
Event Structures
Seminar ”Concurrency Theory WS 2011/2012”

Markus Hoffmann

Event Structures are a mathematical model that describes computational
processes and their progress. In their general version, they were formalized
by Glynn Winskel [W87] to establish a connection between Petri nets and
concepts from domain theory. Event structures can be considered a model of
true concurrency, unlike interleaving models.

1 Introduction

The basic idea of event structures is to establish a causal dependency between a set of
events. There are few restrictions on the nature of these events. Some examples for
events are transitions of an automaton, synchronization actions of processes or observable
behaviour of an electric circuit. A computational process can thus be described by the
set of events it generates as the computation goes on. A corresponding event structure
expresses how these events are related to each other.

Interleaving models express concurrency indirectly by giving all possible orders in which
concurrent events can occur. Event structures do not impose a causal dependency on
concurrent events at all, there is no order on the occurrence of concurrent events. Since the
causal dependency of events is expressed in a direct way, concurrent events are unrelated.
This is why event structures can be considered a model of true concurrency.

This paper will give an overview of event structures, their formal definitions and prop-
erties. It should give an insight on the roles of non-determinism and concurrency as well
as how progress of a computational process can be modelled with event structures.

2 Event Structures

In this section - following [W89] - three event structure definitions will be introduced suc-
cessively: elementary event structures, prime event structures, and general event struc-
tures. It will be shown why modelling non-determinism and concurrency make the more
general model necessary.

2.1 Elementary Event Structures

Elementary event structures were introduced in an early attempt of Nielsen, Plotkin and
Winskel [NPW79] at combining the models of Petri nets and Scott domains. A partial
order on a set of events is used to model their causal dependency.

Definition 1. A partial order ≤ on a set S is a binary relation that satisfies the following
properties:

1

• reflexivity ∀a ∈ S . a ≤ a

• transitivity ∀a, b, c ∈ S . a ≤ b ∧ b ≤ c⇒ a ≤ c

• antisymmetry ∀a, b ∈ S . a ≤ b ∧ b ≤ a⇒ a = b

The tuple (S,≤) is called a partially ordered set.

Definition 2 ([NPW79]). An elementary event structure (E,≤) is a partially ordered
set where

• E is a set of events and

• ≤ is the causal dependency relation, a partial order on E.

Intuition: For two events e1, e2 ∈ E the fact that e1 ≤ e2 means that the occurrence of e2
depends on e1 having occurred before.

In the following examples an intuitive graphical representation of transition systems will
be used to model their corresponding event structures.

Definition 3. A transition system (S, I, A,→) is a tuple where

• S is a set of states,

• I ⊆ S is the set of initial states,

• A is a set of actions and

• →⊆ S ×A× S is the transition relation.

For s, t ∈ S, a ∈ A the expression s
a−→ t means that there is a transition from s to t by

taking the action a.

To model a transition system with an event structure, one can use the transitions as
observable events.

Example 1. A transition system and a possible representation as an elementary event
structure.

S = {S0, S1, S2, S3, S4} I = {S0} A = {a, b, c, d}.

S0 S1
a

S2b

S4
d

S3
c

This transition system can be represented by an elementary even structure (E,≤) where

E = {a, b, c, d} and ≤= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, d), (a, c), (b, c)}.

Example 2. If an action occurs multiple times in a transition system it will also have
multiple corresponding events. Events can have different labels even if the transitions they
correspond to have identical labels. In this example the action a occurs multiple times
which results in it being modelled by multiple events. The transition system

S0 S1
a S2

b S3
a

2

can be represented by an elementary event structure (E,≤) where

E = {a1, a2, b} and ≤= {(a1, a1), (a2, a2), (b, b), (a1, b), (b, a2), (a1, a2)}.

Example 3. Transition systems containing loops require unfolding to translate them to
event structures. The transition system

S Ta
b

can be unfolded to

S0 T0
a1 S1 T1

a2b1 S2
b2

and an elementary event structure (E,≤) representing it is given by

E = {a1, b1, a2, b2, ...} and ≤= {(a1, b1), (b1, a2), (a2, b2), ...} ∪ {(e, e)|e ∈ E}.

In this example the set of events as well as the causal dependency relation are infinite.

The behaviour in these two examples results from the fact that events need to have a
fixed place and time in a computational process to establish a causal dependency between
them. Properly transforming a model to a corresponding event structure representation
might not always be straightforward.

Definition 4. Let (E,≤) be an elementary event structure. A subset X ⊆ E is left-
closed if for all events e1, e2 ∈ E

e2 ∈ X ∧ e1 ≤ e2 ⇒ e1 ∈ X.

For any event e in it, a left-closed set of events must also contain all events that e causally
depends on.

Definition 5. Let (E,≤) and be an elementary event structure. For any e ∈ E we define
the set dee := {e′ | e′ ≤ e}. Intuitively, dee is the set of events that must have occurred
for event e to happen.

Proposition 1. Let (E,≤) be an elementary event structure. Then dee is left-closed for
any e ∈ E.

Proof. Let e′ ∈ dee, then e′ ≤ e by definition of dee. For any e′′ ≤ e′ it follows from the
transitivity of ≤ that e′′ ≤ e and hence e′′ ∈ dee.

Example 4. Since an elementary event structure is just defined as a partial order, one
can view (N,≤) as an event structure. For any n ∈ N, the set dne is the set of numbers
up to n with 0 being the smallest element.

Example 5. (R+\{0},≤) is an event structure. For any r ∈ R+\{0}, the set dre is infinite
and only has an infimum, not a minimum.

The above example illustrates that the definition of an elementary event structure as a
partial order allows that an event may require an infinite set of events to have occurred
before. This of course contradicts the intuitive understanding of a computational process
and leads to the following definition.

Definition 6. An event structure (E,≤) satisfies the axiom of finite causes if and only
if for all e ∈ E the set dee is finite.

3

Limitations of elementary event structures Non-determinism and branching in a com-
putational process introduce conflicting behaviours that cannot be properly modelled by
an elementary event structure. The following example will illustrate one of their problems.

Example 6. This type of conflict can already be observed in Example 1.

TS

S0 S1
a

S2b

S3

c

In this transition system the actions b and c are conflicting in the sense that they can
not appear in a single execution of a computational process together. They exclude each
other and hence are unrelated. An elementary event structure E = (E,≤) representing
this transition system is given by

E = {a, b, c} ≤= {(a, b), (a, c), (a, a), (b, b), (c, c)}

But two unrelated events could also be concurrent. For two transition systems TS1 and
TS2, let their parallel composition TS1 ‖{a} TS2 synchronizes on action a. This intuitively
means transitions labelled a can only be taken by TS1 and TS2 at the same time, while
the other transitions are not restricted in this way.

TS1 TS2

S0 S1
a S2

b T0 T1
a T2

c

The event structure representation of the parallel composition TS1 ‖{a} TS2 is isomor-
phic to E , the event representation of TS. There is no way to distinguish those two reasons
for events being unrelated with elementary event structures. To overcome this problem
Winskel defines prime event structures. Another limitation, which applies to elementary
and prime event structures, is shown in Examples 9 and 10.

2.2 Prime Event Structures

Prime even structures as defined in [W89] extend elementary event structures with a way
to express conflicting events. By adding a relation that identifies conflicting events, prime
event structures can distinguish between conflicting and concurrent events.

Definition 7 ([W89]). A prime event structure is a tuple (E,≤,#) consisting of

• a set of events E

• the causal dependency relation ≤

• the conflict relation #, a binary relation on E × E

that satisfies the following properties :

• (E,≤) is a partial order

• Axiom of finite causes, i.e. dee is finite for any e ∈ E

• # is irreflexive and symmetric

4

• Consistency of # , i.e. ∀e1, e2, e3 ∈ E . e1#e2 ∧ e2 ≤ e3 ⇒ e1#e3

For any e1, e2 ∈ E the fact that e1#e2 means that the events e1 and e2 are in conflict
and cannot appear in the same computational history. The consistency of # ensures that
events depending on an event e are in conflict with the events that e is in conflict with.

The conflict relation enables the distinction between concurrency and conflict, which is
not possible with elementary event structures. Conflicting events are unrelated by ≤ and
related by # while concurrent events are unrelated by both ≤ and #. The consistency of
ensures that the distinction between conflict and concurrency does properly propagate
to all events depending on conflicting events.

Example 7. A corresponding prime event structure (E,≤,#) for the transition system
in Example 6 is given by

E = {a, b, c} , ≤= {(a, b), (a, c), (a, a), (b, b), (c, c)} and # = {(b, c), (c, b)}.

Example 8. This example shows how concurrent processes with a synchronization action
can be modelled with prime event structures. It shows two transition systems TS1 and
TS2. Their parallel composition TS1 ‖{b} TS2 synchronizes on action b, which means
transitions labelled b can only be taken by TS1 and TS2 at the same time while the other
transitions are not restricted in this way.

TS1

TS2

S0 S1
a1 S2

b S3
c1

T0 T1
a2 T3

b
T3

c2

A prime event structure representing the parallel composition TS1 ‖{b} TS2 is as follows:

E = {a1, a2, b, c1, c2} , # = ∅ and

≤= {(a1, b), (a2, b), (b, c1), (b, c2), (a1, c1), (a2, c2), (a1, c2), (a2, c1)} ∪ {(e, e) | e ∈ E}.

Note that the pair a1 and a2 as well as the pair c1 and c2 are unrelated and not in conflict.
There is no order required for them since it does matter which one happens first. They
are concurrent. The synchronization on event b only requires that both events a1 and a2
happen before events c1 and c2 happen. This example illustrates how event structures are
a model of true of concurrency where interleaving is not required.

To model computational progress with event structures, Winskel defines in [W89] the
configurations of a prime event structure.

Definition 8. A configuration of a prime event structure (E,≤,#) is a subset X ⊆ E
such that

• X is conflict-free : (X ×X) ∩# = ∅ and

• X is left-closed.

5

Intuitively, a configuration can be thought of as the computational history of a single run
of a process up to a certain point. It cannot contain conflicting events and it has to contain
all the events that lead to the current computational state.

Proposition 2. For any e ∈ E the set dee is a configuration.

Proof. The left-closedness of dee was shown in Proposition 1. It remains to show the
conflict-freedom. Let e′, e′′ ∈ dee, e′ 6= e′′ and assume e′#e′′. Since e′′ ∈ dee implies
e′′ ≤ e, by consistency of # we have

e′#e′′ ∧ e′′ ≤ e ⇒ e′#e

and by symmetry of # also e#e′. Since e′ ∈ dee implies e′ ≤ e using the consistency of #
yields

e#e′ ∧ e′ ≤ e ⇒ e#e .

This is a contradiction to the irreflexivity of #.

Limitations of prime event structures Prime event structures can model the type of
conflict in Example 6. The partial order that they are based on still causes problems in
the case of an event which has no unique ”predecessor” but can be ”enabled” by any event
in a set of events. The following examples will illustrate the problem.

Example 9. In this example there is a non-deterministic choice between event a and event
b, a and b are in conflict. For c to happen it is only required that either a has happened
or b has happened. There is no specific requirement for a, so a ≤ c does not hold. But
there is no specific requirement for b either, so b ≤ c does not hold either.

S0 S1
a
b

S2
c

Since a and b are in conflict, a possible solution is to unfold the non-deterministic behaviour
and to rename events.

S0

S1,aa

S1,b

b

S2,a
ca

S2,b
cb

Leaving out symmetry of # and reflexivity of ≤, the resulting prime event structure is
given by:

E = {a, b, ca, cb}
a#b ca#cb a#cb b#ca

a ≤ ca b ≤ cb
Example 10. This example taken from [W87] shows an electric circuit with two open
switches that can turn on a light.

6

Representing this as a set of events yields E = {S1, S2, L} where S1 is ”switch one is
closed”, S2 is ”switch two is closed” and L is ”the light turns on”. S1 and S2 are obviously
not conflicting, but still neither S1 ≤ L nor S2 ≤ L.

The behaviour shown in these two examples can be modelled with the general event
structures defined in the next section.

2.3 Event Structures - A more general approach

Winskel introduced a more general version of event structures in [W87]. His goals were
to overcome the problems with events that are not enabled in a unique manner as well as
simplifying constructions on event structures. The causal dependency relation, a partial
order, is replaced by an enabling relation . This enabling relation relates an event e to a
set of events that enables e. The binary conflict relation is replaced by the consistency
predicate to provide a more general model of conflict. The consistency predicate contains
all conflict-free finite subsets of a set of events.

Definition 9 ([W87]). A event structure is a tuple (E,Con,`) consisting of

• a set of events E,

• the consistency predicate Con ⊆ 2E , the set of conflict-free finite subsets of E, and

• the enabling relation `⊆ Con× E

which satisfies the following properties

• consistency of Con : ∀X,Y ⊆ E .X ∈ Con ∧ Y ⊆ X ⇒ Y ∈ Con and

• ∀e ∈ E.∀X,Y ⊆ E .X ` e∧X ⊆ Y ∈ Con ⇒ Y ` e , that is, if X enables e so does
any conflict-free superset Y of X.

Note that Con is always non-empty since ∅ and {e} for e ∈ E are conflict-free and
hence ∅ ∈ Con and ∀e ∈ E.{e} ∈ Con. The requirement that all sets in Con are finite
is the general event structure counterpart to the axiom of finite causes for prime event
structures. One can define a consistency predicate Con from a binary conflict relation # :

Con = {X ⊆finite E | ∀e1, e2 ∈ X.(e1, e2) 6∈ #}.

Intuitively X ` e means that the events of X enable event e. While X needs to be conflict-
free, X doesn’t need to be a minimal set enabling e, it just needs to contain a subset of
events that enables e.

Example 11. A general event structure representation E = (E,Con,`) for the circuit in
Example 10 is given by :

E = {S1, S2, L}

Con = {∅, {S1}, {S2}, {L}, {S1, L}, {S2, L}, {S1, S2}, {S1, S2, L}}

`: ∅ ` S1 ∅ ` S2 {S1} ` L {S2} ` L {S1, S2} ` L

For simplicity, only a subset of the enabling relation is given. For any X ` e, any conflict
free superset Y ⊇ X also enables e.

Example 12. This example shows a transition system which has two conflicting branches

S1
b−→ S2 and S1

d−→ S4
e−→ S2.

7

S0 S1a
S2

b

S4

d S3c
e

A general event structure (E,Con,`) representing this transition system is given by :

E = {a, b, c, d, e}

Con = { ∅, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {c, d}, {c, e}, {d, e},
{a, b, c}, {a, c, d}, {a, c, e}, {a, d, e}, {a, c, d, e} }

` : ∅ ` a , {a} ` b , {a} ` d , {a, d} ` e , {a, b} ` c , {a, d, e} ` c
Again, for simplicity, only a subset of the enabling relation is given. For any X ` e, any

conflict free superset Y ⊇ X also enables e.

Definition 10. A configuration of an event structure (E,Con,`) is a subset C ⊆ E
that satisfies the following properties

• C is consistent, all finite subsets of C are conflict-free : ∀X ⊆finite C.X ∈ Con

• C is secured : ∀e ∈ C.∃e1, ..., en ∈ C.en = e ∧ ∀1 ≤ i ≤ n.{e1, ..., ei−1} ` ei
The secured-ness property means that for any event e in a configuration, the configura-

tion has as subsets a sequence of configurations ∅ , {e1} ... {e1, .., en}, called a securing for
e in C, such that one can build a ”chain of enablings” [W89] that enables e just from ∅.

∅ ` e1 , {e1} ` e2, ..., {e0, ..., en−1} ` en = e

A configuration of an event structure can be understood as the history of a computation
up to a certain computation state. This history can of course not contain conflicting
events, which is why consistency is a requirement in the definition of a configuration. The
secured-ness property ensures that it a chain of enablings without any conflicts.

Definition 11. For a general event structure E = (E,Con,≤), Winskel denotes the set
of all configurations of E as F(E).

Example 13. The complete set of configurations of the event structure in Example 12 is

{∅ , {a} , {a, b} , {a, b, c} , {a, d} , {a, d, e} , {a, c, d, e}}.

Example 14. The configurations of the circuit of Examples 10,11 are given by

{∅ , {S1} , {S2} , {S1, S2} , {S1, L} , {S1, L} , {S1, S2, L}}.

A partial order on configurations as computational progress Subset inclusion can be
used as a partial order on the set of configurations F((E,Con,`)) of an event struc-
ture. This partial order on configurations can be understood as a model of computational
progress of a process. A configuration C1 being a subset of another configuration C2

means that the state of computation in C2 can be reached from the state of computation
in C1. C1 is an earlier state of computation for C2 and C2 is a possible future state of
computation of C1. The computation starts in ∅.
Example 15. For the configurations in Example 13, this yields

∅ ⊆ {a} ⊆ {a, b} ⊆ {a, b} and

∅ ⊆ {a} ⊆ {a, d} ⊆ {a, d, e} ⊆ {a, c, d, e}.
From {a} on, the configurations are not related any more by subset inclusion since the
computations take a different branch.

8

2.4 Stable event structures

Stable event structures are subset of general event structures. They describe processes
whose events are enabled in a unique way inside a single computational history. More
precisely: If an event is enabled in several ways then those are conflicting. This notion of
stable event structures allows branching as a reason for a non-unique enabling but not a
”parallel” cause like the two switches in the electric circuit example.

Definition 12. An event structure (E,Con,`) is a stable event structure if it satisfies
the axiom of stability

∀X,Y ∈ Con, e ∈ E . X ` e ∧ Y ` e ∧X ∪ Y ∪ {e} ∈ Con ⇒ X ∩ Y ` e.

If sets of events X and Y both enable event e, and their union including e is still conflict-
free, then X and Y contain a common set of events that enables e. This implies that in a
configuration of a stable event structure each event is enabled in a unique way.

When checking if an event structure is stable it is helpful to consider the structure of
its set of configurations. If the axiom of stability is not satisfied this will be witnessed by
two configurations because a least set enabling an event will always be a configuration.

Example 16. The configurations of the transition system in Examples 12 and 13 have
the form

{} {a}

{a,b}

{a,d}

{a,b,c}

{a,d,e} {a,d,e,c}

The two configurations of interest are {a, b} and {a, d, e} which both enable c. The event
structure is stable because {a, b}∪{a, d, e}∪{c} 6∈ Con. Hence it is not required that{a, b}∩
{a, d, e} = {a} enables c.

Example 17. The configurations of the circuit in Examples 10,11, and 14 have the form

{}

{S1}

{S2}

{S1,S2}

{S1,L}

{S2,L}

{S1,S2,L}

The configurations of interest in this example are {S1} and {S2} which both enable L. The
event structure is not stable because {S1} ∪ {S2} ∪ {L} ∈ Con yet {S1} ∩ {S2} = ∅ 6` L.

One can define a partial order on the events of a configuration of a stable event structure.

Definition 13. Let E = (E,Con,`) be a stable event structure, let C ∈ F(E) be a
configuration of E . For e1, e2 ∈ C define ≤C by

e1 ≤C e2 ⇔ ∀B ∈ F(E) . e2 ∈ B ∧B ⊆ C ⇒ e1 ∈ B

The relation ≤C imposes an order of causal dependency on the events of each configuration
of a stable event structure. This is similar to the partial order that elementary and prime
event structures impose on their sets of events.

9

Proposition 3. Let E = (E,Con,`) be a stable event structure, let C ∈ F(E) be a
configuration of E . Then ≤C is a partial order on C.

Proof. For ≤C to be a partial order on C it needs to be reflexive, transitive and antisym-
metric.

• reflexivity : ∀e ∈ C.e ≤C e is obviously valid.

• transitivity : Let e1, e2, e3 ∈ C, let e1 ≤C e2 and e2 ≤C e3. The subset inclusion ⊆
on the set of configurations F(E) is a partial order. Then by the transitivity of ⊆ it
follows that e1 ≤C e3 and hence the transitivity of ≤C .

• antisymmetry : Let e, e′ ∈ C and e ≤C e′ and e′ ≤C e. The definition of ≤C

now implies that for any configuration C ′ ∈ F(E) such that C ′ ⊆ C, we have
e ∈ C ′ ⇔ e′ ∈ C ′.
Since C is a configuration, there exists a securing e1, ..., en, e with n ≥ 0 for e in C
such that B := {e1, ..., en} ` e, where e 6∈ B. B is a configuration since B ⊆ C is
conflict-free by the consistency of Con and B is secured by the chain of enabling it
gives for e.

Assuming e 6= e′, then either e′ ∈ B, which implies that B is a configuration that does
contain e′ but not e, or e′ 6∈ B, which implies that B′ := B ∪ {e} is a configuration
that contains e but not e′.

In both cases this contradicts above implication that every configuration C ′ ⊆ C
either contains both e and e′ or none of them. Hence e = e′ which implies that ≤C

is antisymmetric.

Relation between stable and prime event structures As the reader might have noticed
there is strong resemblance between stable event structures and prime event structures.
They are similar in the sense that they require a unique enabling of an event.

There exists a variety of slightly different event structure definitions already in the
references for this paper. For example one can define prime event structures with a
consistency predicate instead of a binary conflict relation as (E,Con,≤). In the same
way one can define general event structures with the less general binary conflict relation
as (E,#,`).

By doing one or the other it is possible to transform a stable event structure into a prime
event structure. This requires ”unfolding” non-determinism and relabelling events as seen
in Example 9. This obviously changes the set of events and the set of configurations.
Winskel managed to prove though that the configurations of a stable event structures and
those of its corresponding prime event structure are isomorphic [W87]. While this is not as
as good as equivalence of stable event structures and prime event structures, it still allowed
him to perform many constructions on stable instead of prime event structures. While
possible, he considered most constructions ”clumsy” and too complicated when applied to
prime event structures. Such constructions include parallel composition, non-deterministic
sum and restriction of event structures.

10

3 Constructions on event structures

To model communicating processes with event structures, several constructions on event
structures are required. The two most important are the sum of event structures, which
expresses branching and the product of event structures which models concurrency. To
define those, one needs a way to express synchronisation between events of event struc-
tures. Because of the types of processes and events usually represented by other models
of concurrency, Winskel restricts all these constructions on stable event structures.

3.1 Synchronisation by morphisms on event structures

In many models of communicating processes, the calculus of communicating systems(CCS)
for example, one distinguishes between the internal actions of process and actions that are
synchronized between several (two in the case of CCS) processes. To express this behaviour
with event structures, one has to distinguish between internal events of an event structure
and ”events of synchronization” [W87], i.e. events that are synchronized with events of
another event structure. Winskel introduces a morphism on stable event structures to
express this synchronization.

Since usually not all events of a process are synchronized with events of another process,
such a morphism is usually only a partial function. It is only defined for the subset of
events that is synchronized between processes.

Notation In the following, let E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) be stable
event structures. e ∈ E0 denotes an event of E0 and X ⊆ E0 a set of events of E0.

• The expression Θ : E0 →∗ E1 means that Θ is a partial function mapping events
of E0 to events of E1. The function Θ is only defined for a subset of E0, i.e. those
events of E0 which are synchronization events and have a corresponding event in E1.

• For a set X ⊆ E0 the set ΘX := {Θ(e) | e ∈ E0 ∧Θ(e) is defined } is the image of X
under Θ, i.e. the set of events of E1 that X is mapped to. Since Θ is only a partial
function the cardinality of |ΘX| can be less than |X| or possibly ΘX = ∅.

• For the sake of clarity, in the following definitions the occurrence of Θ(e) for an event
e in any statement implies that Θ is indeed defined for event e.

Morphisms between event structures are structure-preserving mappings from one event
structure to another. They should preserve important properties of event structures.

Definition 14 ([W87]). Let E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) be stable event
structures. A partially synchronous morphism from E0 to E1 is a partial function
Θ : E0 →∗ E1 on events which satisfies the following properties

(1) Θ preserves consistency: X ∈ Con0 ⇒ ΘX ∈ Con1

(2) Θ preserves stability: {e, e′} ∈ Con0 ∧Θ(e) = Θ(e′)⇒ e = e′

(3) Θ preserves the enabling relation: X `0 e ∧Θ(e) is defined ⇒ ΘX `1 Θ(e)

Property (1) ensures that the image ΘX of a consistent set X of events under a syn-
chronous morphism Θ is consistent. Property (2) means only conflicting events of E0 can
be mapped to the same event in E1. Property (3) ensures that for a set X enabling an

11

event e in E0, the image Θ(X) enables the event Θ(e) that e is mapped to in E1, provided
that Θ(e) is defined. If Θ(e) is not defined, meaning that e is no synchronization event,
then there exists no corresponding enabling in E1.

Θ is called a synchronous morphism if it is a total function, i.e. if Θ is defined for all
events e ∈ E0. Then all events of event structure E0 are synchronization events. Note that
E1 can have still unsynchronized events since Θ being a global function does not imply
that it is surjective.

Proposition 4. Morphisms on stable event structures preserve configurations. For stable
event structures E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) and a partially synchronous
morphism Θ : E0 →∗ E1 it holds that

C ∈ F(E0) ⇒ (ΘC ∈ F(E1) ∧ ∀e, e′ ∈ C.Θ(e) = Θ(e′)⇒ e = e′)

Proof. Let C ∈ F(E0) be a configuration. First, one needs to prove that ΘC is a configu-
ration, i.e. that ΘC is consistent and secured.

• Since C is a configuration, C is consistent, i.e. all finite subsets X of C are conflict-
free: ∀X ⊆finite C.X ∈ Con0. Hence by property (1) in Definition 14 it follows that
∀X ⊆finite C .ΘX ∈ Con1. Since every finite subset of Y ⊆ ΘC is the image of a
finite subset X ⊆ C, i.e. ∀Y ⊆finite ΘC . ∃X ⊆finite C . Y = ΘX, this implies that
all finite subsets of ΘC are conflict-free: ∀Y ⊆finite ΘC.Y ∈ Con1. Hence ΘC is
consistent, too.

• For any event e′ ∈ ΘC there is a corresponding event e ∈ C such that e′ = Θ(e). Be-
cause C is a configuration, there exists a securing X := {e1, ..., en, e} with n ≥
0 for every e in C such that ∅ ` e1 , {e1} ` e2 , ... , {e1, ..., en} ` e. Then by
property (3) in Definition 14, Θ(X) is a securing for Θ(e) with ∅ ` e1 , Θ{e1} `
e2 , ... , Θ{e1, ..., en} ` e, provided that Θ is defined all ei. If this is not the case, the
corresponding step in the chain of enablings is just skipped. This implies that ΘC
is secured.

It remains to show the second part of the implication. Since C is a configuration
{e, e′} ∈ Con0 for any e, e′ ∈ C. Then by property (2) in Definition 14 it follows that
Θ(e) = Θ(e′)⇒ e = e′.

3.2 Product and sum of stable event structures

With these morphisms on event structures Winskel defines the product and sum of event
structures. The morphisms provide the semantics for the constructions by a mapping be-
tween the construction and its components. These mappings are (partially) synchronous
morphisms synchronizing events of the construction with corresponding events of the com-
ponents.

Notation For the product of event structures we introduce a special unsynchronized
event ∗. For a function Θ and an event e the expression Θ(e) = ∗ means that the function
Θ is not defined for the the event e because e has no corresponding synchronized event.
Occurrence of ∗ in an event tuple (∗, e) or (e, ∗) will indicate that (∗, e) or (e, ∗) is only
synchronized with one of the component systems, while tuples of type (e0, e1) indicate
synchronization with both components.

12

Definition 15. Let E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) be stable event struc-
tures. The partially synchronous product E0 × E1 := (E,Con,`) where E,Con and
` are defined as follows:

• The set of events E is given by

E = {(e0, ∗) | e0 ∈ E0} ∪ {(∗, e1) | e1 ∈ E1} ∪ {(e0, e1) | e0 ∈ E0 ∧ e1 ∈ E1}

• The projections π0 and π1 are morphisms from E0 × E1 to E0 and E1 such that

– π0 : E →∗ E0 is defined by π0(e0, e1) = e0 and

– π1 : E →∗ E1 is defined by π1(e0, e1) = e1

• The consistency predicate is given by : X ∈ Con if and only if

– X ⊆finite E and

– π0X ∈ Con0 ∧ π1X ∈ Con1 and

– ∀e, e′ ∈ X .π0(e) = π0(e
′) ∨ π1(e) = π1(e

′)⇒ e = e′

• The enabling relation ` is given by : X ` e if and only if

– X ∈ Con, e ∈ E and

– π0(e) is defined ⇒ π0X `0 π0(e) and

– π1(e) is defined ⇒ π1X `0 π1(e)

The morphisms π1, π2 are partially synchronous morphisms mapping events of the prod-
uct event structure to its components. Events of type (e0, e1) are synchronized with e0
by π0 and with e1 by π1. Events of type (e0, ∗) are only synchronized with e0 by π0 and
events of type (∗, e1) are only synchronized with e1 by π1.

A synchronous product can be defined in a similar way by restricting the set of events
to the synchronized ones {(e0, e1) | e0 ∈ E0 ∧ e1 ∈ E1} and defining consistency predicate
and enabling relation only on this restricted set of events. The projections πi are then
total functions and thus synchronous morphisms.

Example 18. Let E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) be two stable event
structures with events and consistency predicate given by

E0 = {a0, b0} Con0 = 2E0 E1 = {a1, b1} Con1 = 2E1

and enabling relation the least one that contains

∅ `0 a0 {a0} `0 b0 ∅ `1 a1 {a1} `1 b1

Then for the partially synchronous product E0 × E1 = (E,Con,`), the set of events is
given by :

E = {(a0, ∗), (a0, a1), (a0, b1), (b0, ∗), (b0, a1), (b0, b1), (∗, a1), (∗, b1)}

The partially synchronous morphisms π0, π1 are given by the following mappings :

13

a0

(a0 ,*)

 π0

(a0 ,a1)

 π0

(a0 ,b1)

 π0

b0

(b0 ,*)

 π0

(b0 ,a1)

 π0

(b0 ,b1)

 π0

a1

 π1

b1

 π1 π1 π1

(*,a1)

 π1

(*,b1)

 π1

The consistency predicate is Con = 2E and the enabling relation is the least one that
contains

∅ ` (a0, ∗) ∅ ` (∗, a1) ∅ ` (a0, a1)

{(a0, ∗)} ` (b0, ∗) {(a0, a1)} ` (b0, ∗)

{(∗, a1)} ` (∗, b1) {(a0, a1)} ` (∗, b1)

{(a0, a1)} ` (b0, b1) {(a0, ∗), (∗, a1)} ` (b0, b1)

Note that the following enablings are not in ` :

{(a0, ∗)} 6` (∗, b1) {(∗, a1)} 6` (b0, ∗) {(a0, ∗)} 6` (b0, b1) {(∗, a1)} 6` (b0, b1)

This is because π0 is undefined for events of type (∗, e). Hence the image π0{(∗, a1)} = ∅
and ∅ enables only the event a0 in E0. The same argument holds for events of type (e, ∗)
and π1.

Definition 16. Let E0 = (E0, Con0,`0) and E1 = (E1, Con1,`1) be stable event struc-
tures. The sum E0 + E1 of E0 and E1 is the event structure (E,Con,`) where

• the set of events E is the disjoint union of E0 and E1

E = {(0, e0) | e0 ∈ E0} ∪ {(1, e1) | e1 ∈ E1}

• injections (injective morphisms) ı0, ı1 are given by

– ı0 : E0 → E such that ı0(e) = (0, e) and

– ı1 : E1 → E such that ı1(e) = (1, e)

• the consistency predicate includes all sets X such that

– ∃X0 ∈ Con0.X = ı0X0 or

– ∃X1 ∈ Con1.X = ı1X1

• the enabling relation is such that for any X ∈ Con, e ∈ E X ` e if and only if

– ∃X0 ∈ Con0, e0 ∈ E0.X = ı0X0 ∧ e = ı0(e0) ∧X0 `0 e0 or

– ∃X1 ∈ Con1, e1 ∈ E1.X = ı1X1 ∧ e = ı1(e1) ∧X1 `1 e1

The injections ı0, ı1 are synchronous morphisms that map the events of E0, E1 to their
corresponding events in the sum event structure. Note that there are no sets of type
{(0, e0), (1, e1)} in the consistency predicate of the sum event structure since every set
Y ∈ Con is the image of a set X0 ∈ Con0 or X1 ∈ Con1. The sum of event structures
models conflicting branches of a computation.

14

Example 19. Using the event structures E0 and E1 from Example 18 the sum E0 + E1 =
(E,Con,`) is given by the set of events

E = {(0, a0), (0, b0), (1, a1), (1, b1)} ,

the injections

ı0 : a0 7→ (0, a0) , b0 7→ (0, b0) and ı1 : a1 7→ (1, a1) , b1 7→ (1, b1) ,

the consistency predicate

Con = {∅ , {(0, a0)} , {(0, b0)} , {(1, a1)} , {(1, b1)} , {(0, a0), (0, b0)} , {(1, a1), (1, b1)}} ,

and the enabling relation the least one that contains the enablings

∅ ` (0, a0) ∅ ` (1, a1) {(0, a0} ` (0, b0) {(1, a1)} ` (0, b1) .

4 Connection to other concepts

As already mentioned in the abstract, Winskel introduced event structures to establish a
connection between Petri nets and results from domain theory, specifically Scott Domains.
In [W87] he relates event structures to other models of concurrency. These include

• Petri nets. Winskel shows that 1-safe Petri nets, a subset of Petri nets, can be
modelled with event structures. He also shows that prime event structures, which
are a subset of event structures, can be modelled with Petri nets. Both constructions
use occurrence nets, the unfolding of Petri nets, as an intermediate step.

• The CCS and CSP languages. Winskel shows how synchronization between processes
can be expressed by morphisms on stable event structures. By defining the opera-
tions possible in CCS and CSP for event structures, one can give non-interleaving
semantics to CCS and CSP.

5 Conclusion

This paper presents event structures as a mathematical model for concurrent processes.
It is shown why a partial order on events is not enough to model all types of process
behaviour and why the more complex general event structures model is necessary.

Simple examples for event structures and their configurations offer some intuitive insight
about causality in computational processes. Still they already show the difficulties of the
model. The examples in this paper illustrate that compact representations of processes
like transition systems can quickly blow up in size when modelled by event structures.
A single loop already leads to an infinite representation for the simple elementary event
structure model. For the general event structures, consistency predicate and enabling
relation grow quickly as soon as the process being modelled contains any branching.

While event structures provide a way to relate other models of concurrency, the necessary
constructions for general results are far from intuitive and require advanced knowledge in
domain theory.

15

References

[NPW79] Mogens Nielsen, Gordon Plotkin, Glynn Winskel. Petri nets, event structures
and domains. In: Lecture Notes in Computer Science, 1979

[W87] Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships
to other models of concurrency, volume 255 of Lecture Notes in Computer Science,
pages 325 to 392. Springer, 1987.

[W89] Glynn Winskel. An introduction to event structures. In: Proceeding Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
School/Workshop. Springer, 1989

[W09] Glynn Winskel. Events, causality and symmetry. Computer Journal, 54(1): pages
42 to 57, 2009.

16

