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Foundation of the π-Calculus

1   Introduction

The π-Calculus – A model of interleaving concurrency

„Communication is a fundamental and integral part of computing, whether between different computers on a 
network, or between components within a single computer“(1). Therefore it is important to be able to describe 
communication between different entities formally. There exist a lot of different calculi to model this 
communication. You can coarsely divide them into two sections: calculi that model „interleaving concurrency“ 
and calculi that model „true concurrency“. Interleaving concurrency means that the different actions of agents 
and their communication are put in a strong order.  At one specific time there can be only one action. When 
using „true concurrency“, we are confronted with several actions at one specific time. An action is not 
instantaneous and one cannot differentiate the single steps. 
The π-Calculus models the first idea of concurrency, the interleaving concurrency.  In the  π-Calculus the 
communication is not an extra action that a system can do. The system consists only of different 
communicating parts. This also includes internal computations. In this paper the syntax of the π-Calculus will 
be presented and explained, using examples. There will also be given the definition of bisimulation for 
expressions of the  π-Calculus.

2    The π-Calculus

2.1 Development of the π-Calculus from CCS     

The Calculus of Communicating Systems (CCS) was developed by the English computer scientist Robin 
Milner around 1980. It is a process calculus, used to formally describe concurrent systems. CCS is a good 
process calculus if you have to model a static system of communicating processes, but what do you do if you 
want to introduce some mobility? Robin Milner found an answer to this problem in developing the 
π-Calculus out of the existing CCS. To get a better understanding we first have to look closer at the word 
„mobility“ and define what we mean with it.

2.2  Mobility 

Mobility is a word that is often used by computer scientists in different ways. That is why we have to precisely 
define what we mean by mobility. In general  „mobility means that something moves from one place to 
another. Thereby it is of significance what kind of entity moves, and in what space does it move.“ (2)
 In case you want to model a network of communicating processes, where processes can send messages to one 
another, you can model this with CCS because  it is static. But as soon as messages contain links to other 
processes about which, the receiving process has no knowledge, you need to change the connections and this 
we call mobility.
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To show that we now look at an abstract system as shown below. Process A is connected to process B and C, 
but B and C are not connected at all. 

Now we want the two processes C and B to form a connection and the connection between A and C to vanish. 
The changed system would look like shown below:

This can be achieved in two different ways.  Either the whole process C moves to B or just a link to C moves 
to B. In both cases the link between A and B is obviously needed to transfer the information. 
In one case the entity that moves is a whole process, in the other case it is simply a link to that process. 
So we have to decide whether the processes or the links should be moved. If we want the process to move in a 
spacial way, we have to rearrange every link that points to the process. If we move a link we don't have this 
problem. However, how do we define the „position“ of a process? If we define it by its links we also change 
the position of the process and thereby move both when moving one of its links.

2.3    Example for Mobility in Practise

Let us explain this by an example. Consider airplanes that are flying around the earth and must be  tracked 
somehow to know where the airplane is at a specific time. To make it simple imagine that there is a satellite 
that tracks planes and sends this information to a central station on the ground. Because the earth is round, 
there must be more than just one satellite to track the planes. Consider that every satellite has a fixed 
connection to the central station and a connection to every plane it tracks. Now it can happen, that a plane 
moves too far around the earth to be tracked by its satellite, because every satellite has its fixed range. Now, 
the connection to the plane has to be transmitted from one satellite to the other. 
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It is important to differantiate between the physical movement of the airplanes and the virtual movement of the 
connections between planes and satellites. How to model this problem in  π-Calculus Syntax will be shown in 
section 4 „Example“.

3   Syntax & Reaction Rules

3.1  Syntax of the  π-Calculus

We now proceed with defining the syntax of the π-Calculus. Let Ν be an infinite set of names and let small 
letters  a,b,c…. range over names. Let P,Q,R,... range over process expressions. Robin Milner defines process 
expressions as a combination of six different elements:

P :=∑ P i  | α .P '  | P1 | P2  | ( x) P '  | [ x= y ]P '  | ! P '

a)    Summation  ∑
i∈I

P i (3)

This process behaves like one of the P i . This means the process can transform in one of the different P i and 
make the transitions the P i can do. After deciding for one of the P i the transitions of the others are not 
possible anymore. The index set I is finite. If the index set I is empty we will write 0 and name it inaction. The 
inaction can't do anything. If the cardinality of I is two we can also write P1+P2 as a binary sum.

b)    Prefix   α . P (4)

The prefix can have three different forms:          1) ȳ x.P ,  2) y (x ). P or   3) τ . P

1) ' ȳ x.P ' is called negative prefix. A negative prefix means that the process ȳ x.P wants to output the 
name x over the output port ȳ . Afterwards the process behaves like P.
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2) ' y( x) ' is called positive prefix. The port y is an input port of the process. The process y (x ). P is able to 
receive an arbitrary name z at the  port y . It then behaves like P {z/x} . This means that every free 
occurrence of x in P is substituted by z. The exact definition of substitution is given below. A positive prefix
y (x ) binds the name x in the process y (x ). P .

3) ' τ ' is called silent prefix. The τ-action means that the process τ . P does some internal action in which it 
is not possible to look into for external observers. This could be an internal computation or other internal 
action. The communication between two processes which act in parallel, forms also a nonvisible τ-transition. 
This means that from outside we cannot distinguish between internal actions or communication between 
processes.

c)   Composition P1 | P2 (5)

This process behaves like P1 and P2 acting in parallel. There are two possiblities for the two processes to 
react. First they may act independently. That means P1 as well as P2 react without affecting the other. This 
covers our intuition that they are running in parallel. Second they may synchronize their actions. Precisely, if
P1 is able to execute an output action x̄ and P2 an input action at the same port x , they may synchronize and 

create the silent action τ , what means that for external observers the synchronisation between processes is not 
visible in detail.

d)    Restriction (x )P (6)

This process behaves like P except that the actions x and x̄ are not possible for this process. However 
synchronization between parallel processes in P over the ports x and x̄ is still possible because this results in a 
τ−action . This gives us a perfect possibility to force processes to synchronize. The restriction (x )P binds 

the name x in the process (x )P .

e)    Match [ x= y ]P (7)

This process behaves like P if the names x and y are identical. Otherwise it is not possible to form any further 
transition, what means it behaves like the process 0. With this operator we can ensure that some process 
evolves only further if the structure of the process fulfills specific conditions.

f)   Replication ! P (8)

This operator says that the Process ! P stands for an infinite number of copies of P able to run concurrently.
! P is able to „spawn“ a new copy of P running in parallel every time it is needed. This operator is very 

important, because it gives us the possibility to model a process that is able to do the same transitions for an 
infinite number of times. With this one could model a server which can answer to a call every time, or the call 
of a function.

Further Definitions:

a) For all names of a process P we will write the expression n(P). We define the free names of a process 
P by all the names which exist in P but are not bound either by a restriction or by a positive prefix. For the 

free names of a process P we will write fn(P) . The bound names of a process are all names that occur in P
and are not free. So bn(P) := n(P) \ fn(P).
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b) Substituiton is defined as follows. We write P { z1 / x1,... , zn / xn } for the simultaneous substituiton of all 
free occurences of x i   ( for  1≤i≤n) in P . In case there are bound names which are equal to one of the x i

the bound names must be renamed in order for them to be distinguished from each other.

Notes

a)  We will not differantiate processes which only differ in a change of their bound names. For example
   a (x ).0 is equal to a ( y ).0 .

b) In the simple π-Calculus there is no construction that expresses parametric definitions. Therefore recursive 
definitions like A( x) := x̄ .a( y). A( y) are not possible. But we will see, that with the replication 
operator we are able to define such parametric processes.

c)   The paranthesis of a formula of the  π-Calculus is as follows:

      Summation < Composition < Restriction, Prefix, Match
      Therefore holds:

                               P |Q+R=(P |Q)+R
                               ! P | R=(! P )| R
                               (x )P |Q=(( x)P) |Q

d)  We will sometimes call bound names „private links“ and names which are free „public names“.

3.2   Reaction Rules

We now proceed to infer transitions. First we have some simple transition rules which are similar to those in 
CCS:

Tau : 
        -
τ . P →τ  P (9)

Sum_l :
P →α  P '

P+Q →α  P ' (10)

Sum_r : 
Q →α  Q '

P+Q →α  Q '

Restriction :  
P →α  P '

( y )P →α  ( y ) P '
    if α≠ y (x )∧α≠ ȳ x (11)

Further there is another simple rule for the match-operator:

Match : 
P →α  P '

[ x=x ]P →α  P ' (12)
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For simple prefixes holds:

Output : 
        -
x̄ y.P → x̄ y  P

(13)

Input : 
z∉ fn (( y )P )
x ( y) . P →x(z )  P {z/y}

(14)

This models a simple input. We have to demand the y to be unequal to the free names in P to prevent 
confusion with other names, but it actually can be the previously bound name from the input prefix.

Furthermore we have the communication rule, for parallel communicating processes:

Communication : P → x̄ y  P ' , Q →x(z )Q '
P |Q →τ  P ' |Q ' {y/z}

(15)

The rule also exists in the other direction, with P inputting and Q outputting a name.

There is one more rule for parallel composition :

Par_r : 
P →α  P '

P |Q →α  P ' |Q

Par_l : 
Q→α  Q '

P |Q→α  P |Q '

Here we have to be careful.  We have to add the further requirement that

if α=x ( y ) then y∉ fn(Q) for Par_r and if α= x ( y) then y∉ fn(P ) for Par_l

This is important, because otherwise we would be able to do the following:

(x ( y ). P |Q)| x̄ z.R

and with the Par_l and Communication Rule we would be able to infer the following transition :

(x ( y ). P |Q) | x̄ z.R →τ( P |Q){z/y} | R

which is obviously wrong in case y appears free in Q, since we only want the y in P to be substituted. To solve 
this problem we have to rename the bound name y first. We need a new name  which is not free neither in P 
nor in Q and can form the following correct transition:

(x ( y ) .P |Q) | x̄ z.R→τ (P {w/y} |Q){z/w}| R
There is no explicit rule for the Replication. But we don't need a special rule for that, as you will see in section 
3.6  „Structural Congruence“. 
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3.3   Syntactic Sugar

3.5.1   Polyadic π-Calculus

Now we want to send more than just one name per message. So we want something that looks like this:

x ( y1, y2, y3,.... , yn) and x̄ y1 y2 y3 .... yn

If we try to model this in a naive and simple way we get a construct that looks like this:

 x ( y1, y2, y3,.... , yn) . P :=x ( y1) . x ( y2) ... x ( yn). P and similarily

 x̄ y1 y2 y3 .... yn . P := x̄ y1. x̄ y2 ... x̄ yn . P

But now consider the following example:

First we define three processes

P := x( z1 , z2). P '
R := x (w1 , w2) . R'
Q := x̄ y1 y2 . Q '

Now let's put them in parallel

P |Q | R

We expect the process Q  to send the two names y1 and y2 to one of the two processes P or R .
But if we write this down to our naive implementation we get something that looks like this:

x (z 1). x ( z2) . P ' | x̄ w1 . x̄w2 .Q ' | x ( y1) . x( y2) .R '

We can see that Q can send the two names to two different processes. This is not what we want, because we 
want these operations to be instantaneous. To achieve this property we have to invent something else. We have 
to ensure that there is no interference between different processes. 
To transfer the whole message we first send a new fresh name p (one which was not used so far). Then we 
send all the other names over the  restricted port p . The example from above would now look like this

P := x( p) . p( z1) . p(z 2) . P '
R := x ( p) . p(w1). p(w2). R '
Q :=( p)( x̄ p. p̄ y1 . p̄ y2 . Q ' )

You can see that both the names y1 and y2 are either sent to P or to R because only one of them possesses the 
link p . This obviously also works when there is an arbitrary number of names to be sent.
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3.5.2   Recursive Calls

It may be useful to define processes in a parametric way, as agents are defined, so they have the form:

A( x1 , x2, ... , xn):=QA

In the basic π-Calculus there is no explicit syntax for this. But we can express parametric-defined processes 
and their recursive calls with help of the replication. 

Let A( x1 , x2, ... , xn):=QA

and P some process in which A is „called“.
Three steps are necessary to convert this into the basic π-Calculus.

a)   Create a new fresh name a for A

b)   For every process R ,  define R̃ as the result if you replace every call A( x1 , x2, ... , xn) in 
R with ā x1 x2 x3 .... xn

c) Replace P with :     P̂ :=(a)( P̃ | ! a( x1 x2 x3 .... xn) .Q̃ A)

Let's consider the following simple example:

A( x) := x̄ z . A( x)=QA

B( x) := x ( p) . p . B (x )=QB

P :=(x ) A( x) | B( x)

That means A is able to send the name z over the port x every time it wants to, and B is able to receive a name 
over port x and then call this name. You can see the process B as an executer which receives a name and then 
calls that name. 
This system is able to make a τ-action first, then B should make the action z and then the initial system should 
be reached again.  This means the system looks like this:

(x ) A(x) | B( x)   →τ   ( x) A( x) | z.B( x)   →z   ( x)A( x)| B (x )

Now we want to construct something that is as powerful as the system above. 
We first invent two new names for A and B , let's say a and b .  And now find Q̃A= x̄ z. ā x. 0
Q̃B= x z. b̄ x . 0 . This leads us to

 P̂=(abx )( ā x.0 | b̄ x.0 | !(a (x ). x̄ z . ā x.0) |! (b(x ) . x( p) . p. b̄ x.0 ))

Let's have a look as to whether this system is able to act like the system above with the recursive calls.  We 
will need more τ-actions but in the end  it will be as powerful as the system above.
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(abx)( ā x.0 | b̄ x.0 | !(a( x) . x̄ z . ā x.0 )| !(b( x) . x ( p). p.b̄ x.0))

→τ (abx )(0 | b̄ x.0 | x̄ z . ā x.0 | ! (a( x) . x̄ z . ā x.0 )| ! (b (x) . x ( p). p.b̄ x.0))

→τ (abx )(0 |0 | x̄ z . ā x.0 |!(a (x ). x̄ z . ā x.0) | x (z ). z. b̄ x.0 | ! (b( x) . x ( p) . p. b̄ x.0 ))

→τ (abx)(0 |0 | ā x.0 | !(a ( x) . x̄ z . ā x.0 )| z. b̄ x.0 | !(b( x) . x ( p) . p. b̄ x.0 ))

→z(abx)(0 |0| ā x.0 |! (a (x ). x̄ z . ā x.0) | b̄ x.0 | !(b (x) . x ( p) . p. b̄ x.0))

≡   (abx )(ā x.0 | b̄ x.0 | ! (a (x ) . x̄ z . ā x.0) | ! (b( x) . x ( p) . p. b̄ x.0 ))

The transformations which happen when you omit the parallel zeros or reorder the terms will be a valid action 
as shown in the following section „Structural Congruence“.

3.6   Structural Congruence

We now define structuaral congruence over processes. If two processes, P and Q are structually congruent, 
written P≡Q , we call them equal. Two processes are structurally congruent if we can transform one into 
another with the following rules:

a)   Summation:      The Summation is commutative     P+Q≡Q+P
                                      in our notation, we can reorder every term in a summation. 

b)   Change of  Bound Names: as we said the change of bound names doesn't change a system

c)   Parallel Operator:   for the parallel operator hold a few rules:

                                             1.   Commutativity :    P |Q  ≡  Q | P

                                             2.   Associativity :       (P |Q) | R  ≡  P | (Q |R)

                                             3.  Neutral Element :   P | 0  ≡  P

d)   Restriction:  the rules for restriction are:

                                             1.  Commutativity :    (x )( y) P  ≡  ( y )(x )P

                                             2.  Scope change :      (x )(P |Q)  ≡ P |(x )Q    if x∉ fn (P )

                                             3.  Vanishing :            (x )0  ≡  0

e)   Replication:    A simple congruence rule applies for this replication, that covers our intuition that !P is 
                                  able to spawn an arbitrary number of copies of P: ! P  ≡  P | ! P
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3.7   Scopes

We now get further into so called „scopes“. The scope of a name is the area in which the specific name is 
known. It is important to identify correctly the scope of each name in order to know how a current system 
looks like at a specific time. In a static system like CCS scopes do not change. But in the π-Calculus we can 
send names which are channels. Especially we can send names that are private. This means that a scope can be 
expanded or reduced. It is also possible that ports in different scopes have the same names. But what happens 
if we expand these scopes into each other? This expansion or reduction is veryfied by structural congruence. 
With the „Scope change“-rule we can expand a scope to a parallel composed process, or reduce the scope by 
using the rule in the other direction. 
The following examples will explain how these operations change a system. (The figures are taken from 
Robin Milner, A Calculus of Mobile Processes Part 1, Page 15 to 17).

3.7.1    Scope Extrusion

We first show how scopes can be expanded. If some process passes a private link there are three possibilities, 
which we will discuss now. Think of three processes P, Q and R. Process P has a private link to R and another 
link to Q. The system looks like this:

Fig. Sc1 

Now P wants so send the private link x over y to Q. A formula could look like this:

(x )(P |Q)| R where P  := ȳ x.P ' and R  :=  y ( z) . R' . And x∉ fn(R)

The result of the synchronization of P and Q over the y link looks like this:

 
(x )(P |Q)| R  →τ  (x )(P ' |Q ' | R ' { x / z })

We can transform this transition because of structural congruence 
law d.2. As you see x∉ fn(R) Therefore we can expand the 
restriction over R. The system now looks like this if we suppose 
that x∈ fn(P ') , so P' still possesses the private link x:

Fig Sc2. 
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There is also the possibility that x∉ fn(P ' ) . So P sends the link x to R and then „forgets“ about it. 
The system transforms after the same τ-action to a system that looks like this:

(x )(P |Q)| R  →τ  P |( x)(Q ' | R' { x / z })

This transition is also verified by the structural congruence law b.2, because we know that x∉ fn (P ') , so we 
can reduce the restriction of x to the two parallel processes Q' and R'.

  

Fig Sc3. 

Let's consider a case in which it is a bit more difficult.  Again we consider the system (x )(P |Q)| R .  But now 
R possesses a public link with name x. This is possible because we do not demand every link to have a 
different name, as long as they appear in different scopes. But now after the transition the scopes will overlap. 
To differentiate between the two links one of them has to be renamed.  We will choose the private name x, 
because we know the whole scope of this link. The public name cannot be changed in a simple way because 
the destination of the link is unknown.  The system now looks like this:

Fig. Sc4
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3.7.2    Scope Intrusion

We have discussed the expansion of a scope by sending a private link, but what happens if we send a public 
name into a scope of a private link with the same name? Consider this example:

Process P owns two public links x and y to the processes Q and R. R owns a private link x to the process S. 
P now wants to send its link x over y to R.

P |Q |( x)(R |S )   where P := ȳ x.P '   and  R := y (x) .Q'

The diagram of the system would look like this:

Fig Sc5   

If the processes P and R now communicate over their y-link and P sends the public link x to Q, the system 
changes as follows:

P |Q |( x)(R | S )→τ P ' | R | (x ')(R ' |S ){x'/x}

The diagram of the system looks like this: 

The private name x of the processes R and S has to be 
changed, to avoid collision with the public name x. 

Fig. Sc6
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4   Example

In the introductory section we mentioned the example of tracked airplanes. We will now delve into this idea in 
greater detail and express it in the π-Calculus. First, we simplify the idea a little bit, and reduce the problem to 
one airplane and two switching satellites. The satellites are connected with a central station, which we call 
„Center“. This station handles the switching of the two different satellites. That means it can tell one satellite 
to stop the tracking of the airplane and the other to take over the tracking (gain, lose). The satellite itself can 
have a connection to the airplane. It can track the plane, and tell it to switch to the other satellite (track, 
switch). The satellite can be in two states, one state in which it tracks a plane and a second idle state in which 
it waits for instruction. 

This system may look like the one in Fig.5 

We now want the system to change, in a way that the plane is now tracked by the second satellite. See Fig. 6 

It is necessary to describe the different agents and show that these agents behave like the system we want. We 
define four processes which we call:

                                                  IdleSat,   Sat,  Center   and   Airplane.

We are now able to construct parametric agents which can be written down. Their parameters show what their 
current connections are. 

Sat is able to track the airplane as long as it possesses the link to the airplane. If it is told to lose the airplane it 
sends this information and becomes idle. Note that the old satellite needs to send the „connection to the new 
satellite“ also to the airplane, because the airplane needs this connection. This also means that the connection 
lose has to carry the connection to the new satellite. The process might look like this:
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Sat(track , switch , gain ,lose) :=track . Sat (track , switch , gain , lose)
+  lose(t , s) . switch  t s . IdleSat ( gain , lose)

We now need to define the idle satellite. This process does nothing but waiting the center to tell it to gain an 
airplane.

IdleSat (gain , lose):=gain(t , s) .Sat (t , s , gain , lose)

 Airplane needs to answer the connection track, and has to be able to change the connection it answers to :

Airplane (track , switch) :=track.Airplane(track , switch)+switch( t , s) . Airplane (t , s)

And now to the center. Center possesses both links to the two satellites and knows which satellite momentarily 
tracks the airplane. In our initial configuration the airplane is tracked from satellite 1, that means Center is 
able to tell satellite 1 to lose its connection to the plane. Remember that the connection to satellite 2 has to be 
sent with the Lose signal. Secondly it has to tell satellite 2 to gain the connection. Then Center is able to act 
vice versa. This is modelled by the two recursive definitions below:

Center1 :=lose1 track2 switch2 . gain2 track 2 switch2 .Center 2

Center2 :=lose2track 1 switch1 . gain1 track1 switch1 . Center2

Now we put all these processes in parallel, so that the system looks like this:

(track1, track 2, switch1, switch2, gain1, gain2, lose1, lose2)[ Airplane (track1, switch1)
| Sat( track1, switch1 , gain1, lose1)| IdleSat (gain2, lose2)|Center 1]

We restricted all channels to force communication between the different entities. We now have to show that 
this system is able to perform transitions we want. So the system looks afterwards like this:

(track1, track 2, switch1, switch2, gain1, gain2, lose1, lose2)[ Airplane (track 2, switch2)
| IdleSat (gain1, lose1)| Sat( track2, switch2 , gain2, lose2) |Center2]

Let's take a look at how this works. First center performs the action lose1 track 2 switch2 and synchronizes 
with the input action lose( t , s ) of Sat to a τ-transition. Then Sat makes the output action

lose1 track 2 switch2 and synchronizes with the input action of Airplane. Both these transitions are derived 
from the Communication and Restriction Reaction Rule.  The system then looks like this :

(track1, track 2, switch1, switch2, gain1, gain2, lose1, lose2)[ Airplane (track 2, switch2)
| IdleSat (gain1, lose1)| IdleSat (gain2, lose2) | gain2 track 2 switch2 .Center2]

Now the System performs the action gain2 track2 switch2 which synchronizes with

 IdleSat (gain2, lose2)=gain (t , s) . Sat (t , s , gain2, lose2)

After these three τ-transitions the system looks like we want:

(track1, track 2, switch1, switch2, gain1, gain2, lose1, lose2)[ Airplane (track 2, switch2)
| IdleSat (gain1, lose1)| Sat( track2, switch2 , gain2, lose2) |Center2]
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5   Strong Bisimulation – Equity of  Processes

We now proceed to show an idea for an equity in the relation between processes. We could simply use the 
identity or the structural congruence, but both these ideas of equity are „too strong“. Consider the following 
example:

P :=a( x) .0 and Q :=a (x ).0+a (x ).0

These two processes are neither identical nor structurally congruent, but we want them to be equivalent, 
because obviously both processes can only perform the same transitions. That is why we will use 
„bisimulation“.
First, here is the definition of  bisimulation developed for CCS:
 
Let P and Q be processes.  A binary relation S is a bisimulation if P S Q implies the two following attributes:

a)   If P →α P ' then for some Q'  holds that Q →αQ' and P ' S Q '

b)   If Q→α Q' then for some P' it holds that P →α P ' and P ' S Q '

This means that either P and Q have to be able to simulate every transition the other process can perform, and 
the resulting processes must be again in the bisimulation.
For the π-Calculus we have to be a bit more careful because in an input action a process can receive a name, 
that it uses later on. That means it is not sufficient that the processes P' and Q' continue to simulate. We have to 
claim the simulation for all instantiations of the names that can be received. So we have to slightly alter the 
definition of bisimulation for the π-calculus :

Let P and Q be processes. A binary relation S is a bisimulation if P S Q implies following :

a) If P →α P ' and α is a τ or output action, then for some Q' it holds that Q →α Q' and 
P ' S Q '

b) If Q →αQ' and α is a τ or output action, then for some P' it holds that P →α P ' and   
P ' S Q '

c) If P →x( y) P ' and y∉n(P )∪n(Q) , then for some Q' holds that Q→x ( y)Q ' and 
∀w P ' {w/y} S Q ' {w/y}

d)           If Q →x ( y)Q ' and y∉n(P )∪n(Q)  , then for some P' holds that P →x( y) P ' and 
∀w : P ' {w/y} S Q ' {w/y}

 This definition is not explicit, since many different relations preserve these conditions, for example, the 
identity preserves them. Thus we search the largest bisimulation. The relation ∼ , strong bisimilarity, is 
defined as follows:

For two processes P and Q, P ∼ Q⇔∃S with P S Q and S is abisimulation

But first we show that Structural Congruence is a bisimulation. 
Therefore we have to show that  the five different laws are valid.
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1.   Reordering the terms of a sum

It is enough to show that a bisimulation S exists such that P S Q with P :=P1+P2 and Q :=P2+P1 .  If we 
can switch the terms in a binary sum, we can part the sum with arity n into different binary sums, and 
inductively change the terms, and so reorder the n terms in an arbitrary way.
To show that this bisimulation exists we present one and show that it is a bisimulation

S :={(P1+P2, P2+P1)| P1, P2 processes}∪ Id

Obviously,  Id is a bisimulation, so we only need to show that the expansion does not change this fact. 

If P1+P2 →
α P1 ' then P1 →

α P1 ' (reaction rule sum_l)
⇒the following transition is also possible P2+P1 →

α P1 ' and P1 ' S P1 ' because(P1 ' ,P1 ')∈ Id

If P1+P2 →
α P2 ' then P2 →

α P2 ' (reaction rule sum_r)
⇒the following transition is also possible P2+P1 →

α P2 ' and P2 ' S P2 ' because(P2 ' , P2 ' )∈Id

The other direction and the case that α is an input transition are shown the same way, therefore S is a 
bisimulation.  □

2.   Change of bound names

P∼P {z/x}   if z∉n (P)

This means that P is strong bisimilar to a process with renamed bound names, if the bound name is substituted 
with a fresh name. The proof is done by structural induction over the depth of P.

3.   Parallel Operator

a) Commutativity 

    The bisimulation for P1 | P2∼P2 | P1 is given by

    S :={(P1 | P2 , P2 | P1) | P1, P2 processes}∪Id

    To prove this we have to consider three different cases. From the two parallel processes we can infer three 
different transitions:

 
1. P1 | P2 →

α P1 ' | P2

2. P1 | P2 →
α P1 | P2 '

3. P1 | P2 →
τ P1 ' | P2 '

case 1:
If P1 | P2 →α P1 ' |P2 , then P1 →

α P1 ' (reaction rule Par_l)
  ⇒   P2 | P1 →

α P2 | P1 ' (reactionrule Par_r)and (P1 ' | P2, P2 | P1 ' )∈S
case 2:

If P1 | P2 →
α P1 | P2 ' , then P2 →

α P2 ' (reaction rule Par_r)
  ⇒   P2 | P1 →

α P2 ' | P1(reactionrule Par_l)and (P1 ' | P2, P2 | P1 ' )∈S
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case 3: 
If P1 | P2 →

τ P1 ' | P2 ' , then P1 →
x( y) P1 ' andQ → x̄ z Q '

or P1 →
x̄ z P1 ' and Q→x ( y)Q ' (reactionrule Communication )

  ⇒   P2 | P1 →
τ P2 ' | P1 ' (reaction rule Communication)and (P1 ' | P2 ' , P2 ' | P1 ' )∈S

The two cases that α is an input transition are similar to the two that are already proven. 
Therefore S is a bisimulation. □

b) Associativity

  S :={((P1 | P2)| P3, P1 |( P2 | P3)) , P1, P2, P3 processes }

    To show this we would have to show it for about 30 different cases. The proof is very similar to the one 
shown above. One of the cases will be shown here, the other cases are very similar. 

If (P1 | P2)| P3 →
τ( P1 ' | P2 ' )| P3 ,and P1 →

x̄ y P1 ' and P2 →
x(z ) P2 ' Therefore holds:

(P1 | P2)| P3 →
τ( P1 ' | P2 ' ) | P3(Communication)

(P1 | P2)| P3 →
τ( P1 ' | P2 ' ) | P3(Par_l)

Now we have to be able to infer the transition If P1 |(P2 | P3)→
τ P1 ' |(P2 ' | P3) . To do so, we have to use the 

Par_r rule for the process (P2 | P3) . To be able to infer the transition, we need to ensure that z∉ fn (P3) . To 
do so we can rename z in P2 to a fresh name, because z is bound in P2 . Therefore, the transition 
(P2 | P3)→

x( z ')(P2 ' | P3) is possible, so we can also infer P1 |( P2 | P3)→
τ P1 ' | (P2 ' | P3) and 

(((P1 ' | P2 ' )| P3) , P1 ' |(P2 ' | P3)) is again in the bisimulation. □

c)  Neutral Element

   S :={(P | 0, P) , P process }∪Id

     This is obviously a bisimulation, because Id is a bisimulation and 0 is not able to form any transition. □

4.   Restriction

a) Commutativity

    The commutativity of (x )( y) P∼( y)( x) P is proved by showing that

   S={((x )( y)P ,( y )(x )P ) , P process }

     is a bisimulation. □
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b)  Scope change

    (x )(P |Q)∼(x )P |Q    if x∉ fn(Q)

      We need to show that the relation S={((x )( P |Q) ,( x) P |Q)| P ,Q processes , x∉ fn(Q)}∪ Id
      There are 16 different cases  to be shown. This is done similar to the proofs above. One case will be 

shown here.
(x )(P |Q)→τ( x)( P ' |Q ' )and P → ā y P ' and Q →a ( y)Q ' where a≠ xbecause x∉ fn(P )

(x )P → ā y P ' because a≠x   ⇒(x )P |Q →τ( x) P ' |Q '
and (( x)(P ' |Q ') ,(x ) P ' |Q ' )∈S

  □

c)  Vanishing

    The statement (x )0∼0 is easy to prove, because neither (x)0 nor 0 is able to perform any transition, so 
the trivial bisimulation is S={(0,( x)0)} . □

Strong bisimilarity is not preserved by substituiton, as the following example shows:

x̄ u.0 | y (v) .0  ∼ x̄ u.y (v) .0+ y (v) . x̄ u.0

This bisimulation is only preserved if we demand x and y to be unequal. If we substitue y by x we get the 
following equatation:

x̄ u.0 | x (v) .0  ∼ x̄ u.x (v) .0+ x (v ). x̄ u.0
This relation is not true since the left side can form a τ-transition, by synchronizing over the port x, which 
the right side can not. 

Strong bisimilarity is also not preserved by the input prefix. This results from the fact that it is not 
preserved by substituiton. Because after an input action there will be a substituiton.

x̄ u.0 | y (v) .0  ∼ x̄ u.y (v) .0+ y (v) . x̄ u.0

The same example as above.  But now consider

z ( y ) .( x̄ u.0 | y (v) .0)  ∼ z ( y) .( x̄ u.y (v) .0+ y(v ). x̄ u.0)

The strong bisimilarity claims that for an input action  the two processes continue to simulate for every 
instantiation. But if y is instantiated to x the same problem appears as in the substituiton problem above. 
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Early Bisimulation

The definition of strong bisimulation from above is only one possibility how bisimulation can be defined. You 
can switch the quantifiers in the condition:

If P →x( y) P ' and y∉n(P )∪n(Q) then for some Q' holds that Q →x ( y)Q ' and 
∀w P ' {w/y} S Q ' {w/y}

and it's inverse (the two conditions c) and d) are changed) to

If P →x( y) P ' and y∉n(P )∪n(Q)  then for all w there is a Q' and it holds that Q→x ( y)Q '  
P ' {w/y} S Q ' {w/y}

The resulting bisimulation is strictly weaker than the one defined above. For the original strong bisimulation, 
we want one derivative of the other process to be able to simulate the first one for all instantiations of w. For 
the second definition, we only claim that for every instantiation of w there exists a derivative that simulates it. 
We do not demand them to be the same. The simulating transitions may be different for different instantiatons 
of w.
Thus you can think, that the instantiation of w happens before the transition and the process can afterwards 
„decide“ which transition to choose. That is why this bisimulation is called „early bisimulation“.
To show an example where two processes can bisimulate each other with early bisimulation but not with 
strong bisimulation consider this:

P :=x (w). R+ x (w) .0

Q := x (w) . R+x (w).0+x (w). [w= p] . R

Now Q →x (w)[w=p ]. R . P has to simulate this transition. With the early bisimulation, P „knows“ whether 
w=p and can choose x (w). R or x (w).0 . But with the strong bisimulation P is not able to make a 
transition such that P' is able to simulate [w=p ]. R for every instantiation of w since [w=p ]. R can act like 
0 or like R dependent of w. 
 

6.   Conclusion

The presented π-Calculus is a base for many different programming languages or base for more specific 
process calculi. Because of its simplicity there are a lot of different expansions and usages. For example the 
spi-calculus, which is a calculus for cryptographic protocols. It expands the syntax of the π-Calculus with 
syntax for encrypting and decrypting [4]. Another example is the Probabilistic Applied Pi-Calculus which 
expand the original calculus with operators which can decide nondeterministic and probabilistic for different 
choices[5]. Even in molecular biology the π-Calculus is base for a calculus, named k-calculus, used for 
describing cellular communication[6]  and modelling cell networks[7 ]. 
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