
DN-2/V-2

1 1: Introduction

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Summer 04

Lecture 0: Prelude

2 1: Introduction

Prelude: Who am I?

Prof. Dr.-Ing. Holger Hermanns

Bldg. 45, Office 501

e-mail: hermanns@cs.uni-sb.de

3 1: Introduction

Prelude: Who are you?

5 1: Introduction

Prelude: What is this course about?

1. It’s about Computer Networks.

2. It’s about the how and why of the Internet.

3. It’s about foundations of networking
beyond the Internet.

6 1: Introduction

Prelude: Course Material

online at

htt
p:/

/sp
inr

oot
.co

m/s
pin

/Do
c/B

ook
91.

htm
l

7 1: Introduction

Prelude:Why not to take this course?
Disclaimer: This lecture may contain material which is considered offending by
students who believe that intellectual challenges are to be avoided.

YES, let me in!

ENTER No, let’s better
take a third

web page
design course

8 1: Introduction

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Summer 04

Lecture 1: Introduction

9 1: Introduction

Part I: Introduction
Our goal today:

get context,
overview, “feel” of
networking
more depth, detail
later in course
approach:
o descriptive
o use Internet as

example

Overview:
what’s the Internet
what’s a protocol?
network edge
network core
access net, physical media
performance: loss, delay
protocol layers, service models
backbones, NAPs, ISPs
history

Important: read
chapter 1 in
[Kurose-Ross]

10 1: Introduction

What’s the Internet: “nuts and bolts” view

millions of connected
computing devices:
hosts, end-systems

o pc’s workstations, servers
o PDA’s phones, toasters
running network apps

communication links
o fiber, copper, radio, satellite

routers: forward packets
(chunks) of data thru network

local ISP

company
network

regional ISP

router workstation
server

mobile

11 1: Introduction

“Cool” internet appliances

World’s smallest web server
http://www-ccs.cs.umass.edu/~shri/iPic.html

Digital photo receiver frame
http://www.ceiva.com/

Web-enabled toaster+weather forecaster
http://dancing-man.com/robin/toasty/

12 1: Introduction

What’s the Internet: “nuts and bolts” view

protocols: control sending,
receiving of msgs

o e.g., TCP, IP, HTTP, FTP, PPP
Internet: “network of
networks”

o loosely hierarchical
o public Internet versus

private intranet
Internet standards

o RFC: Request for comments
o IETF: Internet Engineering

Task Force

local ISP

company
network

regional ISP

router workstation
server

mobile

13 1: Introduction

What’s the Internet: a service view
communication
infrastructure enables
distributed applications:

o WWW, email, games, e-
commerce, database,
voting, file (MP3) sharing

communication services
provided:

o connectionless
o connection-oriented

cyberspace [Gibson]:
“a consensual hallucination experienced daily by

billions of operators, in every nation,"

14 1: Introduction

What’s a protocol?
human protocols:

“what’s the time?”
“I have a question”
introductions

… specific msgs sent
… specific actions taken

when msgs received,
or other events

network protocols:
machines rather than
humans
all communication
activity in Internet
governed by protocols

protocols define format, order of
msgs sent and received among

network entities, and actions taken
on msg transmission, receipt

15 1: Introduction

What’s a protocol?
a human protocol and a computer network protocol:

Q: Other human protocol?

Hi

Hi
What’s the

time?
2:00

TCP connection
req.

TCP connection
reply.

Get http://d.cs.uni-sb.de/courses/dn.html

time
<file>

16 1: Introduction

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Summer 04

Session A: Protocol Conventions

17 1: Introduction

Protocol Conventions
Our goal today:

illustrate the
principal elements of
any protocol

o service
o environmental

assumptions
o vocabulary
o encoding
o behavioural rules

appreciate their
event-driven nature
learn about protocol
notations

Overview:
Some history
Elements of a protocol
Sequence diagrams and MSCs
State-transition diagrams
and LTS
Protocol flaws

Suggested:
read chapter 1 & 2
of [Holzmann 91]

18 1: Introduction

Recall: What’s a protocol?
human protocols:

“what’s the time?”
“I have a question”
introductions

… specific msgs sent
… specific actions taken

when msgs received,
or other events

network protocols:
machines rather than
humans
all communication
activity in Internet
governed by protocols

protocols define format, order of
msgs sent and received among

network entities, and actions taken
on msg transmission, receipt

19 1: Introduction

Some history of protocols

Ok, Internet has quite an interesting history.

But protocol history dates back a little longer,
at least to 458 B.C.:

According to Aeschylus (in the play Agamemnon),
fire signals were used to to communicate the
fall of Troy to Athens over a distance of
more than 450 km.

20 1: Introduction

A detailed account

‘‘It is evident to all that in every matter, and
especially in warfare, the power of acting at the
right time contributes very much to the success
of enterprises, and fire signals are the most
efficient of all the devices which aid us to do this.
[...] anyone [...] even if he is at a distance of three,
four or even more days’ journey can be informed.’’

[Polybius, 2nd century B. C.]

21 1: Introduction

More on the problems of past
protocols
‘‘[...] it was possible [...] to convey information that a

fleet had arrived at Oreus, Peparethus, or Chalcis,
but when it came to some of the citizens having
changed sides or having been guilty of treachery
or a massacre having taken place in the town, or
anything of the kind, things that often happen,
but cannot all be foreseen — and it is chiefly
unexpected occurrences which require instant
consideration and help — all such matters defied
communication by fire signal. For it was quite
impossible to have a preconcerted code for things
which there was no means of foretelling.’’

[Polybius, 2nd century B. C.]

22 1: Introduction

So, what is a protocol?

A set of rules governing communication

there are at least two parties.
they have some mutual concern, e.g.
o selling/buying bread
o transferring an mp3
o making Troy surrender
they have something in common.

they are communicating in some physical
environment.

23 1: Introduction

Service provided by a protocol

Transfer of information (or bread)
between a source and one or more destinations

Some Issues:
o naming and addressing of the source and destination
o naming and addressing of the channel (logical or physical)
o properties of the underlying channel
o initiation and termination of the connection
o interpretation of the information
o error handling

24 1: Introduction

Some concerns

How do we get started?
What are we trying to communicate?
Do we care whether the data/information is
received?
What is the penalty for failure?
How do we finish?

25 1: Introduction

The five elements of a protocol
A protocol specification consists of five distinct parts. To
be complete, each specification should include explicitly:

1. The service to be provided by the protocol

2. The assumptions about the environment in which the
protocol is executed

3. The vocabulary of messages used to implement the
protocol

4. The encoding (format) of each message in the
vocabulary

5. The behavioural rules guarding the consistency of
message exchanges most difficult

26 1: Introduction

Protocol Behaviour Notation

message sequence charts/
sequence diagrams/
use cases
state-transition diagrams

s0 s2

s3s1

a?

b!a?a!

b?

The unambiguos description of protocol behaviour
is essential, but difficult. There is no universal notation.
Frequently used are

27 1: Introduction

get(o)!’a’

put(‘z’)

put(‘z’)
get(o)!’b’

put(‘a’)

get(o)!’z’

Protocol Notation:
Sequence diagrams ... are precedence graphs

with locality information

each vertical line
represents a protocol entity

(or the environment)

arrows represent
signals/messages

28 1: Introduction

MSC: Message Sequence Charts
... are sequence diagrams

have been standardized
by the ITU

each vertical line
represents

a protocol entity
(or the environment)

arrows represent signals/messages
blocks represent (internal) process activities

(International Telecomm. Union)

29 1: Introduction

Definition: Basic MSC
A (basic) MSC M is a tuple (P,E,L,c, <)

o a set P of process labels (labelling the instance axis),
o a finite set E events E = S ∪ R ∪ A, consisting of

• send events S (buh/)
• receive events R (/buh)
• action events A (task executions etc)

o a labeling function L: E→P (putting events on the instance axis),
o a bijection c:S → R (for send-receive edges)
o precedence relation < ⊆ E × E

• Send of a message occurs before its receipt
• Events on the same instance are totally ordered

Must be well-formed: no cycles in precedence graph

33 1: Introduction

Semantics of Basic MSC
<*, the transitive closure of <, defines a partial order on E

A trace of MSC M is a linearization of the partial order
<*.

o every trace is a finite sequence of events that “obeys” the
precedence.

o each event occurs exactly once in a trace and only after all its
preceding events have already occurred in the trace so far.

o always finite.

Semantics of MSC M
o is the set of all possible traces.
o can be represented as a finite LTS (and hence in FSP, if you like).

34 1: Introduction

Need to introduce partial orders?

A relation is a set of pairs drawn from some set, say E.

A reflexive relation is a relation that contains the pair (e,e)
for each element e of E.

A transitive relation is a relation which contains the pair
(e,g) whenever it contains both (e,f) and (f,g).

A partial order is a reflexive and transitive relation.
The exercises of DN are partially ordered (in time).

A total order is a partial order which for each pair (e,f) of
E (with e≠f) does either contain (e,f) or (f,e) - but not both.

The lectures of DN are totally ordered (in time).

30 1: Introduction

Traces?

Traces?Traces?

MSC - How simple!

=

≠

31 1: Introduction

A
real-life
MSC

32 1: Introduction

A
real-life
MSC

35 1: Introduction

Protocol Notation:
State transition diagrams

s0 s2

s3s1

a?

b!a?a!

b?

we call them labelled transition
systems (LTS) in the sequel.

A flowchart like notation
for LTS has been adopted
by the ITU (‘SDL’).

37 1: Introduction

Labelled transition systems
An LTS is a quadruple (S, L, T, s) where

S is a set of states,

L is a set of labels,

T is a set of transitions,
T ⊆ (S X L X S),

s ∈ S is the initial state.

2

1

onoff

(a light switch)

38 1: Introduction

Grandma’s telephone

What can happen?
o Well, grandma can take off

the phone from the hook, and
put it back on the hook

o Grandma may spin the dial
(these days: press buttons) to ‘dial’ a number.

o Also, grandma may witness the ‘bell’, a ‘ring tone’,
a ‘dial tone’, a ‘busy tone’.

o Anything forgotten?

39 1: Introduction

Grandma’s telephone as an LTS
o hookOFF
o hookON
o dial
o ring_toneON
o ring_toneOFF
o busy_toneON
o busy_toneOFF
o dial_toneON
o dial_toneOFF
o bellON
o bellOFF
o connect
o disconnect

This is
set L

An LTS is a quadruple (S, L, T, s) where

S is a set of states,

L is a set of labels,

T is a set of transitions,
T ⊆ (S X L X S),

s ∈ S is the initial state.

40 1: Introduction

Your first exercise

Complete the LTS describing grandma’s telephone

Do this with pencil and paper.

Choose meaningful names for the states in S.

You may assume that grandma can only call a single
partner (which is you, her grandchild, of course).
This is performed (in one shot) with ‘dial’.

41 1: Introduction

Sequence Diagrams vs.
State-Transition Diagrams

Sequence diagrams show the interaction of
protocol peer entities - by example (use cases),
or by counterexample (misuse cases).

State-transition diagrams show the behaviour
of one protocol entity, possibly the complete
behaviour.

42 1: Introduction

Events in Protocol Behaviour

Protocol behaviour is driven by events:
o arrival of signals/messages
o timeouts

Events induce state changes.

A state is identified by the
program location where the protocol entity
waits for events (or generates events).

43 1: Introduction

Protocol, Environment and Services

44 1: Introduction

Protocol, Environment and Services

Service provided by layer k-1

45 1: Introduction

The five elements of a protocol
A protocol specification consists of five distinct parts. To
be complete, each specification should include explicitly:

1. The service provided by the protocol

2. The assumptions about the environment in which the
protocol is executed

3. The vocabulary of messages used to implement the
protocol

4. The encoding (format) of each message in the
vocabulary

5. The behavioural rules guarding the consistency of
message exchanges most difficult

46 1: Introduction

1. Service
The purpose of the protocol:

o transfer text files as sequences of characters
o across a telephone line
o protect against transmission errors.
o in ``full-duplex’’ file transfer, that is bidirectional simultaneously.

o positive and negative acknowledgments for traffic from A to B
are sent on the channel from B to A, and vice versa.

o every message contains two parts:
• a message part, and
• a control part that applies to traffic on the reverse channel.

An example

A B

abcd...xyz zyx...cbazyx...cba abcd...xyz

‘pigg
yba

ckin
g’

nak err ack

47 1: Introduction

2. Environmental Assumptions
The ‘‘environment’’ in which the protocol is to be executed

consists of two users and a transmission channel.
o The users can be assumed to simply submit a request for file

transfer and await its completion.

o The transmission channel is assumed to cause arbitrary message
distortions, but not to lose, duplicate, insert, or reorder messages.

We will assume that a lower-level module is used to catch all
distortions and change them into undistorted messages of type ‘err’.

An example

A B

abc...xyz zyx...cbazyx...cba abc...xyz

nak err ack

put putget get

48 1: Introduction

3. Protocol Vocabulary

The protocol vocabulary defines three distinct types of
messages:

o ack for a message combined with a positive acknowledgment,
o nak for a message combined with a negative acknowledgment, and
o err for a message with a transmission error.

The vocabulary can be succinctly expressed as a set:
V = { ack, err, nak }.

An example

49 1: Introduction

4. Message Format

Each message consists of a control field identifying
o the message type and
o a data field with the character code.

This gives a simple structure of two fields:
{control tag, data}

enum control {ack, nak, err};

struct message {
enum control tag;
unsigned char data;
};

in a C-like notation:

An example

50 1: Introduction

5. Behavioural rules
The behavioural rules for the protocol are

informally described as follows:

Control: If
o the previous reception was error-free,

• the next message on the reverse channel will carry an ‘ack’ ;
o the previous reception was in error,

• it will carry a ‘nak’.

Data: If
o the previous reception carried a ‘nak’, or

the previous reception was in error,
• retransmit the old message;

o otherwise (‘ack’) fetch a new message for transmission.

An example

51 1: Introduction

accept
next
event
from
upper
layer

put(i)
get(o)

get(o)

put(i)

Procedure Rules as Diagrams
get(o)

err

ack?i

nak?i

nak!o

ack!o

put(i)
get(o)

put(i)

ack!o

52 1: Introduction

Design Flaws

The above simple, informal protocol description is
convincing, yet the protocol has several flaws.
o Data flows only if both processes have something to

send.
o The protocol does not start up.
o The protocol does not terminate. As a quick fix,let’s assumewe can start up theprotocol by fakingan error messageif we have data to send

53 1: Introduction

get(o)

err?

ack?i

nak?i

nak!o

ack!o

put(i)
get(o)

put(i)

err!

err?

54 1: Introduction

Example
runs abc...xyz zyx...cba

55 1: Introduction

Example
runs abc...xyz zyx...cba

56 1: Introduction

Example
runs abc...xyz zyx...cba

57 1: Introduction

Example
runs abc...xyz zyx...cba

58 1: Introduction

Example
runs abc...xyz zyx...cba

59 1: Introduction

Example
runs abc...xyz zyx...cba

60 1: Introduction

Example
runs abc...xyz zyx...cba

61 1: Introduction

Example
runs abc...xyz zyx...cba

62 1: Introduction

Design Flaws

The above simple, informal protocol description is
convincing, yet the protocol has several flaws.
o Data flows only if both processes have something to

send.
o The protocol does not start up.
o The protocol does not terminate.

o The protocol may not deliver the correct message,
it may duplicate characters.
...

63 1: Introduction

Character
Duplication

64 1: Introduction

And now
for the
ten
commandments

65 1: IntroductionTen rules of protocol design
1. Make sure that the problem is well-defined. All design criteria,

requirements and constraints, should be enumerated before a
design is started.

2. Define the service to be performed at every level of abstraction
before deciding which structures should be used to realize these
services (what comes before how).

3. Design external functionality before internal functionality.
4. Keep it simple.
5. Do not connect what is independent. Separate orthogonal concerns.
6. Do not introduce what is immaterial. Do not restrict what is irrelevant.
7. Before implementing a design, build a high-level prototype and verify

that the design criteria are met.
8. Implement the design, measure its performance, and if necessary,

optimize it.
9. Check that the final optimized implementation is equivalent

to the high-level design that was verified.
10. Don’t skip Rules 1 to 7.
The most frequently violated rule, clearly, is Rule 10.

66 1: Introduction

A high-level prototype
And a formal language to
generate such prototypesget(o)

err

ack?i

nak?i

nak!o

ack!o

put(i)
get(o)

put(i)

ack!o proc Dumb(){
get(o);
do{
alt{
::ack?i ;

put(i);
get(o);
ack!o;

::err;
nak!o;

::nak?i ;
put(i);
ack!o;

}
}

}

67 1: Introduction

How to validate such protocols

1. Formalise the five elements
of a protocol in a formal
notation.

2. Unless you dare a manual
proof, let a tool explore all
possible event sequences and
check for inconsistencies

‘model checking’

3. if you think you cannot do 2.,
do 1. anyhow

Typical inconsistencies:
o unspecified message

arrivals

o safety violations
(something bad happens),

• e.g. deadlock (protocol
stops unintentionally)

o liveness violations
(nothing good happens),

• e.g. livelock (protocol
entities continue to
exchange messages, but no
service is provided)

