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Abstract. In contrast to the usual understanding of probabilistic systems
as stochastic processes, recently these systems have also been regarded as
transformers of probabilities. In this paper, we give a natural definition of
strong bisimulation for probabilistic systems corresponding to this view that
treats probability distributions as first-class citizens. Our definition applies
in the same way to discrete systems as well as to systems with uncountable
state and action spaces. Several examples demonstrate that our definition re-
fines the understanding of behavioural equivalences of probabilistic systems.
In particular, it solves a longstanding open problem concerning the repre-
sentation of memoryless continuous time by memoryfull continuous time.
Finally, we give algorithms for computing this bisimulation not only for fi-
nite but also for classes of uncountably infinite systems.

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal man-
ners: On the one hand, timed automata (TA) extend interleaving concurrency with
real-valued clocks [2]. On the other hand, time can be represented by memory-
less stochastic time, as in continuous time Markov chains (CTMC) and exten-
sions, where time is represented in the form of exponentially distributed random
delays [33,30,6,23]. TA and CTMC variations have both been applied to very many
intriguing cases, and are supported by powerful real-time, respectively stochastic
time model checkers [3,37] with growing user bases. The models are incomparable
in expressiveness, but if one extends timed automata with the possibility to sample
from exponential distributions [5,10,28], there appears to be a natural bridge from
CTMC to TA. This kind of stochastic semantics of timed automata has recently
gained considerable popularity by the statistical model checking approach to TA
analysis [14,13].

Still there is a disturbing difference, and this difference is the original motiva-
tion [12] of the work presented in this paper. The obvious translation of an ex-
ponentially distributed delay into a clock expiration sampled from the very same
exponential probability distribution fails in the presence of concurrency. This is
because the translation is not fully compatible with the natural interleaving con-
currency semantics for TA respectively CTMC. This is illustrated by the following
example, which in the middle displays two small CTMC, which are supposed to run
independently and concurrently.
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On the left and right we see two stochastic automata (a variation of timed automata
formally defined in Section 3). They have clocks x and y which are initialized by
sampling from exponential distributions, and then each run down to 0. The first
one reaching 0 triggers a transition and the other clock keeps on running unless
resampled, which happens on the right, but not on the left. The left model is
obtained by first translating the respective CTMC, and then applying the natural
TA interleaving semantics, while the right model is obtained by first applying the
equally natural CTMC interleaving semantics prior to translation.

The two models have subtly different semantics in terms of their underlying
dense probabilistic timed transition systems. This can superficially be linked to the
memoryless property of exponential distributions, yet there is no formal basis for
proving equivalence. This paper closes this gap, which has been open for at least
15 years, by introducing a natural continuous-space distribution-based bisimulation.
This result is embedded in several further intriguing application contexts and algo-
rithmic achievements for this novel bisimulation.

The theory of bisimulations is a well-established and elegant framework to de-
scribe equivalence between processes based on their behaviour. In the standard
semantics of probabilistic systems [38,45], when a probabilistic step from a state
to a distribution is taken, the random choice is resolved and we instead continue
from one of the successor states. Recently, there has been considerable interest in
instead regarding probabilistic systems as deterministic transformers of probabil-
ity distributions [36,1,20], where the choice is not resolved and we continue from
the distribution over successors. Thus, instead of the current state the transition
changes the current distribution over the states. Although the distribution seman-
tics is very natural in many contexts [29], it has been only partially reflected in the
study of bisimulations [29,19,24,23].

Our definition arises as an unusual, but very simple instantiation of the standard
coalgebraic framework for bisimulations [42]. (No knowledge of coalgebra is required
from the reader though.) Despite its simplicity, the resulting notion is surprisingly
fruitful, not only because it indeed solves the longstanding correspondence problem
between CTMC and TA with stochastic semantics.

Firstly, it is more adequate than other equivalences when applied to systems
with distribution semantics, including large-population models where different parts
of the population act differently [39]. Indeed, as argued in [26], some equivalent
states are not identified in the standard probabilistic bisimulations and too many
are identified in the recent distribution based bisimulations [19,24]. Our approach
allows for a bisimulation identifying precisely the desired states [26].

Secondly, our bisimulation over distributions induces an equivalence on states,
and this relation equates behaviourally indistinguishable states which in many set-
tings are unnecessarily distinguished by standard bisimulations. We shall discuss
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this phenomenon in the context of several applications. Nevertheless, the key idea
to work with distributions instead of single states also bears disadvantages. The
main difficulty is that even for finite systems the space of distributions is uncount-
able, thus bisimulation is difficult to compute. However, we show that it admits
a concise representation using methods of linear algebra and we provide an algo-
rithm for computing it. Further, in order to cover e.g. continuous-time systems, we
need to handle both uncountably many states (that store the sampled time) and
labels (real time durations). Fortunately, there is an elegant way to do so using the
standard coalgebra framework. Moreover, it can easily be further generalized, e.g.
adding rewards to the generic definition is a trivial task.
Our contribution is the following:

– We give a natural definition of bisimulation from the distribution perspective
for systems with generally uncountable spaces of states and labels.

– We argue by means of several applications that the definition can be considered
more useful than the classical notions of probabilistic bisimulation.

– We provide an algorithm to compute this distributional bisimulation on finite
non-deterministic probabilistic systems, and present a decision algorithm for
uncountable continuous-time systems induced by the stochastic automata men-
tioned above.

A full version of this paper is available [31].

2 Probabilistic bisimulation on distributions

A (potentially uncountable) set S is a measurable space if it is equipped with a
σ-algebra, which we denote by Σ(X). The elements of Σ(X) are called measurable
sets. For a measurable space S, let D(S) denote the set of probability measures (or
probability distributions) over S. The following definition is similar to the treatment
of [52].

Definition 1. A non-deterministic labelled Markov process (NLMP) is a tuple P =
(S ,L, {τa | a ∈ L}) where S is a measurable space of states, L is a measurable
space of labels, and τa : S → Σ(D(S )) assigns to each state s a measurable set of
probability measures τa(s) available in s under a.(1)

When in a state s ∈ S , NLMP reads a label a ∈ L and non-deterministically
chooses a successor distribution µ ∈ D(S ) that is in the set of convex combinations(2)

over τa(s), denoted by s
a−→µ. If there is no such distribution, the process halts.

Otherwise, it moves into a successor state according to µ. Considering convex combi-
nations is necessary as it gives more power than pure resolution of non-determinism
[43].

(1) We further require that for each s ∈ S we have {(a, µ)|µ ∈ τa(s)} ∈ Σ(L)⊗Σ(D(S)) and
for each A ∈ Σ(L) and Y ∈ Σ(D(S)) we have {s ∈ S | ∃a ∈ A.τa(s) ∩ Y 6= ∅} ∈ Σ(S).
Here Σ(D(S)) is the Giry σ-algebra [27] over D(X).

(2) A distribution µ ∈ D(S) is a convex combination of a set M ∈ Σ(D(S)) of distributions
if there is a measure ν on D(S) such that ν(M) = 1 and µ =

∫
µ′∈D(S)

µ′ν(dµ′).
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Example 1. If all sets are finite, we obtain probabilistic automata (PA) defined [43]
as a triple (S ,L,−→) where −→ ⊆ S×L×D(S ) is a probabilistic transition relation
with (s, a, µ) ∈ −→ if µ ∈ τa(s).

Example 2. In the continuous setting, consider a random number generator that
also remembers the previous number. We set L = [0, 1], S = [0, 1] × [0, 1] and
τx(〈new, last〉) = {µx} for x = new and ∅ otherwise, where µx is the uniform
distribution on [0, 1] × {x}. If we start with a uniform distribution over S, the
measure of successors under any x ∈ L is 0. Thus in order to get any information
of the system we have to consider successors under sets of labels, e.g. intervals.

For a measurable set A ⊆ L of labels, we write s
A−→µ if s

a−→µ for some a ∈ A,
and denote by SA := {s | ∃µ : s

A−→µ} the set of states having some outgoing
label from A. Further, we can lift this to probability distributions by setting µ

A−→ ν
if ν = 1

µ(SA)

∫
s∈SA

νs µ(d s) for some measurable function assigning to each state

s ∈ SA a measure νs such that s
A−→ νs. Intuitively, in µ we restrict to states that

do not halt under A and consider all possible combinations of their transitions; we
scale up by 1

µ(SA) to obtain a distribution again.

Example 3. In the previous example, let υ be the uniform distribution. Due to the
independence of the random generator on previous values, we get υ

[0,1]−→ υ. Similarly,

υ
[0.1,0.2]−−−−−→ υ[0.1,0.2] where υ[0.1,0.2] is uniform on [0, 1] in the first component and

uniform on [0.1, 0.2] in the second component, with no correlation.

Using this notation, a non-deterministic and probabilistic system such as NLMP
can be regarded as a non-probabilistic, thus solely non-deterministic, labelled tran-
sition system over the uncountable space of probability distributions. The natural
bisimulation from this distribution perspective is as follows.

Definition 2. Let (S ,L, {τa | a ∈ L}) be a NLMP and R ⊆ D(S ) × D(S ) be a
symmetric relation. We say that R is a (strong) probabilistic bisimulation if for
each µRν and measurable A ⊆ L

1. µ(SA) = ν(SA), and
2. for each µ

A−→µ′ there is a ν
A−→ ν′ such that µ′Rν′.

We set µ ∼ ν if there is a probabilistic bisimulation R such that µRν.

Example 4. Considering Example 2, states {x} × [0, 1] form a class of ∼ for each
x ∈ [0, 1] as the old value does not affect the behaviour. More precisely, µ ∼ ν iff
marginals of their first component are the same.

Naturalness. Our definition of bisimulation is not created ad-hoc as it often ap-
pears for relational definitions, but is actually an instantiation of the standard
bisimulation for a particular coalgebra. Although this aspect is not necessary for
understanding the paper, it is another argument for naturalness of our definition.
For reader’s convenience, we present a short introduction to coalgebras and the for-
mal definitions in [31]. Here we only provide an intuitive explanation by example.

Non-deterministic labelled transition systems are essentially given by the tran-
sition function S → P(S )L; given a state s ∈ S and a label a ∈ L, we can obtain
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the set of the successors {s′ ∈ S | s a−→s′}. The transition function corresponds to
a coalgebra, which induces a bisimulation coinciding with the classical one of Park
and Milner [40]. Similarly, PA are given by the transition function S → P(D(S ))L;
instead of successors there are distributions over successors. Again, the correspond-
ing coalgebraic bisimulation coincides with the classical ones of Larsen and Skou [38]
and Segala and Lynch [44].

In contrast, our definition can be obtained by considering states S ′ to be distri-
butions in D(S) over the original state space and defining the transition function
to be S ′ → ([0, 1] × P(S ′))Σ(L). The difference to the standard non-probabilistic
case is twofold: firstly, we consider all measurable sets of labels, i.e. all elements
of Σ(L); secondly, for each label set we consider the mass, i.e. element of [0, 1], of
the current state distribution that does not deadlock, i.e. can perform some of the
labels. These two aspects form the crux of our approach and distinguish it from
other approaches.

3 Applications

We now argue by some concrete application domains that the distribution view on
bisimulation yields a fruitful notion.

Memoryless vs. memoryfull continuous time. First, we reconsider the motivating
discussion from Section 1 revolving around the difference between continuous time
represented by real-valued clocks, respectively memoryless stochastic time. For this
we introduce a simple model of stochastic automata [10].

Definition 3. A stochastic automaton (SA) is a tuple S = (Q, C,A,→, κ, F ) where
Q is a set of locations, C is a set of clocks, A is a set of actions,→ ⊆ Q×A×2C×Q
is a set of edges, κ : Q → 2C is a clock setting function, and F assigns to each clock
its distribution over R≥0.

Avoiding technical details, S has the following NLMP semantics PS with state space
S = Q× (R≥0)C , assuming it is initialized in some location q0: When a location q
is entered, for each clock c ∈ κ(q) a positive value is chosen randomly according
to the distribution F (c) and stored in the state space. Intuitively, the automaton
idles in location q with all all clock values decreasing at the same speed until some
edge (q, a,X, q′) becomes enabled, i.e. all clocks from X have value ≤ 0. After this
idling time t, the action a is taken and the automaton enters the next location q′.
If an edge is enabled on entering a location, it is taken immediately, i.e. t = 0. If
more than one edge become enabled simultaneously, one of them is chosen non-
deterministically. Its formal definition is given in [31]. We now are in the position
to harvest Definition 2, to arrive at the novel bisimulation for stochastic automata.

Definition 4. We say that locations q1, q2 of an SA S are probabilistic bisimilar,
denoted q1 ∼ q2, if µ1 ∼ µ2 in PS where each µi corresponds to the location being
qi, any c 6∈ κ(qi) being 0, and any c ∈ κ(qi) being independently set to a random
value according to F (c).

This bisimulation identifies q and q′ from Section 1 unlike any previous bisimulation
on SA [10]. In Section 4 we discuss how to compute this bisimulation, despite being
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continuous-space. Recall that the model initialized by q is obtained by first translat-
ing two simple CTMC, and then applying the natural interleaving semantics, while
the model, of q′ is obtained by first applying the equally natural CTMC interleaving
semantics prior to translation. The bisimilarity of these two models generalizes to
the whole universe of CTMC and SA:

Theorem 1. Let SA(C) denote the stochastic automaton corresponding to a CTMC
C. For any CTMC C1, C2, we have

SA(C1) ‖SA SA(C1) ∼ SA(C1 ‖CT C1).

Here, ‖CT and ‖SA denotes the interleaving parallel composition of SA [11] (echo-
ing TA parallel composition) and CTMC [33,30] (Kronecker sum of their matrix
representations), respectively.

Bisimulation for partial-observation MDP (POMDP). A POMDP is a quadruple
M = (S ,L, δ,O) where (as in an MDP) S is a set of states, A is a set of actions, and
δ : S ×A → D(S ) is a transition function. Furthermore, O ⊆ 2S partitions the state
space. The choice of actions is resolved by a policy yielding a Markov chain. Unlike
in an MDP, such choice is not based on the knowledge of the current state, only
on knowing that the current state belongs into an observation o ∈ O. POMDPs
have a wide range of applications in robotic control, automated planning, dialogue
systems, medical diagnosis, and many other areas [46].

In the analysis of POMDP, the distributions over states, called beliefs, arise nat-
urally. They allow for transforming the POMDP M into a fully observable NLMP
DM = (S ,O,−→) with continuous space, by setting (s,

o−→ , µ) ∈−→ if s ∈ o
and δ(s, a) = µ for some a ∈ A. Although probabilistic bisimulations over beliefs
have been already considered [7,34], no connection of this particular case to general
probabilistic bisimulation has been studied. We can set µ ∼ µ′ in M if µ ∼ µ′ in
DM. In Section 4, we shall provide an algorithm for computing bisimulations over
beliefs in finite POMDP. Previously, there was only an algorithm [34] for computing
bisimulations on distributions of Markov chains with partial observation.

Further applications. Probabilistic automata are especially apt for compositional
modelling of distributed systems. The only information a component in a distributed
system has about the current state of another component stems from their mutual
communication. Therefore, each component can be also viewed from the outside as
a partial-observation system. Thus, also in this context, distribution bisimulation is
a natural concept.

Furthermore we can understand a PA as a description, in the sense of [25,39], of a
representative agent in a large homogeneous population. The distribution view then
naturally represents the ratios of agents being currently in the individual states and
labels given to this large population of PAs correspond to global control actions [25].
For more details on applications, see [31].

4 Algorithms

In this section, we discuss computational aspects of deciding our bisimulation. Since
∼ is a relation over distributions over the system’s state space, it is uncountably
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infinite even for simple finite systems, which makes it in principle intricate to decide.
Fortunately, the bisimulation relation has a linear structure, and this allows us to
employ methods of linear algebra to work with it effectively. Moreover, important
classes of continuous-space systems can be dealt with, since their structure can be
exploited. We exemplify this on a subset of deterministic stochastic automata, for
which we are able to provide an algorithm to decide bisimilarity.

Finite systems – greatest fixpoints. Let us fix a PA (S ,L,−→). We apply the
standard approach by starting with D(S ) × D(S ) and pruning the relation until
we reach the fixpoint ∼. In order to represent ∼ using linear algebra, we identify a
distribution µ with a vector (µ(s1), . . . , µ(s|S |)) ∈ R|S |.

Although the space of distributions is uncountable, we construct an implicit
representation of ∼ by a system of equations written as columns in a matrix E.

Definition 5. A matrix E with |S | rows is a bisimulation matrix if for some bisim-
ulation R, for any distributions µ, ν

µR ν iff (µ− ν)E = 0.

For a bisimulation matrix E, an equivalence class of µ is then the set (µ+{ρ | ρE =
0}) ∩ D(S ), the set of distributions that are equal modulo E.

Example 5. The bisimulation matrix E below encodes that several conditions must
hold for two distributions µ, ν to be bisimilar. Among others, if we multiply µ− ν
with e.g. the second column, we must get 0. This translates to (µ(v)− ν(v)) · 1 = 0,
i.e. µ(v) = ν(v). Hence for bisimilar distributions, the measure of v has to be the
same. This proves that u 6∼ v (here we identify states and their Dirac distributions).
Similarly, we can prove that t ∼ 1

2 t
′+ 1

2 t
′′. Indeed, if we multiply the corresponding

difference vector (0, 0, 1,− 1
2 ,−

1
2 , 0, 0) with any column of the matrix, we obtain 0.

s t

u

v

a
½

a

½

b

c s′

t′

t′′

a

½

½

a

a

s :
s′ :
t :
t′ :
t′′ :
u :
v :



1 0 0 0 0
1 0 0 0 0
1 0 0 ½ ½

1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0



Note that the unit matrix is always a bisimulation matrix, not relating any-
thing with anything but itself. For which bisimulations do there exist bisimulation
matrices? We say a relation R over distributions is linear if µRν and µ′Rν′ imply(
pµ+ (1− p)µ′

)
R
(
pν + (1− p)ν′

)
for any p ∈ [0, 1].

Lemma 1. For every linear bisimulation there exists a corresponding bisimulation
matrix.

Since ∼ is linear (see [31]), there is a bisimulation matrix corresponding to ∼. It
is a least restrictive bisimulation matrix E (note that all bisimulation matrices
with the least possible dimension have identical solution space), we call it minimal
bisimulation matrix. We show that the necessary and sufficient condition for E to
be a bisimulation matrix is stability with respect to transitions.
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Definition 6. For a |S | × |S | matrix P , we say that a matrix E with |S | rows is
P -stable if for every ρ ∈ R|S |,

ρE = 0 =⇒ ρPE = 0 (1)

We first briefly explain the stability in a simpler setting.

Action-deterministic systems. Let us consider PA where in each state, there is at
most one transition. For each a ∈ L, we let Pa = (pij) denote the transition matrix
such that for all i, j, if there is (unique) transition si

a−→µ we set pij to µ(sj),
otherwise to 0. Then µ evolves under a into µPa. Denote 1 = (1, . . . , 1)>.

Proposition 1. In an action-deterministic PA, E containing 1 is a bisimulation
matrix iff it is Pa-stable for all a ∈ L.

To get a minimal bisimulation matrix E, we start with a single vector 1 which stands
for an equation saying that the overall probability mass in bisimilar distributions is
the same. Then we repetitively multiply all vectors we have by all the matrices Pa
and add each resulting vector to the collection if it is linearly independent of the
current collection, until there are no changes. In Example 5, the second column of
E is obtained as Pc1, the fourth one as Pa(Pc1) and so on.

The set of all columns of E is thus given by the described iteration

{Pa | a ∈ L}∗1

modulo linear dependency. Since Pa have |S | rows, the fixpoint is reached within
|S | iterations yielding 1 ≤ d ≤ |S | equations. Each class then forms an (|S | − d)-
dimensional affine subspace intersected with the set of probability distributions
D(S ). This is also the principle idea behind the algorithm of [51] and [19].

Non-deterministic systems. In general, for transitions under A, we have to consider
cAi non-deterministic choices in each si among all the outgoing transitions under

some a ∈ A. We use variables wji denoting the probability that j-th transition,

say (si, a
j
i , µ

j
i ), is taken by the scheduler/player(3) in si. We sum up the choices

into a “non-deterministic” transition matrix PWA with parameters W whose ith row

equals
∑cAi
j=1 w

j
iµ
j
i . It describes where the probability mass moves from si under A

depending on the collection W of the probabilities the player gives each choice. By
WA we denote the set of all such W .

A simple generalization of the approach above would be to consider {PWA | A ⊆
L,W ∈ WA}∗1. However, firstly, the set of these matrices is uncountable whenever
there are at least two transitions to choose from. Secondly, not all PWA may be used
as the following example shows.

Example 6. In each bisimulation class in the following example, the probabilities of
s1 +s2, s3, and s4 are constant, as can also be seen from the bisimulation matrix E,

(3) We use the standard notion of Spoiler-Duplicator bisimulation game (see e.g. [42]) where
in {µ0, µ1} Spoiler chooses i ∈ {0, 1}, A ⊆ L, and µi

A−→µ′i, Duplicator has to reply with
µ1−i

A−→µ′1−i such that µi(SA) = µi−1(SA), and the game continues in {µ′0, µ′1}. Spoiler
wins iff at some point Duplicator cannot reply.
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similarly to Example 5. Further, E can be obtained as (1 Pc1 Pb1). Observe that
E is PW{a}-stable for W that maximizes the probability of going into the “class” s3

(both s1 and s2 go to s3, i.e. w1
1 = w1

2 = 1); similarly for the “class” s4.

s1

s2

s3

s4

a

a

a

a

b

c
PW{a} =


0 0 w1

1 w
2
2

0 0 w1
2 w

2
2

0 0 0 0
0 0 0 0

 E =


1 0 0
1 0 0
1 0 1
1 1 0


However, for W with w1

1 6= w1
2, e.g. s1 goes to s3 and s2 goes with equal probabil-

ity to s3 and s4 (w1
1 = 1, w1

2 = w2
2 = 1

2 ), we obtain from PW{a}E a new independent

vector (0, 0.5, 0, 0)> enforcing a partition finer than ∼. This does not mean that
Spoiler wins the game when choosing such mixed W in some µ, it only means
that Duplicator needs to choose a different W ′ in a bisimilar ν in order to have
µPWA ∼ νPW

′

A for the successors.

A fundamental observation is that we get the correct bisimulation when Spoiler
is restricted to finitely many “extremal” choices and Duplicator is restricted for
such extremal W to respond only with the very same W .

To this end, consider MW
A = PWA E where E is the current matrix with each of

e columns representing an equation. Intuitively, the ith row of MW
A describes how

much of si is moved to various classes when a step is taken. Denote the linear forms
in MW

A over W by mij . Since the players can randomize and mix choices which
transition to take, the set of vectors {(mi1(w1

i , . . . , w
ci
i ), . . . ,mib(w

1
i , . . . , w

ci
i )) |

w1
i , . . . , w

ci
i ≥ 0,

∑ci
j=1 w

j
i = 1} forms a convex polytope denoted by Ci. Each vector

in Ci is thus the ith row of the matrix MW
A where some concrete weights wji are

“plugged in”. This way Ci describes all the possible choices in si and their effect on
where the probability mass is moved.

Denote vertices (extremal points) of a convex polytope P by E(P ). Then E(Ci)
correspond to pure (non-randomizing) choices that are “extremal” w.r.t. E. Note
that now if sj ∼ sk then Cj = Ck, or equivalently E(Cj) = E(Ck). Indeed, for every
choice in sj there needs to be a matching choice in sk and vice versa. However,
since we consider bisimulation between generally non-Dirac distributions, we need

to combine these extremal choices. We define the set E(C) ⊆
∏|S |
i=1 E(Ci) to contain

a tuple c = (c1 · · · c|S |) iff the ci’s are “extremal in (some) same direction”, i.e.∑|S |
i=1 ci is a vertex (extremal choice) of the polytope generated by points {

∑|S |
i=1 c

′
i |

∀i : c′i ∈ Ci}. Each c ∈ E(C) is a tuple of vertices, and thus corresponds to particular
choices, denoted by W (c).

Proposition 2. Let E be a matrix containing 1. It is a bisimulation matrix iff it

is P
W (c)
A -stable for all A ⊆ L and c ∈ E(C).

Theorem 2. Algorithm 1 computes a minimal bisimulation matrix.

The running time is exponential. We leave the question whether linear program-
ming or other methods [32] can yield E in polynomial time open. The algorithm can
easily be turned into one computing other bisimulation notions from the literature,
for which there were no algorithms so far, see Section 5.
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Input : Probabilistic automaton (S , L,−→)
Output : A minimal bisimulation matrix E

foreach A ⊆ L do
compute PWA //non-deterministic transition matrix

E ← (1)
repeat

foreach A ⊆ L do
MW
A ← PWA E //polytope of all choices

compute E(C) from MW
A //vertices, i.e. extremal choices

foreach c ∈ E(C) do

M
W (c)
A ←MW

A with values W (c) plugged in

Enew ←columns of M
W (c)
A linearly independent of columns of E

E ← (E Enew)

until E does not change

Algorithm 1: Bisimulation on probabilistic automata

Continuous-time systems - least fixpoints. Turning our attention to contin-
uous systems, we finally sketch an algorithm for deciding bisimulation ∼ over a
subclass of stochastic automata, this constitutes the first algorithm to compute a
bisimulation on the uncountably large semantical object.

We need to adopt two restrictions. First, we consider only deterministic SA,
where the probability that two edges become enabled at the same time is zero
(when initiated in any location). Second, to simplify the exposition, we restrict all
distributions occurring to exponential distributions. Notably, even for this class,
our bisimulation is strictly coarser than the one induced by standard bisimula-
tions [33,30,6] for continuous-time Markov chains. At the end of the section we
discuss possibilities for extending the class of supported distributions. Both the
restrictions can be effectively checked on SA.

Theorem 3. Let S = (Q, C,A,→, κ, F ) be a deterministic SA over exponential dis-
tributions. There is an algorithm to decide in time polynomial in |S| and exponential
in |C| whether q1 ∼ q2 for any locations q1, q2.

The rest of the section deals with the proof. We fix S = (Q, C,A,→, κ, F ) and
q1, q2 ∈ Q. First, we straightforwardly abstract the NLMP semantics PS by a
NLMP P̂ over state space Ŝ = Q× (R≥0∪{−})C where all negative values of clocks
are expressed by one element −. Let ξ denote the obvious mapping of distributions
D(S) onto D(Ŝ ). Then ξ preserves bisimulation since two states s1, s2 that differ
only in negative values satisfy ξ(τa(s1)) = ξ(τa(s2)) for all a ∈ L.

Lemma 2. For any distributions µ, ν on S we have µ ∼ ν iff ξ(µ) ∼ ξ(ν).

Second, similarly to an embedded Markov chain of a CTMC, we further abstract
the NLMP P̂ by a finite deterministic PA D̄ = (S̄,A,−→) such that each state of
D̄ is a distribution over the uncountable state space Ŝ .

– The set S̄ is the set of states reachable via the transitions relation defined below
from the distributions µ1, µ2 corresponding to q1, q2 (see Definition 4).
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– Let us fix a state µ ∈ S̄ (note that µ ∈ D(Ŝ )) and an action a ∈ A such that

in the NLMP P̂ an a-transition occurs with positive probability, i.e. µ
Aa−→ ν for

some ν and for Aa = {a} × R≥0. Thanks to restricting to deterministic SA,

P̂ is also deterministic and such a distribution ν is uniquely defined. We set
(µ, a,M) ∈ −→ where M is the discrete distribution that assigns probability
pq,f to state νq,f for each q ∈ Q and f : C → {−,+} where pq,f = ν(Ŝq,f ), νq,f
is the conditional distribution νq(X) := ν(X ∩ Ŝq,f )/ν(Ŝq,f ) for any measurable

X ⊆ Ŝ , and Ŝq,f = {(q′, v) ∈ Ŝ | q′ = q, v(c) ≥ 0 iff f(c) = + for each c ∈ C}
the set of states with location q and where the sign of clock values matches f .

For exponential distributions all the reachable states ν ∈ S̄ correspond to some
location q where the subset X ⊆ C is newly sampled, hence we obtain:

Lemma 3. For a deterministic SA over exponential distributions, |S̄| ≤ |Q|2|C|.

Instead of a greatest fixpoint computation as employed for the discrete algo-
rithm, we take a complementary approach and prove or disprove bisimilarity by a
least fixpoint procedure. We start with the initial pair of distributions (states in
D̄) which generates further requirements that we impose on the relation and try
to satisfy them. We work with a tableau, a rooted tree where each node is either
an inner node with a pair of discrete probability distributions over states of D̄ as
a label, a repeated node with a label that already appears somewhere between the
node and the root, or a failure node denoted by �, and the children of each inner
node are obtained by one rule from {Step,Lin}. A tableau not containing � is
successful.

Step For a node µ ∼ ν where µ and ν have compatible timing, we add for each label
a ∈ L one child node µa ∼ νa where µa and νa are the unique distributions such
that µ

a−→µa and ν
a−→ νa. Otherwise, we add one failure node. We say that µ

and ν have compatible timing if for all actions a ∈ A we have µ(SAa
) = ν(SAa

)
and if for all actions a ∈ A with µ(SAa

) > 0 we have that µ restricted to SAa
is

equivalent to ν restricted to SAa
.

Lin For a node µ ∼ ν linearly dependent on the set of remaining nodes in the
tableau, we add one child (repeat) node µ ∼ ν. Here, we understand each node
µ ∼ ν as a vector µ− ν in the |SS |-dimensional vector space.

Note that compatibility of timing is easy to check. Furthermore, the set of rules is
correct and complete w.r.t. bisimulation in P̂.

Lemma 4. There is a successful tableau from µ ∼ ν iff µ ∼ ν in P̂. Moreover, the
set of nodes of a successful tableau is a subset of a bisimulation.

We get Theorem 3 since q1 ∼ q2 iff ξ(µ1) ∼ ξ(µ2) in P̂ and since, thanks to Lin:

Lemma 5. There is a successful tableau from µ ∼ ν iff there is a finite successful
tableau from µ ∼ ν of size polynomial in |S̄|.

Example 7. Let us demonstrate the rules by a simple example. Consider the follow-
ing stochastic automaton S on the left.
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q u v

x := Exp(1/2)
y := Exp(1/2) x := Exp(1) x := Exp(1)

x = 0

a
a

y = 0
x = 0

a

x = 0

a µq µu µv
a

0.5

0.5 a a

Thanks to the exponential distributions, D̄ on the right has also only three states
where µq = q⊗Exp(1/2)⊗Exp(1/2) is the product of two exponential distributions
with rate 1/2, µu = u⊗Exp(1), and µv = v ⊗Exp(1). Note that for both clocks x
and y, the probability of getting to zero first is 0.5.

1 · µu ∼ 1 · µv
Step

1 · µu ∼ 1 · µv

1 · µq + 0 · µu ∼ 1 · µv
1
2 · µq + 1

2 · µu ∼ 1 · µv
1
4 · µq + 3

4 · µu ∼ 1 · µv

· · ·

Step

Step

Step

The finite tableau on the left is successful since it ends in a repeated node, thus it
proves u ∼ v. The infinite tableau on the right is also successful and proves q ∼ v.
When using only the rule Step, it is necessarily infinite as no node ever repeats. The
rule Lin provides the means to truncate such infinite sequences. Observe that the
third node in the tableau on the right above is linearly dependent on its ancestors.

Remark 1. Our approach can be turned into a complete proof system for bisimula-
tion on models with expolynomial distributions (4). Thanks to their properties, the
states of the discrete transition system D̄ can be expressed symbolically. In fact, we
conjecture that the resulting semi-algorithm can be twisted to a decision algorithm
for this expressive class of models. Being technically demanding, it is out of scope
of this paper.

5 Related work and discussion

For an overview of coalgebraic work on probabilistic bisimulations we refer to a
survey [47]. A considerable effort has been spent to extend this work to continuous-
space systems: the solution of [15] (unfortunately not applicable to R), the construc-
tion of [21] (described by [42] as “ingenious and intricate”), sophisticated measurable
selection techniques in [18], and further approaches of [17] or [52]. In contrast to
this standard setting where relations between states and their successor distributions
must be handled, our work uses directly relations on distributions which simplifies
the setting. The coalgebraic approach has also been applied to trace semantics of
uncountable systems [35]. Coalgebraic treatment of probabilistic bisimulation is still
very lively [41].

Recently, distribution-based bisimulations have been studied. In [19], a bisim-
ulation is defined in the context of language equivalence of Rabin’s deterministic
probabilistic automata and also an algorithm to compute the bisimulation on them.
However, only finite systems with no non-determinism are considered. The most

(4) With density that is positive on an interval [`, u) for ` ∈ N0, u ∈ N ∪ {∞} given
piecewise by expressions of the form

∑I
i=0

∑J
j=0 aijx

ie−λijx for aij , λij ∈ R ∪ {∞}.
This class contains many important distributions such as exponential, or uniform, and
enables efficient approximation of others.

12



related to our notion are the very recent independently developed [24] and [49].
However, none of them is applicable in the continuous setting and for neither of the
two any algorithm has previously been given. Nevertheless, since they are close to
our definition, our algorithm with only small changes can actually compute them.
Although the bisimulation of [24] in a rather complex way extends [19] to the non-
deterministic case reusing their notions, it can be equivalently rephrased as our
Definition 2 only considering singleton sets A ⊆ L. Therefore, it is sufficient to
only consider matrices PWA for singletons A in our algorithm. Apart from being a
weak relation, the bisimulation of [49] differs in the definition of µ

A−→ν: instead of
restricting to the states of the support that can perform some action of A, it con-
siders those states that can perform exactly actions of A. Here each ith row of each
transition matrix PWA needs to be set to zero if the set of labels from si is different
from A.

There are also bisimulation relations over distributions that, however, coincide
with the classical [38] on Dirac distributions and are only directly lifted to non-Dirac
distributions. Thus they fail to address the motivating correspondence problem from
Section 1 and are less precise for large-population models. Moreover, no algorithms
were given. They were considered for finite [9,29] and uncountable [8] state spaces.

There are other bisimulations that identify more states than the classical [38]
such as [48] and [4] designed to match a specific logic. Further, weak bisimulations
coarser than usual state based analogues were given in [23,22,16], which also inspires
our work, especially their approach to internal transitions. However, they are quite
different from our notion as in the case without internal transitions they basically
coincide with lifting [29] of the classical bisimulation [38]. Another approach to
obtain coarser equivalences on probabilistic automata is via testing scenarios [50].

6 Conclusion

We have introduced a general and natural notion of a distribution-based probabilis-
tic bisimulation, have shown its applications in different settings and have provide
algorithms to compute it for finite and some classes of infinite systems. As to fu-
ture work, the precise complexity of the finite case is certainly of interest. Further,
the tableaux decision method opens the arena for investigating wider classes of
continuous-time systems where the new bisimulation is decidable.
Acknowledgement We would like to thank Pedro D’Argenio, Filippo Bonchi,
Daniel Gebler, and Matteo Mio for valuable feedback and discussions.
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