Dependability Checking with StoCharts

Is Train Radio Reliable Enough for Trains?

David N. Jansen
Holger Hermanns

QEST
September 30, 2004
Why train radio?

- European Train Control System
- a new standard for securing trains
- GSM-R radio communication between train and radio block centre
ETCS radio reliability

- **Q:** Can ETCS radio handle trains?
 - fast (300 km/h)
 - in dense traffic (headway \(\approx 1\) min)
 - with high reliability (99.95%)
ETCS radio reliability

- **Q**: Can ETCS radio handle trains?
 - fast (300 km/h)
 - in dense traffic (headway ≈ 1 min)
 - with high reliability (99.95%)

- **A**: Yes!
 details on the following slides
Overview

- More on securing trains and ETCS
- Our modelling language: StoCharts
- Our model
- Analysis
- Outlook
Securing Trains: Principles

- **Block**
 - exclusive access to a single train
 - train is not allowed to leave its block(s)

- **Movement authority**
 - allowance to enter a block

- **Integrity check**
 - make sure the complete train leaves a block
Securing Trains: Practice

- Signals show movement authorities to the driver
- Some protection against human error
 - Transmit passage of danger points electronically
 - different national systems
Interoperability

- One railway’s train runs on another railway’s track
- Mechanical interoperability is implemented
- Broken by different security systems

- ETCS standard intends to overcome this
 - specifies communication between train and track
 - does not specify internals of train
 - does not specify trackside aspects of policy
Securing Trains: New Ideas

- Exchange more information electronically
 - train characteristics
 - track information
 - complete movement authorities
- Cab signalling
- On-board integrity check
- ETCS supports these features
Moving Block Operation

- Enabled by on-board integrity check
- Each part of the block is freed immediately after the train has passed...
- ... and can be reserved for the next train without delay
- shorter headway \Rightarrow better track utilisation
Moving Block Operation

- Enabled by on-board integrity check
- Each part of the block is freed immediately after the train has passed...
- ... and can be reserved for the next train without delay
- shorter headway ⇒ better track utilisation
Speaking technically

- **Eurobalise**
 - trackside transceiver
 - transmit movement authorities etc. and position
Speaking technically

- **Eurobalise**
 - trackside transceiver
 - transmit movement authorities etc. and position

- **GSM-R**
 - a variant of GSM
 - transmit movement authorities etc.

- **Cab signalling and on-board integrity check**
 - train internal – only a few aspects specified
Modelling Language: StoCharts

- Statecharts
- + Probabilistic choice
e. g. with probability 10^{-4}, a message is lost
- + Stochastic timing
e. g. the response time is distributed exponentially with average 0.5 sec

$$\text{Prob(response time} \leq t) = 1 - e^{-t/0.5}$$
Statecharts

- Hierarchical extension of automata

(state) node

transition

parallel behaviours

trigger event

reaction
Example StoChart

- H
 - after(EXP[10 sec])
 - e
- K
 - I
 - P
 - a: 0.1
 - 0.9
 - J
- stochastic delay
- probabilistic choice
StoChart Definition

- **Nodes**
 - with a tree structure

- **Events**
 - includes pseudoevent after *(stochastic delay)*

- **P-Edge**
 - P = probabilistic
 - trigger: source node(s), (pseudo)event, guard
 - reaction: probability space over actions and destination node(s)
StoChart Semantics

- Maps on 'Stochastic Timed I/O Automata'
- Random timers model stochastic delays
 - initialised to a sample from probability distribution
 - run down to 0
 - then trigger the corresponding edge
StoChart Semantics

- $$\text{IOSA}(\cdot \parallel \cdot) =$$

Initial state

set t(\text{EXP}[10 \text{ sec}])

A, C, E, F, G, H

delay: t

A, D, E, F, G, I, K

A, C, E, F, G, H

after(\text{EXP}[10 \text{ sec}])

A, C, E, F, G, I, K

e

B, I, K

0.9

0.1

B, J, K
Assumptions and Guarantees

- “Design by Contract” paradigm
- If the environment keeps the assumptions, the system is guaranteed to fulfil its duty.
- Our assumptions: GSM-R works as specified
 - e.g. a GSM-R connection is established within 5 sec with 95% probability.
- Our guarantees: ETCS radio is as dependable as specified
 - e.g. the communication succeeds with 99.95% probability.
Receiver Model

- includes channel model (delay, errors, loss)
Model Analysis

StoChart model → GSMP → ProVer tool → Set of runs → Postprocessor

Desired guarantee

Result
ProVer tool

- simulation tool
- model checker like: estimates whether a probabilistic property is satisfied
 - e.g.: Is the probability of a failure less than 1%?
 - Possible answer: Yes, with confidence 0.99.
- tailored to GSMPs
- developed at CMU by Håkan Younes
Communication Reliability

- Is the communication reliable enough?
- Required by the spec is 99.95%
Communication Reliability

- Is the communication reliable enough?
- Required by the spec is 99.95%

Diagram:
- Train
 - Sender
 - message
 - Radio block centre
 - Receiver

every 5 sec
99.95% requirement is ambiguous: No time bound for communication provided

Analysed directly using ProVer

Time until first message arrives

<table>
<thead>
<tr>
<th>Time</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>0.98267</td>
</tr>
<tr>
<td>15 sec</td>
<td>0.999700</td>
</tr>
<tr>
<td>20 sec</td>
<td>0.99999944</td>
</tr>
</tbody>
</table>
Delayed Trains

- How often do GSM-R failures cause delays?

- Challenging scenario:
 Two trains at minimal distance
 - for a full trip (~ 1 hour)
 - at maximum speed (300 km/h)
 - with moving block operation
Delayed Trains

Radio block centre

Sender

Sender'

Receiver

Receiver'

every 5 sec

movement authority

position and integrity report

age of this information?
Delayed Trains

- Age of the information cannot be measured directly
- Measure an upper bound

- Headway | Probability to brake at least once
 57.4 sec | 0.9562
 62.4 sec | 0.101
 67.4 sec | 0.0036
 72.4 sec | 0.00034

4 train pairs per hour ⇒ < 1 train per month delayed
Related Work

- Our work is inspired by work of [Zimmermann/Hommel 2003]
 - use stochastic Petri nets (general distributions)
 - numerical solution, not simulation
 - slightly different model
 - entirely different results
Related Work

- Assumptions of Zimmermann/Hommel
 - “deadline” corresponds to a headway ~ 54 sec
 - no multiple failures
 - almost only exponential distribution
Outlook

• Recommendation for reliability
 – Is this service needed always?
 Otherwise, a cheaper solution
 (= weaker assumptions) could be enough.

• Work in progress:
 Analysis with the Möbius tool (via MoDeST)
 – expect easier translation to MoDeST
 – first results are promising: similar outcomes