
Concurrency Theory Seminar Paper:

Undecidability of bisimilarity for Petri Nets and

some related problems

Tobias Salzmann
Saarland University

January 30, 2012

1 Disclaimer

This seminar paper for the seminar ”Concurrency Theory” is strongly based
on the paper ”Undecidability of bisimilarity for Petri nets and some related
problems” by Petr Jančar from 1995. Most of the content (excluding some minor
explanations and examples) belongs to Petr Jančar or it’s respective owners.
This paper is basically a reformulation of parts of the original paper, allthough
there are some one-to-one citations, for the sake of readability.

2 Introduction

Petri nets are a common model for concurrent systems. They allow a very natu-
ral and intuitive description of components and the way they interact with each
other. While the rules to describe them are relatively simple, evaluating those
can quickly lead to a (finitely branching) transition system with a infinite state
space and a complicated structure.
Comparing transition systems in terms of their behaviour is an important task
in the field of model checking and automatic verification. One of the most im-
portant equivalences in this context is bisimulation equivalence or bisimilarity,
the ability for two systems to simulate each other step by step. Finding bisimi-
lar states in a transition system may make difficult tasks easier, which is crucial
when dealing with infinite state spaces.
It seems to be a natural question to ask whether bisimilarity on Petri nets is
decidable. This (as well as the equivalent problem of decidability of language
equivalence) has to be answered with no, for which we provide a proof in this
paper. The proof itself is a reduction from the halting problem on counter ma-
chines introduced by Minsky [Minsky]. The first thing we will try is to construct
a net which simulates a counter machine in a natural way which would make the
proof almost trivial but isn’t possible, because the branching commands in the
counter machine can not be encoded properly using only ordinary Petri nets.
We solve this by adding certain structures to the net to compensate this.
For the actual reduction, we use the so called bisimulation game, a mechanic

1

that allows us to establish bisimilarity or non-bisimilarity by giving perfect win-
ning strategies for one of the two involved players.
The second main result of the paper is another reduction from the halting prob-
lem with a similar proof technique. We prove the undecidability of the reacha-
bility set containment problem by constructing nets for a given counter machine.
This time we will add a subnet which encodes the so far taken branches in the
original counter machine, enforcing language (non)-equivalence according to the
halting-behaviour of the counter machine.
In the last part of the paper, we will have a quick look at two decidable sub-
classes of (pairs of) Petri nets. We will also see a construction which encodes
the bisimulation game on two given nets in a so called game net, making the
rules simpler as before.

3 Definitions and basic propositions

Definition N = N0 is the set of nonnegative integers.

Definition A∗ :=
⋃∞
k=0A

k is the set of finite sequences of elements in A.

3.1 Nets

Definition A net is a tuple Σ = (P, T, F) and a labelled net is a tuple Σ =
(P, T, F, L) where :

• P is a finite set of places.

• T is a finite set of transitions disjoint to P .

• F : (P × T) ∪ (T × P)→ N0 is a flow function.
If F (x, y) = m > 0 we say there’s an arc with multiplicity m between x
and y.

• L : T → A is a labelling, where A is a countable set of actions.
We will sometimes use L on finite sequences of actions meaning the func-
tion L∗ : T ∗ → A∗, L∗(t1 . . . tn) := L(t1) . . . L(tn)

Definition A marking of a labelled net Σ = (P,T,F,L) is a function M : P →
N0.
If M(p) = k we speak of k tokens being on place p.

The set of markings M (Σ) is isomorphic to N|P |0 .

Definition A (labelled) Petri net is a pair (Σ,M0) where Σ = (P,T,F) (Σ =
(P,T,F,L)) is a (labelled) net and M0 is an initial marking.

A transition t ∈ T is enabled at a marking M , denoted as M
t−→Σ, if for every

place p ∈ P the following holds:

M(p) ≥ F (p, t)

A transition t ∈ T enabled at M may fire, yielding a marking M ′ given by:

M ′(p) = M(p)− F (p, t) + F (t, p)

2

We denote this as M
t−→Σ M ′.

For a ∈ A, M
a−→Σ means that there is a t ∈ T with L(t) = a such that M

t−→Σ

and M
a−→Σ M ′ means that there is a t ∈ T with L(t) = a such that M

t−→Σ M ′.

For σ = σ1 . . . σn ∈ T ∗ ∪A∗,M
σ−→Σ M ′ means that there are M0, . . . ,Mn such

that M = M0,Mn = M ′, and ∀i ∈ {1, . . . , n},Mi−1
σi−→Σ Mi.

This is an example of a labelled Petri net modeling a refillable beverage vending
machine selling beer for 2 and sprite for 1 coins. Places are drawn as circles,
transitions as squares with their labelling inside, arcs as arrows labelled with
their multiplicity (omitted if =1).
The initial marking is represented by the dots=tokens in the places. At the
beginning, the transitions refill sprite, refill beer and put coin are enabled.

sprite tank

coin input

beer tank

moneybox output

f

refill sprite
5

f

refill beer

5

c

choose sprite

c

choose beer

2

2

p

put coin

g

grab beverage

r

return coin

The next image shows the Petri net after firing put coin twice. Now, choose beer
is also enabled.

sprite tank

coin input

beer tank

moneybox output

f

refill sprite
5

f

refill beer

5

c

choose sprite

c

choose beer

2

2

p

put coin

g

grab beverage

r

return coin

After firing choose beer, it is in the following state:

3

sprite tank

coin input

beer tank

moneybox output

f

refill sprite
5

f

refill beer

5

c

choose sprite

c

choose beer

2

2

p

put coin

g

grab beverage

r

return coin

Definition For a Petri net N = (Σ,M0), the reachability set of N is defined as

R(N) = {M |M0
σ−→Σ M,σ ∈ T ∗}.

Definition For a Petri net N = ((P, T, F, L),M0), a place p ∈ P is unbound if
for every n ∈ N there is a marking M ∈ R(N) such that M(p) > n.

Definition For a labelled Petri net N = (Σ,M0), the language or set of traces

of N is defined as L (N) = {w ∈ A∗|M0
w−→Σ M,M ∈M (Σ)}.

Two labelled Petri nets N1, N2 are language equivalent if L (N1) = L (N2).

3.2 Bisimulations and Bisimilarity

Definition For two labelled nets Σ1 = (P1, T1, F1, L1), Σ2 = (P2, T2, F2, L2) a
relation R ⊂M (Σ1)×M (Σ2) is a bisimulation, if for every (M1,M2) ∈ R and
every a ∈ A the following conditions hold:

1. For every M ′1 ∈M (Σ1) s.t. M1
a−→Σ M ′1

there is M ′2 ∈M (Σ2) s.t. M2
a−→Σ M ′2 and (M ′1,M

′
2) ∈ R

2. For every M ′2 ∈M (Σ2) s.t. M2
a−→Σ M ′2

there is M ′1 ∈M (Σ1) s.t. M1
a−→Σ M ′1 and (M ′1,M

′
2) ∈ R

Definition For two labelled nets Σ1 = (P1, T1, F1, L1), Σ2 = (P2, T2, F2, L2),
two markings M1 ∈M (Σ1), M2 ∈M (Σ2) are bisimilar or bisimulation equiv-
alent, denoted as M1 'M2, if there is a bisimulation containing (M1,M2).

Two labelled Petri nets N1 = (Σ1,M0,1), N2 = (Σ2,M0,2) are bisimilar or
bisimulation equivalent, denoted as N1 ' N2, if M0,1 'M0,2.

Definition A bisimulation game consists of two players, which we call attacker
and defender and two labelled Petri nets N1 and N2. Each round is divided in
two turns:

1. The attacker chooses one of the nets and fires an enabled transition t ,
changing the marking appropriately.

2. The defender fires a transition t′ in the other net with the same label as
t, changing the marking too.

4

This is repeated until one of the players isn’t able to fire a transition anymore.
If the defender eventually isn’t able to defend an attack, the attacker wins the
game.
If the attacker eventually isn’t able to attack anymore or the game goes on
infinitely, the defender wins the game.

Proposition 3.1 N1, N2 are bisimilar if and only if the defender has a defend-
ing strategy in a bisimulation game.

Proof Let’s assume N1 and N2 are in related states of a bisimulation R prior
to a round of a bisimulation game. If the attacker fires a transition t in one net,
yielding a state M , the defender is, according to the definition of bisimulation
relations, able to fire a equally labelled transition t′ in the other net, yielding a
marking M ′, such that M R M ′.
If N1, N2 are bisimilar, there is such a relation R containing their initial mark-
ings, hence the defender is always able to respond to the attacker’s turn using
the pairs in R as a strategy.
The other way round, if the defender has a defending strategy, the union of all
pairs of states occuring in successfully defended games (using this strategy) yield
a bisimulation between N1 and N2. �

Proposition 3.2 If N1, N2 are bisimilar then they are language equivalent.

Proof Considering a bisimulation game on two bisimilar Petri nets where the
attacker fires a sequence of actions (word) in one net, the defender is always
able to fire the same sequence (word) in the other net. �

3.3 Counter Machines, Decidability and the Halting Prob-
lem

Definition A counter machine C with nonnegative counters c1, . . . , cm is a
program of the form:

1 : COMM1; 2 : COMM2; . . . ;n : COMMn

where COMMn is a HALT -command and COMM1, . . . , COMMn−1 are of one
of the two following types:

1. cj + +; goto k

2. if cj = 0 then goto k1 (else cj −−; goto k2)

where k, k1, k2 ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
The set of branching states is defined as BS := {i|COMMi is of type 2}.
Note that for m ≥ 2 , counter machines are equally powerful as turing machines.
(They can simulate each other by using fancy constructions and encodings)

Definition A decision problem P is decidable if there is a counter machine
(turing machine, algorithm) M such that given an instance I of P as an input,
M is guaranteed to halt and decide whether or not P is true for I.

Definition The halting problem on counter machines is described by:
Instance: a counter machine C with m counters and n commands , an Input I .
Question: Does C eventually reach state n and terminate?

5

Proposition 3.3 The halting problem on counter machines is undecidable.

Proof (sketch)
Since counter machines are as powerful as turing machines, there is a universal
counter machine U which, given any counter machine M and input I (encoded
in a suitable way), can simulate the behaviour of M on I.
We now modify U to U ′ by forcing it into a diverging trap state if the simulated
machine leaves value 1 on its first counter, otherwise to halt.
Assume there is a counter machine MU ′ which decides the halting problem for
U ′ and a given input I, w.l.o.g leaving value 1 on a counter iff its instance
evaluates to true.
If we now run U ′ on MU ′ and any input I, by construction U ′ halts iff U ′ does
not halt, which is a contradiction.
So the halting problem for counter machines is undecidable. �

More on counter machines can be found in [Minsky].

Definition The basic net ΣC = (P, T, F) for a counter machine C with m
counters and n commands is constructed in the following way:

1. Set P := {s1, s2, . . . , sn, c1, c2, . . . , cm}

2. For every i such that COMMi = cj + +; goto k:
Add transition ti to T as well as arcs (si, ti), (ti, sk), (ti, cj) to F .

si

sk

cjti

6

3. For every i such that COMMi = if cj = 0 then goto k1 (else cj −−; goto
k2):
Add transitions tZi and tNZi to T as well as arcs (si, t

Z
i), (tZi , sk1) for the

cj = 0 branch and (si, t
NZ
i), (tNZi , sk2), (cj , t

NZ
i) for the non-zero alterna-

tive.

si

sk1 sk2

cjtNZitZi

If we now, given input values x1, . . . , xm, place one token in s1 and x1, . . . , xm
tokens in c1, . . . , cm, the resulting Petri net seems to be a pretty good modeling
for C, because in every reachable state, there will be exactly one token among
s1, . . . , sm representing the program counter of C.
The only major problem with the construction is that for i ∈ BS the tZi tran-
sitions may fire independently of the state of the corresponding counter, while
COMMi requires it to be 0. Due to the fact that we may specify lower, but
not upper bounds on the number of tokens on places as requirements to fire
transitions, this can’t be fixed using (this type of) Petri nets. In order to prove
our desired main results, we will use a trick called dc-transitions:

Definition Adding a dc-transition (dc meaning ”definitely cheating”) to a net
ΣC for i ∈ BS and COMMi = if cj = 0 then goto k1 (else cj − −; goto k2)
means adding a transition t and arcs (si, t), (t, sk1), (t, cj), (cj , t).

si

sk1

cjt

7

4 Undecidability of Bisimilarity on Petri Nets

Theorem 4.1 For a counter machine C with m counters and n commands
and input values x1 . . . xm, there are labelled Petri nets N1, N2 such that the
following conditions are equivalent:

(a) C does not halt on x1 . . . xm

(b) N1, N2 are bisimilar

(c) L (N1) = L (N2)

(d) L (N1) ⊆ L (N2)

Proof N1, N2 are constructed as follows:

1. Start with ΣC .

2. Add places p, p′.

3. For each i ∈ BS, add two dc-transitions t′i, t
′′
i

and arcs (p, t′i), (t
′
i, p
′), (p′, t′′i), (t′′i , p).

4. Add transition tF and arcs (sn, tF), (p, tF).

5. Choose L in a way such that L(tF) 6= L(ti) for each i ∈ {1, ..., n− 1} and
L(tZi) = L(t′i) = L(t′′i) for each i ∈ BS.

6. Put 1 token in s1 and x1 . . . xm tokens in c1 . . . cm.

7. To get N1, put 1 token in p.
To get N2, put 1 token in p′.

Since we proved ((b) ⇒ (c)) earlier and ((c) ⇒ (d)) is trivial, we will show
((a) ⇒ (b)) and ((d) ⇒ (a)), using the earlier mentioned in the bisimulation
game on N1, N2 in order to prove the theorem:

((d)⇒ (a)) :
In order to show this, we will prove the equivalent implication (¬(a)⇒ ¬(d)) by
providing a winning strategy for the attacker, if C halts on x1 . . . xm .
The strategy consists of firing the ”legal” sequence σ = σi1σi2 . . . σiq tF in N1

corresponding to the execution of C on x1 . . . xm, which leaves the defender no
choices. He has to fire the same sequence of transitions in N2, especially he will
never be able to fire a dc-transition. As a result, the attacker will eventually not
be able to fire tF , lacking a token in p.
So, L(σ) ∈ L (N1) but L(σ) /∈ L (N2).

((a)⇒ (b)) :
To prove this, we will give a defending strategy for the defender, if C does not
halt on x1 . . . xm:

• If the attacker makes a ”legal” move, there is no choice and the defender
has to make the same move.

8

• If the attacker makes an ”illegal” move, meaning there is a token on si,
COMMi = if cj = 0 then goto k1 (else cj −−; goto k2), there is at least
one token on cj and the attacker fires tZi , t′i or t′i in one of the nets.
If the attacker has not cheated before, there are four cases:

– tZi in N1: respond by taking t′′i in N2

– tZi in N2: respond by taking t′i in N1

– t′i in N1: respond by taking tZi in N2

– t′′i in N2: respond by taking tZi in N1

If the attacker cheated before, respond by taking the same transition in the
other net.

As long as the attacking player only makes legal moves, the defender is able to
follow the same sequence of transitions, since the ”critical” transition tF will
not be reached. So the attacker has to cheat at least once. As the defender
responds according to the strategy, the resulting marking of both nets will be
identical after the first round where the attacker cheated. From now on, the
defender may simply copy the moves of the attacker to win. �

4.1 Example

The counter machine with 3 commands and 1 counter C :=

1 : if c1 = 0 then goto 3 else (c1 −−; goto 2);
2 : c1 + +; goto 1;
3 : HALT;

only halts for the initial input x1 = 0.

Consider A = {+,−, O, F}.
It’s basic net ΣC for C is constructed as follows:

s3

s1

s2

c1

tZ1

tNZ1

t2

If we now add places p, p′, transitions t′1, t
′′
1 , tF and the arcs according to the

construction, we get the following Petri nets:

9

s3

s1

s2

p p′

x1 c1

F

tF

OtZ1

−

tNZ1

+t2

O

t′1

O

t′′1

(The red token is only placed on N1, the blue only on N2, the others on both
nets)
Now let’s have a look at two different values for x1:

x1 = 0:
The described winning strategy for the attacker is:
Fire tZ1 in N1. The defender has to respond by firing tZ1
Fire tF N1. The defender has no transitions to fire, the attacker wins.
=⇒ The Petri nets are not bisimilar and the word OF is in the language of N1,
but not in the language of N2

x1 = 1:
The described defending strategy is:
As long as the attacker fires tNZ1 or t2, do the same.
As soon as he fires tZ1 , t

′
1, t
′′
1 the first time, react by firing the transition which

equalizes the markings.
Copy every move of the attacker from now on, the defender wins.
=⇒ The Petri nets are bisimilar and language equivalent.

10

Theorem 4.2 Bisimilarity and language equivalence on Petri nets are unde-
cidable.

Proof There is a counter machine C and an input I, such that the halting
problem is undecidable.
The previous theorem describes a reduction of the halting problem on counter
machines to both the bisimilarity- and the language-equivalence problem for petri
nets, hence they are both undecidable. �

Remark Since there is a relevant counter machine C with only two counters,
even for the subclass of labelled Petri nets with only 2 unbounded places, the
two problems are undecidable.

5 Undecidability of language containment for Petri
nets

Definition For a counter machine C with n commands, m counters c1, . . . , cm
and an input x = x1, . . . , xm, the Petri net NC,x is constructed as follows:

1. Begin with ΣC .

2. For each i ∈ BS, add a dc-transition t′i. We call the so far constructed
transitions counted.

3. Add places COD, HELP, SC, r1, r2.

4. For each transition t, add arcs (r1, t), (t, r2), (t, SC).

5. For each tNZi , add transition (tNZi ,COD).

6. Add transitions u1, u2, u3 and arcs (COD,u1), (r2,u1), (u1,r2), (r2,u2),
(u2,r1), (HELP,r3), (r1,u3), (u1,r3), as well as (u1,HELP) with multiplic-
ity 2.

HELP

COD
r1

r2

SCti, t
′
i or tZi

u2

u1

2

u3

11

HELP

COD
r1

r2

SCtNZi

u2

u1

2

u3

7. Put x1, . . . , xm tokens in c1, . . . , cm, 1 token in s1 and 1 token in r1.

Consider a ”legal” sequence t1t2 . . . tk of transitions corresponding to a finite
prefix of the steps of the computation of C. It is not possible to fire t in
NC,x. What we can do is firing a sequence σ = t1σ1t2σ2 . . . tkσk, where for each
j ∈ {1, . . . , k}, σi is of the form (u1)aju2(u3)bj for some aj , bj .
Assume, before firing tj , there are p tokens on COD and 0 tokens on HELP:

• If tj = tNZi , firing tj(u1)n+1u2(u3)n+1 will result in 2(p + 1) tokens in
COD.

• Else, firing tj(u1)nu2(u3)n will result in 2p tokens in COD.

In both cases this is the maximal possible increasing of the number of tokens in
COD.
If n is even, and we look at it as a binary number, these steps can be seen as
setting the last digit to 1, iff tj = tNZi and afterwards shifting the number by
1 to the left. Doing this repeatedly, firing the whole maximal sequence with k
counted transitions will encode the steps taken by C in COD, while SC keeps
track of the number of counted transitions taken and will have k tokens on it at
the end. We can now state the relevant property of such a maximized sequence:

Lemma 5.1 Given a maximal sequence of the form σ = t1σ1t2σ2 . . . tkσk where
exactly t1, t2, . . . , tk are counted transitions, if M is the marking reached by firing
σ in NC,x, M ′ is not reachable by firing any other sequence. Furthermore, for
any firable sequence σ′ 6= σ containing k counted transitions and yielding a
marking M ′, M ′(COD) < M(COD).

A proof for this can be found in the original paper.

12

Theorem 5.2 Given a counter machine C with n commands and m counters,
as well as an input x, there are two Petri nets N1, N2 such that the following
statements are equivalent:

(a) C does not halt on x.

(b) R(N1) = R(N2)

(c) R(N1) ⊆ R(N2)

Proof We construct N1, N2 as follows:

1. Begin with NC,x.

2. Add places p, p′

3. For each dc-transition t′i, add arcs (p, t′i), (t
′
i, p
′)

4. To get N2, add a transition ta, arc (tn, ta) and put a token in p.

5. To get N1, take N2, add a transition tb and arcs (tn, tb), (p, tb), (tb, p
′).

Since ((b) ⇒ (c)) is trivial, we will show ((a) ⇒ (b)) and ((c) ⇒ (a)) to prove
the theorem:

((c)⇒ (a)):
We prove (¬(a) ⇒ ¬(c)) by showing that, if C halts after k + 1 computation
steps , there is a marking M that is reachable in N1, but not in N2:
Consider the maximized sequence σ = t1σ1t2σ2 . . . tkσk mentioned earlier. Fir-
ing it in N1 followed by tb yields a marking M such that M ′(COD) = u,
M ′(SC) = k, M ′(sn) = 0, M ′(p′) = 1. The only possibility for N2 to reach
a marking with u tokens on COD and k tokens on SC is by firing σ, which
especially means, dc-transitions can’t be taken. The only way to get rid of the
token in sn is to fire ta, which results in no enabled transitions and no token in
p′. So M is not reachable in N2.

((a)⇒ (c)):
Let x be an input for C, such that C does not halt on x:
The only difference between N1 and N2 is the existence of tb in N1, hence it will
suffice to show that, given a sequence π = π1π2 . . . πj−1tbπj+1 . . . πl of transi-
tions in N1, the reached marking Mπ is also reachable in N2. Since tb requires
tokens in and also removes tokens out of sn, p, π has the following properties:

1. tb occurs exactly once in π.

2. No counted transitions may occur in πj+1 . . . πl.

3. No dc-transitions may occur in π.

Since C does not halt, π has to contain a cheating transition tZi prior to tb. If
we now replace tZi with t′i and tb with ta, the resulting sequence will reach the
same marking Mπ and be enabled in N2. �

13

5.1 Example

ΣC

p

p′

s3

HELP

COD
r1

r2

SC
s1

s2

x1 c1

ta tb

tNZ1

tZ1

t′1

t2

u2

u1

2

u3

This is the construction of N1, N2 for the simple counter machine C from the
last example (The arcs from ΣC are left out). The (red marked) transition tb is
only part of N1.

Let’s look at different values for x1:

x1 = 0:
By firing tZ1 u2tb, a marking M where M(p′) = 1 is reachable in N1. M is not
reachable in N2 . Note that this example does not show the necessity of the
encoding subnet, because no nonzero-branch is taken in the original program.

x1 = 1:
The only interesting markings are the ones reachable in N1 with a word includ-

14

ing tb. Since C does not halt and using t′1 would disable tb, all relevant paths
which include tb also include tZ1 somewhere before. By substituting tZ1 by t′1
and tb by ta, we get a word which reaches the same marking and is also enabled
in N2.

Theorem 5.3 The reachability set containment problem on Petri nets is unde-
cidable.

Proof There is a counter machine C and a input I, such that the halting problem
is undecidable. The previous theorem reduces the halting problem for counter
machines to the reachability set containment problem for Petri nets, so the latter
is undecidable. �

Remark Since there is a relevant counter machine with only two counters, and
besides from their respective places, only SC, COD and HELP are possibly
unbounded in N1, N2, the result even holds for the subclass of petri nets with 5
unbounded places.

6 Decidability results

6.1 Deterministic nets

Definition A labelled Petri net N = (Σ,M0) is deterministic, if for every

marking M ∈ R(M0) and action a , |{M ′|M a−→Σ M ′}| ≤ 1.

Definition A labelled Petri net N = (Σ,M0) is deterministic up to bisimilarity,

if for every marking M ∈ R(M0), action a, and M ′,M ′′ ∈ {M ′|M a−→Σ M ′},
M ′ 'M ′′.

We begin with a construction which encodes the bisimulation game of two Petri
nets in a so called game net:

Definition For two labelled Petri nets N1 = (P1, T1, F1, L1,M0,1) and N2 =
(P2, T2, F2, L2,M0,2), such that P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, the game net N is
constructed as follows:

1. For each transition t of each net, add a copy transition t′ and also copy
the relevant arcs. We refer to the so far constructed nets as N ′1 =
(P1, T

′
1, F

′
1, L1,M0,1), N ′2 = (P2, T

′
2, F

′
2, L2,M0,2).

2. Take the union of N ′1 and N ′2 and add a place s with 1 token on it.

3. For each action a ∈ A and each pair of original transitions (t1, t2) ∈
P1 × P2 with L(t1) = L(t2) = a, add two places p1

a, p
2
a and the arcs

(s, t1), (t1, p
1
a), (p1

a, t
′
2), (t′2, s) as well as (s, t2), (t2, p

2
a), (p2

a, t
′
1), (t′1, s).

15

s

p1
a p2

a

at1 a t2at′1 a t′2

A round of the bisimulation game on such a game net has much simpler rules:
The attacker fires a enabled transition labelled with an action a from one of the
original nets, moving the token from s to p1

a or p2
a. The defender fires an enabled

transition, which by construction belonged to the other net, moving the token
back in s. If eventually a state is reached, where there is a token in p1

a or p2
a,

and no transition is enabled, the attacker wins, in each other case, the defender
wins.

Theorem 6.1 The bisimulation problem is decidable on the class of pairs of
Petri nets, where one of them is deterministic up to bisimilarity.

Proof If N1, N2 are labelled Petri nets, N2 is deterministic up to bisimilarity,
and we are playing the bisimulation game on the game net N , the attacker may
always choose transitions from N1, leaving the defender no choice but to fire
one of the transitions leading into one of some bisimilar states. Because of that,
bisimilarity on the original nets is equivalent to non-reachability of a marking
with no enabled transitions, where a token is in p1

a or p2
a in the game net N .

[Jančar] shows that there is an algorithm deciding this question. �

Remark Note that any one-to-one labelled Petri net is deterministic and any
deterministic labelled Petri net is deterministic up to bisimilarity, so the theorem
holds for them too.

6.2 Semilinear bisimulations

We may assume that any transition in a Petri net requires at least one token in
a place to be fired (If not, we add a dummy place d with a token on it, as well
as arcs (d, t), (t, d) for each transition t where this does not hold). Furthermore,
for two Petri nets, we may take the union of the underlying nets and extend
their initial markings by 0 for the missing places to get two new Petri nets with
the same behaviour as their original versions. Hence it is no restriction only to
consider pairs of Petri nets with the same underlying net.
We will also use the notion of semi-decidability. A problem is semi-decidable,
if there is an algorithm which halts if the question to the given instance of
the problem has to be answered with yes. It is known that, if both a problem
and it’s negated problem (in our case bisimilarity and non-bisimilarity) are

16

semidecidable, the problem itself is decidable.
Labelled Petri nets are a special case of finitely branching transition systems,
for which non-bisimilarity is indeed semi-decidable (see [Christensen]). So we
only have to show that, for our desired subclass of Petri nets, bisimilarity is
semidecidable.
What’s still missing for the promised proof is the notion of semilinear sets:

Definition We call a set B ⊂ Nk0 linear, if there are a basis b ∈ Nk0 and periods
c1, c2, . . . , cn ∈ Nk0 such that B = {b+ x1c1 + x2c2 + · · ·+ xncn|x1, x2, . . . , xn ∈
N0}

Definition A set is semilinear set if it is a finite union of linear sets.
A relation on Nn0 is semilinear if it is semilinear as a subset of N2n

0 .

Theorem 6.2 For the class of pairs of labelled Petri nets where bisimilarity
implies the existence of a semilinear bisimulation relating the initial markings,
bisimilarity is decidable.

Proof We need to show that bisimilarity is semidecidable:
Linear sets can be identified by a matrix (b, c1, c2, . . . , cn) ∈ Nk×n0 , or as a vektor
v ∈ Nkn+1

0 ⊂ N∗0 (+1 to keep track of the size of the matrix). This means that
a finite union of linear sets can be identified with elements of (N∗0)∗, which is
countable (enumerations can be constructed e.g. by using prime factorizations).
Let B0, B1, B2 . . . be a enumeration of all semilinear sets. We now can give an
algorithmic way semi-deciding the bisimilarity problem:

Given N1 = (Σ,M1), N2 = (Σ,M2):
for i = 0, 1, . . . do

if (Bi is a bisimulation and M1 B M2) (*)
return (”N1, N2 are bisimilar”);

Verification of (*) is decidable, as for the case of a semilinear Bi the defining
conditions for bisimilarity can be transformed into formulas of the Presburger
arithmethic, which is decidable (see [Oppen]); �

7 Conclusion

In the original paper it is emphasized that Petri nets are very closely related
to vector addition systems, meaning that most of the results can easily be ex-
tended to them. It is also mentioned that the bisimilarity results concerning
deterministic nets can easily be extended to weak bisimilarity by modifying the
game net. The game net itself reduces the bisimilarity problem (for the relevant
subclass of Petri Nets) to the reachability problem. This can also be done the
other way round, as it is showed in Lemma 4.3, so the two problems are equally
hard.
If you are interested in these and other related topics, i reccomend reading the
original paper, as many of them are mentioned and referenced there.
Besides from the results of the paper, P. Jančar provides some elegant proof
techniques regarding undecidability results for Petri nets. The bisimulation
game is a beautiful mechanic to establish existence or non-existence of a bisim-
ulation. As it is not the most formally defined method, he also shows a way

17

to reduce the complexity of the game rules, namely the game net. A lot of the
proof schemes can be adopted or generalized to prove other facts concerning
decidability or bisimulations.

References

[Minsky] M. Minsky, Computation: Finite and Infinite Machines (Prentice
Hall, Englewood Cliffs, NJ, 1967).

[Christensen] S. Christensen, Y. Hirshfeld, F Moller, Bisimulation equivalence
is decidable for all basic parallel processes, in: Proc. CONCUR’93, Lecture
Notes in Computer Science, Vol. 715 (Springer, Berlin, 1992) 143-157.

[Jančar] P. Jančar, Decidability of a temporal logic problem for Petri nets,
Theoret. Comput. Sci. 74 (1990) 71-93.

[Oppen] D.C. Oppen, A 222pn

upper bound on the complexity of Presburger
Arithmetic, J. Comput. System Sci. 16 (1978) 323-332

18

