- DN-2/V-2

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Lecture O: Prelude

2 1: Introduction

Prelude: Who am I?

A Prof. Dr.-Ing. Holger Hermanns

0 Bldg. 45, Office 501

d e-mail: hermanns@cs.uni-sb.de

3 1: Introduction

Prelude: Who are you?

5 1: Introduction

Prelude: What is this course about?

1. It's about Computer Networks.

2. Tt's about the how and why of the Internet.

3. It's about foundations of networking
beyond the Internet.

“=aduction

Prelude: Course Mater

SECOND EDITION

Computer Networking

A anfr-!]qm.u -’4"1F'rr'nug:| F(:uilqri!r:j the Internet

DATA NETWOR} |

SPIN MODEL
CHECKER

THE"

DESIGN AmoyALlDﬁTEDN
COMPUTER PROTOCOLS

Gerard J Holzmann

» -

\ND REFERENCE MANURIES

James F. Ku

SECONMND EDIFIY

“fo

Serard [. Holzmann

URTH EDITION

ter Networks = |

S. TANENBAUM

7 1: Introduction

Prelude:Why not to take this course?

Disclaimer: This lecture may contain material which is considered offending by
students who believe that intellectual challenges are to be avoided.

“he €OV ¢

we

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Lecture 1: Introduction

Part I: Introduction chapter 1 in

1: Introduction

Important: read

Our goal today:

d get contfext,
overview, "feel” of
networking

0O more depth, detail
Jater in course

Q approach:
o descriptive

o use Internet as
example

[Kurose-Ross]

Overview:

ad what's the Internet

A what's a protocol?

ad network edge

ad network core

0 access het, physical media

Q performance: loss, delay

Q protocol layers, service models
a backbones, NAPs, ISPs

a history

10 1: Introduction

What's the Internet: "nuts and bolts” view
=3

router

2 millions of connected (@\{ggrksfa’ﬂon

computing devices: @Se""er gmob”e
hosts, end-systems

o pc's workstations, servers
o PDA's phones, toasters
running network apps

Q communication links
o fiber, copper, radio, satellite

Q routers: forward packets
(chunks) of data thru network

company “py <R
network g g

11 1: Introduction

"Cool” internet appliances

Digital photo receiver frame
http://www.ceiva.com/

Web-enabled toaster+weather forecaster
http://dancing-man.com/robin/toasty/

World’s smallest web server
http://www-ccs.cs.umass.edu/~shri/iPic.html

12 1: Introduction

" “nuts and bolts" view

: =
Q protocols. control sending, router = i ation
receiving of msgs B eerver “E
- mobile
o L ier vV
networks”

o loosely hierarchical
o public Internet versus
private intranet
ad Internet standards
o RFC: Request for comments
o LETF: Internet Engineering

@M

Task Force company @
hetwork g g

13 1: Introduction

What's the Internet: a service view

a communication
infrastructure enables
distributed applications:

o WWW, email, games, e-
commerce, database,
voting, file (MP3) sharing

Q communication services
provided:

o connectionless
o connection-oriented

a cyberspace [Gibson]:

“a consensual hallucination experienced daily by
billions of operators, in every nation,"

14 1: Introduction

What's a protocol?

human protocols: network protocols:

a "what's the time?" A machines rather than
A "T have a question” humans

0 introductions A all communication

activity in Internet

.. specific msgs sent governed by protocols

.. specific actions taken
when msgs received,
or other events

protocols define format, order of
msgs sent and received among
network entities, and actions taken
on msqg transmission, receipt

15 1: Introduction

What's a protocol?

a human protocol and a computer network protocol:

req.
TCP connection
" What's the “reply.
time? = Get http://d.cs.uni-sb.de/courses/dn.html

'I'ime ::::-__:_ S

Q: Other human protocol?

Networking

Prof. Dr.-Ing. Holger Hermanns

Dependable Systems & Software
Saarland University

Summer 04

Session A: Protocol Conventions

17

1: Int

Suggested:

Protocol Conventions » -

Our goal today:

Q illustrate the
principal elements of
any protocol

o service

o environmental
assumptions

o vocabulary
o encoding
o behavioural rules

0 appreciate their
event-driven nature

3 learn about protocol
nhotations

o)

QOverview.

d Some history
a Elements of a protocol
a Sequence diagrams and MSCs

a State-transition diagrams
and LTS

2 Protocol flaws

18 1: Introduction

Recall: What's a protocol?

human protocols: network protocols:

a "what's the time?" A machines rather than
A "T have a question” humans

0 introductions A all communication

activity in Internet

.. specific msgs sent governed by protocols

.. specific actions taken
when msgs received,
or other events

protocols define format, order of
msgs sent and received among
network entities, and actions taken
on msqg transmission, receipt

19 1: Introduction

Some history of protocols

A Ok, Internet has quite an interesting history.

a But protocol history dates back a little longer, &
at least to 458 B.C.:

According to Aeschylus (in the play Agamemnon), d
fire signals were used to to communicate the
fall of Troy to Athens over a distance of

more than 450 km.\ f%%~ \i}
\ |

Avgos [y kens \gC“ és;

1: Introduction

A detailed account

[Polybius, 2nd century B. C.]

It is evident to all that in every matter, and
especially in warfare, the power of acting at the
right time contributes very much to the success
of enterprises, and fire signals are the most
efficient of all the devices which aid us to do this.
[...] anyone [...] even if he is at a distance of three,
four or even more days’ journey can be informed.”

1: Introduction

More on the problems of past
protocols

[Polybius, 2nd century B. C.]

'[...] it was possible [...] to convey information that a
fleet had arrived at Oreus, Peparethus, or Chalcis,
but when it came to some of the citizens having
changed sides or having been guilty of treachery
or a massacre having tfaken place in the town, or
anything of the kind, things that often happen,
but cannot all be foreseen — and it is chiefly
unexpected occurrences which require instant
consideration and help — all such matters defied
communication by fire signal. For it was guite
impossible to have a preconcerted code for things
which there was ho means of foretelling.”

22 1: Introduction

So, what is a protocol?

A set of rules governing communication

A there are at least two parties.

A they have some mutual concern, e.g.
o selling/buying bread
o transferring an mp3
o making Troy surrender

a they have something in common.

A they are communicating in some physical
environment.

23

1: Introduction

Service provided by a protocol

Transfer of /nformation (or bread)
between a source and one or more destinations

d Some Issues:

0

naming and addressing of the source and destination
naming and addressing of the channel (logical or physical)
properties of the underlying channel

initiation and termination of the connection
interpretation of the information

error handling

24 1: Introduction

Some concerns

d How do we get started?
a What are we trying to communicate?

d Do we care whether the data/information is
received?

d What is the penalty for failure?
a How do we finish?

25 1: Introduction

The five elements of a protocol

A protocol specification consists of five distinct parts. To
be complete, each specification should include explicitly:

1. The service to be provided by the protocol

2. The assumptions about the environment in which the
protocol is executed

3. The vocabulary of messages used to implement the
protocol

4. The encoding (format) of each message in the
vocabulary

The behavioural rules guarding the consistency of
message exchanges most difficyls

26 1: Introduction

Protocol Behaviour Notation

The unambiguos description of protocol behaviour
is essential, but difficult. There is no universal notation.
Frequently used are 4 B

O message sequence charts/
sequence diagrams/
use cases accept 'z’

Q state-transition diagrams

o=

nexr

ack ‘a’ — err

nak z’ —err _ _ _

nak ‘a’
accept ‘a’
ack 'z’ .

accept 'z’
next

1: Introduction

Protocol Notation:
Sequence diangmS ... are precedence graphs

P B with locality information
............. f””‘ % get(0)!’z
geto)ra’ o e . .
nak =’ each vertical line
e b represents a protocol entity
k 3 3 > - .
oA mer (or the environment)
nak 'z’ —err_ _ _ _ j
r __________ Iﬁ'r.rk ‘a’
-g put(‘a’) arrows represent
ack ’z’ ... : :
------------------- signals/messages
put(‘z’)
t(0)!’b
A SR ack °b

28

1: Introduction

MSC: Message Sequence Charts

msc TurnstileExample

Paybox Controller

Barrier

coln

.
v

entryfee

o

unlock

visitor:=visitor+1;

locked

oy
-

push

rotated

A A

-

... are sequence diagrams

have been standardized
(Internationg ?Zule::: :(El:))
each vertical line
represents

a protocol entity

(or the environment)

arrows represent signals/messages

blocks represent (internal) process activities

29 1: Introduction

Definition: Basic MSC

a A (basic) MSC M is a tuple (P,E.Lc, <)
o aset P of process labels (labelling the instance axis),

o a finite set E events E= S UR U A, consisting of
- send events S (buh/)
- receive events R (/buh)
* action events A (task executions etc)

o a labeling function L: E—P (putting events on the instance axis),

o abijection c:S — R (for send-receive edges)

o precedence relation<c ExE
- Send of a message occurs before its receipt
- Events on the same instance are totally ordered

O Must be well-formed: no cycles in precedence graph

S

33

Semantics of Basic MSC

C the transitive closure o0 Jefines a partial order on E

1: Introduction

d A frace of MSC M is a linearization of the partial order

<.

o every trace is a finite sequence of events that "obeys” the
precedence.

o each event occurs exactly once in a trace and only after all its
preceding events have already occurred in the trace so far.

o always finite.

Q Semantics of MSC M

o is the set of all possible traces.

o can be represented as a finite LTS (mm

34 1: Introduction

Need to introduce partial orders?

ad A relation is a set of pairs drawn from some set, say E.

ad A reflexive relation is a relation that contains the pair (ee)
for each element e of E.

ad A fransitive relation is a relation which contains the pair
(e,g) whenever it contains both (e,f) and (f,9).

ad A partial order is a reflexive and transitive relation.

The exercises of DN are partially ordered (in time).

Q A total order is a partial order which for each pair (e, f) of

E (with e=f) does either contain (e, f) or (f,e) - but not both.
The lectures of DN are totally ordered (in time).

30

MSC - How simplel

1: Introduction

msc Example

User

Machine 1

Machine 2 Machine 3

| control |

| drill | | test

startml

startm2

A

free

continue

=

I

msc Example

User Machine 1 Machine 2 Machine 3
| | control | | drill | | test
startml
startm2 N
- lpg continue
"~ free output
I N N

msc Example

Machine 1

Machine 2 Machine g

control |

| drill

1

A

msc Example

Machine 3
| test

Machine 2

| drill |

User Machine 1

startml

| control |

=

startm2

1 — g

continue

\

output

A

——

free

31

A

real-life

MSC

~etails of link |

The cperation of the link la

ero

1Y L W

by the state machine in

PHY dsta indication of SUBACTION GAP

TANDARD FOR A
6-19.

Walid ACK recaived vk data contimation al ACK_MISSMG e
|- LLob |
Ik data contirration of ACK_RECEIVED
L1: Asynchronous ar- L2- Aﬂ?mm
bitration send packel
L ipgy WE R PHY aritration canfirmation of WON
PHY arbitrabion request Lz -
PHY arbartion continmation of LOST s o s
- L1:LD — L2132 L
. benadcasi packet s LELA
Link data confirmaton of BROADCAST _SENT]
L7: Hold Bus
IR i o conm -
Mo requas! from taasaction lvyes L5: Wait for
-W LT | L6: Sand E‘mg
dat megquest of DATA_END mmvﬂ
ACH st and Bus Occ, C1l == HOLD |
o LELT _{ link daia msponsa with Bus Occ. CR
.q LELE
ACK sant and Bus Occ, Cil, == RELEASE
e
L4: Asynchronous ra-
calve packet
PHY data inicasion of DATA_PREFIX
e LOL4 -_ Aks mnﬂir—ﬂm -
soast puckst iscarved fink data Indkcatian
fink data ndication ol BCAST_AGVD | L10: I'.T =|1 ':;Imdu',
invalid packat receivec ety R
*ﬁwumumrmb L s Gyl start skl iosin -
poasitis link evenl ndication (ses i) ey cantents of cycla_stan_data o CYCLE_TIME regisiar
LB: Cycle start LS: Send
arbitration ﬂ stari
cycle_synch_queued fag meent T S R s s

32

A

real-life

IEEE
Sid 1394-1995

MSC

6.3.3 Details of link layer operation

IEEE STANDARD FOR A

The operation of the link layer packet transmitter and receiver is described by the state machine in figure 6-19.

Cycis_synch_queuad fag m

LO: Anmhmmm L3: Wait for
“"'“"’g'_'“”’*' P dun ckeaionof suBACTION gap ScknOWledge
Valid ACK received v data confimation al ACK_MISSING o
B LIL0b _|
ik COTIR Paiaas 1 e lnk daza contirmation of ACH_RECEIVED
_ ARLD L1: Asynchronous ar- L2: Asynch
fink contnal confimation bitration sand m‘ L":’m
L gy, NS e PHY arbiration confirmation of WON |
PHY ardsfrabon requsst Li:L2 -
PH' arbisriion contimmaiion of LOST nongraadcast pachal sant
- L1LD — L2413 -~
o broadcast packat som 1218 _
Limi data confirmation of BROADCAST _SENT
L7: Hold Bus
Link datm giiesd
L LTL2 -
Mo reguest from tansaction lnyes L5: Wait for
daln equest of DATA_END uknmﬂﬂ e
ACH sen| and Bus Ooc, CH, == HOLD
e | LELT _§ link daia msponsa with Bus Ooc. G
- L5LB _|
- ACK sen and Bus Oct, Cil. == RELEASE
L4: Asynchronous ra-
calve packet
PHY data inmcason of DATA_PAEFIX
— L4 —-_ Lt DOAr packet recaied)
bénadcant packal receved Imk data indacadion
L4i0a] i
(_ et fink data indication of B'CAST_RCV'D L10: Isochronous
operation ready
— - T - L4:L0b]
' PHY data requas of DATA_END | Ladan £ycls sta packat recerved -
linil dota rﬁFﬂME poasible ink avan! indication (zes i) copy Cantenis of tycie_ st dats 16 CYCLE TIMIE Fepiier
af NO-oPerATION LB: Cycle start L9: Send
arbitration cycle start

—

R Y T v Beepe—

1: Introduction

Protocol Notation:
State transition diagrams

we call them labelled transition D
systems (LTS) in the sequel. }

4 4L'"‘\.

[receive)
I I.\M- [_-/ l
nak:i < ack:i < err:i <

HexI o

ack:o > ack:o > nak:o >
A flowchart like notation

for LTS has been adopted -
by the ITU ('SDL").

37 1: Introduction

Labelled transition systems
An LTS is a quadruple (S, L, T, s) where (@\

of f on

d Sis aset of states,

QL is a set of labels, \@/

(a light switch)

Q T is a set of transitions,
Tc(SXLXS),

A s € Sis the initial state.

1: Introduction

Grandma’'s telephone

What can happen?

o Well, grandma can take of f
the phone from the hook, and
put it back on the hook

o Grandma may spin the dial
(these days: press buttons) to 'dial’ a number.

o Also, grandma may witness the 'bell’, a 'ring tone’,
a 'dial tone’, a 'busy tone'.

o Anything forgotten?

3 1: Introduction

Grandma's telephone as an LTS

ﬁ hookOFF
o hookON

o dial An LTS is a quadruple (S, L, T, s) where

o ring_toneON
o ring_toneOFF
o busy_toneON

0

S is a set of states,

©

L is a set of labels,

This is o busy_toneOFF
set L o dial toneON @ T is aset of transitions,
- Tc(SXLXS),
o dial_toneOFF = ()
o bellON @ s e Sis the initial state,
o] bellOFF

o cohnect
o disconnect

40 1: Introduction

Your first exercise

Complete the LTS describing grandma’s telephone
A Do this with pencil and paper.

O Choose meaningful names for the states in S.

3 You may assume that grandma can only call a single
partner (which is you, her grandchild, of course)
This is performed (in one shot) with 'dial'.

1: Introduction

Sequence Diagrams vs.
State-Transition Diagrams

a Sequence diagrams show the interaction of
protocol peer entities - by example (use cases),
or by counterexample (misuse cases).

oV - Lké
ad State-transition diagrams show the behaviour

of one protocol entity, possibly the complete
behaviour.

42 1: Introduction

Events in Protocol Behaviour

a Protocol behaviour is driven by events:
o arrival of signals/messages
o Timeouts

a Events induce state changes.

Qd A sfateis identified by the
program location where the protocol entity
waits for events (or generates events).

43 1: Introduction

Protocol, Environment and Services

‘ #
Protocol l
LA [Jll-=rmom =mmemmomsmmmomom comimrmcomemmieim mmson | Layerk |
A *

Y

44 1: Introduction

Protocol, Environment and Services

Layer k + 1 Layerk + 1
...................... TSerwceprowdedbylayerkT
Y Y
Protocol
layerk |weeemencermannsnenn menne e nn. - = Layerk
A A
.............. l Serwceprowdedbylayerkll

45 1: Introduction

The five elements of a protocol

A protocol specification consists of five distinct parts. To
be complete, each specification should include explicitly:

1. The service provided by the protocol

2. The assumptions about the environment in which the
protocol is executed

3. The vocabulary of messages used to implement the
protocol

4. The encoding (format) of each message in the
vocabulary

5. The behavioural rules quarding the ¢

message exchanges U '
9 9 Mmost dlfflr

1: Introduction

’ n
The purpose of the protocol: examP'e

o transfer text files as sequences of characters

o across a telephone line

o protect against fransmission errors.

o in ' full-duplex” file transfer, that is bidirectional simultaneously.

) 5]

ZyX...cba T abcd...xyz T ZyX...cba

abcd...xyz

[c—

A B

t nak err ack ‘

o positive and negative acknowledgments for traffic from 4 to B
are sent on the channel from Bto A, and vice versa.

o every message contains two parts: o

* a message part, and 4?‘(5‘99

- a control part that applies to traffic on the reverse channel.

Ocy;\(\g‘

47

. .An e 1: Introduction
2. Environmental Assump

The "environment” in which the protocol is o be executed
consists of two users and a transmission channel.

o The users can be assumed to simply submit a request for file
transfer and await its completion.

abc...xyz T ZyX...Cha T abc...xyz T ZyX...Cha
get

put put

A B
W

o The transmission channel is assumed to cause arbitrary message
distortions, but not to lose, duplicate, insert, or reorder messages.

get

We will assume that a lower-level module is used to catch all
distortions and change them into undistorted messages of type ‘err:

48 1: Introduction

3. Protocol Vocabulary

The protocol vocabulary defines three distinct types of
messages:
o ack for a message combined with a positive acknowledgment,
o nak for a message combined with a negative acknowledgment, and
o errfor a message with a transmission error.

The vocabulary can be succinctly expressed as a set:
V = {ack err, nak }

49 1: Introduction

4. Message Format

Each message consists of a control field identifying

o the message type and
o a data field with the character code.

This gives a simple structure of two fields:
{control tag, data}

In a C-like notation:

enum control {ack, nak, err};

struct message {
enum control tag;
unsigned char data;

}:

50 1: Introduction

5. Behavioural rules

The behavioural rules for the protocol are
informally described as follows:

Control: If

o the previous reception was error-free,
- the next message on the reverse channel will carry an ack’,

o the previous reception was in error,
[t will carry a hak.

Data: If
o the previous reception carried a nak, or
the previous reception was in error,
- retransmit the old message,
o otherwise (ack’) fetch a new message for transmission.

>1 1: Introduction

Procedure Rules as Diagrams e

next
event
¥ from
get(o) || = YPPer
| ayer

'

[receive
nak:i < ack:i < err <

put(i) put(i)

ack:o > ack:o > nak:o >

52 1: Introduction

Design Flaws

A The above simple, informal protocol description is
convincing, yet the protocol has several flaws.

o Data flows only if both processes have something to
send

o T'he protocol does not terminate. As quulck fix,
€Ts assume
w: can start up the
rotocol by faki
i
an erropr ng

if we have data to senq

53

1: Introduction

Example

runs

abc...xyz 7

msc Example

1: Introduction

ZyX...cba 7

Example

runs

abc...xyz 7

msc Example

A B

get(o) — 'a’

get(o) — 7

”}

1: Introduction

ZyX...cba 7

Example

runs

8

abc...xyz

msc Example

A

get(o) — 'a’

. put(’z’)

”}

nak:’z’

get(o) — 7

1: Introduction

ZyX...cba

Example

runs

8

abc...xyz

msc Example

A

get(o) — 'a’

. put(’z’)

”}

nak:’z’

ack:’a’

get(o) — 7

put(’a’)

1: Introduction

ZyX...cba

Example

runs

8

abc...xyz

msc Example

A

get(o) — 'a’

. put(’z’)

., ack:’y’
put(y’) .

”}

nak:’z’

ack:’a’

get(o) — 7

put(’a’) -

1: Introduction

ZyX...cba

get(o) — 'y’
%

1: Introduction

EX a m % msc Example
runs ; A 5 m

abc..xyz J|) ZyX...cha
” get(o) — 7
| put() nak:’z’
ack:’a’ put(a?)

get(o) — 'y’
AR

. ack:’y’
Cput(y) | e

get(o) — b’

> k:vba
w‘ put(ﬂba) -

\

1: Introduction

E X a m % msc Example

runs ‘* A b
abc..xyz J|) ZyX...cha
w} get(o) — 7
| put() nak:’z’
ack:’a’ put(a?)
get(o) =y’

5 ack:’y’
put(y’)]
et Y
getlo) — > ack:’b’
 \ put(’b’)
get(o) — 'x
ack:"x’ FASA Sl B
_ put(’x’) £
get(o) — ¢’
o ack:’¢’
 \ put(’c’)
get(o) — e
ack:’w’ >
_ put(’w’) 1 7

o t 2 ?
get(o) = d‘; ack:’d’
 ; put(’d’)

\

1: Introduction

Example [mim
r.uns “ i T ZyX...cba m

abc...xyz ||) =
“M
i put(z) nak:’z
ack:’a’

put(’a’)
get(o) — ’y”

et

ack:’y
put(y’)]
e N T
) P
]
k:7b7
¢ ”\ put(vba) ~

get(o) — X

A s

Yt

kk
Cput(x) | T
B’et(o) — ¢
ack:’¢’
 _\ put(’c’)

~

4

62 1: Introduction

Design Flaws

A The above simple, informal protocol description is
convincing, yet the protocol has several flaws.

o Data flows only if both processes have something to
send.

o The protocol does not start up.
o The protocol does not terminate.

o The protocol may not deliver the correct message,
it may duplicate characters.

Character
Duplication

get(o) — ’a’

msc Example

A

-

gewo) = « |

”
k:’z’
put(z) ||

ack:’a’

ack:’y’
~ put(’y’) ,L

il

get(o) — 'z

put(’a’)

get{o) =y’
getto) — 'y

put(’c’)

1: Introduction

64

And now
for the
ten
commandments

A\

B N

1: In‘rroduc'rci

1: Introduction

"Ten rules of protocol design

1. Make sure that the problem is well-defined. All design criteria,
requirements and constraints, should be enumerated before a
design is started.

2. Define the service to be performed at every level of abstraction
before deciding which structures should be used to realize these
services (what comes before Aow).

3. Design external/ functionality before /nternal functionality.

4. Keep it simple.

5. Do not connect what is independent. Separate orthogonal concerns.

6. Do not introduce what is immaterial. Do not restrict what is irrelevant.

7. Before implementing a design, build a high-level prototype and verify
that the design criteria are met.

8. Implement the design, measure its performance, and if necessary,
optimize it.

9. Check that the final optimized implementation is equivalent
to the high-level design that was verified.

10. Don't skip Rules 1 to 7.

The most frequently violated rule, clearly, is Rule 10.

66 1: Introduction

A high-level prototype

d And a formal language to
generate such prototypes

put(i) proc ngb(){
get(o);
get(o) do{
alt{
ctack?1 ;
put(i);
get(o);
acklo;
SIlerr;
naklo;
- nak?1 ;
put(i);
acklo;
¥
¥
¥

67 1: Introduction

How to validate such protocols

1. Formalise the five elements QO Typical inconsistencies:
of a protocol/in a formal o unspecified message
notation. arrivals

o safety violations
2. Unless you dare a manual (something bad happens),

pr'oof, let a tool explor'e all + e.g. deadlock (protocol
possible event sequences and stops unintentionally)

check for inconsistencies

o liveness violations
(no‘rhmg good happens),

e.g. livelock (protocol

- - entities continue to
3. if you think you cannot do 2., exchange messages, but no

do 1. anyhow service is provided)

“~~ 'model checking

