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Abstract

We study continuous-time stochastic games with time-bounded reachability ob-
jectives and time-abstract strategies. We show that each vertex in such a game
has a value (i.e., an equilibrium probability), and we classify the conditions
under which optimal strategies exist. Further, we show how to compute ε-
optimal strategies in finite games and provide detailed complexity estimations.
Moreover, we show how to compute ε-optimal strategies in infinite games with
finite branching and bounded rates where the bound as well as the successors
of a given state are effectively computable. Finally, we show how to compute
optimal strategies in finite uniform games.
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1. Introduction

Markov models are widely used in many diverse areas such as economics, bi-
ology, or physics. More recently, they have also been used for performance and
dependability analysis of computer systems. Since faithful modeling of com-
puter systems often requires both randomized and non-deterministic choice, a
lot of attention has been devoted to Markov models where these two phenom-
ena co-exist, such as Markov decision processes and stochastic games. The latter
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model of stochastic games is particularly apt for analyzing the interaction be-
tween a system and its environment, which are formalized as two players with
antagonistic objectives (we refer to, e.g., [? ? ? ] for more comprehensive
expositions of results related to games in formal analysis and verification of
computer systems). So far, most of the existing results concern discrete-time
Markov decision processes and stochastic games, and the accompanying theory
is relatively well-developed (see, e.g., [? ? ]).

In this paper, we study continuous-time stochastic games (CTGs) and hence
also continuous-time Markov decision processes (CTMDPs) with time-bounded
reachability objectives. Roughly speaking, a CTG is a finite or countably infinite
graph with three types of vertices—controllable vertices (boxes), adversarial
vertices (diamonds), and actions (circles). The outgoing edges of controllable
and adversarial vertices lead to the actions that are enabled at a given vertex.
The outgoing edges of actions lead to controllable or adversarial vertices, and
every edge is assigned a positive probability so that the total sum of these
probabilities in each vertex is equal to 1. Further, each action is assigned a
positive real rate. A simple finite CTG is shown below.
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A game is played by two players, � and ♦, who are responsible for selecting
the actions (i.e., resolving the non-deterministic choice) in the controllable and
adversarial vertices, respectively. The selection is timeless, but performing a se-
lected action takes time which is exponentially distributed (the parameter is the
rate of a given action). When a given action is finished, the next vertex is cho-
sen randomly according to the fixed probability distribution over the outgoing
edges of the action. A time-bounded reachability objective is specified by a set T
of target vertices and a time bound t > 0. The goal of player � is to maximize
the probability of reaching a target vertex before time t, while player ♦ aims at
minimizing this probability.

Note that events such as component failures, user requests, message receipts,
exceptions, etc., are essentially history-independent, which means that the time
between two successive occurrences of such events is exponentially distributed.
CTGs provide a natural and convenient formal model for systems exhibiting
these features, and time-bounded reachability objectives allow to formalize basic
liveness and safety properties of these systems.

Previous work. Although the practical relevance of CTGs with time-
bounded reachability objectives to verification problems is obvious, to the best
of our knowledge there are no previous results concerning even very basic prop-
erties of such games. A more restricted model of uniform CTMDPs is studied
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in [? ? ]. Intuitively, a uniform CTMDP is a CTG where all non-deterministic
vertices are controlled just by one player, and all actions are assigned the same
rate. In [? ], it is shown that the maximal and minimal probability of reaching
a target vertex before time t is efficiently computable up to an arbitrarily small
given error, and that the associated strategy is also effectively computable. An
open question explicitly raised in [? ] is whether this result can be extended
to all (not necessarily uniform) CTMDP. In [? ], it is also shown that time-
dependent strategies are more powerful than time-abstract ones, and this issue
is addressed in greater detail in [? ] where the mutual relationship between var-
ious classes of time-dependent strategies in CTMDPs is studied. Furthermore,
in [? ] reward-bounded objectives in CTMDPs are studied.

Our contribution is twofold. Firstly, we examine the fundamental prop-
erties of CTGs, where we aim at obtaining as general (and tight) results as
possible. Secondly, we consider the associated algorithmic issues. Concrete
results are discussed in the following paragraphs.

Fundamental properties of CTGs. We start by showing that each vertex
v in a CTG with time-bounded reachability objectives has a value, i.e., an
equilibrium probability of reaching a target vertex before time t. The value is
equal to supσ infπ Pσ,πv (Reach≤t(T )) and infπ supσ Pσ,πv (Reach≤t(T )), where σ
and π range over all time-abstract strategies of player � and player ♦, and
Pσ,πv (Reach≤t(T )) is the probability of reaching T before time t when starting
in v in a play obtained by applying the strategies σ and π. This result holds
for arbitrary CTGs which may have countably many vertices and actions. This
immediately raises the question whether each player has an optimal strategy
which achieves the outcome equal to or better than the value against every
strategy of the opponent. We show that the answer is negative in general, but an
optimal strategy for player ♦ is guaranteed to exist in finitely-branching CTGs,
and an optimal strategy for player � is guaranteed to exist in finitely-branching
CTGs with bounded rates (see Definition 2.2). These results are tight, which is
documented by appropriate counterexamples. Moreover, we show that in the
subclasses of CTGs just mentioned, the players have also optimal CD strategies
(a strategy is CD if it is deterministic and “counting”, i.e., it only depends on
the number of actions in the history of a play, where actions with the same
rate are identified). Note that CD strategies still use infinite memory and in
general they do not admit a finite description. A special attention is devoted
to finite uniform CTGs, where we show a somewhat surprising result—both
players have finite memory optimal strategies (these finite memory strategies
are deterministic and their decision is based on “bounded counting” of actions;
hence, we call them “BCD”). Using the technique of uniformization, one can
generalize this result to all finite (not necessarily uniform) games, see [? ].

Algorithms. We show that for finite CTGs, ε-optimal strategies for both

players are computable in |V |2 · |A| · bp2 ·
(
(maxR) · t+ ln 1

ε

)2|R|+O(1)
time,

where |V | and |A| is the number of vertices and actions, resp., bp is the maximum
bit-length of transition probabilities and rates (we assume that rates and the
probabilities in distributions assigned to the actions are represented as fractions
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of integers encoded in binary), |R| is the number of rates, maxR is the maximal
rate, and t is the time bound. This solves the open problem of [? ] (in fact, our
result is more general as it applies to finite CTGs, not just to finite CTMDPs).
Actually, the algorithm works also for infinite-state CTGs as long as they are
finitely-branching, have bounded rates, and satisfy some natural “effectivity
assumptions” (see Corollary 5.26). For example, this is applicable to the class
of infinite-state CTGs definable by pushdown automata (where the rate of a
given configuration depends just on the current control state), and also to other
automata-theoretic models. Finally, we show how to compute the optimal BCD
strategies for both players in finite uniform CTGs.

Some proofs that are rather technical have been shifted into Appendix C.

2. Definitions

In this paper, the sets of all positive integers, non-negative integers, rational
numbers, real numbers, non-negative real numbers, and positive real numbers
are denoted by N, N0, Q, R, R≥0, and R>0, respectively. Let A be a finite or
countably infinite set. A probability distribution on A is a function f : A→ R≥0

such that
∑
a∈A f(a) = 1. The support of f is the set of all a ∈ A where

f(a) > 0. A distribution f is Dirac if f(a) = 1 for some a ∈ A. The set of all
distributions on A is denoted byD(A). A σ-field over a set Ω is a set F ⊆ 2Ω that
contains Ω and is closed under complement and countable union. A measurable
space is a pair (Ω,F) where Ω is a set called sample space and F is a σ-field
over Ω whose elements are called measurable sets. A probability measure over a
measurable space (Ω,F) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi),

and moreover P(Ω) = 1. A probability space is a triple (Ω,F ,P), where (Ω,F)
is a measurable space and P is a probability measure over (Ω,F). Given two
measurable sets X,Y ∈ F such that P(Y ) > 0, the conditional probability of
X under the condition Y is defined as P(X | Y ) = P(X ∩ Y )/P(Y ). We say
that a property A ⊆ Ω holds for almost all elements of a measurable set Y if
P(Y ) > 0, A ∩ Y ∈ F , and P(A ∩ Y | Y ) = 1.

In our next definition we introduce continuous-time Markov chains
(CTMCs). The literature offers several equivalent definitions of CTMCs (see,
e.g., [? ]). For purposes of this paper, we adopt the variant where transitions
have discrete probabilities and the rates are assigned to states.

Definition 2.1. A continuous-time Markov chain (CTMC) is a tuple
M = (S,P,R, µ), where S is a finite or countably infinite set of states, P is
a transition probability function assigning to each s ∈ S a probability distribu-
tion over S, R is a function assigning to each s ∈ S a positive real rate, and µ
is the initial probability distribution on S.

If P(s)(s′) = x > 0, we write s
x→ s′ or shortly s→ s′. A time-abstract

path is a finite or infinite sequence u = u0, u1, . . . of states such that ui−1→ui
for every 1 ≤ i < length(u), where length(u) is the length of u (the length of
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an infinite sequence is ∞). A timed path (or just path) is a pair w = (u, t),
where u is a time-abstract path and t = t1, t2, . . . is a sequence of positive
reals such that length(t) = length(u). We put length(w) = length(u), and for
every 0 ≤ i < length(w), we usually write w(i) and w[i] instead of ui and ti,
respectively.

Infinite paths are also called runs. The set of all runs inM is denoted RunM,
or just Run whenM is clear from the context. A template is a pair (u, I), where
u = u0, u1, . . . is a finite time-abstract path and I = I0, I1, . . . a finite sequence of
non-empty intervals in R≥0 such that length(u) = length(I )+1. Every template
(u, I) determines a basic cylinder Run (u, I) consisting of all runs w such that
w(i) = ui for all 0 ≤ i < length(u), and w[j] ∈ Ij for all 0 ≤ i < length(u)− 1.
To M we associate the probability space (Run ,F ,P) where F is the σ-field
generated by all basic cylinders Run (u, I) and P : F → R≥0 is the unique
probability measure on F such that

P(Run (u, I)) = µ(u0)·
length(u)−2∏

i=0

P(ui)(ui+1) ·
(
e−R(ui)·inf(Ii) − e−R(ui)·sup(Ii)

)
Note that if length(u) = 1, the “big product” above is empty and hence equal
to 1.

Now we formally define continuous-time games, which generalize continuous-
time Markov chains by allowing not only probabilistic but also non-deterministic
choice. Continuous-time games also generalize the model of continuous-time
Markov decision processes studied in [? ? ] by splitting the non-deterministic
vertices into two disjoint subsets of controllable and adversarial vertices, which
are controlled by two players with antagonistic objectives. Thus, one can model
the interaction between a system and its environment.

Definition 2.2. A continuous-time game (CTG) is a tuple G =
(V,A,E, (V�, V♦),P,R) where V is a finite or countably infinite set of vertices,
A is a finite or countably infinite set of actions, E is a function which to every
v ∈ V assigns a non-empty set of actions enabled in v, (V�, V♦) is a partition
of V , P is a function which assigns to every a ∈ A a probability distribution on
V , and R is a function which assigns a positive real rate to every a ∈ A.

We require that V ∩A = ∅ and use N to denote the set V ∪A. We say that
G is finitely-branching if for each v ∈ V the set E(v) is finite (note that P(a) for
a given a ∈ A can still have an infinite support even if G is finitely branching).
We say that G has bounded rates if supa∈A R(a) <∞, and that G is uniform if
R is a constant function. Finally, we say that G is finite if N is finite.

If V� or V♦ is empty (i.e., there is just one type of vertices), then G is a
continuous-time Markov decision process (CTMDP). Technically, our definition
of CTMDP is slightly different from the one used in [? ? ], but the difference is
only cosmetic. The two models are equivalent in a well-defined sense (a detailed
explanation is included in Appendix B). Also note that P and R associate the
probability distributions and rates directly to actions, not to pairs of V ×A. This
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is perhaps somewhat non-standard, but leads to simpler notation (since each
vertex can have its “private” set of enabled actions, this is no real restriction).

A play of G is initiated in some vertex. The non-deterministic choice is
resolved by two players, � and ♦, who select the actions in the vertices of V�
and V♦, respectively. The selection itself is timeless, but some time is spent
by performing the selected action (the time is exponentially distributed with
the rate R(a)), and then a transition to the next vertex is chosen randomly
according to the distribution P(a). The players can also select the actions
randomly, i.e., they select not just a single action but a probability distribution
on the enabled actions. Moreover, the players are allowed to play differently
when the same vertex is revisited. We assume that both players can see the
history of a play, but cannot measure the elapsed time.

Let � ∈ {�,♦}. A strategy for player � is a function which to each wv ∈
N∗V� assigns a probability distribution on E(v). The sets of all strategies
for player � and player ♦ are denoted by Σ and Π, respectively. Each pair of
strategies (σ, π) ∈ Σ×Π together with an initial vertex v̂ ∈ V determine a unique
play of the game G, which is a CTMC G(v̂, σ, π) where N∗A is the set of states,
the rate of a given wa ∈ N∗A is R(a) (the rate function of G(v̂, σ, π) is also
denoted by R), and the only non-zero transition probabilities are between states
of the form wa and wava′ with wa

x→wava′ iff one of the following conditions
is satisfied:

• v ∈ V�, a′ ∈ E(v), and x = P(a)(v) · σ(wav)(a′) > 0;

• v ∈ V♦, a′ ∈ E(v), and x = P(a)(v) · π(wav)(a′) > 0.

The initial distribution is determined as follows:

• µ(v̂a) = σ(v̂)(a) if v̂ ∈ V� and a ∈ E(v̂);

• µ(v̂a) = π(v̂)(a) if v̂ ∈ V♦ and a ∈ E(v̂);

• in the other cases, µ returns zero.

Note that the set of states of G(v̂, σ, π) is infinite. Also note that all states
reachable from a state v̂a, where µ(v̂a) > 0, are alternating sequences of vertices
and actions. We say that a state w of G(v̂, σ, π) hits a vertex v ∈ V if v is the
last vertex which appears in w (for example, v1a1v2a2 hits v2). Further, we say
that w hits T ⊆ V if w hits some vertex of T . From now on, the paths (both
finite and infinite) in G(v̂, σ, π) are denoted by Greek letters α, β, . . .. Note that
for every α ∈ RunG(v̂,σ,π) and every i ∈ N0 we have that α(i) = wa where
wa ∈ N∗A.

We denote by R(G) the set of all rates used in G (i.e., R(G) = {R(a) |
a ∈ A}), and by H(G) the set of all vectors of the form i : R(G) → N0

satisfying
∑
r∈R(G) i(r) < ∞. When G is clear from the context, we write

just R and H instead of R(G) and H(G), respectively. For every i ∈ H, we
put |i| =

∑
r∈R i(r). For every r ∈ R, we denote by 1r the vector of H such

that 1r(r) = 1 and 1r(r
′) = 0 if r′ 6= r. Further, for every wx ∈ N∗N we
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define the vector iwx ∈ H such that iwx(r) returns the cardinality of the set
{j ∈ N0 | 0 ≤ j < length(w), w(j) ∈ A,R(w(j)) = r}. (Note that the last
element x of wx is disregarded.) Given i ∈ H and wx ∈ N∗N , we say that
wx matches i if i = iwx.

We say that a strategy τ is counting (C) if τ(wv) = τ(w′v) for all v ∈ V and
w,w′ ∈ N∗ such that iwv = iw′v. In other words, a strategy τ is counting if the
only information about the history of a play w which influences the decision of
τ is the vector iwv. Hence, every counting strategy τ can be considered as a
function from H×V to D(A), where τ(i, v) corresponds to the value of τ(wv) for
every wv matching i. A counting strategy τ is bounded counting (BC) if there
is k ∈ N such that τ(wv) = τ(w′v) whenever length(w) ≥ k and length(w ′) ≥ k.
A strategy τ is deterministic (D) if τ(wv) is a Dirac distribution for all wv.
Strategies that are not necessarily counting are called history-dependent (H),
and strategies that are not necessarily deterministic are called randomized (R).
Thus, we obtain the following six types of strategies: BCD, BCR, CD, CR, HD,
and HR. The most general (unrestricted) type is HR, and the importance of the
other types of strategies becomes clear in subsequent sections.

In this paper, we are interested in continuous-time games with time-bounded
reachability objectives, which are specified by a set T ⊆ V of target vertices and
a time bound t ∈ R>0. Let v be an initial vertex. Then each pair of strategies
(σ, π) ∈ Σ × Π determines a unique outcome Pσ,πv (Reach≤t(T )), which is the
probability of all α ∈ RunG(v,σ,π) that visit T before time t (i.e., there is i ∈ N0

such that α(i) hits T and
∑i−1
j=0 α[j] ≤ t). The goal of player � is to maximize

the outcome, while player ♦ aims at the opposite. In our next definition we
recall the standard concept of an equilibrium outcome called the value.

Definition 2.3. We say that a vertex v ∈ V has a value if

sup
σ∈Σ

inf
π∈Π
Pσ,πv (Reach≤t(T )) = inf

π∈Π
sup
σ∈Σ
Pσ,πv (Reach≤t(T ))

If v has a value, then val(v) denotes the value of v defined by the above equality.

The existence of val(v) follows easily by applying the powerful result of Martin
about weak determinacy of Blackwell games [? ] (more precisely, one can use
the determinacy result for stochastic games presented in [? ] which builds on
[? ]). In Section 3, we give a self-contained proof of the existence of val(v),
which also brings further insights used later in our algorithms. Still, we think
it is worth noting how the existence of val(v) follows from the results of [? ?
] because the argument is generic and can be used also for more complicated
timed objectives and a more general class of games over semi-Markov processes
[? ] where the distribution of time spent by performing a given action is not
necessarily exponential.

Theorem 2.4. Every vertex v ∈ V has a value.

Proof. Let us consider an infinite path of G initiated in v, i.e., an infinite se-
quence v0, a0, v1, a1, . . . where v0 = v and ai ∈ E(vi), P(ai)(vi+1) > 0 for all
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i ∈ N0. Let f be a real-valued function over infinite paths of G defined as
follows:

• If a given path does not visit a target vertex (i.e., vi 6∈ T for all i ∈ N0),
then f returns 0;

• otherwise, let i ∈ N0 be the least index such that vi ∈ T . The function f
returns the probability P(X0 + · · ·+Xi−1 ≤ t) where every Xj , 0 ≤ j < i,
is an exponentially distributed random variable with the rate R(aj) (we
assume that all Xj are mutually independent). Intuitively, f returns the
probability that the considered path reaches vi before time t.

Note that f is Borel measurable and bounded. Also note that every run in a
play G(v, σ, π) initiated in v determines exactly one infinite path in G (the time
stamps are ignored). Hence, f determines a unique random variable over the
runs in G(v, σ, π) which is denoted by fσ,πv . Observe that fσ,πv does not depend
on the time stamps which appear in the runs of G(v, σ, π), and hence we can
apply the results of [? ] and conclude that

sup
σ∈Σ

inf
π∈Π

E[fσ,πv ] = inf
π∈Π

sup
σ∈Σ

E[fσ,πv ]

where E[fσ,πv ] is the expected value of fσ,πv . To conclude the proof, it suffices to
realize that Pσ,πv (Reach≤t(T )) = E[fσ,πv ].

Since values exist, it makes sense to define ε-optimal and optimal strategies.

Definition 2.5. Let ε ≥ 0. We say that a strategy σ ∈ Σ is an ε-optimal
maximizing strategy in v (or just ε-optimal in v) if

inf
π∈Π
Pσ,πv (Reach≤t(T )) ≥ val(v)− ε

and that a strategy π ∈ Π is an ε-optimal minimizing strategy in v (or just
ε-optimal in v) if

sup
σ∈Σ
Pσ,πv (Reach≤t(T )) ≤ val(v) + ε

A strategy is ε-optimal if it is ε-optimal in every v. A strategy is optimal in v
if it is 0-optimal in v, and just optimal if it is optimal in every v.

3. The Existence of Values and Optimal Strategies

In this section we first give a self-contained proof that every vertex in a
CTG with time-bounded reachability objectives has a value (Theorem 3.6).
The argument does not require any additional restrictions, i.e., it works also for
CTGs with infinite state-space and infinite branching degree. As we shall see,
the ideas presented in the proof of Theorem 3.6 are useful also for designing
an algorithm which for a given ε > 0 computes ε-optimal strategies for both
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players. Then, we study the existence of optimal strategies. We show that
even though optimal minimizing strategies may not exist in infinitely-branching
CTGs, they always exist in finitely-branching ones. As for optimal maximizing
strategies, we show that they do not necessarily exist even in finitely-branching
CTGs, but they are guaranteed to exist if a game is both finitely-branching and
has bounded rates (see Definition 2.2).

For the rest of this section, we fix a CTG G = (V,A,E, (V�, V♦),P,R), a set
T ⊆ V of target vertices, and a time bound t > 0. Given i ∈ H where |i| > 0,
we denote by Fi the probability distribution function of the random variable

Xi =
∑
r∈R

∑i(r)
i=1X

(r)
i where all X

(r)
i are mutually independent and each X

(r)
i

is an exponentially distributed random variable with the rate r (for reader’s
convenience, basic properties of exponentially distributed random variables are
recalled in Appendix A). We also define F0 as a constant function returning 1
for every argument (here 0 ∈ H is the empty history, i.e., |0| = 0). In the special
case when R is a singleton, we use F` to denote Fi such that i(r) = `, where r
is the only element of R. Further, given ∼ ∈ {<,≤,=} and k ∈ N, we denote

by Pσ,πv (Reach≤t∼k(T )) the probability of all α ∈ RunG(v,σ,π) that visit T for the
first time in the number of steps satisfying the constraint ∼ k and before time t
(i.e., there is i ∈ N0 such that i = min{j | α(j) hits T} ∼ k and

∑i−1
j=0 α[j] ≤ t).

We first restate Theorem 2.4 and give its constructive proof.

Theorem 3.6. Every vertex v ∈ V has a value.

Proof. Given σ ∈ Σ, π ∈ Π, j ∈ H, and u ∈ V , we denote by Pσ,π(u, j) the
probability of all runs α ∈ RunG(u,σ,π) such that for some n ∈ N0 the state α(n)
hits T and matches j, and for all 0 ≤ j < n we have that α(j) does not hit T .
Then we introduce two functions A,B : H× V → [0, 1] where

A(i, v) = sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

B(i, v) = inf
π∈Π

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

Clearly, it suffices to prove that A = B, because then for every vertex v ∈ V we
also have that A(0, v) = B(0, v) = val(v). The equality A = B is obtained by
demonstrating that both A and B are equal to the (unique) least fixed point of a
monotonic function V : (H× V → [0, 1])→ (H× V → [0, 1]) defined as follows:
for every H : H× V → [0, 1], i ∈ H, and v ∈ V we have that

V(H)(i, v) =


Fi(t) v ∈ T
supa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V� \ T

infa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V♦ \ T

Let us denote by µV the least fixed point of V. We show that µV = A = B.
The inequality A � B (where � is the standard pointwise order) is obvious and
follows directly from the definition of A and B. Hence, it suffices to prove the
following two assertions:
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1. By the following claim we obtain µV � A.

Claim 3.7. A is a fixed point of V.

2. For every ε > 0 there is a CD strategy πε ∈ Π such that for every i ∈ H
and every v ∈ V we have that

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,πε(v, j) ≤ µV(i, v) + ε

from which we get B � µV.

The strategy πε can be defined as follows. Given i ∈ H and v ∈ V♦, we put
πε(i, v)(a) = 1 for some a ∈ A satisfying

∑
u∈V P(a)(u)·µV(i+1R(a), u) ≤

µV(i, v) + ε
2|i|+1 . We prove that πε indeed satisfies the above equality. For

every σ ∈ Σ, every i ∈ H, every v ∈ V and every k ≥ 0, we denote

Rσk(i, v) :=
∑
j∈H
|j|≤k

Fi+j(t) · Pσ,πε[i](v, j)

Here πε[i] is the strategy obtained from πε by πε[i](j, u) := πε(i + j, u).

The following claim then implies that Rσ(i, v) := limk→∞Rσk(i, v) ≤
µV(i, v) + ε.

Claim 3.8. For every σ ∈ Σ, k ≥ 0, i ∈ H, v ∈ V , ε ≥ 0, we have

Rσk(i, v) ≤ µV(i, v) +

k∑
j=1

ε

2|i|+j

Both Claim 3.7 and 3.8 are purely technical, for proofs see Appendix C.1.

It follows directly from Definition 2.3 and Theorem 3.6 that both players
have ε-optimal strategies in every vertex v (for every ε > 0). Now we examine
the existence of optimal strategies. We start by observing that optimal strategies
do not necessarily exist in general.

Observation 3.9. Optimal minimizing and optimal maximizing strategies in
continuous-time games with time-bounded reachability objectives do not neces-
sarily exist, even if we restrict ourselves to games with finitely many rates (i.e.,
R(G) is finite) and finitely many distinct transition probabilities.

Proof. Consider a game G = (V,A,E, (V�, V♦),P,R), where V = {vi | i ∈
N0} ∪ {start , down}, A = {ai, bi | i ∈ N} ∪ {c, d}, E(start) = {ai | i ∈ N},
E(vi) = {bi} for all i ∈ N, E(v0 ) = {c}, E(down) = {d}, P(ai)(vi) = 1,
P(c)(v0) = 1, P(d)(down) = 1, and P(bi) is the uniform distribution that
chooses down and vi−1 for all i ∈ N, and R assigns 1 to every action. The
structure of G is shown in Figure 1 (the partition of V into (V�, V♦) is not
fixed yet, and the vertices are therefore drawn as ovals). If we put V� = V ,
we obtain that supσ∈Σ P

σ,π
start(Reach≤1({down})) =

∑∞
`=1

(
1
2`F`+1(1)

)
where π

10
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Figure 1: Optimal strategies may not exist.

is the trivial strategy for player ♦. However, there is obviously no optimal
maximizing strategy. On the other hand, if we put V♦ = V , we have that
infπ∈Π Pσ,πstart(Reach≤1({v0})) = 0 where σ is the trivial strategy for player �,
but there is no optimal minimizing strategy.

However, if G is finitely-branching, then the existence of an optimal mini-
mizing CD strategy can be established by adapting the construction used in the
proof of Theorem 3.6.

Theorem 3.10. If G is finitely-branching, then there is an optimal minimizing
CD strategy.

Proof. It suffices to reconsider the second assertion of the proof of Theorem 3.6.
Since G is finitely-branching, the infima over enabled actions in the definition
of V are actually minima. Hence, in the definition of πε, we can set ε = 0 and
pick actions yielding minimal values. Thus the strategy πε becomes an optimal
minimizing CD strategy.

Observe that for optimal minimizing strategies we did not require that G
has bounded rates. The issue with optimal maximizing strategies is slightly
more complicated. First, we observe that optimal maximizing strategies do not
necessarily exist even in finitely-branching games.

Observation 3.11. Optimal maximizing strategies in continuous-time games
with time-bounded reachability objectives may not exist, even if we restrict our-
selves to finitely-branching games.

Proof. Consider a game G = (V,A,E, (V�, V♦),P,R), where V = V� = {vi, ui |
i ∈ N0} ∪ {win, lose}; A = {ai, bi, end i | i ∈ N0} ∪ {w, `}, E(win) = {w},
E(lose) = {`}, and E(vi) = {ai, bi}, E(ui) = {endi} for all i ∈ N0; R(w) =
R(`) = 1, and R(ai) = R(bi) = 2i, R(endi) = 2i+1 for all i ∈ N0; P(w)(win) =
P(`)(lose) = 1, and for all i ∈ N0 we have that P(ai)(vi+1) = 1, P(bi)(ui) = 1,

11
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Figure 2: Optimal maximizing strategies may not exist in finitely-branching games.

and P(endi) is the distribution that assigns ri to win and 1− ri to lose, where
ri is the number discussed below. The structure of G is shown in Figure 2 (note
that for clarity, the vertices win and lose are drawn multiple times, and their
only enabled actions w and ` are not shown).

For every k ∈ N, let ik ∈ H be the vector that assigns 1 to all r ∈ R such that
r ≤ 2k, and 0 to all other rates. Let us fix t ∈ Q and q > 1

2 such that Fik(t) ≥ q
for every k ∈ N. Note that such t and q exist because the mean value associated
to Fik is

∑k
i=0 1/2i < 2 and hence it suffices to apply Markov inequality. For

every j ≥ 0, we fix some rj ∈ Q such that q− 1
2j ≤ Fij+1(t) · rj ≤ q− 1

2j+1 . It is
easy to check that rj ∈ [0, 1], which means that the function P is well-defined.

We claim that supσ∈Σ Pσ,πv0 (Reach≤t({win})) = q (where π is the
trivial strategy for player ♦), but there is no strategy σ such that
Pσ,πv0 (Reach≤t({win})) = q. The first part follows by observing that player �
can reach win within time t with probability at least q − 1

2j for an arbitrarily
large j by selecting the actions a0, . . . , aj−1 and then bj . The second part follows
from the fact that by using bj , the probability of reaching win from v0 becomes
strictly less than q, and by not selecting bj at all, this probability becomes equal
to 0.

Observe that again the counterexample is a CTMDP. Now we show that if G
is finitely-branching and has bounded rates, then there is an optimal maximizing
CD strategy. First, observe that for each k ∈ N0

sup
σ∈Σ

inf
π∈Π
Pσ,πv (Reach≤t≤k(T )) = inf

π∈Π
sup
σ∈Σ
Pσ,πv (Reach≤t≤k(T )) = Vk+1(zero)(0, v)

(1)
where V is the function defined in the proof of Theorem 3.6,
zero : H× V → [0, 1] is a constant function returning zero for every ar-
gument, and 0 is the empty history. A proof of Equality 1 is obtained
by a straightforward induction on k. We use valk(v) to denote the

12



k-step value defined by Equality 1, and we say that strategies σk ∈ Σ
and πk ∈ Π are k-step optimal if for all v ∈ V , π ∈ Π, and σ ∈ Σ we have
infπ∈Π Pσk,π

v (Reach≤t≤k(T )) = supσ∈Σ Pσ,πk
v (Reach≤t≤k(T )) = valk(v). The

existence and basic properties of k-step optimal strategies are stated in our
next lemma.

Lemma 3.12. If G is finitely-branching and has bounded rates, then we have
the following:

1. For all ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have
that

Pσ,πv (Reach≤t(T ))− ε ≤ Pσ,πv (Reach≤t≤k(T )) ≤ Pσ,πv (Reach≤t(T ))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and
πk ∈ Π. Further, for all ε > 0 and k ≥ (supR)te2 − ln ε we have that
every k-step optimal strategy is also an ε-optimal strategy.

Proof. See Appendix C.2.

If G is finitely-branching and has bounded rates, one may be tempted to
construct an optimal maximizing strategy σ by selecting those actions that
are selected by infinitely many k-step optimal BCD strategies for all k ∈ N
(these strategies are guaranteed to exist by Lemma 3.12 (2)). However, this is
not so straightforward, because the distributions assigned to actions in finitely-
branching games can still have an infinite support. Intuitively, this issue is
overcome by considering larger and larger finite subsets of the support so that
the total probability of all of the infinitely many omitted elements approaches
zero. Hence, a proof of the following theorem is somewhat technical.

Theorem 3.13. If G is finitely-branching and has bounded rates, then there is
an optimal maximizing CD strategy.

Proof. For the sake of this proof, given a set of runs R ⊆ RunG(v̂,σ,π), we
denote Pσ,πv̂ (R) the probability of R in G(v̂, σ, π). For every k ∈ N we fix a
k-step optimal BCD strategy σk of player � (see Lemma 3.12). Let us order
the set R of rates into an enumerable sequence r1, r2 . . . and the set V into
an enumerable sequence v1, v2 . . .. We define a sequence of sets of strategies
Σ ⊇ Γ0 ⊇ Γ1 ⊇ · · · as follows. We put Γ0 = {σ` | ` ∈ N} and we construct
Γ` to be an infinite subset of Γ`−1 such that we have σ(i, vn) = σ′(i, vn) for all
σ, σ′ ∈ Γ`, all n ≤ ` and all i ∈ H such that |i| ≤ ` and i(rj) = 0 whenever
j > `. Note that such a set exists since Γ`−1 is infinite and the conditions above
partition it into finitely many classes, one of which must be infinite.

Now we define the optimal strategy σ. Let i ∈ H and vn ∈ V , we choose a
number ` such that ` > |i|, ` > n and i(j) = 0 for all j > ` (note that such `
exists for any i ∈ H and vn ∈ V ). We put σ(i, vn) = σ′(i, vn) where σ′ ∈ Γ`.
It is easy to see that σ is a CD strategy, it remains to argue that it is optimal.
Suppose the converse, i.e. that it is not ε-optimal in some vin for some ε > 0.

13



Let us fix k satisfying conditions of part 1 of Lemma 3.12 for ε
4 . For each

a ∈ A there is a set Ba ⊆ V such that V \ Ba is finite and P(a)(Ba) ≤
ε

4k . For all strategies σ′ and π′ and all k we have that Pσ′,π′v (Uv,σ
′,π′

i ) ≤ ε
2k

where Uv,σ
′,π′

i is the set of all runs of G(v, σ′, π′) that do not contain any state
of the form v0a0 . . . ai−1viai where vi ∈ Bai−1 . As a consequence we have

Pσ′,π′v (
⋂k
i=0 U

v,σ′,π′

i ) ≤ ε
4 . In the sequel, we denote Uv,σ

′,π′ =
⋂k
i=0 U

v,σ′,π′

i and

we write just U instead of Uv,σ
′,π′ if v, σ and π are clear from the context.

Let W be the set of histories of the form v0a0 . . . vi−1ai−1vi where i ≤ k,
v0 = vin, and for all 0 ≤ j < i we have aj ∈ E(vj), P(aj)(vi+j) > 0 and
vj+1 6∈ Baj . We claim that there is m ≥ n s.t. σm is ε

4 -optimal and satisfies
σ(w) = σm(w) for all w ∈ W . To see that such a strategy exists, observe that
W is finite, which means that there is a number ` such that k ≤ ` and for
all w ∈ W , there is no vi in w such that i > ` and whenever a is in w, then
R(a) = ri for i < `. Now it suffices to choose arbitrary ε

4 -optimal strategy
σm ∈ Γ`.

One can prove by induction on the length of path from vin to T that the
following equality holds true for all π.

Pσm,π
vin (Reach≤t≤k(T ) \ U) = Pσ,πvin (Reach≤t≤k(T ) \ U)

Finally, we obtain

min
π∈Π
Pσ,πvin (Reach≤t≤k(T ) \ U) = min

π∈Π
Pσm,π
vin (Reach≤t≤k(T ) \ U)

≥ min
π∈Π
Pσm,π
vin (Reach≤t≤m(T ) \ U)− ε

4

≥ min
π∈Π
Pσm,π
vin (Reach≤t≤m(T ))− ε

2

≥ val(vin)− ε

4
− ε

2
≥ val(vin)− ε

which means that σ is ε-optimal in vin.

4. Optimal Strategies in Finite Uniform CTGs

In this section, we restrict ourselves to finite uniform CTGs, i.e.
R(a) = r > 0 for all a ∈ A. The histories from H are thus vectors of length
1, hence we write them as integers. We prove that both players have optimal
BCD strategies in such games. More precisely, we prove a stronger statement
that there are optimal strategies that after some number of steps eventually
behave in a stationary way. A CD strategy τ is stationary if τ(h, v) depends
just on v for every vertex v. Besides, for a CD strategy τ , a strategy τ [h] is
defined by τ [h](h′, v) = τ(h + h′, v). Further, recall that bp is the maximum
bit-length of the fractional representation of transition probabilities.

Theorem 4.14. In a finite uniform CTG, there exist optimal CD strategies
σ ∈ Σ, π ∈ Π and k ∈ N such that σ[k] and π[k] are stationary; in particular, σ
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and π are optimal BCD strategies. Moreover, if all transition probabilities are
rational then one can choose k = rt(1 + 2bp·|A|

2·|V |3).

We then also show that this result is tight in the sense that optimal BCD
strategies do not necessarily exist in uniform CTGs with infinitely many states
even if the branching is finite (see Observation 4.23). In Section 5, we use these
results to design an algorithm which computes the optimal BCD strategies in
finite uniform games. Further, using the method of uniformization where a
general game is reduced to a uniform one, the results can be extended to general
(not necessarilly uniform) finite games, see [? ].

Before proving the theorem we note that the crucial point is to understand
the behaviour of optimal strategies after many (i.e. k) steps have already been
taken. In such a situation, not much time is left and it turns out that in such
a situation optimal strategies optimize the probability of reaching T in as few
steps as possible. This motivates the central definition of greedy strategies.
Intuitively, a greedy strategy optimizes the outcome of the first step. If there
are more options to do so, it chooses among these options so that it optimizes
the second step, etc.

Definition 4.15. For strategies σ ∈ Σ and π ∈ Π and a vertex v, we define a

step reachability vector
−→
P σ,πv =

(
Pσ,πv (Reach<∞=i (T ))

)
i∈N0

. A strategy σ ∈ Σ is

greedy if for every v, minπ∈Π
−→
P σ,πv = maxσ′∈Σ minπ∈Π

−→
P σ′,πv where the optima3

are considered in the lexicographical order. Similarly, a strategy π ∈ Π is greedy

if maxσ∈Σ
−→
P σ,πv = minπ′∈Π maxσ∈Σ

−→
P σ,π′v for every v.

We prove the theorem as follows:

1. Optimal CD strategies are guaranteed to exist by Theorem 3.10 and The-
orem 3.13.

2. For every optimal CD strategy τ , the strategy τ [k] is greedy (see Proposi-
tion 4.16).

3. There exist stationary greedy strategies (see Proposition 4.21). Let τg be
such a strategy. Then for an optimal strategy τ , the strategy τ̄ defined by

τ̄(h, v) =

{
τ(h, v) if h < k;

τg(h, v) otherwise

is clearly BCD and also optimal. Indeed, all greedy strategies guarantee
the same probabilities to reach the target. (This is clear by definition,
since their step reachability vectors are the same.) Therefore, we can
freely interchange them without affecting the guaranteed outcome.

3We can use optima instead of extrema as the optimal strategies obviously exist in finite
discrete-time (with the time bound being infinite) games even when the number of steps is
fixed.
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Proposition 4.16. Let τ be an optimal strategy. Then there is k ∈ N such that
τ [k] is greedy. Moreover, if all transition probabilities are rational then one can

choose k = rt(1 + 2bp·|A|
2·|V |3).

In order to prove the proposition, we relax our definition of greedy strategies.
A strategy is greedy on s steps if the greedy strategy condition holds for the
step reachability vector where only first s elements are considered. A strategy τ
is always greedy on s steps if for all i ∈ N0 the strategy τ [i] is greedy on s steps.
We use this relaxation of greediness to prove the proposition as follows. We
firstly prove that every optimal strategy is always greedy on |E| :=

∑
v∈V |E(v)|

steps (by instantiating Lemma 4.17 for s = |E| ≤ |A| · |V |) and then Lemma
4.18 concludes by proving that being always greedy on |E| steps guarantees
greediness.

Lemma 4.17. For every s ∈ N there is δ > 0 such that for every optimal CD
strategy τ the strategy τ [rt(1 + 1/δ)] is always greedy on s steps. Moreover, if
all transition probabilities are rational, then one can choose δ = 1/2bp·|V |·|E|·s.

Proof. We look for a δ such that for every optimal strategy σ ∈ Σ if σ[h] is not
greedy on s steps then h < k, where k = rt(1 + 1/δ). Let thus σ be an optimal
CD strategy and s ∈ N. For σ[h] that is not greedy on s steps there is i ≤ s, a
vertex v and a strategy σ∗ such that(

inf
π∈Π

−→
P σ[h],π
v

)
i
<
(

inf
π∈Π

−→
P σ

∗,π
v

)
i

and for all j < i (
inf
π∈Π

−→
P σ[h],π
v

)
j

=
(

inf
π∈Π

−→
P σ

∗,π
v

)
j

This implies that there is i ≤ s such that infπ∈Π Pσ
∗,π

v (Reach<∞≤i (T )) −
infπ∈Π Pσ[h],π

v (Reach<∞≤i (T )) is positive. Since the game is finite there is a fixed
δ > 0 such that difference of this form is (whenever it is non-zero) greater
than δ for all deterministic strategies σ and σ∗, v ∈ V and i ≤ s. Moreover,
if all transition probabilities are rational, then δ can be chosen to be 1/Ms,
where M is the least common multiple of all probabilities denominators. In-
deed, Pσ,τv (Reach<∞≤i (T )) is clearly expressible as `/M i for some ` ∈ N0. Since

there are at most |V | · |E| probabilities, we have δ ≥ 1/2bp·|V |·|E|·s.
We define a (not necessarily counting) strategy σ̄ that behaves like σ, but

when h steps have been taken and v is reached, it behaves as σ∗. We show that
for h ≥ k this strategy σ̄ would be an improvement against the optimal strategy
σ. There is clearly an improvement at the h+ ith step provided one gets there
on time, and this improvement is at least δ. Nonetheless, in the next steps there
may be an arbitrary decline. Altogether due to optimality of σ

0 ≥ infπ∈Π P σ̄,πv̂ (Reach≤t(T ))− infπ∈Π Pσ,πv̂ (Reach≤t(T )) ≥
≥ infπ∈Π Pσ,πv̂ (

h→ v) ·
[
Fh+i(t) · δ − Fh+i+1(t) · 1

]
= (∗)
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where Pσ,πv̂ (
h→ v) is the probability that after h steps we will be in v. We need

to show that the inequality 0 ≥ (∗) implies h < k. We use the following key
argument that after taking sufficiently many steps, the probability of taking
strictly more than one step before the time limit is negligible compared to the
probability of taking precisely one more step, i.e. that for all n ≥ k = rt(1+1/δ)
we have

Fn+1(t)

Fn(t)
<

Fn+1(t)

Fn(t)− Fn+1(t)
< δ

As Fn+1(t) =
∑∞
i=1 e

−r·t(rt)n+i/(n+ i)!, this is proved by the following:

Fn+1(t)

Fn(t)− Fn+1(t)
=

∞∑
i=1

n!(rt)i

(n+ i)!
<

∞∑
i=1

(rt)i

(n+ 1)i
=

rt

n+ 1− rt
< δ

This argument thus implies h + i < k, hence we conclude that indeed h < k.
The minimizing part is dual.

The following lemma concludes the proof of the proposition.

Lemma 4.18. A strategy is greedy iff it is always greedy on |E| steps.

Proof. We need to focus on the structure of greedy strategies. Therefore, we
provide their inductive characterization. Moreover, this characterization can be
easily turned into an algorithm computing all greedy strategies.

W.l.o.g. let us assume that all states in T are absorbing, i.e. the only tran-
sitions leading from them are self-loops.

Algorithm 1 computes which actions can be chosen in greedy strategies. We
begin with the original game and keep on pruning inoptimal transitions until
we reach a fix-point. In the first iteration, we compute the value R1(v) for each
vertex v, which is the optimal probability of reaching T in one step. We remove
all transitions that are not optimal in this sense. In the next iteration, we
consider reachability in precisely two steps. Note that we chose among the one-
step optimal possibilities only. Transitions not optimal for two-steps reachability
are removed and so forth. After stabilization, using only the remaining “greedy”
transitions thus results in greedy behavior.

Claim 4.19. A strategy is always greedy on s steps iff it uses transitions from
Es only (as defined by Algorithm 1).

In particular, a strategy τ is always greedy on |E| steps iff it uses transitions
from E|E| only. For the proof of Claim 4.19 see Appendix C.3.

Claim 4.20. A strategy is greedy iff it uses transitions from E|E| only.

The proof of Claim 4.20 now follows easily. Since the number of edges is fi-
nite, there is a fix-point En = En+1, moreover, n ≤ |E|. Therefore, any strategy
using E|E| only is by Claim 4.19 always greedy on s steps for all s ∈ N0, hence
clearly greedy. On the other hand, every greedy strategy is in particular always
greedy on |E| steps and thus uses transitions from E|E| only again by Claim 4.19.
This concludes the proof of the Lemma and thus also of Proposition 4.16.
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Algorithm 1 computing all greedy edges

R0(v) =

{
1 if v ∈ T,
0 otherwise.

E0(v) = E(v)

Ri+1(a) =
∑
u∈V

P(a)(u) ·Ri(u)

Ri+1(v) =

{
maxa∈Ei(v)Ri+1(a) if v ∈ V�,
mina∈Ei(v)Ri+1(a) otherwise.

Ei+1(v) = Ei(v) ∩ {a | Ri+1(a) = Ri+1(v)}

We now move on to Proposition 4.21 that concludes the proof of the theorem.

Proposition 4.21. There are greedy stationary strategies σg ∈ Σ and πg ∈ Π.
Moreover, the strategies σg and πg are computable in polynomial time.

Proof. The complexity of Algorithm 1 is polynomial in the size of the game
graph as the fix-point is reached within |E| steps. And as there is always a
transition enabled in each vertex (the last one is trivially optimal), we can
choose one transition in each vertex arbitrarily and thus get a greedy strategy
(by Claim 4.20) that is stationary.

Corollary 4.22. In a finite uniform game with rational transition probabili-
ties, there are optimal strategies τ such that τ [rt(1 + 2bp·|A|

2·|V |3)] is a greedy
stationary strategy.

A natural question is whether Theorem 4.14 and Corollary 4.22 can be ex-
tended to infinite-state uniform CTGs. The question is answered in our next
observation.

Observation 4.23. Optimal BCD strategies do not necessarily exist in uniform
infinite-state CTGs, even if they are finitely-branching and use only finitely
many distinct transition probabilities.

Proof. Consider a game G = (V,A,E, (V�, V♦),P,R) where V = V� =

{vi, ui, ūi, ûi | i ∈ N0} ∪ {down}, A = {ai, hati, bari, b̂i, b̄i | i ∈ N0},
E(vi) = {ai}, E(ui) = {bari, hati}, E(ûi) = {b̂i}, and E(ūi) = {b̄i} for all
i ∈ N0. P is defined as follows:

• P(a0) is the uniform distribution on {v0, v1, u0}, P(ai) is the uniform
distribution on {ui, vi+1} for i > 0,

• P(hati)(ûi) = 1 and P(bari)(ūi) = 1 for i ≥ 0,
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ûi

bari hati

Figure 3: Optimal BCD strategies may not exist in infinite uniform games.

• P(b̄0)(û0) = 1, and P(b̄i)(ūi−1) = 1 for i > 0,

• P(b̂i) is the uniform distribution on {ûi−1, down} for i ≥ 1.

We set R(a) = 1 for all a ∈ A. The structure of G is shown in Figure 3. Observe
that player � has a real choice only in states ui.

We show that if the history is of the form v0a0v1a1 . . . viaiui (where i ∈ N0),
the optimal strategy w.r.t. reaching û0 within time t = 1 must choose the action

bari. We need to show that F2i+3(1) > 1
2i+2 ·F2i+2(1), i.e. that F2i+2(1)

F2i+3(1) < 2i+2,

for infinitely many is. This follows by observing that for i > 0

F2i+2(1)

F2i+3(1)
=

∑∞
j=2i+2

1
j!∑∞

j=2i+3
1
j!

<

∑∞
j=2i+2

1
j!

1
(2i+3)!

< (2i + 3) +

∞∑
k=0

1

(2i + 3)k
< 2i + 5 < 2i+2

On the other hand, from Lemma 4.17 one can deduce that for all i there is
j ≥ i such that any optimal strategy must choose hati if the history is of the
form (v0a0)jv1a1 . . . viaiui. Thus no strategy with counting bounded by k ∈ N
can be optimal as one can choose j ≥ i > k.

5. Algorithms

Now we present algorithms which compute ε-optimal BCD strategies in
finitely-branching CTGs with bounded rates and optimal BCD strategies in
finite uniform CTGs. In this section, we assume that all rates and distributions
used in the considered CTGs are rational.

5.1. Computing ε-optimal BCD strategies

For this subsection, let us fix a CTG G = (V,A,E, (V�, V♦),P,R), a set T ⊆
V of target vertices, a time bound t > 0, and some ε > 0. For simplicity, let us
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Algorithm 2 Compute the function C

{1st phase: compute the approximations of Fi(t) and P}
for all vectors i ∈ H, where |i| ≤ k do

compute a number `i(t) > 0 such that |Fi(t)−`i(t)|
Fi(t)

≤
(
ε
2

)2|i|+1
.

for all actions a ∈ A and vertices u ∈ V do
compute a floating point representation p(a)(u) of P(a)(u) satisfying
|P(a)(u)−p(a)(u)|

P(a)(u) ≤
(
ε
2

)2k+1
.

{2nd phase: compute the functions R and C in a bottom up manner}
for all vector lenghts j from k down to 0 do

for all vectors i ∈ H of length |i| = j do
for all vertices v ∈ V do

if v ∈ T then
R(i, v)← `i(t)

else if |i| = k then
R(i, v)← 0

else if v ∈ V� then
R(i, v)← maxa∈E(v)

∑
u∈V p(a)(u) ·R(i + 1R(a), u)

C(i, v)← a where a is the action that realizes the maximum above
else if v ∈ V♦ then
R(i, v)← mina∈E(v)

∑
u∈V p(a)(u) ·R(i + 1R(a), u)

C(i, v)← a where a is the action that realizes the minimum above

first assume that G is finite; as we shall see, our algorithm does not really depend
on this assumption, as long as the game is finitely-branching, has bounded
rates, and its structure can be effectively generated (see Corollary 5.26). Let
k = (maxR)te2− ln( ε2 ). Then, due to Lemma 3.12, all k-step optimal strategies
are ε

2 -optimal. We use the remaining ε
2 for numerical imprecisions.

We need to specify the ε-optimal BCD strategies σε ∈ Σ and πε ∈ Π on
the first k steps. For every i ∈ H, where |i| < k, and for every v ∈ V , our
algorithm computes an action C(i, v) ∈ E(v) which represents the choice of the
constructed strategies. That is, for every i ∈ H, where |i| < k, and for every
v ∈ V�, we put σε(i, v)(C(i, v)) = 1, and for the other arguments we define σε
arbitrarily so that σε remains a BCD strategy. The strategy πε is induced by
the function C in the same way.

The procedure to compute the function C is described in Algorithm 2. For
computing C(i, v) it uses a family of probabilities R(i, u) of reaching T from u
before time t in at most k − |i| steps using the strategies σε and πε (precisely,
using the parts of strategies σε and πε computed so far) and assuming that the
history matches i. Actually, our algorithm computes the probabilities R(i, u)
only up to a sufficiently small error so that the actions chosen by C are “suffi-
ciently optimal” (i.e., the strategies σε and πε are ε-optimal, but they are not
necessarily k-step optimal for the k chosen above).

Lemma 5.24. The strategies σε and πε are ε-optimal.
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Proof. See Appendix C.4.

Assuming that the probabilities P(a)(u) and rates are given as fractions with
both numerator and denominator represented in binary with length bounded by
bp, a complexity analysis of the algorithm reveals the following.

Theorem 5.25. Assume that G is finite. Then for every ε > 0 there are ε-
optimal BCD strategies σε ∈ Σ and πε ∈ Π computable in time |V |2 · |A| · bp2 ·(
(maxR) · t+ ln 1

ε

)2|R|+O(1)
.

Proof. We analyze the complexity of Algorithm 2. We start with 1st phase.
Recall that k = (maxR)te2 + ln 1

ε . (Here we use ε instead of ε/2 as this
difference is clearly absorbed in the O-notation.)

We approximate the value of Fi(t) to the relative precision (ε/2)2k+1 as fol-
lows. According to [? ], the value of Fi(t) is expressible as

∑
r∈R qre

−rt. First,
qr here is a polynomial in t and can be precisely computed using polynomi-
ally many (in |i| ≤ k and |R|) arithmetical operations on integers with length
bounded by bp+ln k+ln t. Hence the computation of qr as a fraction can be done
in time bp2 · kO(1) · |R|O(1) and both the numerator and the denominator are of
length bp ·kO(1) ·|R|O(1). We approximate this fraction with a floating point rep-
resentation with relative error (ε/4)2k+1. This can be done in linear time w.r.t.
the length of the fraction and k ln 1

ε , hence again in the time bp2 ·kO(1) · |R|O(1).
Secondly, according to [? ], the floating point approximation of e−rt with the
relative error (ε/4)2k+1 can be computed in time less than quadratic in k ln 1

ε .
Altogether, we can compute an (ε/2)2k+1-approximation of each Fi(t) in time
|R| · bp2 · kO(1) · |R|O(1) = bp2 · kO(1) · |R|O(1). This procedure has to be re-
peated for every i ∈ H, where |i| ≤ k. The number of such i’s is bounded by(|R|+k

k

)
≤ O(k|R|). So computing all (ε/2)2k+1-approximations `i(t) of values

Fi(t) can be done in time O(k|R|) · bp2 · kO(1) · |R|O(1) ⊆ bp2 · k|R|+O(1).
Using a similar procedure as above, for every a ∈ A and u ∈ V , we compute

the floating point approximation p(a)(u) of P(a)(u) to the relative precision
(ε/2)2k+1 in time linear in bp·k ln 1

ε . So the first phase takes time bp2·k|R|+O(1)+

|A| · |V | · O(bp · k ln 1
ε ) ⊆ |V | · |A| · bp2 · k|R|+O(1).

In 2nd phase, the algorithm computes the table R and outputs the results
into the table C. The complexity is thus determined by the product of the table
size and the time to compute one item in the table. The size of the tables is(|R|+k

k

)
· |V | ≤ O(k|R| · |V |).

The value of R(i, u) according to the first case has already been computed in
1st phase. To compute the value according to the third or fourth case we have to
compare numbers whose representation has at most bp2 ·k|R|+O(1)+k·bp ·k ln( 1

ε )
bits. To compute R(i, v), we need to compare |A| such sums of |V | numbers.
So the 2nd phase takes at most time O(k|R| · |V |) · |V | · |A| · bp2 · k|R|+O(1) ⊆
|V |2 · |A| · bp2 · k2|R|+O(1).

Altogether, the overall time complexity of Algorithm 2 is bounded by

|V |2 · |A| · bp2 · k2|R|+O(1) = |V |2 · |A| · bp2 ·
(

(maxR)t+ ln
1

ε

)2|R|+O(1)
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Note that our algorithm needs to analyze only a finite part of G. Hence, it
also works for infinite games which satisfy the conditions formulated in the next
corollary.

Corollary 5.26. Let G be a finitely-branching game with bounded rates and let
v ∈ V . Assume that the vertices and actions of G reachable from v in a given
finite number of steps are effectively computable, and that an upper bound on
rates is also effectively computable. Then for every ε > 0 there are effectively
computable BCD strategies σε ∈ Σ and πε ∈ Π that are ε-optimal in v.

Proof. By Lemma 3.12, there is k ∈ N such that all k-step optimal strategies are
ε
4 -optimal. Thus we may safely restrict the set of vertices of the game G to the
set Vreach of vertices reachable from v in at most k steps (i.e. for all v′ ∈ Vreach
there is a sequence v0 . . . vk ∈ V ∗ and a0 . . . ak ∈ A∗ such that, v0 = v, vk = v′,
ai ∈ E(vi) for all 0 ≤ i ≤ k and P(ai)(vi+1) > 0 for all 0 ≤ i < k). Moreover,
for every action a ∈ A which is enabled in a vertex of Vreach there is a finite set
Ba of vertices such that 1 −

∑
u∈Ba

P(a)(u) < ε
4k . We restrict the domain of

P(a) to Ba by assigning the probability 0 to all vertices of V \ Ba and adding
the probability 1 −

∑
u∈Ba

P(a)(u) to an arbitrary vertex of Ba. Finally, we
restrict the set of vertices once more to the vertices reachable in k steps from v
using the restricted P. Then the resulting game is finite and by Theorem 5.25
there is an ε

4 -optimal BCD strategy σ′ in this game. Now it suffices to extend
σ′ to a BCD strategy σ in the original game by defining, arbitrarily, its values
for vertices and actions removed by the above procedure. It is easy to see that
σ is an ε-optimal BCD strategy in G.

5.2. Computing optimal BCD strategies in uniform finite games

For the rest of this subsection, we fix a finite uniform CTG G =
(V,A,E, (V�, V♦),P,R) where R(a) = r > 0 for all a ∈ A. Let k =

rt(1 + 2bp·|A|
2·|V |3) (see Corollary 4.22).

The algorithm works similarly as the one of Section 5.1, but there are also
some differences. Since we have just one rate, the vector i becomes just a number
i. Similarly as in Section 5.1, our algorithm computes an action C(i, v) ∈ E(v)
representing the choice of the constructed optimal BCD strategies σmax ∈ Σ and
πmin ∈ Π. By Corollary 4.22, every optimal strategy can, from the k-th step
on, start to behave as a fixed greedy stationary strategy, and we can compute
such a greedy stationary strategy in polynomial time. Hence, the optimal BCD
strategies σmax and πmin are defined as follows:

σmax (i, v) =

{
C(i, v) if i < k;

σg(v) otherwise.
πmin(i, v) =

{
C(i, v) if i < k;

πg(v) otherwise.

To compute the function C, our algorithm uses a table of symbolic representa-
tions of the (precise) probabilities R(i, v) (here i ≤ k and v ∈ V ) of reaching T
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from v before time t in at most k − i steps using the strategies σmax and πmin

and assuming that the history matches i.
The function C and the family of all R(i, v) are computed (in a bottom up

fashion) as follows: For all 0 ≤ i ≤ k and v ∈ V we have that

R(i, v) =


Fi(t) if v ∈ T∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞=j (T )) if v 6∈ T and i = k

maxa∈E(v)

∑
u∈V P(a)(u) ·R(i+ 1, u) if v ∈ V� \ T and i < k

mina∈E(v)

∑
u∈V P(a)(u) ·R(i+ 1, u) if v ∈ V♦ \ T and i < k

For all i < k and v ∈ V , we put C(i, v) = a where a is an action maximizing
or minimizing

∑
u∈V P(a)(u) · R(i + 1, u), depending on whether v ∈ V� or

v ∈ V♦, respectively. The effectivity of computing such an action (this issue is
not trivial) is discussed in the proof of the following theorem.

Theorem 5.27. The BCD strategies σmax and πmin are optimal and effectively
computable.

Proof. We start by showing that σmax and πmin are optimal. Let us denote by
Σg (resp. Πg) the set of all CD strategies σ ∈ Σ (resp. π ∈ Π) such that for
all u ∈ V� (u ∈ V♦) and i ≥ k we have σ(i, u) = σg(u), which is a stationary
greedy strategy. By Corollary 4.22, for every v ∈ V we have

val(v) = max
σ∈Σg

min
π∈Πg

Pσ,πv (Reach≤t(T )) = min
π∈Πg

max
σ∈Σg

Pσ,πv (Reach≤t(T ))

Recall that given a CD strategy τ and i ≥ 0, we denote by τ [i] a strategy
obtained from τ by τ [i](j, u) = τ(i+ j, u). Let us denote

P̄σ,π(i, v) =

∞∑
j=0

Fi+j(t) · Pσ[i],π[i]
v (Reach<∞=j (T ))

For every i ≥ 0 we put

val(i, v) = max
σ∈Σg

min
π∈Πg

P̄σ,π(i, v) = min
π∈Πg

max
σ∈Σg

P̄σ,π(i, v)

Given i ≥ 0 and π ∈ Π, we define

K̄π(i, v) := P̄σmax ,π(i, v)

Similarly, given i ∈ H and σ ∈ Σ, we define

K̄σ(i, v) := P̄σ,πmin (i, v)

Using this fomulation, the optimality of σmax and πmin is proven in the
following claim.
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Claim 5.28. Let i ≤ k and v ∈ V . We have

min
π∈Πg

K̄π(i, v) = R(i, v) = max
σ∈Σg

K̄σ(i, v) (2)

R(i, v) = val(i, v) (3)

Proof. We start by proving the equation (2). If v ∈ T , then K̄π(i, v) =
K̄σ(i, v) = Fi(t) = R(i, v). Assume that v 6∈ T . We proceed by induction
on n = k − i. For n = 0 we have

K̄π(i, v) = K̄σ(i, v) = P̄σg,πg (i, v) = R(i, v)

Assume the claim holds true for n and consider n + 1. If v ∈ V� and
σmax (i, v)(b) = 1,

min
π∈Πg

K̄π(i, v) = min
π∈Πg

∑
u∈V

P(b)(u) · K̄π(i+ 1, u)

=
∑
u∈V

P(b)(u) · min
π∈Πg

K̄π(i+ 1, u)

=
∑
u∈V

P(b)(u) ·R(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) ·R(i+ 1, u)

= R(i, v)

and

max
σ∈Σg

K̄σ(i, v) = max
σ∈Σg

∑
a∈E(v)

σ(i, v)(a)
∑
u∈V

P(a)(u) · K̄σ(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) · max
σ∈Σg

K̄σ(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) ·R(i+ 1, u)

= R(i, v)

For u ∈ V♦ the proof is similar.
Now the equation (3) follows easily:

R(i, v) = min
π∈Πg

K̄π(i, v) ≤ max
σ∈Σg

min
π∈Πg

P̄σ,π(i, v) =

min
π∈Πg

max
σ∈Σg

P̄σ,π(i, v) ≤ max
σ∈Σg

K̄σ(i, v) = R(i, v)

This proves that σmax and πmin are optimal.
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Effective computability of σmax and πmin . We show how to compute the table
C(i, v). Assume that we have already computed the symbolic representations
of the values R(i + 1, u) for all u ∈ V . Later we show that

∑∞
j=0 Fi+j(t) ·

Pσg,πg
v (Reach<∞=j (T )) can effectively be expressed as a linear combination of

transcendental numbers of the form ect where c is algebraic. Therefore, each
difference of the compared numbers can effectively be expressed as a finite sum∑
j ηje

δj where the ηj and δj are algebraic numbers and the δj ’s are pairwise
distinct. Now it suffices to apply Lemma 2 of [? ] to decide whether the
difference is greater than 0, or not.

It remains to show that
∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞=j (T )) is effectively

expressible in the form
∑
j ηje

δj . Consider a game G′ obtained from G by
adding new vertices v1, . . . , vi and new actions a1, . . . , ai, setting E(vj) = {aj}
for 1 ≤ j ≤ i, and setting P(ai)(v) = 1, and P(aj)(vj+1) = 1 for 1 ≤ j < i
(intuitively, we have just added a simple path of length i from a new vertex
v1 to v). We put R(aj) = r for 1 ≤ j ≤ i. As the strategies σg and πg are
stationary, they can be used in G′ (we just make them select aj in vj).

Since vj 6∈ T for all 1 ≤ j ≤ i we obtain

Pσg,πg
v1 (Reach≤t(T )) =

∞∑
j=0

Fj(t) · Pσg,πg
v1 (Reach<∞=j (T )) =

∞∑
j=0

Fi+j(t) · Pσg,πg
v1 (Reach<∞=i+j(T )) =

∞∑
j=0

Fi+j(t) · Pσg,πg
v (Reach<∞=j (T ))

As σg and πg are stationary, the chain G′(v1, σg, πg) can be treated as a
finite continuous time Markov chain. Therefore we may apply results of [? ] and
obtain the desired form of Pσg,πg

v1 (Reach≤t(T )), and hence also of
∑∞
j=0 Fi+j(t) ·

Pσg,πg
v (Reach<∞=j (T )).

6. Conclusions, Future Work

We have shown that vertices in CTGs with time bounded reachability objec-
tives have a value, and we classified the subclasses of CTGs where a given player
has an optimal strategy. We also proved that in finite uniform CTGs, both
players have optimal BCD strategies. Finally, we designed algorithms which
compute ε-optimal BCD strategies in finitely-branching CTGs with bounded
rates, and optimal BCD strategies in finite uniform CTGs.

There are at least two interesting directions for future research. First, we
can consider more general classes of strategies that depend on the elapsed time
(in our setting, strategies are time-abstract). In [? ], it is demonstrated that
time-dependent strategies are more powerful (i.e., can achieve better results)
than the time-abstract ones. However, this issue is somewhat subtle—in [? ], it
is shown that the power of time-dependent strategies is different when the player
knows only the total elapsed time, the time consumed by the last action, or the
complete timed history of a play. The analog of Theorem 3.6 in this setting is
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examined in [? ]. In [? ] ε-optimal time-dependent strategies are computed
for CTMDPs. Second, a generalization to semi-Markov processes and games,
where arbitrary (not only exponential) distributions are considered, would be
desirable.
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Appendix A. Exponentially Distributed Random Variables

For reader’s convenience, in this section we recall basic properties of expo-
nentially distributed random variables.

A random variable over a probability space (Ω,F ,P) is a function X : Ω→ R
such that the set {ω ∈ Ω | X(ω) ≤ c} is measurable for every c ∈ R. We usually
write just X∼c to denote the set {ω ∈ Ω | X(ω) ∼ c}, where ∼ is a compar-
ison and c ∈ R. The expected value of X is defined by the Lebesgue integral∫
ω∈Ω

X(ω) dP. A function f : R→ R≥0 is a density of a random variableX if for

every c ∈ R we have that P(X≤c) =
∫ c
−∞ f(x) dx . If a random variable X has a

density function f , then the expected value of X can also be computed by a (Rie-
mann) integral

∫∞
−∞ x·f(x) dx . Random variables X, Y are independent if for all

c, d ∈ R we have that P(X≤c∩Y≤d) = P(X≤c)·P(Y≤d). If X and Y are inde-
pendent random variables with density functions fX and fY , then the random
variable X + Y (defined by X + Y (ω) = X(ω) + Y (ω)) has a density function
f which is the convolution of fX and fY , i.e., f(z) =

∫∞
−∞ fX(x) · fY (z − x) dx .

A random variable X has an exponential distribution with rate λ if
P(X ≤ c) = 1− e−λc for every c ∈ R≥0. The density function fX of X is then
defined as fX(c) = λe−λc for all c ∈ R≥0, and fX(c) = 0 for all c < 0. The
expected value of X is equal to

∫∞
−∞ x · λe−λxdx = 1/λ.

Lemma A.29. Let M = (S,P,R, µ) be a CTMC, j ∈ N0, t ∈ R≥0, and
u0, . . . , uj ∈ S. Let U be the set of all runs (u, s) where u starts with u0, . . . , uj
and

∑j
i=0 sj ≤ t . We have that

P(U) = Fi(t) · µ(u0) ·
j−1∏
`=0

P(u`)(u`+1)

where i assigns to every rate r the cardinality of the set {k | R(uk) = r, 0 ≤ k ≤
j}
Proof. By induction on j. For j = 0 the lemma holds, because we P(U) = µ(u0)
by definition.

Now suppose that j > 0 and the lemma holds for all k < j. We denote by
U t
′

k the set of all runs (u, s) where u starts with u0, . . . , uj and
∑k
i=0 si = t′.

We have that

P(U) =

∫ t

0

P(Uxj−1) ·P(uj−1)(uj) · e−R(uj−1)·(t−x) dx

=

∫ t

0

Fi−1R(uj−1)
(x) ·

(
j−2∏
`=0

P(u`)(u`+1)

)
P(uj−1)(uj) · e−R(uj−1)·(t−x) dx

=

j−1∏
`=0

P(u`)(u`+1) ·
∫ t

0

Fi−1R(uj−1)
(x) · e−R(uj−1)·(t−x) dx

= Fi(t) ·
j−1∏
`=0

P(u`)(u`+1)
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Appendix B. A Comparison of the Existing Definitions of CTMDPs

As we already mentioned in Section 2, our definition of CTG (and hence
also CTMDP) is somewhat different from the definition of CTMDP used in [?
? ]. To prevent misunderstandings, we discuss the issue in greater detail in here
and show that the two formalisms are in fact equivalent. First, let us recall the
alternative definition CTMDP used in [? ? ].

Definition B.30. A CTMDP is a triple M = (S,A,R), where S is a finite or
countably infinite set of states, A is a finite or countably infinite set of actions,
and R : (S ×A× S)→ R≥0 is a rate matrix.

A CTMDP M = (S,A,R) can be depicted as a graph where S is the set of
vertices and s→ s′ is an edge labeled by (a, r) iff R(s, a, s′) = r > 0. The

conditional probability of selecting the edge s
(a,r)

−→ s′, under the condition that
the action a is used, is defined as r/R(s, a), where R(s, a) =

∑
s
(a,r̂)−→ ŝ

r̂. The

time needed to perform the action a in s is exponentially distributed with the
rate R(s, a). This means that M can be translated into an equivalent CTG
where the set of vertices is S, the set of actions is

{(s, a) | s ∈ S, a ∈ A,R(s, a, s′) > 0 for some s′ ∈ S}

where the rate of a given action (s, a) is R(s, a), and P((s, a))(s′) =
R(s, a, s′)/R(s, a). This translation also works in the opposite direction (as-
suming that V = V� or V = V♦). To illustrate this, consider the following
CTG:

v1

a
3

b

5

v2

v3

c 4

0.2

0.7

0.6

0.4 0.9

0.10.1

An equivalent CTMDP (in the sense of Definition B.30) looks as follows:

v1

v2

v3

a, 0.6

a, 0.3; b, 2

b, 3; a, 2.1
b, 2

a, 0.3

c, 0.4 c, 3.6; a, 2.1

c, 0.4; a, 0.6

c, 3.6; b, 3
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However, there is one subtle issue regarding strategies. In [? ? ], a strategy
(controller) selects an action in every vertex. The selection may depend on the
history of a play. In [? ? ], it is noted that if a controller is deterministic, then
the resulting play is a CTMC. If a controller is randomized, one has to add “inter-
mediate” discrete-time states which implement the timeless randomized choice,
and hence the resulting play is not a CTMC, but a mixture of discrete-time
and continuous-time Markov chains. In our setting, this problem disappears,
because the probability distribution chosen by a player is simply “multiplied”
with the probabilities of outgoing edges of actions. For deterministic strategies,
the two approaches are of course completely equivalent.

Appendix C. Technical Proofs

Appendix C.1. Proofs of Claim 3.7 and Claim 3.8

Claim 3.7. A is a fixed point of V.

Proof. If v ∈ T , we have

A(i, v) = sup
σ∈Σ

inf
π∈Π

Fi(t) = V(A)(i, v)

Assume that v 6∈ T . Given a strategy τ ∈ Σ ∪ Π and a ∈ A, we denote by τa

a strategy defined by τa(wu) := τ(vawu). Note that supσ∈Σ infπ∈Π P
σ,π(·, ·) =

supσ∈Σ infπ∈Π P
σa,πa

(·, ·) for any a ∈ A.
If v ∈ V�,

V(A)(i, v) = sup
a∈E(v)

∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

∑
a∈A

d(a)
∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(R(a))>0

Fi+j(t) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

σ(v)(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(R(a))>0

Fi+j(t) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

∑
j∈H

j(R(a))>0

Fi+j(t) · σ(v)(a)
∑
u∈V

P(a)(u) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)
∑
a∈A

j(R(a))>0

σ(v)(a)
∑
u∈V

P(a)(u) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)P
σ,π(v, j)
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If v ∈ V♦,

V(A)(i, v) = inf
a∈E(v)

∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= inf
d∈D(E(v))

∑
a∈A

d(a)
∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= inf
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
σ∈Σ

inf
d∈D(E(v))

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
σ∈Σ

inf
d∈D(E(v))

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(R(a))>0

Fi+j(t) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

π(v)(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(R(a))>0

Fi+j(t) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

∑
j∈H

j(R(a))>0

Fi+j(t) · π(v)(a)
∑
u∈V

P(a)(u) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)
∑
a∈A

j(R(a))>0

π(v)(a)
∑
u∈V

P(a)(u) · Pσ
a,πa

(u, j− 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)P
σ,π(v, j)

Claim 3.8. For every σ ∈ Σ, k ≥ 0, i ∈ H, v ∈ V , ε ≥ 0, we have

Rσk(i, v) ≤ µV(i, v) +

k∑
j=1

ε

2|i|+j

Proof. For v ∈ T we have

Rσk(i, v) = Fi(t) = µV(i, v)

Assume that v 6∈ T . We proceed by induction on k. For k = 0 we have

Rσk(i, v) = 0 ≤ µV(i, v)
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For the induction step, first assume that v ∈ V� \ T

Rσk(i, v) =
∑

a∈E(v)

σ(v)(a)
∑
u∈V

P(a)(u) · Rσ
a

k−1(i + 1R(a), u)

≤
∑

a∈E(v)

σ(v)(a)
∑
u∈V

P(a)(u) ·

µV(i + 1R(a), u) +

k∑
j=2

ε

2|i|+j


=

 ∑
a∈E(v)

σ(v)(a) ·
∑
u∈V

P(a)(u) · µV(i + 1R(a), u)

+

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +

k∑
j=2

ε

2|i|+j

Finally, assume that v ∈ V♦ \ T , and let a ∈ A be the action such that
πε(i, v)(a) = 1

Rσk(i, v) =
∑
u∈V

P(a)(u) · Rσ
a

k−1(i + 1R(a), u)

≤
∑
u∈V

P(a)(u) ·

µV(i + 1R(a), u) +

k∑
j=2

ε

2|i|+j


=

(∑
u∈V

P(a)(u) · µV(i + 1R(a), u)

)
+

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +
ε

2|i|
+

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +

k∑
j=1

ε

2|i|+j

Appendix C.2. Proof of Lemma 3.12

Lemma 3.12. If G is finitely-branching and has bounded rates, then we have
the following:

1. For all ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have
that

Pσ,πv (Reach≤t(T ))− ε ≤ Pσ,πv (Reach≤t≤k(T )) ≤ Pσ,πv (Reach≤t(T ))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and
πk ∈ Π. Further, for all ε > 0 and k ≥ (supR)te2 − ln ε we have that
every k-step optimal strategy is also an ε-optimal strategy.
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Proof. ad 1. Let us fix a rate r = supR. It suffices to see that (here, the
random variables used to define Fi have rate r)

∞∑
n=k+1

Pσ,πv (Reach≤t=n(T )) ≤
∞∑

n=k+1

Fn(t) · Pσ,πv (Reach≤∞=n (T ))

≤
∞∑

n=k+1

Fk+1(t) · Pσ,πv (Reach≤∞=n (T ))

= Fk+1(t) ·
∞∑

n=k+1

Pσ,πv (Reach≤∞=n (T ))

≤ Fk+1(t)

which is less than ε for k ≥ rte2 − ln ε by the following claim.

Claim C.34. For every ε ∈ (0, 1) and n ≥ rte2 − ln ε we have Fn(t) < ε.

Proof.

Fn(t) = 1− e−rt
n−1∑
i=0

(rt)i

i!
= e−rt

∞∑
i=n

(rt)i

i!
= (∗)

By Taylor’s theorem for ex =
∑∞
i=0

xi

i! and Lagrange form of the remainder we
get

(∗) ≤ e−rt (rt)
n

n!
ert =

(rt)n

n!
= (∗∗)

By Stirling’s formula n! ≈
√
n(n/e)n we get

(∗∗) <
(
rte

n

)n
<

(
1

e

)n
<

(
1

e

)− ln ε

= ε

by assumptions.

ad 2. We proceed similarly as in the proof of Theorem 3.6 (we also use some
notation of the proof of Theorem 3.6). Recall that given σ ∈ Σ, π ∈ Π, j ∈ H,
and u ∈ V , we denote by Pσ,π(u, j) the probability of all runs α ∈ RunG(u,σ,π)

such that for some n ∈ N0 the state α(n) hits T and matches j, and for all
0 ≤ j < n we have that α(j) does not hit T .

Given (σ, π) ∈ Σ×Π, i ∈ H such that |i| ≤ k, and v ∈ V , we define

P̄σ,π(i, v) :=
∑
j∈H

|j|≤k−|i|

Fi+j(t) · Pσ,π(v, j)

the probability of reaching T from v before time t in at most k− |i| steps using
the strategies σ and π and assuming that the history matches i.

To define the CD strategies σk and πk we express the value
supσ∈Σ infπ∈Π P̄

σ,π(i, v) (= infπ∈Π supσ∈Σ P̄
σ,π(i, v), see below) using the fol-

lowing recurrence.
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Given i ∈ H, where |i| ≤ k, and v ∈ V , we define

R̄(i, v) :=


Fi(t) if v ∈ T
0 if v 6∈ T and |i| = k

maxa∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V� \ T and |i| < k

mina∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

For v 6∈ T and |i| < k we define σk(i, v) and πk(i, v) in the following way. If
v ∈ V�, we put σk(i, v)(a) = 1 for some action a which realizes the maximum
in the definition of R̄(i, v). Similarly, if v ∈ V♦, we put πk(i, v)(a) = 1 for some
action a which realizes the minimum in the definition of R̄(i, v). For |i| ≥ k and
v ∈ V we define σk(i, v) and πk(i, v) arbitrarily so that σk and πk remain BCD.

For every CD strategy τ ∈ Σ ∪ Π and i ∈ H, we denote by τ [i] the strategy
obtained from τ by τ [i](j, u) := τ(i + j, u).

Given π ∈ Π, i ∈ H where |i| ≤ k, and v ∈ V , we define

Zπ(i, v) := P̄σ
k[i],π(i, v)

Similarly, given σ ∈ Σ, i ∈ H where |i| ≤ k, and v ∈ V , we define

Zσ(i, v) := P̄σ,π
k[i](i, v)

We prove the following claim.

Claim C.35. Let i ∈ H, where |i| ≤ k, and v ∈ V . Then

R̄(i, v) = inf
π∈Π

Zπ(i, v) (C.1)

= sup
σ∈Σ

Zσ(i, v) (C.2)

= sup
σ∈Σ

inf
π∈Π

P̄σ,π(i, v) (C.3)

= inf
π∈Π

sup
σ∈Σ

P̄σ,π(i, v) (C.4)

In particular, the strategies σk and πk are k-step optimal because P̄σ,π(0, v) =

Pσ,πv (Reach≤t≤k(T )).

Proof. First, if v ∈ T , then for all (σ, π) ∈ Σ × Π we have P̄σ,π(i, v) = Fi(t) =
R̄(i, v). Assume that v 6∈ T . We proceed by induction on n = k− |i|. For n = 0
we have P̄σ,π(i, v) = 0 = R̄(i, v). Assume the lemma holds for n, we show that
it holds also for n+ 1.

We start by proving the equation (C.1). Using the notation of the proof of
Theorem 3.6, given a strategy τ ∈ Σ∪Π and a ∈ A, we denote by τa a strategy
defined by τa(wu) := τ(vawu).
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If v ∈ V� and σk(i, v)(b) = 1,

inf
π∈Π

Zπ(i, v) = inf
π∈Π

∑
u∈V

P(b)(u) · Zπ
b

(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · inf
π∈Π

Zπ
b

(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · inf
π∈Π

Zπ(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · R̄(i + 1R(b), u)

= max
a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

= R̄(i, v)

If u ∈ V♦,

inf
π∈Π

Zπ(i, v) = inf
π∈Π

∑
a∈E(v)

π(v)(a)
∑
u∈V

P(a)(u) · Zπ
a

(i + 1R(a), u)

= inf
d∈D(E(v))

∑
a∈E(v)

d(a)
∑
u∈V

P(a)(u) · inf
π∈Π

Zπ
a

(i + 1R(a), u)

= min
a∈E(v)

∑
u∈V

P(a)(u) · inf
π∈Π

Zπ(i + 1R(a), u)

= min
a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

= R̄(i, v)

The equation (C.2) can be proved in a similar manner.
The claim follows from the following

R̄(i, v) = inf
π∈Π

Zπ(i, v) ≤ sup
σ∈Σ

inf
π∈Π

P̄σ,π(i, v) ≤

≤ inf
π∈Π

sup
σ∈Σ

P̄σ,π(i, v) ≤ sup
σ∈Σ

Zσ(i, v) = R̄(i, v)

The rest of the lemma is easily obtained from 1. as follows. Let ε > 0 and
consider k ≥ (supR)te2 − ln ε. Then 1. implies that the value R̄(0, v) of the
k-step game initiated in v satisfies val(v)− ε ≤ R̄(0, v) ≤ val(v). Therefore all
k-step optimal strategies are ε-optimal.

Appendix C.3. Proof of Claim 4.19
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Claim 4.19. A strategy is always greedy on s steps iff it uses transitions from
Es only (as defined by Algorithm 1).

Proof. For the ‘if’ direction, we prove by induction on n that

max
σ∈Σ

min
π∈Π

(−→
P σ,πv

)
(1,...,n)

= min
π∈Π

(−→
P σ̄,πv

)
(1,...,n)

= max
σ∈Σ

(−→
P σ,π̄v

)
(1,...,n)

for all strategies σ̄ ∈ Σ and π̄ ∈ Π that use edges from En only. It is sufficient
to prove that (

max
σ∈Σ

min
π∈Π

−→
P σ,πv

)
n

(1)
= Rn(v)

(2)
= min

π∈Π

(−→
P σ̄,πv

)
n

for every strategy σ̄ ∈ Σ that uses edges from En only. (The minimizing part is
dual.) The case n = 0 is trivial. Now consider n+ 1. For v ∈ V� \ T ,(

min
π∈Π

−→
P σ̄,πv

)
n+1

=
∑
u∈V

σ̄(0, v)(u)
(

min
π∈Π

−→
P σ̄[1],π
u

)
n

by IH (2) and En+1 ⊆ En =
∑
u∈V

σ̄(0, v)(u) ·Rn(u)

σ̄ uses En+1 only = max
a∈En(v)

∑
u∈V

P(a)(u) ·Rn(u) = (∗)

by IH (1) = max
a∈En(v)

∑
u∈V

P(a)(u) ·
(

max
σ∈Σ

min
π∈Π

−→
P σ,πu

)
n

by IH = max
a∈An(v)

∑
u∈V

P(a)(u) ·
(

max
σ∈Σ

min
π∈Π

−→
P σ,πu

)
n

=
(

max
σ∈Σ

min
π∈Π

−→
P σ,πv

)
n+1

where An(v) is the set of all edges going from v that any strategy always greedy
on n steps can choose. I.e. it is the desired abstractly defined set of greedy
edges, which is equal to the computed set En(v) by the induction hypothesis.
Since (∗) = Rn+1(v), the equality with the first and the last expression proves
the claim. Similarly for v ∈ V♦ \ T ,(

min
π∈Π

−→
P σ̄,πv

)
n+1

= min
a∈An(v)

∑
u∈V

P(a)(u) ·
(

min
π∈Π

−→
P σ̄[1],π
u

)
n

by IH (2) and En+1 ⊆ En = min
a∈An(v)

∑
u∈V

P(a)(u) ·Rn(u)

by IH for the minimizing part = min
a∈En(v)

∑
u∈V

P(a)(u) ·Rn(u) = (∗∗)

by IH (1) = min
a∈E(v)

∑
u∈V

P(a)(u) ·
(

max
σ∈Σ

min
π∈Π

−→
P σ,πu

)
n

by IH for the minimizing part = max
a∈An(v)

∑
u∈V

P(a)(u) ·
(

max
σ∈Σ

min
π∈Π

−→
P σ,πu

)
n

=
(

max
σ∈Σ

min
π∈Π

−→
P σ,πv

)
n+1
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where (∗∗) = Rn+1(v). The case with v ∈ T is trivial as states in T are
absorbing.

We prove the “only if” direction by contraposition. If a strategy τ uses a
transition a ∈ E \ Es in v then there is i ≤ s such that a has been cut off in
the ith step. Therefore a did not realize the i steps optimum (equal to Ri(v)).
Hence τ is not greedy on n steps.

Appendix C.4. Proof of Lemma 5.24

Lemma 5.24. The strategies σε and πε are ε-optimal.

Proof. We use some notation of the proof of Theorem 3.6. Recall that given
σ ∈ Σ, π ∈ Π, j ∈ H, and u ∈ V , we denote by Pσ,π(u, j) the probability of
all runs α ∈ RunG(u,σ,π) such that for some n ∈ N0 the state α(n) hits T and
matches j, and for all 0 ≤ j < n we have that α(j) does not hit T .

Given (σ, π) ∈ Σ×Π, i ∈ H, where |i| ≤ k, and v ∈ V , we define

P̄σ,π(i, v) :=
∑
j∈H

|j|≤k−|i|

Fi+j(t) · Pσ,π(v, j)

the probability of reaching T from v before time t in at most k− |i| steps using
the strategies σ and π and assuming that the history already matches i. We
have shown in the proof of Claim C.35 that for every i ∈ H, where |i| ≤ k, and
v ∈ V , the value

max
σ∈Σ

min
π∈Π

P̄σ,π(i, v) = min
π∈Π

max
σ∈Σ

P̄σ,π(i, v)

is equal to R̄(i, v) defined by the following equations:

R̄(i, v) :=


Fi(t) if v ∈ T
0 if v 6∈ T and |i| = k

maxa∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V� \ T and |i| < k

mina∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

Note that P̄σ,π(0, v) = Pσ,πv (Reach≤t≤k(T )) and thus R̄(0, v) = valk(v), the k-
step value in v.

Note that assuming li(t) = Fi(t) for all i ∈ H satisfying |i| ≤ k, we would
obtain that each R(i, v) is precisely R̄(i, v) and hence that σε and πε are k-step
optimal strategies.

Let us allow imprecisions in the computation of li(t). We proceed as fol-
lows: First we show, by induction, that each value R(i, v) approximates the

value R̄(i, v) with relative error
(
ε
2

)2|i|+1
(Claim C.38 below). From this we get,

also by induction, that both minπ∈Π P̄
σε,π(i, v) and maxσ∈Σ P̄

σ,πε(i, v) approx-

imate R̄(i, v) with relative error
(
ε
2

)2|i|+1
as well (Claim C.39 below). In other

words, σε and πε are ε
2 -optimal strategies in the k-step game. Together with the

assumptions imposed on k we obtain that σε and πε are ε-optimal strategies.

For n ≥ 0, we denote by errn the number
(
ε
2

)2n+1
.
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Claim C.38. For all i ∈ H and v ∈ V we have

(1− err |i|) · R̄(i, v) ≤ R(i, v) ≤ (1 + err |i|) · R̄(i, v)

Proof. If v ∈ T , then R̄(i, v) = Fi(t) and R(i, v) = li(t), and the inequality
follows from the definition of li(t). Assume that v 6∈ T . We proceed by induction
on n = k − |i|. For n = 0 we have R̄(i, v) = 0 = R(i, v). Assume the inequality
holds for any v and i ∈ H such that |i| = k−n. Let us consider i ∈ H such that
|i| = k − n− 1 and v ∈ V . If v ∈ V� we have

R(i, v) = max
a∈E(v)

∑
u∈V

p(a)(u) ·R(i + 1R(a), u)

≤ max
a∈E(v)

∑
u∈V

P(a)(u) · (1 + err |i|+1) · R̄(i + 1R(a), u) · (1 + err |i|+1)

= (1 + err |i|+1)2 · max
a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

≤ (1 + err |i|) · R̄(i, v)

and, similarly,
R(i, v) ≥ (1− err |i|) · R̄(i, v)

For v ∈ V♦ the proof is similar.

We denote by ΣCD and ΠCD the sets of all CD strategies of Σ and Π, respec-
tively. Recall that given a strategy τ ∈ ΣCD ∪ ΠCD and i ∈ H, we denote by
τ [i] the strategy obtained from τ by τ [i](j, u) := τ(i + j, u).

Given i ∈ H and π ∈ Π, we define

Kπ(i, v) := P̄σε[i],π[i](i, v)

Similarly, given i ∈ H and σ ∈ Σ, we define

Kσ(i, v) := P̄σ[i],πε[i](i, v)

Claim C.39. Let i ∈ H, where |i| ≤ k, and v ∈ V . We have

min
π∈ΠCD

Kπ(i, v) ≥ R̄(i, v) · (1− err |i|)

max
σ∈ΣCD

Kσ(i, v) ≤ R̄(i, v) · (1 + err |i|)

Proof. If v ∈ T , then Kπ(i, v) = Kσ(i, v) = Fi(t) and R̄(i, v) = li(t), and
similarly as above, the result follows from the definition of li(t). Assume that
v 6∈ T . We proceed by induction on n := k − |i|. For n = 0 we have 0 =
Kπ(i, v) = Kσ(i, v) = R̄(i, u). Assume the lemma holds true for n and consider
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n+ 1. If v ∈ V� and σε(i, v)(b) = 1,

min
π∈ΠCD

Kπ(i, v) = min
π∈ΠCD

∑
u∈V

P(b)(u) ·Kπ(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · min
π∈ΠCD

Kπ(i + 1R(b), u)

≥
∑
u∈V

P(b)(u) · R̄(i + 1R(b), u) · (1− err |i|+1)

≥
∑
u∈V

p(b)(u) · 1

1 + err |i|+1
·R(i + 1R(b), u) ·

1− err |i|+1

1 + err |i|+1

= R(i, v) ·
1− err |i|+1

(1 + err |i|+1)2

≥ R̄(i, v) · (1− err |i|+1) ·
1− err |i|+1

(1 + err |i|+1)2

≥ R̄(i, v) · (1− err |i|)

and

max
σ∈ΣCD

Kσ(i, v) = max
σ∈Σ

∑
a∈E(v)

σ(i, v)(a)
∑
u∈V

P(a)(u) ·Kσ(i + 1R(a), u)

= max
a∈E(v)

∑
u∈V

P(a)(u) ·max
σ∈Σ

Kσ(i + 1R(a), u)

≤ max
a∈E(u)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u) · (1 + err |i|+1)

≤ R̄(i, u) · (1 + err |i|) .

For u ∈ V♦ the proof is similar.

This proves that σε and πε are ε-optimal, since the absolute error is smaller
than the relative error as the probabilities are at most 1.
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