Energy Efficiency of TCP in a Local Wireless Environment

Presented by Mansoor Jafry

- Motivation
- Quick Recap of TCP Versions
- System Model
- Analysis
- Performance Results
- Summary

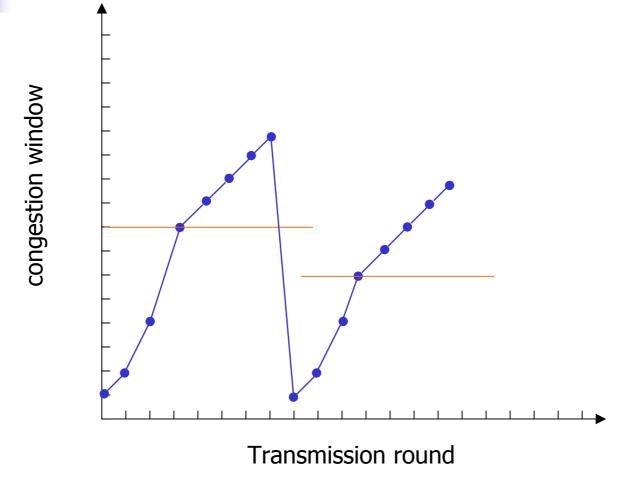
Motivation

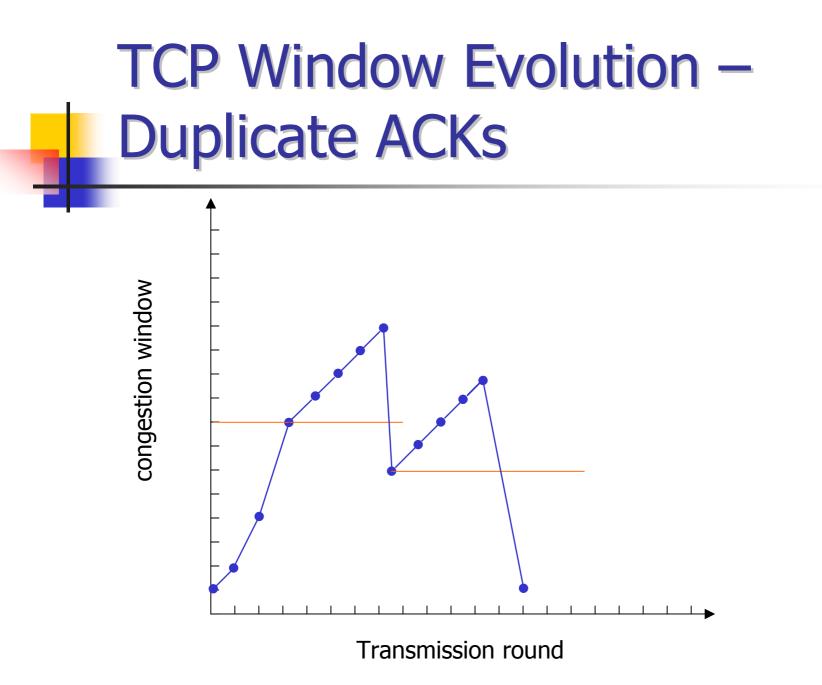
- Increasing trend of portable and mobile devices
- Reliance of efficient usage of limited battery power
- Battery technology is a slowly improving field
- Need to exploit other avenues for saving power

Internet Applications on Mobile Devices

- The Transport Control Protocol (TCP) lies at the heart of internet services
- It was designed for wireline networks with low error rates
- Various modifications proposed since original deployment (Tahoe, Reno, Vegas etc.)

Peculiarities of the Wireless Environment


- Mismatch between assumptions and true causes of data loss
- Packet errors are usually correlated
- Should not fight a bad channel, rather save power for better conditions


Which is exactly what TCP does anyway!

TCP Quick Reference

- TCP can accept packets out of sequence but will deliver them only in sequence
- Receiver advertises W_{max}, which limits the number of unacknowledged outstanding packets
- Correctly received packets are acknowledged with cumulative ACKs
- ACKs carry the next packet sequence number expected from the sender
- Timeouts and duplicate ACKs used to guess occurrence of packet loss

TCP Window Evolution -Timeout

TCP Window Parameters

- Let
 - W(t): sender's congestion window width at time t
 - W_{th}(t): slow start threshold at time t
- The evolution of W(t) and W_{th}(t) is triggered by ACKs and timeouts

TCP Basic Algorithm

- If W(t) < W_{th}(t), each ACK W(t) to increase by 1 (slow start)
- If W(t) ≥ W_{th}(t), each ACK causes W(t) to increase by 1/W(t) (congestion avoidance)
- If a timeout occurs at time t, and t⁺ is the next timeslot, then

•
$$W(t^+) = 1$$

• $W_{th}(t^+) = \lceil W(t)/2 \rceil$

TCP Versions

- OldTahoe:
 - Ioss detection: timeout
 - Ioss recovery: retransmission
 - window adaptation: W(t⁺) = 1, $W_{th}(t^+) = \left[W(t)/2 \right]$
- Tahoe:
- a) fast retransmit Ioss detection: timeout or duplicate ACKs
 - Ioss recovery: retransmission
 - window adaptation: W(t⁺) = 1, $W_{th}(t^+) = \lceil W(t)/2 \rceil$

TCP Versions (2)

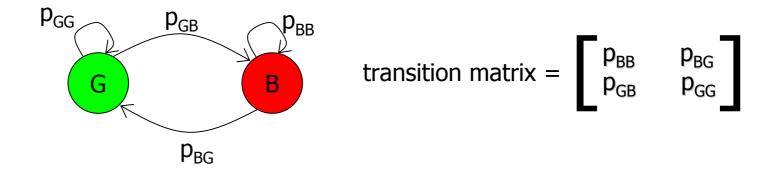
- Reno:
- fast retransmit Ioss detection: timeout or duplicate ACKs
 - Ioss recovery and window adaptation:
 - on timeout, similar to Tahoe ast recovery
 - on duplicate ACKs:
 - $W_{th}(t^+) = \left[W(t)/2 \right]$

$$W(t^+) = W_{th}(t^+)$$

Transmits only the first lost packet

NewReno

- Ioss detection: as in Reno
- recovery and adaptation: as in Tahoe


System Model

Goal

- We want to model the performance of TCP...
 - during bulk data transfer (we can ignore connection setup and teardown overheads)
 - over a *single* TCP connection
 - where the transmitter always has some data to send

Error Model

- Fading channels are generally difficult to model accurately
- This approach adopts a two-state Markov model because of sufficient accuracy and analytical simplicity

Error Model (2)

- Avg. probability of a packet loss, ε, depend on physical characteristics of the channel
 - Fading margin, F
 - Normalized Doppler frequency f_DT

Approach

- Analytical approach
 - Ompletely parameterized and fast
 - 8 Relies on several inaccurate assumptions
- Simulation
 - ③ Better approximation of reality
 - B Excessive runtime
 - B Is affected by parameters like size of packet
- Hybrid Approach
 - Obtain packet error trace by simulating fading process
 - Use it to estimate avg. packet error rate and avg. length of burst

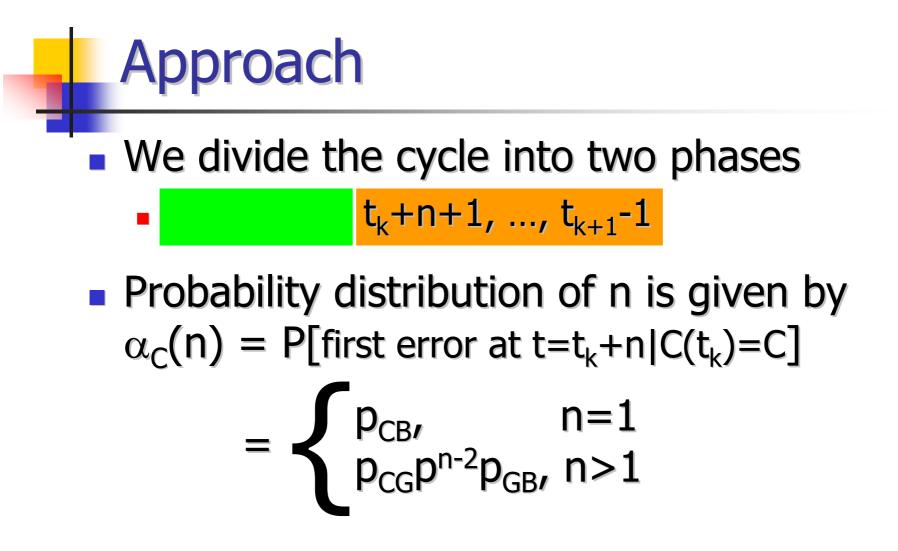
For the case of TCP Tahoe

Analysis – Reward Renewal Process

- Many stochastic processes have the property of regenerating at certain timeslots
- Behavior after a regeneration epoch is probabilistic replica of the initial behavior
- Long-term behavior can be studied in terms of behavior during a single regeneration cycle

Parameters

- Parameters W, W_{th} and the channel state evolve in cycles between two loss detection events
- We define t_k as the slot immediately following the detection of a packet loss.


 $t_{k}, t_{k}+1, \dots t_{k+1}-1, t_{k+1}, t_{k+1}+1, \dots$

Semi-Markov Process

- We define a random process X(k) = (C(t_k -1), W(t_k), W_{th}(t_k))
- $\Omega X = \{(C, W_{th}, 1) \mid C = B, G, 1 \le W_{th} \le \lceil W_{max}/2 \rceil\}$
- Future evolution of process X(m), m>k, is independent of the past X(m), m<k
- Given a Markov chain it is always possible to define a semi-Markov process which admits the original chain as its embedded Markov chain

Metrics of Interest

- Introduce metrics on transitions to track
 - Number of slots, N_d
 - Number of transmission attempts: N_t
 - Number of successful transmissions: N_s
- We follow the evolution of the embedded Markov chain while cumulating the metrics on each transition

Transition Matrix

- Crucial ingredient: size of window at t_k+n
 - $Y(k) = W(t_k + n)$
 - Ω_Y = [1,W_{max}]
- We can study the two phases separately, obtaining two matrix transition functions Φ⁽¹⁾(z) and Φ⁽²⁾(z)
 - *ij* th entry of Φ⁽¹⁾(z) ?
 - *jk* th entry of Φ⁽²⁾(z) ?

Transition Matrix (2)

- Matrix transition function
 - $\Phi(z) = \Phi^{(1)}(z) \Phi^{(2)}(z)$
 - z is actually a vector of variables being tracked
- Let ξ_{ij}(N_d, N_t, N_s) be the probability the system makes a transition to state j
 - in exactly N_d slots, with N_t transmissions
 - of which N_s are success

•
$$\Phi_{ij}(z_d, z_t, z_s) = \sum_{N_{d'}, N_{t'}, N_s} \xi_{ij}(N_d, N_t, N_s) z_d^{Nd} z_t^{Nt} z_s^{Ns}$$

Transition Matrix (3)

Matrix of average delays (slots) will be

$$D = \frac{\partial \Phi(z_d, z_t, z_s)}{\partial z_d}$$

The averages of other quantities, T and S, can be found similarly

Reward Renewal Theory

If A(k) and B(k) cumulative metrics during the first k cycles, then

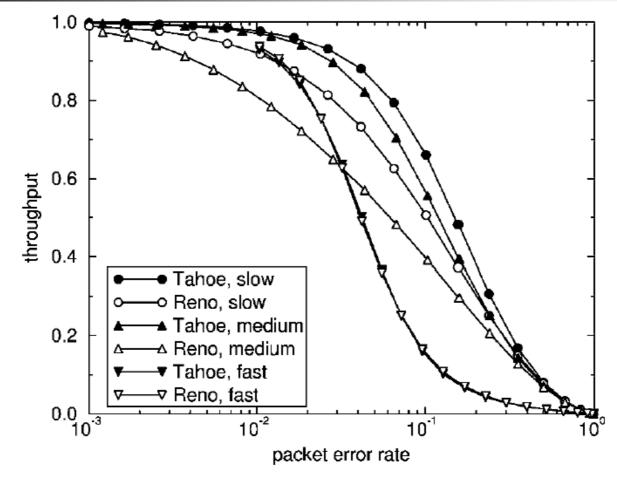
$$\lim_{k \to \infty} \frac{A(k)}{B(k)} = \frac{E[A]}{E[B]} = \frac{\sum_{i \in \Omega x} \pi_i \sum_{i \in \Omega x} P_{ij}A_{ij}}{\sum_{i \in \Omega x} \pi_i \sum_{i \in \Omega x} P_{ij}B_{ij}}$$

- π_i: steady state probabilities of Markov chain with transition Matrix P
- A_{ij}, B_{ij}: averages of the corresponding metrics during transition ij

Computation of Metrics

- Various metrics can be computed by setting A and B appropriately
 - A=S, B=D : avg. success per slot (throughput)
 - A=T, B=D: avg. transmissions per slot (system load)
 - A=S, B=T: average number of successes per transmission (success probability)

Accounting for Idle Time

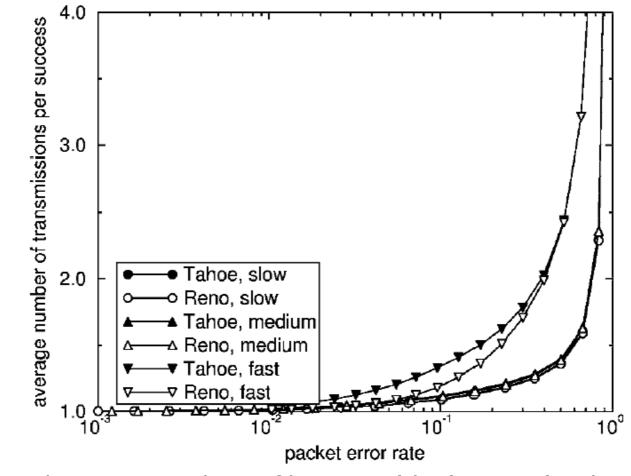

- In reality terminals also consume power when idle
- Let $C = (F+w_a)T + w_i(D-T)$
 - C: matrix of avg. energy consumption per transition
 - F: energy consumed during one transmission
 - w_a,w_i: energy consumed by rest of the circuitry during active and idle slots

Energy Efficiency Formulation

energy efficiency =
$$\frac{\sum_{i \in \Omega_X} \pi_i \sum_{j \in \Omega_X} P_{ij} S_{ij}}{\sum_{i \in \Omega_X} \pi_i \sum_{j \in \Omega_X} P_{ij} C_{ij}}$$

Performance Results

Throughput vs. Error Rate

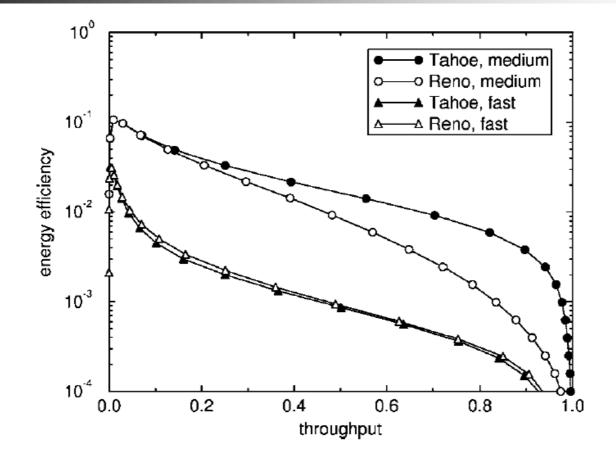


W_{max}=24, Packet size=1024 bytes fdT=0.001 (slow), 0.016 (medium), 0.256 (fast)

Observations

- For large error rates, throughput is higher for slower fading (error clustering)
- Reno performs worse than Tahoe in virtually all cases
- Information that can't be seen here:
 - Results of Tahoe improve upon increasing W_{max} (not true for Reno)

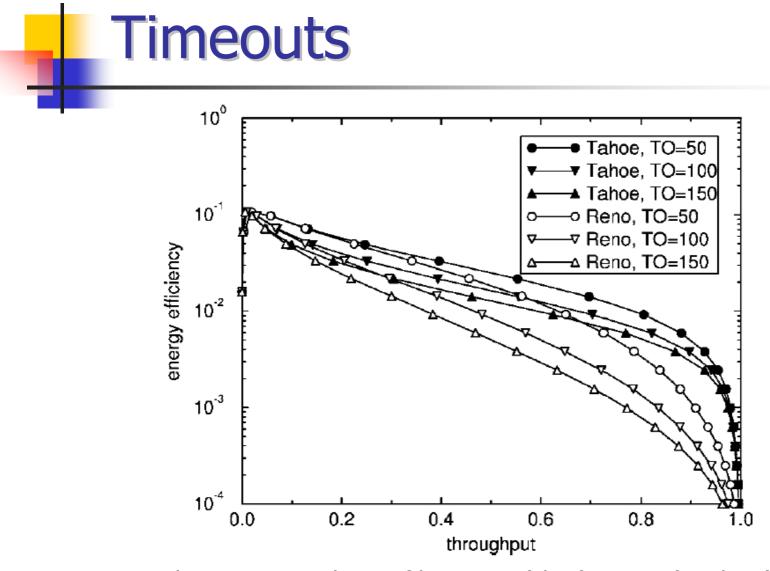
Transmission attempts per success



W_{max}=24, Packet size=1024 bytes fdT=0.001 (slow), 0.016 (medium), 0.256 (fast)

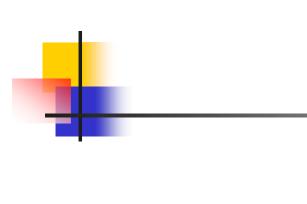
Observations (2)

- Tells us how much energy sent to get a packet across
- Unlike throughput, this metric is not very sensitive to error correlation
- Reno (although worse in throughput) totals fewer transmission attempts per packet
- Interestingly, this metric is also insensitive to W_{max}


Energy efficiency vs. throughput

 W_{max} =24, Packet size=1024 bytes fdT=0.016 (medium), 0.256 (fast)

Main Findings and Summary


- TCP Reno performs the poorest, while Tahoe and NewReno exhibit similar performance (for fast fading NewReno is better)
- As fading rate increases, energy efficiency suffers
- Shorter timeouts result in better performance in general. Reno is more sensitive to timeouts than Tahoe
- A larger W_{max} allows to fully exploit advantages of correlated errors

W_{max}=24, Packet size=1024 bytes fdT=0.001 (slow), 0.016 (medium), 0.256 (fast)

Questions & Answers

