFault Tree + the
top event occurrence is 26.78%. The exponential failures are directly inserted into the SIST branch of
the fault tree with their respective failure rates, since they are not categorized as on-demand failures.

7.5 Conclusion

As shown by this chapter, fault tree generation is feasible by simulation, although it is not appropriate
since the state space is not exhaustively explored for all states fulfilling some condition. For complex
systems with small exponential rates it is still feasible by increasing the number of batches. Although
there can still be some states or traces not considered, this would hardly contribute to the probability
of the top event occurrence since in that case the probability would be very small.

It seems desirable to investigate and especially automate the process of fault tree generation as de-
scribed in this chapter. In particular with respect to more complex models, an automated generation is
essential. For the FT generation most of the conversion from the simulation trace into the preliminary
failure diagram and from there into a fault trees is done by hand although this could be done using
some appropriate parsing mechanisms.
Towards the complexity of a model, a more realistic model is desirable in which a mechanism is pro-
vided to recover from induced errors. By this it becomes feasible to observe the model under errors
and identify bottle-necks within the model.

65

CHAPTER 7. Fault Tree Generation

Event1

�� �� 565(65%)

//

300(35%)

''PPPPPPPPPPPP
Event2

565(100%)��

Errors

1015(38.8%)

>>}}}}}}}}}}}}}}}}}

856(32.7%)

77nnnnnnnnnnn

380(14.5%)

''PPPPPPPPPPP

365(14%)

��5
55

55
55

55
55

55
55

55
55

55
55

55
5

enable

�� �� 281(74%)

//

99(26%)

''PPPPPPPPPPP enable

281(100%)��

Event2

Event3

Figure 7.1: Preliminary failure diagram showing the occurrence of failures with corresponding fre-
quencies (probabilities in parenthesis) that contribute to the minimal cut set.

###Simulation Errors for Event2###
4.53525912 Event1 error

###Simulation Errors for Event2###
0.00000000 Event1Sync
0.00000000 SetEnabled
0.00000000 Event2 error

###Simulation Errors for Event3###
0.00000000 Event1Sync 10
0.00000000 SetEnabled
0.00000000 Event2Sync
87.00000000 Event1Sync
87.19817358 Event3 error

###Simulation Errors for enable###
0.00000000 Event1Sync
0.00000000 enableerror

Figure 7.2: Clipping of simulation runs showing the pre- error execution of actions.

66

7.5. Conclusion

Figure 7.3: Generated fault tree with four artificial inserted errors with the SIST on the right.

67

Chapter 8

Importance Analysis

Reliability characteristics of a system are determined by the reliability of its units. Due to the struc-
ture of such systems some units are more important than others with respect to failure sensitivity. The
importance of a single unit is determined by its parameters, that is e.g. the failure rateλ, repair rateµ,
and its interrelation with the system.

Especially in complex modern systems, it is essential to identify the unit, for which improvements
have the biggest impact on the overall system reliability (system optimization). In case the system
break-down is triggered by the failing unit, the unit is required to get immediate repair to bring the
system back into a sound state. When trying to optimize the maintenance, the most important unit
should be repaired first, which brings the system again state “up” with the highest probability[Moc05].

In this chapter different approaches towards safe and failure critical systems are investigated with
special emphasis on the gate level. As such different important measures are defined that can be used
to classify vital components according to their importance figures.

8.1 Structural Importance

We consider a system representation in terms of a vector
→
x= (x1, x2, . . . , xn) consisting ofn com-

ponents. To every uniti of this vector a state can be assigned, namelyxi = 1 for failing or xi = 0 for
faultless. A system that is represented by unitsxi for i = 1, ..., n can only assume states 0 or 1. The
system functionΦ() is defined as the the current system state, expressed by state vector

→
x and evalu-

ates given a system vector either to 0 in case of a sound system or to 1 in case of an erroneous one.
Since n components are in the system, there are2n different state vectors of a system (combinations
of zeros and ones).
A system is failing if uniti fails (Φ(

→
x, xi = 1) = 1), and stays faultless if componenti is sound

(Φ(
→
x, xi = 0) = 0). In case that the state of one particular uniti is fixed, the number of possible

outcomes reduces to2n−1.

68

8.1. Structural Importance

Gates, vital for the system fulfillcritical vectorscondition, since a failure of one of these components
causes the whole system to fail. The critical vector condition [Eq. 8.1] states that if the difference
of system functionsΦ of 1st a system where componenti fails and2nd componenti is proper, is
calculated to be 1, componenti is a critical and vital gate.

Φ(
→
x, xi = 1)− Φ(

→
x, xi = 0) = 1 (8.1)

The structural importance is defined as quotient of the number of all critical vectors of uniti (nΦ(i))
and the total number of all possible vectors (2n−1). The relative importance of uniti for the proper
function of the system is hence

IΦ(i) =
nΦ(i)

2n−1

Example

Consider the circuit of figure 8.1. The Boolean function that suffices this figure is as follows, where
xi denotes a failure in unitxi andy failure of the system. It stresses that either componentx1 fails
(x1), or x2 andx3 (x2 · x3).

y = Φ(
→
x) = x1 + x2 x3 − x1 x2 x3 (8.2)

For the two possible states vectors for unitx1 being fixed, we obtain

1 + x2 x3 − x2 x3 = Φ(
→
x, x1 = 1) , if x1 = 1

x2 x3 = Φ(
→
x, x1 = 0) , if x1 = 0

Applying thecritical vectorcondition 8.1 we end up with

Φ(
→
x, x1 = 1)− Φ(

→
x, x1 = 0) = 1 + x2 x3 − x2 x3 − x2 x3 = 1− x2x3

!= 1 (8.3)

By probing the correct assignment forx2 andx3 we find 3 possible solutions that boil down equation
(8.3) from above and hencenΦ(1) = 3. The structural importance regarding unitx1 is therefore

IΦ(1) =
nΦ(1)

2n−1
=

3
4

Proceeding in the same way for unitx2 andx3, we obtain

IΦ(2) = IΦ(3) =
1
4

and conclude that unitx1 has the highest structural importance and is hence the most significant unit
within the circuit.

69

CHAPTER 8. Importance Analysis

Figure 8.1: Example circuit with three components.

8.2 Marginal Importance

TheBirnbaumor marginal unavailability importance measureIm(i) for an event represents the sensi-
tivity of system unavailability with respect to changes in the events unavailability. It is defined as the
probability that the system reaches a state, in which the proper operation of unit i becomes critical. For
calculating the marginal importance the system functiony is used as before where each component
failure is now represented by the components probability to fail. The new function obtained is called

probability functionF (
→
q), and the importance measure is received by partial derivation

Im(i) =
∂F (

→
q)

∂qi
.

Example

Considering the example from above [Fig. 8.1] where a failing componentqi fails according to a
exponential distributionqi = 1− e−λit. Starting with the system failure probability function

F (
→
q) = q1 + q2 q3 − q1 q2 q3

we end up with the marginal importance measure by taking partial derivatives of each component.

Im(1) =
∂F (

→
q)

∂q1
= 1− q2q3

Im(2) =
∂F (

→
q)

∂q2
= q3 − q1q3

Im(3) =
∂F (

→
q)

∂q3
= q2 − q1q2

The resulting marginal importance measure can be computed by plugging in the appropriate probabil-
ities. The greater the importance measure of uniti, the more important it is.

70

8.3. Barlow-Proschan Importance

8.3 Barlow-Proschan Importance

TheBarlow-Proschanimportance measure is used for analyzing systems, whose units could possibly
fail sequentially. The general analysis yields an expression for the expected failure frequency of base
event i during mission time[0, tM]. The failure probabilityqi of a system uniti is the expected value
E(Φ(

→
x)), that i fails (reaches state 1). The probability that the system is in state 1 (failed) depends

on the individualqis by

F (
→
q) = F (q1, q2, ..., qn) := Pr(Φ(x1, x2, ..., xn) = 1) = E(Φ(x1, x2, ..., xn))

Every componenti’s probability to fail is described by an exponential distribution function as stated
below withλi being the failure rate of component i.

qi(t) = 1− e−λit

The probability, that the system is reaching a state at timetM in which unit i fails is

∂(F (
→
q (tM)))

∂qi(tM)
.

The probability that unit i fails within time[tM , d · tM] for d ≥ 1 is

d · qi(tM).

We obtain the probability, that unit i causes a failure of the system within time[tM , d·tM] with tM ≤ t

∂(F (
→
q (tM)))

∂qi(tM)
· d · qi(tM).

By integrating over timetM the probability that unit i causes a system failure within[0, t] is

∫ t

0

∂(F (
→
q (tM)))

∂qi(tM)
· d · qi(tM) dtM .

The failure probability for a system containing n units within time [0, t] is hence

F (
→
q) =

n∑
i=1

∫ t

0

∂(F (
→
q (tM)))

∂qi(tM)
· d · qi(tM) dtM

71

CHAPTER 8. Importance Analysis

Since we are interested in the failure probability of one particular unit, theBarlow-Proschan Im-
portanceof unit i is the quotient of the probability for unit i failing within time t over the overall
probability of the system failing.

IBP
i =

∫ t
0

∂(F (
→
q (tM)))

∂qi(tM) · d · qi(tM) dtM

F (
→
q)

With a failure density

fi(t) =
∂qi(t)

∂t

we end up with theBarlow-Proschanimportance for uniti

IBP
i =

∫ t
0

∂(F (
→
q (tM)))

∂qi(tM) · fi(tM) dtM

F (
→
q)

.

Apart from this it holds that

n∑
i=1

IBP
i = 1

which trivially follows of the derivation of the failure model.

Example (stationary case)

Let F (
→
q) be the failure probability function from the example above [Fig. 8.1] with an exponentially

distributed failure probabilityqi(t) as follows

F (
→
q) = q1 + q2 q3 − q1 q2 q3

qi(t) = 1− e−λi·t

72

8.3. Barlow-Proschan Importance

It follows

IBP
1 =

∫ t
0

∂(F (
→
q (u)))

∂qi(u) · fi(u) du

q1 + q2 q3 − q1 q2 q3

=

∫ t
0 (1− q2q3) · f1(u) du

F (
→
q)

=

∫ t
0

(
1− (1− e−λ2u) · (1− e−λ3u)

)
· λ1e

−λ1u du

F (
→
q)

=
λ1

∫ t
0 (e−λ2u + e−λ3u − e−(λ2+λ3)u) · e−λ1·u du

F (
→
q)

=
λ1

∫ t
0 (e−(λ1+λ2)u + e−(λ1+λ3)u − e−(λ1+λ2+λ3)u) · du

F (
→
q)

=
λ1 ·

[
− 1

(λ1+λ2)e
−(λ1+λ2)u − 1

(λ1+λ3)e
−(λ1+λ3)u + 1

(λ1+λ2+λ3)e
−(λ1+λ2+λ3)u

]t
0

F (
→
q)

=
λ1 ·

(
1−e−(λ1+λ2)t

λ1+λ2
+ 1−e−(λ1+λ3)t

λ1+λ3
− 1−e−(λ1+λ2+λ3)t

λ1+λ2+λ3

)
F (

→
q)

Eq8.4
=

λ1

(
1

λ1+λ2
+ 1

λ1+λ3
− 1

λ1+λ2+λ3

)
F (

→
q)

F (
→
q)=1
= λ1

(
1

λ1 + λ2
+

1
λ1 + λ3

− 1
λ1 + λ2 + λ3

)

For simplifications reasons we only consider the stationary limit (limt→∞) were the system will even-
tually end up in a failure state. Thus we obtain fort → ∞ the system will end in a failure, and

F (
→
q) = 1, and hence

lim
t→∞

e−λt = 0. (8.4)

This reduces theBarlow-Proschan importancefor gate 1 to

IBP
1 =

λ1

λ1 + λ3
+

λ1

λ1 + λ2
− λ1

λ1 + λ2 + λ3

73

CHAPTER 8. Importance Analysis

For gate 2 and 3 the following Barlow-Proschan importances are obtained:

IBP
2 =

λ2

λ1 + λ2
− λ2

λ1 + λ2 + λ3

IBP
3 =

λ3

λ1 + λ3
− λ3

λ1 + λ2 + λ3

To check for correctness the sum of all BP importances have to equal one.

n∑
i=1

IBP
i

!= 1 = IBP
1 + IBP

2 + IBP
3

=
λ1 + λ2

λ1 + λ2
+

λ1 + λ3

λ1 + λ3
− λ1 + λ2 + λ3

λ1 + λ2 + λ3

= 1 + 1− 1

We consider the unit i to be most important according to theBarlow-Proschan Importanceif IBP
i

yields the highest value.

8.4 Fussell-Vesely Importance

The Fussell-Vesely standard importance measure for gates - also known as diagnostic importance -
indicates an event’s or event group’s contribution to the gate unavailability. Considering the state of
all system units right after a system failure one can conclude, that all units of at least one minimal cut
set failed. By repairing at least one unit of theminimal cut set, the system becomes operational again.
Minimal cut sets (MCS)are all unique combination of component failures that can cause system
failure. Specifically, a cut set is said to be a minimal cut set if, when removing any basic event from
the set, the remaining events collectively are no longer a cut set.
We say that uniti has a big diagnostic impact on the system, if at least one of the minimal cut sets that
containi contribute with a high probability to a system failure. The diagnostic importance measure is
computed by

Id(i) =
Pr(failure of a minimal cut set, that contains unit i)

Pr(system failure)
=

Pr(Φi(
→
x) = 1)

Pr(Φ(
→
x) = 1)

where the system function of all minimal cut-sets that containi is identified as

74

8.4. Fussell-Vesely Importance

Φi(
→
x) =

n∨
j=1

 ∧
c∈Cij

xc

 .

n is the number of minimal cut-sets, that containi andCij is thej-th minimal cut, that containsi. It

holds thatPr(Φi(
→
x)) ≈

∑n
j=1 Pr(Cij). As before it is said, that uniti has the highest diagnostic

importance ifId(i) yields the highest value.

Example

Consider the example from figure 8.1 on page 70 were we identify two minimal cut sets as{x1}, {x2, x3}.

Pr(Φ(
→
x) = 1) = Pr(x1 ∨ x2 ∧ x3) = q1 + q2q3 − q1q2q3

ID
1 =

F1(
→
q)

F (
→
q)

=
q1

q1 + q2q3 − q1q2q3

ID
2 =

F2(
→
q)

F (
→
q)

=
q2q3

q1 + q2q3 − q1q2q3

The most important unit follows out of the values forqi and since the second MCS contains two
components, both have the same diagnostic importance ofID

2 .

8.4.1 Modeling inMoDeST

The diagnostic importance is the only one that can be obtained by simulation inMoDeST[App. F].
Figure 8.2 depicts the example considered for simulation. Notice that we focus on OR-gates since
AND-gates have no impact on theFussell-Veselymeasure. For this a circuit having 4 components is
chosen.

Figure 8.2: Circuit that is examined using the Fussell-Vesely importance by simulation.

75

CHAPTER 8. Importance Analysis

Variable value confidence
ImpA 1.0030050000E-02 +/- 1.9530736850E-05
ImpB 5.0170930000E-02 +/- 4.2786314378E-05
ImpC 5.9013840000E-02 +/- 4.6187518417E-05
ImpD 3.5686000000E-04 +/- 3.7019240478E-06

Table 8.1: Component failures simulated byMoDeSTwhich are used to compute the Fussell-Vesely
Importance.

Simulation (Qsystem(qi = 0)) simulationId(i) FT+ analyticalId(i)
TE 5.92E-002
A 1.00E-002 0.83056 0.883
B 5.02E-002 0.15244 0.167
C 5.90E-002 0.00305 0.00596
D 3.57E-004 0.99397 0.994

Table 8.2: Comparison between the simulated importance results and the analytical numbers obtained
by Fault Tree +.

Simulation

By simulating 100 million batches results are obtained as shown in table 8.1. The data for the simu-
lated importances can be calculated by

Id(i) =
Qsystem −Qsystem(qi = 0)

Qsystem
.

A comparison of figures obtained by simulation and using the analytical methods is given in table 8.2.
The fault tree that corresponds to the example circuit is depicted in figure 8.3 where the top event is
computed byFault Tree +.

Conclusion

Concluding, the analytical importance measures can be reached even closer by increasing the number
of computed batches. The results reveal that importance analysis is possible by using simulation.
It remains an open question whether this is the best approach and for obtaining the Fussell-Vesely
importance measure.

8.5 Conclusion

In the end it remains to an open question which importance is most significant. The choice of the
appropriate importance measure as stated here always depends on the scenario. It can be seen that for

76

8.5. Conclusion

Figure 8.3: FTA for doing Fussell-Vesely Importance analysis, derived from the example circuit.

77

CHAPTER 8. Importance Analysis

basic circuits where only the structure matters and neither time nor failure probabilities, the structural
importance measure fits best - as the naming suggests.
When using unit failures over time, the rating received byBirnbaumor Barlow-Proschanare prefer-
able to use. Investigating a system by minimal cut sets (MCS) is done via theFussell-Veselyimpor-
tance where the system is considered up unless one of the components out of a minimal cut set is
failing.

78

Chapter 9

Single Source Vision

Due to the complexity of modern electronic products and their design cycles there is an ambition in
industries for a unified concept (single-source) that can be used throughout all development phases of
a product. During such cycles, model, source code, documents, and plans (artifacts) are devised. This
attempt is also known asagile modeling[Amb02] thrives for a unified single-source containing a be-
havior model in terms of source code, specifications, requirements, and failure description. Although
it can not always be achieved it is nonetheless desirable to record each piece of information only once,
as far as possible.

This chapter is an attempt to test the feasibility of a single-source model with special emphasis of how
failures can be represented in such a model. Moreover by providing sufficient failure information,
and incorporating them in an appropriate fashion into the model representation, static failure analysis
via Fault Tree +can be achieved by one derivation of the single source model. In addition, since the
behavior model is available, a state space can be computed for each process to check for dynamic
failures.

9.1 Overview

Using a single-source model has three strong pro arguments that are, it reduces the maintenance bur-
den because the more representations are kept in the model, the greater the effort to adopt for changes
and keeping track of versions. Second, the trace ability is flattened since every redundant piece of
information hampers the debugging process unless it is clear where the information stems from. And
last, an increase in consistency is achieved because the chance of having outdated artifacts is dramat-
ically reduced.

Ideal is a single source of information containing all artifacts as stated in figure 9.1 that can be used for
deriving simulation, and verification. Beyond that it should be eligible to infer stochastic “views” from
the single-source model that can be used for Fault Tree Analysis (FTA) and Markov Chain Analysis

79

CHAPTER 9. Single Source Vision

�� ��Failure Description

**UUUUUUUUUUUUUUUU

�� ��Requirements

$$III
I

�� ��Specification

zzvvv
v

�� ��Source Code

uukkkkkkkkkkkkkkk

�

�
	Single-Source

Model

Testing
tt

*jjjjjjjjjjjjjjjjjjjjjj

Verification

zz

6vvvvvv

Failure
Analysis

��
_

Simulation

##
�HHHHHH

Test Case
Generation

))

�SSSSSSSSSSSSSSSSS

Markov Chain
(dynamic)

zz
5uuuu

FTA
(static)

$$
	IIIII

Figure 9.1: Illustration of a Single-Source Modeling attempt, showing all desired derivations. Avail-
able information is distributed in sources Specification, Failure Description, Requirements, and
Source Code and combined for the appropriate representation. Possible derivation to obtain are Test-
ing, Verification, Failure Analysis, Simulation, and Test Case Generation.

(MCA). We do not forbid the Single-Source-Model to have more than one format for data storage
since information should be stored in the most appropriate format that offers the best representation.

9.2 Choice of the overarching Language

To accomplish the traditional single-source vision, a common way of recording information is needed.
Since every representation has its pros and cons we strive to use the most appropriate representa-
tion. MoDeSThas full notion of expressing STAs (Stochastic Timed Automata) and using a subset
of MoDeSTone can express DTMCs, CTMCs, and IMCs, needed for the Markov analysis. Besides
this different stochastic concepts like Exponential-, Uniform-, Normal distribution, and probabilistic
branching are present to account for fault-tree analysis.
Since the success of a single-source approach is determined by the expressiveness of its underlying
language, this approach is promising a valuable basis for further proceedings. For the sake of simplic-
ity, the behavior model will be written inMoDeSTplus some extra information inserted by leading
preprocessor keywords (#). In particular by usingGEMA - theMoDeSTpreprocessor - information
can be easily extracted and repeating pattern can be efficiently reduced to a minimum workload. By
using an approach as shown in figure 9.2, a failure description and a behavior model is added to the
single source model. The derivations as shown here will be derived in the following.

80

9.3. Example of a Water Cycle

�

�
	Failure State Space

(MoDeST)

$$JJJ
J

�

�
	Behavior Model

(MoDeST)

zzvvv
v

�

�
	Single-Source

Model

Static Failure
Analysis

tt

)iiiiiiiiiiiiiiiiiiiii
Dynamic Failure

Analysis

yy
3ssss

Verification

$$

	IIIIII

Simulation

))

�SSSSSSSSSSSSSSSSSS

Figure 9.2: The way we want to investigate and distribute information using a single-source approach
doing simulation, verification, and deriving failure analysis.

9.3 Example of a Water Cycle

The example that we want to use for the feasibility analysis is a simple scenario [Fig. 9.3] consisting
of a water pump, pumping water into awater tank, a sensor that controls the pump, and finally a
consumer that is attached to the tank and consumes water at some rate. The sensor signals control
the pump and shut it off once a certain pressure (MAX) is reached. In case that the water pressure in
the tank is passing some thresholdMIN, the sensor commands the pump to power up again. Pressure
sensor and water pump need power from outside power supply (VCC) for proper functioning. Possi-
ble points of failures of the components modeled are theSensorFailure, PumpFailure, andTankBurst,
and the external lack of power (missingVCC), of which are all repairable, but the water tank.
The setting of the components with their respective failures is illustrated in theMoDeSTcode [App. H.1].
Once a device fails, it is eventually repaired at some rateµ. The water tank fails or bursts at rateλ, if
the pressure becomes critical above the maximal thresholdMAX.

9.3.1 MoDeSTBehavior Model

TheMoDeSTmodel is given in appendix [H.1] with processesSensor(), Tank(), Pump(), Power(), and
Consumer(). The failures that each process has are declared if present within the process declaration
as follows:

#FailureName(failure rate, repair rate)

In addition, input (#in), and output (#out) ports are declared within each process to help relate the
process to the environment which gives later on a point for automating. Integersmaxandmin indicate
the maximal pressure where the sensor should power off the pump and the minimal pressure where
the pump is reactivated again.

81

CHAPTER 9. Single Source Vision

Figure 9.3: The above figure depicts an overview of components including their signals and point of
failures. Failures are indicated by leading #’s

9.4 Failure Analysis

9.4.1 Static FTA

In static failure analysis one is interested in the break down of a system according to failure rates of
its components. The decision about which base events contribute to the top event solely depends on
the modeling engineer who has to bring experience and a well shaped background about the modeled
device to build a sound model. In our simple example the static fault tree is obtained by extracting the
failures that each process owns and simply relate them using gates as described in the model to a top
event. The interrelation of the top event needs to be specified in the model like

process(A)∨ process(B)→ TopEvent.

In the static FTA it is considered to be critical if the pump fails while the tank can still provide water.
Applying conventional failure analysis to ourMoDeSTmodel, we end up with a fault tree having 4
base events - like shown in the behavior model - that are related to the top event by an or-gate. The
top event is classified here by either a pump-, tank-, sensor-, or the power supply break down.

The disadvantage when doing the static fault tree analysis is that the water tank example has a dynamic
behavior, and as such it is inappropriate of representing errors, and doing the dependability analysis.
Imagine a pump being switched on while the sensor is failing. This scenario is not harmful for the
system if the sensor is repaired before the pressure exceeds theMAX threshold and the water tank
consequentially bursts. In contrary, in the dynamic system a critical error is classified by a burst of the
tank or2nd a consumer lacking water supply. To adopt for this dynamic error specification, a stochas-
tic timed automata chain representation is to be favored, rather than the static fault tree analysis.

82

9.5. STA Chain Representation

9.4.2 Dynamic Failure Analysis

The above mentioned motivates a classification as follows below. A failing component which is not
used at point of its failure (harmless error) has no impact on the system behavior as long as it will be
repaired before being demanded. If it fails to do so, the failure endangers the proper function of the
component and is classified thus asserve. It influences in consequence other components and leads
eventually to a deadly not repairable system.
Component failures can be categorized as follows:

1. harmless
The failure doesn’t have any impact on the overall system behavior at occurrence and is re-
pairable, e.g. lack of power while the pump is switched off.

2. serve
This has effect on the proper function of the containing device, e.g. sensor failure while pump
is switched on. Although the possibility for repairing exists other components might already be
influenced by the catatonic behavior.

3. deadly
A system is classified to be deadly if no possibility of repairing or recovery exists, e.g. the burst
of the water tank.

To have useful specifications and error descriptions each action has to hold the following information:

action/variable

failure

33hhhhhhhhhhhhhhhhhhh
importance

OO

repair time/rate

jjTTTTTTTT

Exp(λ)

@@���

Prob(p)

^^===

harmless

::ttt

serve

OO

deadly

ccFFF

t

OO

component

99tttt

system

ccGGGG

9.5 STA Chain Representation

In the preceding we add the failure description into the single source model. The classification is not
explicitly contained in the behavior model until now and has to be inserted manually and indepen-
dently for each process. The chain representation is obtained by exploring the state space of each

83

CHAPTER 9. Single Source Vision

process and relating variables and guards on the appropriate transitions.
Imagine the example from above with the water tank, the sensor, and the pump, with each component
having a different importance for the system’s proper function. In case of a failing pump the failure
has no direct impact on the system if the water tank is filled and able to provide water, where as a
burst of the water tank has deadly implications for the system.

The behavior is stated in the following model [Fig. 9.4] by using a STA Chain, since it has in
addition to exponential transitions synchronous and asynchronous actions like Interactive Markov
Chains (IMC) [Her02]. To handle additional probabilities and condition checking the expressiveness
of Stochastic Timed Automata is required in which case we find ourselves back in the language of
MoDeST. Thus the STA chain is implemented inMoDeST, already in use for expressing the behavior
model.

GEMA

To ease the work load, aGEMA extension [App. A.11] is provided that translates rates prefixed by
#LAMBDA or #MU into MoDeSTequivalent. In the remainder, rates with leading #LAMBDA will
be consider as failure rates while #MU denote a component specific repair rate.

9.5.1 STA Error Chain in MoDeST

The finalMoDeSTmodel representing the STA-Markov chain is illustrated in appendix [H.2] and can
be directly used to simulate the errors within the dynamic system of the water cycle. RatesLAMB-
DAvcc, MUvcc, etc and actionsTankFull, TankBurst, andNoWaterneed to be defined appropriate as
Möbiusreward variables to gain valuable results.

9.6 Conclusion

Beyond the methods for failure analysis as described above, further extensions are possible to derive.
As such it is feasible to run model checking and verification via a translation intoUppaal that is
currently implemented byChristoph Keppner. This provides in turn the last open derivation of our
single-source model at figure [9.2].
This chapter shows how to build a modular single source model by using sparse information. In
addition we are able to obtain a static failure representation that can be extracted out of the behavior
model. The dynamic failure representation was done manually although it is thinkable of automating
the state generation process and derive the STA-Chains out of the behavior model.
Having in mind the drawback of simulation as denoted in the chapters before, no guarantee is given
for a exhaustive state exploration.

84

9.6. Conclusion

Figure 9.4: STA chain where edges can be labeled with probabilities, condition checks, and actions.
Node labels are optional and not required for simulation.

85

Chapter 10

Conclusion

Summing up this work, the principles of synchronization concepts are investigated in chapter 1, and
a formalism is defined out of which any symmetric or two-pair synchronization can be derived. By
exemplifying communication concepts and check their feasibility inUppaalandMoDeST, the topic
is bridged from a formal definition towards informal nomenclature. In addition, the implementability
of the most useful schemes likeone-of-many-to-many, one-of-many-to-one, broadcasting , etc are
studied usingUppaalandMoDeST.

Simulations in MoDeSTand Stateflow

Conclusions which can be drawn out of chapter 2 are that simulation results testify the insights attained
by theAMETISTproject, and state that it is possible to achieve the results from analysis inUppaal
by simulation inMoDeST. It turned out that simulation has its assets and drawbacks, i.e. simulating
a model for one million times and analyzing for undesirable conditions does not refute nor endorse
the same situation in focus. It rather accentuates, that during one million runs these situation has not
occurred in the system and consequently has not been seen by an observer. Where chapter 2’s focus
is directed on a special scenario with focus on the approver, and the feasibility of expressing this
scenario inMoDeST, a model with increased complexity is examined in chapter 3, where interaction
and communication of components with respect to race conditions is examined.
This detailed system modeling and verification approach shows that it is feasible to obtain the previous
acquired results by simulation inMoDeST. Especially, since timing and stochastic components are
important to build a realistic model, the approach inMoDeSTgives complementing results.
In chapter 4 the world of the stochastic timed automata is left [Fig. 10.1] when entering the world
of SimulinkStateflow, and new focus is put on analyzing the airbag deployment times using statistical
measures. By running 2 000 simulations a normal distribution with mean around3 500µs is obtained
where the earliest point of deployment is at 3 000µs since theMicroForegroundprocess needs some
cycles until firing is enabled.

86

Failure Analysis

The second part of this thesis highlights the failure analysis for the airbag control unit. The analysis
of the on-demand safety features is discussed in chapter 5 by use of CTMCs. Modeling inMoDeST
reveals how Markov analysis can be received via simulation. In addition figures are computed to ac-
count formean time to failure (MTTF), etc. It turned out that using rates of one time unit, no confident
results are reached during simulation, unless increasing the simulation time up to 7 000 time units.
The simulation results are confirmed by the analytical approach using matrix exponentiation were a
failure distribution (Phase type distribution) of the controller is gained.
The Fault Tree Analysis in chapter 6 concludes that grouping of components into logical units can
be an useful advantage during all cycles of a product. This benefit is exemplified by simulation in
MoDeST. Although when dealing with small rates and system lifetimes, the number of experiments
needed for expressive results is very high, they are nevertheless closely approached.
An other approach for failure analysis is theautomated fault tree generationillustrated by simulation
in chapter 7. Although the state space is not exhaustively search for all candidates the resulting fault
tree is still useful. It contains the static error behavior of the system and can easily be obtained in par-
ticular for huge and complex systems. States not seen during simulation in the trace need no attention
because they hardly contribute to the probability of the top event occurrence due to the relatively small
probability. In lieu of simulating stochastic and probabilistic errors in the same model, a separation
can bring some advantage. In particular since it suffices to simulate the on-demand errors for one time
unit, results can be gained faster. Moreover by adding the stochastic components directly into the fault
tree (SIST) their results become more accurate.
Concluding the importance analysis (chapter 8), several formalisms are discussed. Using simulation,
the Fussell-Veselyimportance measure obtained byFault Tree +are approximated closely. The re-
maining three importances likeStructural-, Marginal-, andBarlow-Proschan Importancescan not be
simulated since a perception of how component are connected among each other is required.
For this reason some effort to investigate and especially to automate the process of fault tree generation
is desirable. With respect to more complex models an automated generation is essential since most of
the conversion from the simulation trace into preliminary fault trees, and from there intoFault Tree +
is done by hand. The more, towards the complexity of a model, one could think about more realistic
models with failure recognition and recovery from errors induced by noise using some self-healing
mechanisms. By this it becomes feasible to observe the model under errors and identify bottle-necks
within the model.

Unified Concept of a Single Source

So far the behavior and failure aspects of models are investigated that are spread over many different
representations. In chapter 9 a Single Source Modeling approach is introduced that unifies static-,
and dynamic failure analysis, verification, and simulation in one model. More than that, it shows
how to build a modular single source model by using sparse information. Static failure representation
is covered by extracting failures out of the behavior model. Dynamic failure representation has to
be done manually although it is thinkable of automating the state generation process and derive the
STA-Markov Chains out of the behavior model. No transformation exists up to now which converts
STA processes into GSMPs, or CTMCs that could in turn be used for a analytical analysis using e.g.

87

CHAPTER 10. Conclusion

Acronyms Model Name Citation Used in tool
DFA Deterministic Finite Automata Huffman (1954) Simulink Stateflow
SMP Semi-Markov Process Levy (1954)

SA State Automata
DTMC Discrete Time Markov Chain Markov (1913)
CTMC Continuous Time Markov Chain Kolmogorov (1938) Markov Analysis
GSMP Generalized Semi Markov Process Glynn (1983)

TA Timed Automata Alur (1990) Uppaal
STA Stochastic Timed Automata D’Argenio (1997) MoDeST

Table 10.1: Languages with acronyms, year of discovery, and tools that incorporate them.

phase type distributions. Hence the only way left is to simulate, still having in mind the drawback of
simulation. For the verification aspect a translation intoUppaalalready exists.

The success of a single source model also depends onGEMA, theMoDeSTpreprocessor. Some useful
extensions are provided in appendix A that ease the work load when modeling and facilitate many of
the single source derivations.

Taxonomy

This thesis follows different paths by traversing distinct aspects, depending on the respective task.
Starting at the world ofDFA (Deterministic Finite Automata)as used bySimulink Stateflowup to the
region ofStochastic Timed Automata (STAs)many language classes are crossed in between by adding
non-determinism, stochastic, time, and probability. Table [10.1] gives some compendium about the
most the taxonomy candidates with the tools they are used in, and citations.

The following synopsis [Fig. 10.1] depicts the parts of the “world” with respect to the expressiveness
of automata by giving a tractable and descriptive approach. The hierarchy in use will combine dimen-
sions like probability, time, stochastic, and the presence or absence of action & delay nondeterminism
that will span the space in an orthogonal fashion. Although there is a close relation between contin-
uous probability and full stochastic in place, they are treated as distinct dimensions in the taxonomy.
Cubes span the probability-stochastic-timed space.
Time axis is labeled withnone, discrete, continuous, andhybrid to account for the different language
capabilities. Hybrid in this context reflects a non-linear scale of time. In the probability dimension
we only consider systems that havenone, discrete, or acontinuousnotion of probability. The stochas-
tic aspects used are no-stochastic, only exponential distributions stated byexpwhere especially the
Markov property holds, orfull stochastic ability where all distributions are admissible.
Curved arrows indicate the fourth dimension considered as the absence of non-determinism, the pres-
ence of action non-determinism, and finally the presence of action-& delay non-determinism that
allow traversing the deterministic cube by passing the space bottom up. For clarity,action non-
determinismis related to state changes (“pick the successor state non-deterministically”), where as

88

delay non-determinismis related to timing (“take transition within some time interval”). Note at this
point that the presence ofdelay nondeterminismalways requiresaction nondeterminismto be in place.

Deriving Languages

By forgetting about time, probability, the stochastic aspects and nondeterminism we end up with the
simplest class of automata, theDFA (Deterministic Finite Automata) that have capability of recog-
nizing regular expressions. A representative from this class is for instanceStateflowfrom chapter 4.
From this outcome there are two classes reachable by just spending on one dimension. By adding
discrete probability the language recognized byDTMCs (Discrete Time Markov Chains) is entered,
and by adding action nondeterminism the class of state-transition diagrams known asLTSs (Labeled
Transition Systems) is obtained. The DTMCs counterpart by appending action nondeterminism is the
PTS (Probabilistic Transition System).
In our view the DTMC - used in Chapter 5 for the Markov analysis - has no direct “neighbor” that can
be directly reached becauseCTMCs (Continuous Time Markov Chains) require exponential stochas-
tic and continuous timing. Note here, that the nomenclature for the discrete time Markov chain does
not refer to the memoryless property of the exponential function but rather to the Markov property,
that the present state gives any information of the future behavior of the process, and knowledge of
the history of the process does not add any new information.
From the class of CTMCs by allowing all stochastic distributions the language able of expressing
GSMPs (Generalized Semi Markov Processes) is entered. Alternatively equipping the CTMC with
action nondeterminism we end up atCTMDPs (Continuous Time Markov Decision Processes).
Since it is awkward to find an appropriate path that traverses the remaining languages of our world,
the class of automata is wrapped up starting from the already noted deterministic finite automata. All
automata besides theDFA have action- & delay nondeterminism since they have a notion of time.
For exampleUppaal (chapter 1) represented byTA (Timed Automata) is one candidate out of the
elementary language class. Starting from here, the language ofPTA (Probabilistic Timed Automata)
is entered by adding discrete probability.HA (Hybrid Automata) in which each clock variable has a
bounded time drift can be derived out of TA by adding hybrid time. Moving from theTA one step in
probability dimension and reaching the discrete probability, the language ofPTA (Probabilistic Timed
Automata) is entered.
STA (stochastic timed automata) are equipped with full stochastic behavior, continuous probabilities,
continuous time, and delay-&action non-determinism. This is the language ofMoDeSTand justifies
the use ofMoDeSTas the base language of a Single Source Vision (chapter 9). The only extension
left is to combine hybrid time withSTA and enterSHA (Stochastic Hybrid Automata), the topmost
language having ability of expressing all the others stated here.

89

CHAPTER 10. Conclusion

Figure 10.1: Four dimensional taxonomy of language classes that is spanned up by probability,
stochastic, time, and determinism/nondeterminism. The lower cube spans the deterministic world
that is successively extended by action nondeterminism and in top most cube with action- & delay
non-determinism.

90

Appendix A

GEMA- a MoDeSTPreprocessor

Introduction

GEMA [Gra03] is a general purpose text processing utility based on the concept of pattern matching.
It can be used to do the sorts of things that are done by Unix utilities such ascpp, grep, sed, awk, or
strings. It is also suitable as macro processor, but much more general thancppor m4because it does
not impose any particular syntax for what a macro call should look like.GEMAcan deal with patterns
that span multiple lines and nested constructs. It is also capable of using multiple sets of rules to be
used in different contexts.
Based onGEMAa variety of preprocessor commands is introduced that ease the work withMoDeST
in many ways.

A.1 #for

Enumerates each occurrence of<Variable> in <BODY> by integers starting at<n> up to<m>:

Syntax

#for [<Variable> : <n>..<m>]{ <BODY>}

Grammar

\#for\W\[\W<I>\W\:\W<D>..<D>\W\]\W\{<Body>=\
@set{counter; @add{@sub{$3;$2};1}}\
@bind{c;$2}\
@repeat{@var{counter}; @{@subst{$1=$c;$4}} @incr{c}}\

91

APPENDIX A. GEMA- aMoDeSTPreprocessor

@unbind{c}

A.2 #define

Can be used to define variables which are only accessible in the preprocessor. Further rules are needed
to do e.g. constant substitution throughout the text.

Syntax

#define <Identifier> <Value>

Grammar

\#define\s<I>\s<N>=@bind{$1;$2}\/\/variable \ $1\ \ @var{$1}\n

A.3 #while

While construct as defined in theMoDeSTstandard with the following semantics:

while (b){ P }
def
= do {::when(b) P ::else break }

Syntax

#while () { <P> }

Grammar

\#while\W\(<T>\)\W\{<Body>\}=\
do\{\n\t\
\:\:when\($1\)\ $2\n\t\
\:\:when\(\!\($1\)\) break\n\
\}

92

A.4. #invariant

A.4 #invariant

Invariant are defined in theMoDeSTstandard, where is a guard andinvariantan exception which
is not used in the rest of theMoDeSTspecification. Hence every invariant has to have a unique naming
which is obtained byInvariant_<n> with n being enumerated over the document.

invariant (b) P
def
= alt { ::when(b) P ::when (¬ b) urgent (ff) throw(invariant) }

Syntax

#invariant () <P>

Grammar

@bind{invariantcount;0}

\#invariant\W\(\W<t>\W\)\W<I>=\
alt\{\n\t\
\:\:when\($1\)\ $2\n\t\
\:\:urgent\(\!\($1\)\)\ when\(false\)\
throw\(Invariant_$2_${invariantcount}\)\n\
@incr{invariantcount}\
\}

A.5 #do and #alt

By prefixing do constructs with#, the preprocessor collects all guards found inwhen clause. The
negated conjunctive normal form of all guards found is the new guard for the else case.
The same can be applied by using the#alt statement.

Syntax

#do { ::when <guard1> <body1> ... ::else <ELSEBODY> }

Example

#do{

93

APPENDIX A. GEMA- aMoDeSTPreprocessor

::when(t!=2) tau
::when((t<=10)||(x==1)) tau {= Dummy=1 =}
::when(((t==1)&&(p==2))||((f<=2)&&(t==3))) tau
::else tau {= 2e2e2 =}

}

result:

do {
::when(t!=2) tau
::when((t<=10)||(x==1)) tau {= Dummy=1 =}
::when(((t==1)&&(p==2))||((f<=2)&&(t==3))) tau
::When(!(t!=2) && !((t<=10)||(x==1))

&& !(((t==1)&&(p==2))||((f<=2)&&(t==3)))
&& true) tau {= 2e2e2 =}

}

Grammar

\#do\W\{\W\N<MyWhenRec>=do\ \{$1@set{ElseGuard;}\n
\#alt\W\{\W\N<MyWhenRec>=alt\ \{$1@set{ElseGuard;}\n

MyWhenRec:<MyWhen><MyWhenRec>=$1\

MyWhen:\N\W\:\:<MyWhenConstr>\N=$1

MyWhenConstr:\Wwhen\W\(<T>\)\ <T>\N=:\:\Wwhen\($1\)\ $2\
@append{ElseGuard;\!\(}\
@append{ElseGuard;$1}\
@append{ElseGuard;\) && }

MyWhenConstr:\Welse\W<T>=\:\:\WWhen\(\
@append{ElseGuard; true}\
@var{ElseGuard})\ $1\
@set{ElseGuard;}\n

A.6 Probabilistic Events in Fault Trees

In particular useful for modelling fault trees’ probabilistic events. Out of the probability provided in
scientific format, apalt expression is generated that can directly be used in fault tree modelling.

94

A.7. Clock Arrays

Syntax

#fta [<INT>E-<INT> : <BODY>]

Example

#fta [5E-2 : r2]

result:

palt{ //5E-2
:95: tau
:5: tau {= r2=1 =}

}

Grammar

\#fta\W[\W<D>E-<D>\W\:\W<A>\W]=\
palt\{\t\/\/$1E-$2\n\t\:\
@shell{echo -n ‘echo ’10\^@{$2} - @{$1}’ | bc -l -q‘}\
\:\ tau\n\t\:$1\:\ tau\ \{\=\ $3\=1\ \=\}\n\}

A.7 Clock Arrays

The preprocessor has knowledge of two commands for clock arrays. The first generates an array of
clocks of name<Identifier> and size<int>. The second can be used to reset the array of clocks to a
predefined value, preferably 0. A weak point is that in order to reset all clocks, the user has to specify
exactly the size of the array.

Syntax

clock <Identifier>[<int>]

#{= <Identifier> [<int>] = <INT> =}

Example

clock t2[8];

95

APPENDIX A. GEMA- aMoDeSTPreprocessor

#{= t2[8]=0 =}

results:

clock t2_7;
clock t2_6;
clock t2_5;
clock t2_4;
clock t2_3;
clock t2_2;
clock t2_1;
clock t2_0;

{= t2_7=0, t2_6=0, t2_5=0, t2_4=0, t2_3=0, t2_2=0, t2_1=0, t2_0=0 =}

Grammar

\Wclock\W<I>[\W<D>\W]\;=\
@bind{counter;@sub{$2;1}}\
@repeat{@add{@var{counter};1};

\ clock\ $1_@var{counter}\;\n@decr{counter}}\
@unbind{counter}

\#\{\=\W<I>\W\[\W<D>\W\]\W\=\W<N>\W\=\}=\
@bind{counter;@sub{$2;2}}\
\{\=\ $1_@sub{$2;1}\=$3\
@repeat{@add{@var{counter};1};

\,\ $1_@var{counter}\=$3@decr{counter}}\ \=\}\n\
@unbind{counter}

A.8 Forward Declaration Fix

The forward declarationrule consists of three parts. Before the preprocessing is started, a variable
calledProcessList is initialized. For each processes definition found in the model, a variable with
the respective process name is set to 1. Whenever a process is called, the name of process is used to
check whether is has been already declared. If not, the process is added to theProcessList which
is later saved in a file (ForwardProcessCalls.txt) where is can be used for further processing.
To fully adopt to this feature, the motor codes needs some modification.

96

A.9. Buffer Generation

Grammar

@bind{ProcessList;}

process\ <I>\W\(\)=$0\t@bind{$1;1}

<I>\(\)=$0@repeat{@cmps{$1;@var{$1};0;1;0};\
@write{ForwardProcessCalls.txt;process $0\;\n}}

A.9 Buffer Generation

The buffer generator is invoked, providing an argument specifying the desired buffer size. The inter-
faces to access the data areDataIn andDataOut , referring to data that should be inserted into the
buffer, or data which just popped out of the buffer. This can as well be understood as two pointers
that point to the head element that just dropped off the buffer, and the pointer to an elements that one
wants to insert into the buffer.
Data insertion occurs by calling processInBuffer() and respectivelyOutBuffer() for taking
an element out of the buffer.
In case of buffer overflows, actionBufferOverflow is given, whereas in case of an empty buffer
BufferUnderrun is issued. These actions can in turn be used to trigger other events.

Syntax

#MakeBuffer[<int>]

Example

#MakeBuffer[3]

//Begin of Buffer
action Element1, Element2, Element3;
action BufferOverflow;
action BufferUnderrun;
float DataIn;
float DataOut;

typedef struct{
int i; //number of elements

97

APPENDIX A. GEMA- aMoDeSTPreprocessor

//3-place Buffer
float B_0;
float B_1;
float B_2;

} Buffer3;

Buffer3 mybuf;

process InBuffer(){

alt{
::when(mybuf.i==0) Element1 {= mybuf.i+=1, mybuf.B_0=DataIn =}
::when(mybuf.i==1) Element2 {= mybuf.i+=1, mybuf.B_1=DataIn =}
::when(mybuf.i==2) Element3 {= mybuf.i+=1, mybuf.B_2=DataIn =}
::when(mybuf.i==3) BufferOverflow

}
}

process OutBuffer(){

alt{
::when(mybuf.i==0) BufferUnderrun
::when(mybuf.i==1) Element1 {= mybuf.i-=1, DataOut=mybuf.B_0 =}
::when(mybuf.i==2) Element2 {= mybuf.i-=1, DataOut=mybuf.B_0,

mybuf.B_0=mybuf.B_1 =}
::when(mybuf.i==3) Element3 {= mybuf.i-=1, DataOut=mybuf.B_0,

mybuf.B_0=mybuf.B_1, mybuf.B_1=mybuf.B_2 =}

}
}

Grammar

\#MakeBuffer\W\[<D>\]=@bind{n;1}\/\/Begin\ of\ Buffer\naction\ \
Element@var{n}@incr{n}@repeat{@sub{$1;1};\,\ Element@var{n}\
@incr{n}}\;\naction\ BufferOverflow\;\naction\ BufferUnderrun\;\n\
float\ DataIn\;\nfloat\ DataOut\;\n\n\

@bind{n;0}typedef\ struct\{\n\tint\ i\;\t\t\/\/number\ \
of\ elements\n\t\t\n\t/\/$1\-place\ Buffer\n\

@repeat{$1;\tfloat\ B_@var{n}@incr{n}\;\n}\n\}\ Buffer$1\;\n\n\

98

A.10. Stack Generation

Buffer$1\ mybuf\;\n\n\

@bind{n;0}process\ InBuffer\(\)\{\n\n\talt\{\n@repeat{$1;\
\t\t\:\:when\(mybuf\.i\=\=@var{n}\)\ Element@add{@var{n};1}\
\ \{\=\ mybuf\.i\+\=1\,\ mybuf\.B_@var{n}\=DataIn\ \=\}\n\
@incr{n}}\t\t\:\:when\(mybuf\.i\=\=@var{n}\)\ BufferOverflow\n\t\}\
\n\}\n\n\

@bind{n;1}@bind{mystr;DataOut=mybuf.B_0}process\ OutBuffer\(\)\
\{\n\n\talt\{\n\t\t\:\:when\(mybuf\.i\=\=0\)\ BufferUnderrun\n\
@repeat{$1;\t\t\:\:when\(mybuf\.i\=\=@var{n}\)\ Element\
@var{n}\ \{\=\ mybuf\.i\-\=1\,\ @var{mystr}\ \=\}\n@incr{n}\
@append{mystr;, mybuf.B_@sub{@var{n};2}=mybuf.B_@sub{@var{n};1}}}\
\n\t\}\n\}\n\n

A.10 Stack Generation

Interfaces provided for measuring overflows and respectively under runs areStackOverflow and
StackUnderrun , defined as actions as in the Buffer-Scheme. Data is put on the stack by invoking
processesInStack() and popped from the stack by processOutStack() . All else is equal to the
buffer generation.

Syntax

#MakeStack[<int>]

Example

#MakeStack[3]

//Begin of Stack
action Element1, Element2, Element3;
action StackOverflow;
action StackUnderrun;
float DataIn;
float DataOut;

typedef struct{
int i; //number of elements

99

APPENDIX A. GEMA- aMoDeSTPreprocessor

//3-place Stack
float S_0;
float S_1;
float S_2;

} Stack3;

Stack3 mystk;

process InStack(){

alt{
::when(mystk.i==0) Element1 {= mystk.i+=1, mystk.S_0=DataIn =}
::when(mystk.i==1) Element2 {= mystk.i+=1, mystk.S_1=DataIn =}
::when(mystk.i==2) Element3 {= mystk.i+=1, mystk.S_2=DataIn =}
::when(mystk.i==3) StackOverflow

}
}

process OutStack(){

alt{
::when(mystk.i==0) StackUnderrun
::when(mystk.i==1) Element1 {= mystk.i-=1, DataOut=mystk.S_0 =}
::when(mystk.i==2) Element2 {= mystk.i-=1, DataOut=mystk.S_1 =}
::when(mystk.i==3) Element3 {= mystk.i-=1, DataOut=mystk.S_2 =}

}
}

Grammar

\#MakeStack\W\[<D>\]=@bind{n;1}
\/\/Begin\ of\ Stack\naction\ Element\
@var{n}@incr{n}@repeat{@sub{$1;1};\,\ \
Element@var{n}@incr{n}}\;\n\
action\ StackOverflow\;\n
action\ StackUnderrun\;\n
float\ DataIn\;\n\
float\ DataOut\;\n\n\

@bind{n;0}typedef\ struct\{\n
\tint\ i\;\t\t\/\/number\ of\ elements\n\
\t\t\n\t/\/$1\-place\ Stack\n@repeat{$1;\tfloat\ S_@var{n}\
@incr{n}\;\n}\n\}\

100

A.11. Rate Conversion

Stack$1\;\n\n\ Stack$1\ mystk\;\n\n\

@bind{n;0}process\ InStack\(\)\{\n\n\talt\{\n\
@repeat{$1;\t\t\:\:when\(mystk\.i\=\=@var{n}\)\ Element@add{\
@var{n};1}\ \{\=\ mystk\.i\+\=1\,\ mystk\.S_@var{n}\=DataIn\
\ \=\}\n\
@incr{n}}\t\t\:\:when\(mystk\.i\=\=@var{n}\)\
\ StackOverflow\n\t\}\ \n\}\n\n\

@bind{n;1}process\ OutStack\(\)\{\n\n\talt\{\n\
\t\t\:\:when\(mystk\.i\=\=0\)\ StackUnderrun\n\
@repeat{$1;\t\t\:\:when\(mystk\.i\=\=@var{n}\)\ Element\
@var{n}\ \{\=\ mystk\.i\-\=1\,\ DataOut\=\
mystk\.S_@sub{@var{n};1}\ \=\}\n\
@incr{n}}\n\t\}\n\}\n\n

A.11 Rate Conversion

A MoDeSTmodel can be delayed according to an exponential rate using the prefix#LAMBDAor #MU
whether it is a failure or repair rate. The preprocessor command (e.g.#LAMBDAmyrate) is using a
defined constantmyrate to impose a exponential delay with ratemyrate at the appropriate posi-
tion in the model. Thus a clear structure is obtained which make the model easy readable and enables
beyond that conversion into other languages.
In the example below the execution between action a and b is delayed by rateECU2fail . Clock and
integer definition at the beginning of the corresponding process need manual investigation. To fully
adopt for theGEMAgrammar, some minor quests are still open, because clock and variable definitions
are only admissible right after the process definition. These are not currently untented and kept as a
challenge for further preprocessor investigations.

Syntax

float ECU2fail;

\#LAMBDAECU2fail

Example

float ECU2fail=1E-3;

a; \#LAMBDAECU2fail; b

101

APPENDIX A. GEMA- aMoDeSTPreprocessor

clock LAMBDAclk_1;
float myrateTIMER;

a; {= myrateTIMER=Exponential(LAMBDAECU2fail), LAMBDAclk_1=0 =};
when(LAMBDAclk_1 == myrateTIMER) tau; b

Grammar

\#LAMBDA<I>=@incr{lambdaclkcounter}\
clock\ LAMBDA_clk${lambdaclkcounter}\;\n\
\tfloat\ LAMBDA$1TIMER\;\n\n\
\{\=\ $1TIMER\=Exponential(LAMBDA$1)\,\
\ LAMBDA_clk${lambdaclkcounter}=0\ \=\}\;\n\
\twhen(LAMBDA_clk${lambdaclkcounter}\ === $1TIMER)\ tau\n

\#MU<I>=@incr{lambdaclkcounter}\
clock\ MU_clk${lambdaclkcounter}\;\n\
\tfloat\ MU$1TIMER\;\n\n\
\{\=\ $1TIMER\=Exponential(MU$1)\,\
\ MU_clk${lambdaclkcounter}=0\ \=\}\;\n\
\twhen(MU_clk${lambdaclkcounter}\ === $1TIMER)\ tau\n

A.12 Failure Generation: Errors for Actions

A.12.1 Probabilistic Errors

Ways to insert erroneous actions into the model are given viastuck (action a, p) anddelay
(action a, p, t, clk) . The first way of adding failures is to stop on the execution of action
a with probabilityp. Afterwards the process gets stuck. Another way is to use keyworddelay as
defined above to induce a lag of timet time units with probabilityp. clk refers to some clock which
is not modified by the preprocessor but gives the error a notion of time without defining a new clock
variable.

Syntax

stuck(action a, p) delay(action a, p, t, clk)

102

A.12. Failure Generation: Errors for Actions

Example

delay (action a, p, t,clk) ::=
float a_timer;
exception a_error;
{= a_timer=t+clk =};
palt{

:p: when(c==t) urgent(true) throw a_error
:1-p: a

}

stuck (action a, p) ::=
exception a_error;
palt{

:p: throw a_error;
:1-p: a

}

Grammar

action\W<T>\W{\#\W<ActionErrorType>\W\#}\;=action\ $1\;\ \/\/$2

ActionErrorType:STUCK,<D>=Stuck\ $1\%
ActionErrorType:DELAY,<D>,\[<D>,<D>\]=$1\ \

\%\ Delay\ within\ \[$2,$3\]\ time\ units

DELAY\(\W<T>\W,\W<D>\W,\W\[\W<D>\W,\W<D>\W\]\)\;=
\/\/----$1\ DELAY\ BEGIN-----\n\n
clock\ $1_clk\;\nfloat\ $1_timer\;\n
\{\=\ $1_timer\=Uniform\($3\,$4\)\ \=\}\;\n
palt\{\n\t\:$2\:\ when\($1_timer\=\=$1_clk\)\ $1\n
\t\:@shell{echo -n ‘echo ’100-$2’ | bc -l -q‘}\:\ $1\n\}\;
\/\/----$1\ DELAY\ END-----\n

STUCK\(<T>\W,\W<D>\W\)\;=\n
\/\/----$1\ STUCK\ BEGIN-----\n
action\ $1_stuck\;\npalt\{\n
\t\:$2\:\ $1_stuck\n
\t\:@shell{echo -n ‘echo ’100-$2’ | bc -l -q‘}\:\ $1\n
\}\;\/\/----$1\ STUCK\ END-----\n

103

APPENDIX A. GEMA- aMoDeSTPreprocessor

A.12.2 Exponential Errors

When dealing with exponential distributed errors the preprocessor commands from before have to
be modified by replacing the probability p by a rateλ. This involves some minor changes within
the preprocessor grammar since the component is suppose to fail now according to a exponential
distribution.
For simplicity we stick close to the naming for probabilistic errors and definedelayexp (a, t,
lambda) andstuckexp(a, lambda) as the corresponding exponential versions of the former
used keywords.

Example

delayexp (action a, t, lambda) ::=
process a_ErrorProc(){

clock clk;
float timer;
exception a_error;
{= timer=Exponential(lambda) =};
when(clk==timer) urgent(true) throw a_error {= clk=0 =};
when(clk=t) a

}

stuckexp (action a, lambda) ::=
process a_ErrorProc(){

exception a_error;
clock clk;
float timer;
{= timer=Exponential(lambda) =};
when(clk==timer) urgent(true) throw a_error

}

Grammar

A.13 Failure Generation: Errors for Integers

A.13.1 Probabilistic Errors

An erroneous integerx is generated usingnoise (float x, p, n) or rand(float x, p,
n) . noise induces a random fluctuation of magnituden around a predefined value of variablex

104

A.13. Failure Generation: Errors for Integers

that occurs with probabilityp. rand assigns a random value of magnituden which occurs with
probability p to variablex . Note that the possibility of obtaining a negative variable is possible is
both cases.

Syntax

noise(float x, p, n) rand(float x, p, n)

Example

{= noise(float x,p,n) =} ::=
exception x_error;
palt{

:p/2: throw x_error {= x=x+Uniform(0,n) =}
:p/2: throw x_error {= x=x-Uniform(0,n) =}
:1-p: tau

}

{= rand(float x,p,n) =} ::= exception x_error;
palt{

:p: throw x_error {= x=Uniform(0,n) =}
:1-p: tau

}

Grammar

int\W<T>\=<D>\W{\#\W<IntErrorType>\W\#}\;=int\ $1=$2\ \/\/$3

IntErrorType:NOISE,<D>,\[<D>\]=Noise\ $1\%\ level\ $2
IntErrorType:RAND,<D>,\[<D>,<D>\]=Random\ $1\%\ with\ in\ \[$2,$3\]

RAND\(<T>\,<D>\)=$1\=@shell{echo -n ‘echo \$RANDOM | cut -b -$2‘}
NOISE\(<T>\,<D>\)=$1\=@shell{echo -n ‘echo \$RANDOM | cut -b -$2‘}

A.13.2 Exponential Errors

From the semantic sidedelayexp andstuckexp are similar with the difference that the simulation
the first mentioned can possibly be continued after time t passed. Insertion of variable errors is done
by noise(x,lambda,n) andrand(x,lambda,n) to account for noisy and random values.

105

APPENDIX A. GEMA- aMoDeSTPreprocessor

Syntax

noiseexp(float x, lambda, n) randexp(float x, lambda, n)

Example

noiseexp (float x,lambda,n) ::=
process x_ErrorProc(){

exception x_error;
clock clk;
float timer, noise;
{= timer=Exponential(lambda) =};
palt{

:1: {= noise=x+Uniform(0,n) =};
:1: {= noise=x-Uniform(0,n) =};

}
when(clk==timer) urgent(true) throw a_error {= x=noise =}

}

randexp(float x,lambda,n) ::=
process x_ErrorProc(){

exception x_error;
clock clk;
float timer, noise;
{= timer=Exponential(lambda), noise=Uniform(0,n) =};
when(clk==timer) urgent(true) throw a_error {= x=noise =}

}

Grammar

106

Appendix B

Synchronization Concepts

B.1 "One-to-Many" in MoDeST

Mean Result Confidence +/-
Sender1 66,492 0,3038

Receiver1 55,789 0,2145
Receiver2 39,808 0,1127
Receiver3 28,37 0,7852

Table B.1: Simulation results of One-to-Many synchronization.

//Counter for sending and received packets
int r1=0, r2=0, r3=0, s=0;

//Ready signals for the receivers
int ready1=0, ready2=0, ready3=0;

action sendingalone, sending1 2 3;
action sending1, sending1 2, sending1 3;
action sending2, sending2 3; 10

action sending3;

process Sender(){
clock t;
float waiting;

do {
::{= t=0, waiting=Uniform(0,3) =};
alt{ 20

::when (ready1 == 0 && ready2 == 0 && ready3 == 0 && t==waiting)
urgent (true) sendingalone {= s+=1 =}

::when (ready1 == 0 && ready2 == 0 && ready3 == 1 && t==waiting)
urgent (true) sending3 {= s+=1 =}

107

APPENDIX B. Synchronization Concepts

::when (ready1 == 0 && ready2 == 1 && ready3 == 0 && t==waiting)
urgent (true) sending2 {= s+=1 =}

::when (ready1 == 0 && ready2 == 1 && ready3 == 1 && t==waiting)
urgent (true) sending2 3 {= s+=1 =}

::when (ready1 == 1 && ready2 == 0 && ready3 == 0 && t==waiting)
urgent (true) sending1 {= s+=1 =} 30

::when (ready1 == 1 && ready2 == 0 && ready3 == 1 && t==waiting)
urgent (true) sending1 3 {= s+=1 =}

::when (ready1 == 1 && ready2 == 1 && ready3 == 0 && t==waiting)
urgent (true) sending1 2 {= s+=1 =}

::when (ready1 == 1 && ready2 == 1 && ready3 == 1 && t==waiting)
urgent (true) sending1 2 3 {= s+=1 =}

}
}

}
40

process Receiver1(){
clock t;
float waiting;

do{
::{= t=0, waiting=Uniform(0,1) =};

when (waiting==t) urgent (true) {= ready1=1 =} ; alt{
::sending1 {= r1+=1, ready1=0 =}
::sending1 2 {= r1+=1, ready1=0 =} 50
::sending1 3 {= r1+=1, ready1=0 =}
::sending1 2 3 {= r1+=1, ready1=0 =}

}
}

}

process Receiver2(){
clock t; 60
float waiting;

do{
::{= t=0, waiting=Uniform(1,2) =};
when (waiting==t) urgent (true) {= ready2=1 =}; alt{

:: sending2 {= r2+=1, ready2=0 =}
:: sending1 2 {= r2+=1, ready2=0 =}
:: sending2 3 {= r2+=1, ready2=0 =}

:: sending1 2 3 {= r2+=1, ready2=0 =}
} 70

}
}

process Receiver3(){
clock t;
float waiting;

do{
::{= t=0, waiting=Uniform(2,3) =}; 80
when (waiting==t) urgent (true) {= ready3=1 =}; alt{

108

B.2. "One-of-Many-to-One" inMoDeST

:: sending3 {= r3+=1, ready3=0 =}
:: sending1 3 {= r3+=1, ready3=0 =}
:: sending2 3 {= r3+=1, ready3=0 =}
:: sending1 2 3 {= r3+=1, ready3=0 =}

}
}

}

90
par{

::Sender()
::Receiver1()
::Receiver2()
::Receiver3()

}

B.2 "One-of-Many-to-One" in MoDeST

Mean Result Confidence +/-
Sender1 199,935 1,1586
Sender2 99,75 0,7743
Sender3 49,51 0,2864

Receiver1 98,845 0,7778

Table B.2: Simulation results of one-of-many-to-one synchronization.

int r1=0;
int s1=0, s2=0, s3=0;

action send1, send2, send3;
action send1 alone, send2 alone, send3 alone;

process Sender1(){
clock t;
float wait; 10

do {
::{= t=0, wait=Uniform(0,1) =};

when (wait == t) alt{
::send1
::send1 alone

}; {= s1+=1 =}
}

}
20

process Sender2(){
clock t;
float wait;

109

APPENDIX B. Synchronization Concepts

do {
::{= t=0, wait=Uniform(0,2) =};

when (wait == t) alt{
::send2
::send2 alone

}; {= s2+=1 =} 30
}

}

process Sender3(){
clock t;
float wait;

do {
::{= t=0, wait=Uniform(1,3) =};

when (wait == t) alt{ 40
::send3
::send3 alone

}; {= s3+=1 =}
}

}

process Receiver1(){
clock t;
float wait;
do{ 50

::{= t=0, wait=Uniform(0,1) =};
when (t==wait) urgent (true) alt{

::send1
::send2
::send3

}; {= r1+=1 =}
}

}

par{ 60
::Sender1()
::Sender2()
::Sender3()
::Receiver1()

}

B.3 "One-of-Many-to-Many" in MoDeST

int r1=0, r2=0, r3=0;
int s1=0, s2=0, s3=0;

action snd1 rcv1, snd1 rcv2, snd1 none, snd1 rcv12;
action snd2 rcv1, snd2 rcv2, snd2 none, snd2 rcv12;

110

B.3. "One-of-Many-to-Many" inMoDeST

Mean Result Confidence +/-
Send1 66,492 0,3038
Send2 55,786 0,2145

Receive1 39,808 0,1127
Receive2 28,37 0,0785

Table B.3: Simulation results of one-of-many-to-many synchronization concept.

process Sender1(){
clock t; 10
float wait;

do {
::{= t=0, wait=Uniform(0,1) =};

when (wait == t) urgent(true)
alt{

::snd1 none {= s1+=1 =}
::snd1 rcv1 {= s1+=1 =}
::snd1 rcv2 {= s1+=1 =}
::snd1 rcv12 {= s1+=1 =} 20

}
}
}

process Sender2(){
clock t;
float wait;

30
do {

::{= t=0, wait=Uniform(0,2) =};
when (wait == t) urgent(true)
alt{

::snd2 none {= s2+=1 =}
::snd2 rcv1 {= s2+=1 =}
::snd2 rcv2 {= s2+=1 =}
::snd2 rcv12 {= s2+=1 =}

}
} 40
}

process Receiver1(){
clock t;
float wait;

do{
::{= t=0, wait=Uniform(0,1) =}; 50

when (t==wait) urgent (true)
alt{

::snd1 rcv1 {= r1+=1 =}
::snd2 rcv1 {= r1+=1 =}

111

APPENDIX B. Synchronization Concepts

::snd1 rcv12 {= r1+=1 =}
::snd2 rcv12 {= r1+=1 =}

}
}
}

60
process Receiver2(){
clock t;
float wait;

do{
::{= t=0, wait=Uniform(0,2) =};

when (t==wait) urgent (true)
alt{

::snd1 rcv2 {= r2+=1 =}
::snd2 rcv2 {= r2+=1 =} 70
::snd1 rcv12 {= r2+=1 =}
::snd2 rcv12 {= r2+=1 =}

}
}
}

par{
::Sender1()
::Sender2()
::Receiver1() 80
::Receiver2()

}

112

Appendix C

MatLab Simulink

M-file being used to execute the simulation and capture the desired values.

%Creating Data Structure with Mem Alloc
Result.times=[];
Result.EnvA=[];
Result.EnvB=[];
Result.Fire=[];
Result.dimensions=3;
randA.time=[];
randA.signals.dimensions=1;
randB.time=[];
randB.signals.dimensions=1; 10
distr=zeros(1,101)’;

%Opening Simulink File
load system(’ecu2 v2’);

for i=1:2000
%Pre Simulation
randA.signals.values=RANDOM(’Uniform’, −0.4, 2.4, 200, 1);
randB.signals.values=RANDOM(’Uniform’, −0.4, 1.4, 200, 1);

20
%Running Simulation
cvsim ecu2v2;

%Post Simulation− Normal
OldEnv=Result.EnvA;
temp=ScopeData.signals(1).values;
Result.EnvA=[OldEnv, temp];

OldEnv=Result.EnvB;
temp=ScopeData.signals(2).values; 30
Result.EnvB=[OldEnv, temp];

OldEnv=Result.Fire;
temp=ScopeData.signals(3).values;
Result.Fire=[OldEnv, temp];

end;

113

Appendix D

Markov Chain Analysis

D.1 MoDeSTCode

// Markov Model complete MOdel!

//states
action sOK, sF, sX, sIF, sFNI;

extern const float LambdaFI;
extern const float LambdaI;
extern const float LambdaFNI;
extern const float PTFD;
extern const float Mu; 10

extern const float LambdaE;

float LambdaTFE;

//sojourn times according to edges clockwise
float t1, t2, t3, t4;

//Locations
int Location;
float TimeBeforeX; 20

//P(X)|9000h - Prop that one airbag fails after 9.000 hours
int PofXat9000;

int AOK, AF, AIF, AFNI, AX ;
float TOK, TF, TIF, TFNI, TX;

process run(){

clock t; 30

clock runtime;

{= LambdaTFE=4.0E−14 , Location=0, runtime=0 =};
do{

114

D.1.MoDeSTCode

::when(Location==0) //OK
sOK {= AOK+=1,

t1=Exponential(LambdaTFE),
t2=Exponential(LambdaFI),
t3=Exponential(LambdaFNI),
t4=Exponential(LambdaI)=}; 40

alt{
//LambdaTFE Transisions
::when(t>t1) {= TOK+=t =}; {= Location=4, t=0 =}
::when(t>t2) {= TOK+=t =}; {= Location=1, t=0 =}
::when(t>t3) {= TOK+=t =}; {= Location=3, t=0 =}
::when(t>t4) {= TOK+=t =}; {= Location=2, t=0 =}

}

::when(Location==1) //F
sF {= AF+=1, 50

t1=Exponential(LambdaE),
t2=Exponential((LambdaI+LambdaFNI)),
t3=Exponential(Mu) =};
alt{

::when(t>t1) {= TF+=t =}; {= Location=4, t=0 =}
::when(t>t2) {= TF+=t =}; {= Location=3, t=0 =}
::when(t>t3) {= TF+=t =}; {= Location=0, t=0 =}

}

::when(Location==2) //IF 60

sIF {= AIF+=1,
t1=Exponential((LambdaFI+LambdaFNI)),
t2=Exponential(LambdaTFE) =};
alt{

::when(t>t1) {= TIF+=t =}; {= Location=3, t=0=}
//LambdaTFE Transisions
::when(t>t2) {= TIF+=t =}; {= Location=4, t=0 =}

}

::when(Location==3) //FNI 70

sFNI {= AFNI+=1,
t1=Exponential(LambdaE) =};
alt{

::when(t>t1) {= TFNI+=t =}; {= Location=4, t=0, AFNI−=1 =}
}

::when(Location==4) //X
alt{

::when(runtime<9000) {= PofXat9000=1 =}
::when(runtime>9001) {= PofXat9000=0 =} 80

}; sX {= AX+=1, TX=t, TimeBeforeX=runtime =}; break
}

}

run()

115

APPENDIX D. Markov Chain Analysis

D.2 Analytical Results

The following table shows the numbers obtained by matrix exponentiation:

Time Probability

7.450000e+03 7.500815e-09
8.000000e+03 8.167936e-09
8.500000e+03 8.789248e-09
9.000000e+03 9.425010e-09
9.500000e+03 1.007503e-08
1.000000e+04 1.074010e-08
1.050000e+04 1.141969e-08
1.100000e+04 1.211485e-08
1.150000e+04 1.282534e-08
1.200000e+04 1.355070e-08
1.250000e+04 1.429236e-08

116

Appendix E

Fault Tree Analysis

clock gt;
float TETime;
int TE;

float ExpEv1=Exponential(1.72E−10),
ExpEv2=Exponential(1.72E−9),
ExpEv3=Exponential(1.72E−9);

float ExpEv6=Exponential(1.092E−9), 10
ExpEv4=Exponential(1.4E−10),
ExpEv5=Exponential(1.4E−10);

int ORGate4=0;

process Proc ORGate4(){

int r1, r2, r3, r4;
clock t; 20

par{
::when (t==ExpEv6)tau {= r1=1=}
::tau; #FTA [1E−6: r2]
::when(t==ExpEv4) tau {= r3=1=}
::when(t==ExpEv5) tau {= r4=1=}
::when((r1==1 && r2==1) | | r3==1 | | r4==1)

tau {= ORGate4=1 =}; break
}

} 30

int ANDGate1=0;

Process ProcANDGate1(){

int r2, r3, r4;
clock t;

117

APPENDIX E. Fault Tree Analysis

par{ 40
::Proc ORGate4()
::when (t==ExpEv2) tau {= r2=1 =}
::when (t==ExpEv3) tau {= r3=1 =}
::#FTA[1E−2: r4] }
::when((ORGate4==1 | | r2==1) && (r3==1 | | r4==1))

tau {= ANDGate1=1 =}; break
}

}

50
int ORGate1=0;

process Proc ORGate1(){

int r1, r2, r3, r4, r5, r6, r7;

par{

palt{
::#FTA[1E−14 : r1] 60
::#FTA[1E−12 : r2]
::#FTA[1E−14 : r3]
::#FTA[1E−12 : r4]
::#FTA[1E−12 : r5]
::#FTA[1E−12 : r6]
::#FTA[1E−12 : r7]
::when(r1==1 | | r2==1 | | r3==1 | | r4==1 | | r5==1 | | r6==1 | | r7==1)

tau {= ORGate1=1 =}; break
}

} 70

process Proc Main(){

clock t;
int r1;

par{
::when(t==ExpEv1) tau {= r1=1 =}
::Proc ORGate1() 80
::Proc ANDGate1()
::when(r1==1 | | ORGate1==1 | | ANDGate1==1)

tau {= TE=1, TETime=gt =}; break
}

}

//Run Simulation
Proc Main()

90

118

Appendix F

Importance Analysis

int TopEvent=0;
int ImpA, ImpB, ImpC, ImpD;
int A=0, B=0, C=0, D=0;

process RunNoFail(){

par{
::tau #FTA [1E−1: A]
::tau #FTA [2E−2: B] 10
::tau #FTA [3E−3: C]
::tau #FTA [5E−1: D]

}

}

process GuardAll(){

int LocalGate1, LocalGate2; 20

par{
::when(A==1 | | B==1) tau {= LocalGate1=1 =}
::when(C==1 | | D==1) tau {= LocalGate2=1 =}
::when(LocalGate1==1 && LocalGate2==1) tau {= TopEvent=1 =}

}
}

process GuardImpA(){ 30

int LocalGate1, LocalGate2;
par{

::when(B==1) tau {= LocalGate1=1 =}
::when(C==1 | | D==1) tau {= LocalGate2=1 =}
::when(LocalGate1==1 && LocalGate2==1) tau {= ImpA=1 =}

}
}

119

APPENDIX F. Importance Analysis

process GuardImpB(){ 40

int LocalGate1, LocalGate2;
par{

::when(A==1) tau {= LocalGate1=1 =}
::when(C==1 | | D==1) tau {= LocalGate2=1 =}
::when(LocalGate1==1 && LocalGate2==1) tau {= ImpB=1 =}

}
}

process GuardImpC(){ 50

int LocalGate1, LocalGate2;
par{

::when(A==1 | | B==1) tau {= LocalGate1=1 =}
::when(D==1) tau {= LocalGate2=1 =}
::when(LocalGate1==1 && LocalGate2==1) tau {= ImpC=1 =}

}
}
process GuardImpD(){

60
int LocalGate1, LocalGate2;
par{

::when(A==1 | | B==1) tau {= LocalGate1=1 =}
::when(C==1) tau {= LocalGate2=1 =}
::when(LocalGate1==1 && LocalGate2==1) tau {= ImpD=1 =}

}
}

//Run Simulation
par{ 70

::RunNoFail()
::GuardAll()
::GuardImpA()
::GuardImpB()
::GuardImpC()
::GuardImpD()

}

120

Appendix G

Fault Tree Generation

//Sync actions
action Event1, Event2, Event3;

//No Sync actions, help to discover errors in trace path
exception Event1error, Event2 error, enableerror, Event3 error;

//variables for the broadcasting feature
int ready approver=0;

10

//Errors of SIST
float FrontBagDelay=200;
float BeltTensionerDelay=60;
exception NoiseBeltTensionererror;
exception NoiseFrontBagerror;

process NoiseBeltTensionerProcess(){

clock clk; 20

float timer, noise;

{= timer=Exponential(1E−4) =};
palt{

:1: {= noise=BeltTensionerDelay+Uniform(0,30) =}
:1: {= noise=BeltTensionerDelay−Uniform(0,30) =}

};
when(clk==timer) urgent(true) throw NoiseBeltTensionererror; {= BeltTensionerDelay=noise =}

}
30

process NoiseFrontBagProcess(){

clock clk;
float timer, noise;

{= timer=Exponential(5E−5) =};
palt{

:1: {= noise=FrontBagDelay+Uniform(0,100) =}

121

APPENDIX G. Fault Tree Generation

:1: {= noise=FrontBagDelay−Uniform(0,100) =}
}; 40
when(clk==timer) urgent(true) throw NoiseFrontBagerror; {= FrontBagDelay=noise =}

}

. . .

process Approver() {

. . .
//—-RAND(enable,10,1) BEGIN—– 50
palt{

:10: throw enableerror
:90: tau

};
//—-RAND END—–

. . .

}

60
process Env() {

. . .

//—-DELAY(Event1,10,5,t1) BEGIN—–
{= Event1 timer=Uniform(0,5)+t1 =};
palt{

:10: when(Event1 timer==t1) urgent(true) throw Event1error
:90: Event1

}; 70
//—-Event1 DELAY END—–

. . .
//—-STUCK(Event2,4) BEGIN—–
palt{

:4: throw Event2error; when(false) Event2 {= time1=waiting =}
:96: Event2 {= time1=waiting =}

};
//—-Event2 STUCK END—–

. . .
//—-DELAY(Event3,5,19,t1,{= time2=t1 =}) BEGIN—– 80
{= Event3 timer=Uniform(0,19)+t1 =};
palt{

:5: when(Event3 timer==t1) urgent(true) throw Event3error; Event3 {= time2=t1 =}
:95: Event3 {= time2=t1 =}

};
//—-Event3 DELAY END—–

. . .
}

90

try{
par{ ::NoiseBeltTensionerProcess()

::NoiseFrontBagProcess()
::FrontBag()

122

::BeltTensioner()
::Approver()
::Env()
::hide{violated} Observer()

} 100
}
catch(Event1 error){

break
}
catch(Event2 error){

break
}

catch(enableerror){
break
} 110

catch(Event3 error){
break

}
catch(NoiseBeltTensionererror){

break
}
catch(NoiseFrontBagerror){

break
}

123

Appendix H

Single Source Vision

H.1 Behavior Model

/*
MoDeST Behavior Model

*/
process Sensor()
#SwitchFailure(LambdaSwitch, MuSwitch)
#in: int pressure, bool power
#out: bool switch
{

do{
::alt{ 10

::when(power==1 && pressure<min) {= Switch=1 =}
::when(power==1 && pressure>max) {= Switch=0 =}

}
}

}

process Tank()
#TankFailure(LambdaTank, 0)
{

do{ 20

::water in
::water out {= pressure−− =}
::when(pressure>max pressure) ExplodePressure

}
}

process Pump()
#PumpFailure(LambdaPump, MuPump)
#in: bool power, bool switch
#out: int pressure 30

{
do{

::alt{
::when(switch==1 && power==1) water in {= pressure++ =}

124

H.2. STA Markov Chain

::when(switch==0 && power==1) tau
}

}
}

process Power() 40
#PowerFailure(LambdaPower, MuPower)
#out: power
{

clock t;
float tfail, trepair;

do{
::{= t=0, tfail=Exponential(LambdaPower), trepair=Exponential(MuPower) =};

alt{
::when (t=repair && power==0) {= power=1 =} 50
::when (t=tfail && power==1) {= power=0 =}

}
}

}

process Consumer()
{

clock t;
float timer;
do{ 60

::{= t=0, timer=Exponential(LAMBDAconsumer) =};
when(t=timer) urgent(true) water out

}
}

par{
#MissingVCC (LambdaPower, MuPower)
process(Sensor) OR process(Tank) OR process(Pump) OR process(Power) −> TopEvent
::Consumer()
::Sensor() 70
::Tank()
::Pump()
::Power()

}

H.2 STA Markov Chain

Pseudo-CTMC equivalent expressed in terms ofMoDeST

int MAX =100;
int MIN=10;
int pressure;

process Pump(){

125

APPENDIX H. Single Source Vision

clock clk;
int location;

10
do{
::alt{

::when(location==0) //power=1, switch=1;
alt{

::#LAMBDAvcc ; {= location=1 =}
::when(switch==0) {= location=2 =}
::#LAMBDApump; {= location=4 =}
::when(clk==1) {= pressure++, clk=0 =}

}
::when(location==1) #MUvcc; {= location=0 =}//power=1, switch=0 20
::when(location==2)//power=0, switch=1

alt{
::#LAMBDAvcc ; {= location=3 =}
::when(switch==1) {= location=0 =}
::#LAMBDApump; {= location=4 =}

}
::when(location==3) #MUvcc; {= location=0 =} //power=0, switch=0
::when(location==4) #MUpump; //PumpFailure
alt{

::when(switch==1) {= location=0 =} 30
::when(switch==0) {= location=1 =}

}
}

}

}

process Sensor(){

int location; 40

do{
::alt{

::when(location==0) //power=1, switch=1
alt{

::#LAMBDAvcc ; {= location=2 =}
::when(pressure>=MAX) {= location=1 =}
::#LAMBDAsensor {= location=4 =}

}
::when(location==1) #MUvcc; {= location=0 =} //power=0, switch=1 50
::when(location==2) //power=1, switch=0

alt{
::#LAMBDAvcc
::when(pressure<MIN) {= location=0 =}
::#LAMBDAsensor; {= location=4 =}

}
::when(location==3) #MUvcc; {= location=2 =} //power=0, switch=0
::when(location==4) #MUsensor; //Sensor Failure

alt{
::when(switch=0) {= location=2 =} 60
::when(switch=1) {= location=0 =}

}
}

}

126

H.2. STA Markov Chain

}

process Tank(){

int location; 70

do{
::alt{

::when(location==0) tau; when(pressure==MAX) {= location=1 =}
::when(location==1) TankFull; alt{

::when(pressure<MAX) {= location=0 =}
::#LAMBDAburst {= location=2 =}

}
::when(location==2) TankBurst;

} 80
}

}

process Consumer(){

do{
::#LAMBDAconsume;

alt{ 90
::when(pressure==0) NoWater
::else {= pressure−− =}

}
}

}

127

Bibliography

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time
systems. Technical report, 1990.

[Amb02] Scott W. Ambler. Single Source Information: An Agile Practice. Technical report,
http://www.agilemodeling.com/, 2002.

[Aue05] Marko Auerswald. SRS ECU Behavior Modeling, IST Project AMETIST. Technical
report, Bosch Industrial Case Study, March 2005.

[BDL02] G. Behrmann, A. David, and K.G. Larsen. A Tutorial on Uppaal. Technical report,
Department of Computer Science, Aalborg University, Denmark, 2002.

[BHB+04] Matthias Bretschneider, Hans-Jürgen Holberg, Eckard Böde, Ingo Brückner, Thomas
Peikenkamp, and Karriet Spenke. Model-based Safety Analysis of a Flap Control
System. Technical report, ICOSE 2004 - 14th Annual International Symposium
Proceedings, 2004.

[BHKK03] Henrik Bohnenkamp, Holger Hermanns, Jost-Pieter Katoen, and Ric Klaren. The
MoDeST Modeling Tool and Its Implementation. Technical report, 2003.

[Bra01] Kraftfahrzeugtechnik, volume 2. Vieweg Handbuch, 2001.

[Bry87] R. E. Bryant. Graph based algorithms for Boolean function manipulation. Technical
Report 35 (8), IEEE Transactions on Computer, 1987.

[Buc00] Kerstin Buchacker. Definition und Auswertung erweiterter Fehlerbäume für die
Zuverlässigkeitsanalyse technischer Systeme. Technical report, Dissertation,
Arbeitsberichte des Instituts für Informatik Universität Erlangen, Juli 2000. Band33,
Nummer 3.

[DHKK01] P.R. D’Argenio, H. Hermanns, J.P. Katoen, and R. Klaren.MoDeST - a modelling and
description language for stochastic timed systems. Springer, 2001. In Proc.
PAPM-ProbmiV’01, LNCS 2165.

[Fau05] FaultTree+. Handbook and Demo-Licence at http://www.isograph-software.com/,
2005. Version 11.0.

[Gra03] David. N. Gray.Gema - a general purpose macro processor.
http://gema.sourceforge.net, December 2003.

128

BIBLIOGRAPHY

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Technical report,
Science of Computer Programming 8, 1987.

[Her02] Holger Hermanns.Interactive Markov Chains, and the quest for quantified quality.
PhD thesis, Lecture Notes in computer science, 2002. Springer, LNCS 2428.

[Hub03] Thomas Huber. Zuverlässigkeit und Ausfallsicherheit elektronischer Systeme im
Automobil. Technical report, Robert Bosch GmbH, IIR-Konferenz, 2003. Safety First -
For Intelligent Restraint System Technologies.

[LAR01] Jean-Claude Laprie, Algirdas Avizienis, and Brian Randell. Fundamental Concepts of
Dependability.Report N01145, LAAS-CNRS, April 2001.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi.Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, October 1997.

[Mat05] The MathWorks, http://www.mathworks.com/.Stateflow, Matlab Simulink Handbook,
2005.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs, 1989.

[MMT00] J. Mauss, V. May, and M. Tatar. Towards Model-based Engineering: Failure Analysis
with MDS. Technical report, ECAI-2000 Workshop on Knowledge-Based Systems for
Model-Based Engineering, August 2000.

[Moc05] Ralf Mock. Risiko und Sicherheit von Netzwerken. Technical report, Laboratorium für
Sicherheitsanalytik, Juni 2005. lecture notes.

[Neu81] Marcel F. Neuts.Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. The John Hopkins University Press, 1981.

[San05] William H. Sanders. Model-based environment for Validation of System Reliability,
Availability, Security and Performance. Möbius Manual, 2005.
http://www.mobius.uiuc.edu.

[TD03] Zhihua Tang and Joanne Bechta Dugan. Minimal Cut Set/Sequence Generation of
Dynamic Fault Trees. Technical report, University of Virginia, Charlottesville, 2003.

[WGRH81] W.E.Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Handbook.
Technical report, Office of Nuclear Regulatory Research, January 1981. U.S. Nuclear
Regulatory Commission.

129

BIBLIOGRAPHY

130

	0 Introduction
	1 Synchronization Concepts
	1.1 Overview
	1.1.1 General Concept
	1.1.2 Symmetric Communication
	1.1.3 Two Sort Synchronization
	1.1.4 Derivations

	1.2 Semantics of MoDeST
	1.3 Broadcasting in Uppaal and MoDeST
	1.3.1 Broadcasting in Uppaal
	1.3.2 Broadcasting using a Channel
	1.3.3 ``One-to-One'' in MoDeST
	1.3.4 "N-to-N" in Uppaal

	1.4 Conclusion

	2 Scenario Analysis
	2.1 Model structure
	2.1.1 Environment Model
	2.1.2 Micro controllers
	2.1.3 External Approver

	2.2 Properties and Variables of Interest
	2.2.1 Observer Process

	2.3 Simulation
	2.3.1 Reward Variables
	2.3.2 Trace Path

	2.4 Observation Results
	2.5 Conclusion

	3 Detailed System Modeling and Verification
	3.1 Model Structure
	3.1.1 Observer Processes

	3.2 Simulation and Observation
	3.3 Conclusion

	4 Simulink Stateflow
	4.0.1 Stateflow and Simulink
	4.0.2 Finite State Machine Representations

	4.1 Stateflow Notation
	4.1.1 Stateflow Diagram Objects

	4.2 Stateflow Semantics
	4.2.1 Event Execution
	4.2.2 Chart Execution
	4.2.3 Transition Execution
	4.2.4 State Execution

	4.3 Airbag Controller by Means of Stateflow
	4.3.1 Simulink Models
	4.3.2 Stateflow Models
	4.3.3 Simulation
	4.3.4 Statistical Analysis

	4.4 Conclusion

	5 Markov Chain Analysis
	5.1 Assumptions
	5.2 Modeling On-Demand System Failures
	5.3 Variables of Interest
	5.4 Simulation and Results
	5.5 Analytical Approach
	5.6 Conclusion

	6 Fault Tree Analysis
	6.1 Representation of Events
	6.1.1 Events
	6.1.2 Probabilities of mixed Events

	6.2 Simulation and Results
	6.2.1 Fault Tree +
	6.2.2 MoDeST

	6.3 Conclusion

	7 Fault Tree Generation
	7.1 Preliminary Concepts
	7.1.1 Binary Decision Diagrams (BDDs)
	7.1.2 Minimal Cut Sets (MCSs)

	7.2 Fault Tree Generation
	7.2.1 Representation of Probabilistic Errors
	7.2.2 Representation of Exponential Distributed Errors
	7.2.3 Representation of Nominal Faulty Behavior

	7.3 Simulation of the Failure Model
	7.4 Results
	7.5 Conclusion

	8 Importance Analysis
	8.1 Structural Importance
	8.2 Marginal Importance
	8.3 Barlow-Proschan Importance
	8.4 Fussell-Vesely Importance
	8.4.1 Modeling in MoDeST

	8.5 Conclusion

	9 Single Source Vision
	9.1 Overview
	9.2 Choice of the overarching Language
	9.3 Example of a Water Cycle
	9.3.1 MoDeST Behavior Model

	9.4 Failure Analysis
	9.4.1 Static FTA
	9.4.2 Dynamic Failure Analysis

	9.5 STA Chain Representation
	9.5.1 STA Error Chain in MoDeST

	9.6 Conclusion

	10 Conclusion
	A GEMA - a MoDeST Preprocessor
	A.1 #for
	A.2 #define
	A.3 #while
	A.4 #invariant
	A.5 #do and #alt
	A.6 Probabilistic Events in Fault Trees
	A.7 Clock Arrays
	A.8 Forward Declaration Fix
	A.9 Buffer Generation
	A.10 Stack Generation
	A.11 Rate Conversion
	A.12 Failure Generation: Errors for Actions
	A.12.1 Probabilistic Errors
	A.12.2 Exponential Errors

	A.13 Failure Generation: Errors for Integers
	A.13.1 Probabilistic Errors
	A.13.2 Exponential Errors

	B Synchronization Concepts
	B.1 "One-to-Many" in MoDeST
	B.2 "One-of-Many-to-One" in MoDeST
	B.3 "One-of-Many-to-Many" in MoDeST

	C MatLab Simulink
	D Markov Chain Analysis
	D.1 MoDeST Code
	D.2 Analytical Results

	E Fault Tree Analysis
	F Importance Analysis
	G Fault Tree Generation
	H Single Source Vision
	H.1 Behavior Model
	H.2 STA Markov Chain

		fwerner@cs.uni-sb.de
	2006-01-27T13:06:54+0100
	Saarbrücken
	Frank Werner
	Ich bin der Verfasser dieses Dokuments

