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0 Introduction

Today it’s all about mobility. In case of information technologies the most simple mobile entity
we could imagine is moving data. Chunks of information, we share all around the world. Since
the introduction of the World Wide Web in the ’80s this became an elementary thing to our
today’s life. To access these information everywhere we developed laptops, tablets, smartphones,
i.e., mobile computers. Hence, this is the physical part of mobility and therefore called mobile
computing. Let’s consider some situation in which you work on a text document with your
laptop while travelling by a plane. After some time you expect to send a draft of that document
to some colleague at the office. Because of the benefits of mobility you share the editor including
the text file. Hence, you exchange mobile code and data. This would be mobile computation,
i.e., the logical part of mobility. Technically this is possible today, e.g. Java applets. But
the underlying system architectures are still not well understood and therefore in research.
One aspect to consider is the difficulty of administrative domains. That means, nowadays the
internet is not a flat domain. Moreover it is partitioned by firewalls into a huge bundle of
(administrative) domains. Hence, data and of course executable code is not always allowed to
access or leave an arbitrary location, i.e., the firewall blocks this or some code is only running
on a local computer without network access. In the following section we will study a mobility
calculi named Mobile Ambients developed by Luca Cardelli and Andrew D. Gordon [3]. We
will use this calculi to model mobile systems in such a way that mobile computations are self-
contained nested environments consisting of data and live computation [3, p.178]. Since we
expect communication especially when mobile code interacts it should be technically required
that only information of some common type will be shared. Hence, we need type safety [1] which
is described in section 2. Although we are going to describe mobile systems in a formal way, we
are not able to assert easily any runtime behaviour of the total system. For example, assertions
which include a certain behaviour over time. To achieve this we study a modal logic [2] for
mobile ambients to apply some basic model checking. This is covered in section 3.

0.1 Ambients

Mobile computation happens at a bounded and discrete place, the so called ambient. Hence,
that allows us to distinguish between the in- and outside of an ambient. This is important
because we want to move ambients. As an example think about a Java applet (ambient) which
is bounded by a file and stored in a file system on a hard drive of a certain computer (parent
ambient) will be transferred to another computer (top-level ambient) to be executed. This leads
us to the structure of an ambient. Each ambient therefore consists of other subambients which
coincides to the aspect of administrative domains. To enter and leave an ambient some other
ambient needs the capabilities to do so, e.g., needs a password to access a firewall ambient. This
corresponds to the safety aspect of domains. To achieve this an ambient has an unique local
name we can extract its capabilities from. Furthermore it can be used to create and name new
ambients or passed around by interaction. Since we talk about computation each ambient also
consists of agents, i.e., processes, threads, logics which control the behaviour of the surrounding
ambient. Hence, an ambient has the following structure:

Figure 1: General structure of an ambient n where P1, . . . , Pn denote processes and m1, . . . ,mn

are sub-ambients.
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1 Ambient calculi

In this section we will see how to describe mobile systems with the ambient calculi. We begin
with some syntactic notations and continue with their semantics. Since we expect to describe
movement of mobile computation between administrative domains some kind of synchronisation
like locks or authentication mechanism between ambients are our first goal. We shall see that the
calculi is Turing-complete which is done by a direct encoding of Turing-Machines. That gives us
the intuition that the calculi is quite powerful. In the end we look at some basic communication
techniques, i.e., cells, records, channels.

1.1 Syntax

Let’s start with a first look at the concrete syntax of the ambient calculi. There are two ele-
mentary syntactic categories: processes and capabilities. Both form in combination the mobility
and communication primitives of mobile systems as seen in the calculi.

1.1.1 Processes

As long as we talk about mobile systems, we have to capture concurrent processes. A process
therefore describes a behaviour of some part of the total system independently of all other
counterparts. The most simple process is the process 0 which does nothing. Based on this
process we will form new processes as a combination of unary and binary operators as in the
following.

Definition 1.1 (Processes).
P,Q ::=

0 (Inactivity)
P |Q (Composition)
!P (Replication)
(vn)P (Restriction)
M [P ] (Ambient)
M.P (Capability action)
(x).P (Input action)
〈M〉 (Async output action)

1.1.2 Capabilities

Since we organized ambients in a hierarchical manner which can move and therefore change
the structure of the hole system we need basic capabilities like in, out or open to describe the
natural behaviour of crossing named domains, i.e., ambients. The definitions are given below.

Definition 1.2 (Capabilities).
M ::=

inM (Can enter into M)
outM (Can exit out of M)
openM (Can open M)
x (Variable)
n (Name)
ε (Null)
M.M ′ (Path)
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+ When defining a processM [P ] we restrict ourselves to instantiateM by a name or a variable.
Similarly in a capability action M.P , M should be restricted to Null, Path, Entry, Exit and
Open primitives. Otherwise syntactic anomalies may occur.
For simplicity there are some syntactic conventions and abbreviations given:

(vn)P |Q , ((vn)P )|Q
!P |Q , (!P )|Q
M.P |Q , (M.P )|Q
(vn1 . . . nm)P , (vn1) . . . (nm)P
(x).P |Q , ((x).P )|Q
n[] , n[0]
M , M.0

1.2 Semantic

Next we define the operational semantics of the primitives. This is done implicitly by reduction
rules defining a reduction relation →. Since we do not plan to distinguish processes up to their
syntactic structures we enhance the → by a structural congruence ≡, i.e., forming syntactic
equivalence classes. This gives us more freedom when describing mobile systems.

1.2.1 Free names and variables

Before we continue with the semantic we first look at names and variables as used in the definition
of the capabilities in (1.2). Names in the way we use them are identifiers for ambients to extract
the capabilities. But they are not unique. It is possible that some process iteratively produces
ambients but all share the same name. Imagine a web service which is distributed to several web
servers offering the same service. Therefore a name can have many occurrences in a process.
An occurrence of a name n is bounded if it appears inside an expression of the form (vn)P . An
occurrence is free if it is not bounded. As an example consider the process (vn)n[P ]|n[Q]. On
the left hand of the parallel composition n is bounded, on the right hand it is free. Hence, a
name n is free in a process if there is at least one free occurrence of n. Otherwise n is bounded.
The set of free names of a process is inductively defined through the function fn see definition
(1.3).

Definition 1.3 (Free names).
fn(0) , ∅
fn(P |Q) , fn(P ) ∪ fn(Q)
fn(!P ) , fn(P )
fn((vn)P ) , fn(P )− {n}
fn(M [P ]) , fn(M) ∪ fn(P )
fn(M.P ) , fn(M) ∪ fn(P )
fn((x).P ) , fn(P )
fn(〈M〉) , fn(M)
fn(inM) , fn(M)
fn(outM) , fn(M)
fn(openM) , fn(M)
fn(x) , ∅
fn(n) , {n}
fn(ε) , ∅
fn(M.M ′) , fn(M) ∪ fn(M ′)
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We define P{n← m} to denote the substitution of all free occurrences of the name n in process
P with m.
When a process sends out a value and some other process asynchronously receives it they
communicate by value passing. To store the received value we need variables. So far we do
not distinguish variable types which means it is allowed to receive arbitrary values, i.e., names
or capabilities. Variable can also be free or bounded which is defined in the same way as we did
with names despite some changes. First, we replace fn by fv. Next, we change the definitions
of these rules:

fv((vn)P ) , fv(P )
fv((x).P ) , fv(P )− {x}
fv(x) , {x}
fv(n) , ∅

And last we define P{x←M} to denote the substitution of all free occurrences of the variable
x in process P with the capability M .

1.2.2 Structural congruence

As mentioned before we do not plan to distinguish processes up to their syntactic structures.
This is defined by structural congruence as the following.

Definition 1.4 (Structural congruence ≡).
P ≡ P (Struct Relf)
P ≡ Q⇒ Q ≡ P (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)
P ≡ Q⇒ (vn)P ≡ (vn)Q (Struct Res)
P ≡ Q⇒ P |R ≡ Q|R (Struct Par)
P ≡ Q⇒!P ≡!Q (Struct Repl)
P ≡ Q⇒M [P ] ≡M [Q] (Struct Amb)
P ≡ Q⇒M.P ≡M.Q (Struct Action)
P ≡ Q⇒ (x).P ≡ (x).Q (Struct Input)
P |Q ≡ Q|P (Struct Par Comm)
(P |Q)|R ≡ P |(Q|R) (Struct Par Assoc)
!P ≡ P |!P (Struct Repl Par)
(vn)(vm)P ≡ (vm)(vn)P (Struct Res Res)
(vn)(P |Q) ≡ P |(vn)Q if n /∈ fn(P ) (Struct Res Par)
(vn)(m[P ]) ≡ m[(vn)P ] if n 6= m (Struct Res Amb)
P |0 ≡ P (Struct Zero Par)
(vn)0 ≡ 0 (Struct Zero Res)
!0 ≡ 0 (Struct Zero Repl)
ε.P ≡ P (Struct ε)
(M.M ′).P ≡M.M ′.P (Struct .)

Processes then are identified up to renaming of bounded names and variables:

• (vn)P = (vm)P{n← m} if m /∈ fn(P )

• (x).P = (y).P{x← y} if y /∈ fv(P )

1.2.3 Reduction

Now we got all necessary definitions to specify the semantics of the full ambient calculi. We will
do that by a step by step definition of a reduction relation →.
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• Inactivity denoted as 0 defines no reduction rule. Hence, it is a process that does nothing.

• Composition defines the parallel execution of two processes P,R:
P → Q

P |R→ Q|R
(Red Par)

In this case the reduction is defined by reducing P to Q while R starves. Reducing R first
can be achieved by congruence using (Struct Par Comm).

• Replication denoted as !P is identified with !P ≡ P |!P see (1.4)(Struct Repl Par). Hence,
replication does not define any reduction rule but stands for iteration or recursion. It can
be used to generate arbitrary many instances of process P which will then be executed in
parallel denoted by the composition operator.

• Restriction can be used to make a name n in some process P unique. This is done by
denoting (vn)P . Hence, all occurrences of n in (vn)P are bounded (n /∈ fn(P )). The rule
is given by:

P → Q

(vn)P → (vn)Q (Red Res)

• Ambients are denoted as M [P ]. Here, P is a process which controls the ambient. Gener-
ally P is a composition of two or more processes or ambients since we consider a hierarchical
structure. The execution of P still happens even when the ambient moves, that’s a design
decision of the calculi and forms the following rule:

P → Q

M [P ]→M [Q] (Red Amb)

• Capability action denoted as M.P is a process which performs some action M before
continuing with P . We will focus first on the three capabilities inM , outM and openM .

– Entry is used to define a process inm.P which instructs the surrounding ambient n
to enter a sibling ambient m. This is a blocking action. As long as no ambient m
occurs in composition to n the process blocks.

n[inm.P |Q]|m[R]→ m[n[P |Q]|R] (Red In)

– Exit denoted by a process outm.P instructs its surrounding ambient n to leave the
parent ambient m. Similar to (Entry) this blocks if n is a top-level ambient, i.e., not
embedded into an ambient m.

m[n[outm.P |Q]|R]→ n[P |Q]|m[R] (Red Out)

– Open is a capability to dissolve the boundary of an ambient m which appears in
composition to an ambient n. It blocks as usual if m is not present. Since, the
capability is given out by m itself, the operation is well defined despite what Q does.

openm.P |m[Q]→ P |Q (Red Open)

• Communication is provided by a local asynchronous value passing mechanism. Using
the input and output actions this can be described by (x).P |〈M〉. Hence, no long-range
communication is possible but that’s no a pitfall since we will define channels later on, see
section 1.4. The reduction rule is given by:

(x).P |〈M〉 → P{x←M} (Red Comm)

Hence, the capability M is bound to the variable x and all free occurrences of x in P are
replaced by M . To sent multiple values one can build a path of capabilities denoted by
M.M ′. As a path delimiter one can use the empty path ε.
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• Equivalence allows us to use the structural congruence ≡ (see definition (1.4)) when
applying reductions. This implies a rule:

P ′ ≡ P, P → Q

P ′ → Q
(Red ≡ )

Finally to argue over chains of reductions we define the reflexive and transitive closure of the
reduction relation as →∗, i.e., P ≡ P1 → P2 . . . Pn−1 → Pn ≡ Q which is similar to P →∗ Q.

1.3 Expressiveness

So far we only saw how we can build ambient calculi expression in a formal way. Now let’s focus
on the expressiveness power and answer the question: What can we describe?

1.3.1 Locks

Some requirement for concurrent system environments are locks. The ambient calculi offers no
synchronous hand-shake but we can define some acquire and release capabilities using the given
mobility primitives.

acquire n.P , openn.P

release n.P , n[]|P

The acquire capability is the same as open. Release denotes a composition of an new ambient
n with P . To define a hand-shake we need two locks n and m. Hence, processes synchronize in
a cross-over manner:

acquire n.releasem.P |release n.acquirem.Q
Until both locks are acquired and released, P and Q are blocked.

1.3.2 Authentication

In the beginning our motivation was to define a calculi supporting the feature of administrative
domains. A possible scenario might be that an agent leaves its home and comes back. Since we
are restrictive not every agent is allowed to enter. To authorize a certain agent we can use the
restriction primitive to agree a password n. Formally the scenario looks like:

Home[(vn)(openn|Agent[outHome.inHome.n[outAgent.openAgent.P ]])]

There is a top-level ambient Home which contains a sub-ambient Agent, i.e., the agent which
will leave and enter again. First, the agent leaves the home ambient by executing outHome.
After that he decides to come back with inHome. Since we want to continue later on with P
we have to get rid off the agent’s ambient applying outAgent. After that there is a password
authentication. We simulate this by openn. At this moment illegal agents would be detected,
i.e., the processes block. Last but not least there is some garbage work to do by removing the
agent and finally we got the initial process P inside of its home ambient.

Home[(vn)(openn|Agent[outHome.inHome.n[outAgent.openAgent.P ]])]
≡ (vn)Home[openn|Agent[outHome.inHome.n[outAgent.openAgent.P ]]] (Struct Res Amb)
→ (vn)(Home[openn]|Agent[inHome.n[outAgent.openAgent.P ]]) (Red Out)
→ (vn)Home[openn|Agent[n[outAgent.openAgent.P ]]] (Red In)
→ (vn)Home[openn|n[openAgent.P ]|Agent[]] (Red Out)
→ (vn)Home[0|openAgent.P |Agent[]] (Red Open)
→ (vn)Home[0|P |0] (Red Open)
≡ (vn)Home[P ] (Struct Zero Par)
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1.3.3 Objective movement

The ambient calculi as defined supports only subjective moves so far. That means, a process
inside an ambient has the capability to make the ambient move. Now we enhance this framework
by objective moves. These are as usually offered by capabilities.

allow n , !openn
n�[P ] , n[P |allow enter] (n allows move in)
n�[P ] , n[P ]|allow exit (n allows move out)
n��[P ] , n[P |allow enter]|allow exit (n allows both move in and out)
mv inn.P , (vk)k[in n.enter[out k.open k.P ]]
mv out n.P , (vk)k[out n.exit[out k.open k.P ]]

+ enter and exit are arbitrary names.
An objective move of a process P into an ambient n allowing move in then works like this:

mv inn.P |n�[Q]
≡ (vk)(k[in n.enter[out k.open k.P ]]|n[Q|allow enter]) (Def.mv in, Def.n�)
→ (vk)n[k[enter[out k.open k.P ]]|Q|allow enter] (Red In)
→ n[(vk)(k[enter[out k.open k.P ]]|Q|allow enter)] (Res ≡)
→ n[(vk)(k[]|enter[open k.P ]|Q|allow enter)] (Red Out)
→ n[(vk)(k[]|enter[open k.P ]|Q)|allow enter] (Red ≡)
→ n[(vk)(k[]|enter[open k.P ]|Q|open enter)|allow enter] (Red ≡, Def. allow)
→ n[(vk)(k[]|open k.P |Q|0)|allow enter] (Red Open)
→ n[(vk)(0|P |Q|0)|allow enter] (Red Open)
→ n[0|P |Q|0|allow enter] (Red ≡)
→ n[P |Q|allow enter] (Red ≡)
≡ n�[P |Q] (Def.n�)

1.3.4 Choice

Sometimes one may need a choice operator to either continue with some process P or Q. This
can be defined as:

n⇒ P +m⇒ Q , (v p q r)(p[in n.out n.q[out p.open r.P ]]|p[inm.outm.q[out p.open r.Q]]|open q|r[])

Until no ambient n or m is present the process blocks. To check for their presence the ambient
p tries to move in and out of n for example. If that works a out p and open q follows. To block
the execution of P or Q during the reduction of the choice there exist an additional ambient r
which will later be removed. As an example consider the following:

(n⇒ P + m⇒ Q)|n[R]→∗ P |n[R]

With that it is possible to define booleans. Let flag n , n[] denote some arbitrary flag, e.g,
flag tt for true and flag ff for false. Then we use the choice operator to define a conditional:

if ttP, if ffQ , tt⇒ open tt.P + ff⇒ openff.Q

1.3.5 Turing-Machines

Next we show that the ambient calculi is Turing-complete. The tape consists of squares which are
ambients. The outermost square is called end. Inside end there is an ambient which represents
its value. Since we want a tape there is an embedded sub-square called sq. It has the same
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structure as end. Hence, the tape is designed in hierarchical structure. We assume that all
initial values of the squares are the flag ff. The tape then looks like that:

end��[ff[]|sq��[ff[]|sq��[ff[]|sq��[ff[]| . . .]]]]

Since a Turing-Machine needs a head to read and modify the cells we define an ambient head
which contains the program of the machine. As an example consider this concrete head:

head , head[init|transitions] with
init , S1[]

transitions , !openS1.mv out head.if tt(ff[]|mv inhead.in sq.S2), if ff(tt[]|mv inhead.out sq.S3[])| . . .

Hence, the initial state of the Turing-Machine is represented by the presence of an ambient
S1. The transitions are compositions of processes controlling the head. To achieve that each
transition can be used everytime when possible we use the replication operator. The transition
given in the example is only applicable in state S1, i.e., this is checked by openS1. Next the
process moves out of the head and reads the value. If it is true it will be replaced by a false flag.
After that the process moves back into the head and steps further to the square sq which means
a move to the right. Hence, the head is in state S2. If the value was false, it works similarly.
Moving the head to left is then stepping out of the surrounding square sq.
Turing-Machines are as usually defined with an unbounded tape. To design this we need two
tape stretchers for the left and right end. They are called stretchRht and stretchLft and defined
like that:

stretchRht , (vr)r[!open it.mv out r.(sq��[ff[]]|mv in r.in sq.it[])|it[]]
stretchLft , !open it.mv in end.(mv out end.end��[sq��[]|ff[]]|

in end.in sq.mv out end.open end.mv out sq.mv out end.it[])|it[]

Finally the Turing-Machine is encoded as:

machine , stretchLft|end��[ff[]|head|stretchRht]

1.4 Communication

In section (1.2.3) we saw how the ambient calculi supports asynchronous communication by value
passing between two processes. Next we will define some kind of data structures to store values.
From simple cells we continue to records which store multiple values and finally channels. All
of these implement shared memory which can be used to share values among a set of processes.

1.4.1 Cells

A cell is a data structure storing only one value. The content of the cell can either be replaced
by a new one (set operation) or simply read (get operation) which happens synchronously. We
denote a cell as:

cell c v , c��[〈v〉]

Hence, c is the location and v the initial value. The set operation set c〈v〉.P first implies a
objective move into the cell c. This is followed by an input action which reads the current value
of the cell and leaves an output action representing the new value v. Finally to continue with
P we need an objective output move.

set c〈v〉.P , mv in c.(x).(〈v〉|mv out c.P )
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Similarly works the get operation. First we move into the cell and read the current value which
is then bounded to x. Since we do not want to overwrite the cell’s value, we leave an output
action with x inside the cell before moving out. Hence, we refreshed the value of the cell.

get c(x).P , mv in c.(x).(〈x〉|mv out c.P )

1.4.2 Records

One may store multiple values in a data structure which supports get and set operations like
the cells. To achieve that we define a bundle of cells and name this a record.

record r(l1 = v1 . . . ln = vn , r
��[cell l1v1| . . . |cell lncn]

Hence, to read a value out of a concrete cell l we first move into the record r and then apply
the usual get operation for cells. Same for set.

getr r l(x).P , mv in r.get l(x).mv out r.P

setr r l〈v〉.P , mv in r.set l〈v〉.mv out r.P

1.4.3 Channels

Mobile systems often use communication links (, channel buffers) to communicate asynchronously
over long distances. It is possible to simulate such a channel by an named ambient n. Hence,
channel communication is defined as local communication inside a common location. First a
channel buffer is given as:

buf n , n[!open io]

Channel input and of course output requests represented through an ambient io then are directly
processed inside the buffer n.

n(x).P , (vp)(io[in n.(x).p[out n.P ]]|open p)
n〈M〉 , io[in n.〈M〉]

For example some output request n〈M〉 first enters the buffer and then waits until some input
request n(x).P follows. To open the requests open io capability actions are used. Since this
happens a lot of times it is designed as replication. After value passing the output request is
removed. To hint P continuing its execution it is embedded in an ambient p which has to exit
the buffer and then be opened.

2 Type safety for ambients

The ambient calculus describes mobile computation as ambients consisting of other sub-ambients
and processes. Ambients are allowed to enter or exit others which implies mobility. Processes
therefore control the movement. Additionally when processes share the same ambient, message
exchanges are possible which is the communication part of the calculus. As opposed to move-
ment, which is in generally only restricted by the given capabilities, value passing is arbitrary.
Imagine some process which sends an integer value but its counterpart awaits a boolean. This
is a dangerous behaviour and implies the system to crash. To avoid such situations we extend
the calculus by type information, for example:

a[(x : Int).P |open b]|b[in a.〈3〉] →∗ a[P{x← 3}]
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Hence, this reduction is only possible whether a and b exchange values of same type which is
type safety. Since the syntax of the calculus only allows the exchange of names and capabilities
(or paths of them) we will focus on that, see section (1.1). Furthermore the syntax allows certain
misleading processes (e.g. in n[0]) which should be detected as errors.

2.1 Polyadic ambient calculi

Before we continue with the type system we enhance the ambient calculi by polyadic in-
put/output actions, i.e., instead of single values (or paths) we exchange tuples of values. We
do this because it strictly enforces the need for type safety. The syntax therefore is similar to
the basic ambient calculus despite the fact that we added the exchange of tuples and annotate
types especially when applying the restriction operator since it creates new names for ambients
which allow internal communication by a certain type.

Definition 2.1 (Processes).
P,Q ::=

0 (Inactivity)
P |Q (Composition)
!P (Replication)
(vn : W )P (Restriction)
M [P ] (Ambient)
M.P (Capability action)
(n1 : W1, . . . , nk : Wk).P (Input action)
〈M1, . . . ,Mk〉 (Async output action)

Definition 2.2 (Capabilities).
M ::=

inM (Can enter into M)
outM (Can exit out of M)
openM (Can open M)
n (Name)
ε (Null)
M.M ′ (Path)

Note the missing variable definition in (2.2). So we will not distinguish lexically between names
an variables. Hence, there exist only v-bound names (restriction operator) and free names
which act as variables. Due the changes in the syntax we have to adapt the reduction rules (Red
Comm) and (Red Res), compare that with section (1.2.3). All other rules behave the same.

P → Q

(vn : W )P → (vn : W )Q (Red Res)

(n1 : W1, . . . , nk : Wk).P |〈M1, . . . ,Mk〉 → P{n1 ←M1, . . . , nk ←Mk} (Red Comm)

2.2 Type system

Since our motivation was to avoid that two processes exchange wrong messages we will now
define the type system for the polyadic ambient calculus. Therefore we keep track of the topic of
conversation [1, p.3]. That means, we annotate all processes with the type of messages they may
exchange. Remark that an ambient does not exchange messages by itself. Instead all ambient
names then are typed with the kind of messages the corresponding ambients allow to exchange
in their internal boundaries. Other capabilities of course will also get typed. Enter’s and Exit’s
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type for example is arbitrary. Why is that the case? Well, they permit to perform subjective
movements of ambients. Since ambients do not communicate with other processes when placed
in parallel there is no need for any kind of restriction. For Open the things work differently
here. It will be annotated with kind of messages exchanges it possibly unleashed. Remark that
it removes the boundary of an ambient.

2.2.1 Types

There exist two classes of types defined as message types W and exchange types T . The former
one is used to type ambient names and capabilities. The later one is needed for processes.

Definition 2.3 (Types).
W ::= message types

Amb[T ] (Ambient name allows T exchange)
Cap[T ] (Capability unleashs T exchange)

T ::= exchange types
Shh (No exchange)
W1 × . . .×Wk (Tuple exchange)

For example:

• n : Amb[Shh] some ambient name which allows no exchanges

• openn : Cap[Shh] a capability which is harmless

2.2.2 Environment

Since miscellaneous types have to keep tracked we need an environment to store the type in-
formation of capabilities and processes. The empty environment will be denoted as φ. When
binding a new name n to a type W in a given environment E we get a new environment E′
defined as E′ := E{n ← W} if n /∈ dom(E). To look up a type in an environment we define
three judgements:

• E ` �

• E `M : W

• E ` P : T

The first says that E is a good environment, i.e., everything is well-typed. The second looks up
the capability (+ names are capabilities) M in environment E and retrieves the message type
W . The last one retrieves the exchange type T of a process P in E if possible.

2.2.3 Typing rules

Now we define the typing rules of the polyadic ambients calculus. Therefore we distinguish
between the environment, the capability and process rules.

• Environments need to be consistent after mapping a name to a certain type. This
behaves the same for the empty environment φ. Hence, this implies the rules:

φ ` �
(Evnφ)
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E ` � n /∈ dom(E)
E{n←W} ` �

(Evn n)

• Capabilities are typed with message types. Let’s start with the name capability n. To
get the type of n we have to look up the environment E. As a requirement n has to be
mapped to a type before. The rules is given as follows:

E′ := E{n←W} ` �
E′ ` n : W (Exp n)

The next rules are for paths. As defined in the basic ambient calculus (see section (1.1.2)
it is possible to combine multiple capabilities to a path to exchange them as one message.
Since an empty path ε does not unleash any message type it will be typed as Cap[T ] with
some arbitrary exchange type T . For the path connector M.M ′ we have to ensure that
both parts M and M ′ are type the same. Hence, the rules look like that:

E ` �
E ` ε : Cap[T ] (Exp ε)

E `M : Cap[T ] E `M ′ : Cap[T ]
E `M.M ′ : Cap[T ] (Exp .)

The remaining capabilities are Enter,Exit and Open. Since types do not restrict subjective
movement, inM and outM can be typed arbitrary, i.e., we do not keep track of their types.
Hence, their rules are:

E `M : Amb[S]
E ` inM : Cap[T ] (Exp In)

E `M : Amb[S]
E ` outM : Cap[T ] (Exp Out)

The openM capability is somehow special as we know because it removes the boundary
of some ambient. Hence, the possibility to exchange some message of type T inside that
ambient may be unleashed in the future. To keep track of that both the capability and
the ambient are required to share the same type T . This is defined as the following rule:

E `M : Amb[T ]
E ` openM : Cap[T ] (Exp Open)

• Processes are typed as following. Hence, the most simple process is an inactive process
0. Naturally this process does not exchange any message at all so it could be typed with
Shh. But we do not want to restrict ourselves so the type is arbitrary.

E ` �
E ` 0 : T (Proc Zero)

For the parallel composition of two processes P and Q meaning P |Q we have to ensure
that both are typed the same. This implies the rule:

E ` P : T E ` Q : T
E ` P |Q : T (Proc Par)

The rule for replication is defined naturally as:

E ` P : T
E `!P : T (Proc Repl)

Next let us study a restricted process P , meaning (vn : W )P . The restriction operator
was enhanced with a type annotation W , see definition (2.1). Since n is a name for some
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ambient that occurs in P , W is in generally a message type Amb[T ]. Hence, we first map
n to W and later on resolve the exchange type of P . This gives us the rule:

E{n← Amb[T ]} ` P : S
E ` (vn : Amb[T ])P : S (Proc Res)

An ambient M [P ] allows communication in its boundary. Itself does not exchange mes-
sages. So as a first observation its exchange type is arbitrary. But there can be a pitfall
when arbitrary processes move into that ambient. They may exchange wrong messages.
Since we typed the ambient name with Amb[T ] we can now restrict P to type T . So every
process which wants to enter can guess what kind of messages will be exchanged inside.
The formal typing rule is:

E `M : Amb[T ] E ` P : T
E `M [P ] : S (Proc Amb)

If we form a process M.P that applies a capability action M we require that M is of
capability type Cap[T ]. This is because we need the exchange type T an open capability
may unleash. Hence, this is a restriction to process P which has to be of type T .

E `M : Cap[T ] E ` P : T
E `M.P : T (Proc Action)

Last but not least the typing rules for the input and output actions are missing. If
we assume a process P which has the exchansge type W1 × . . . × Wk then the process
(n1 : W1, . . . , nk : Wk).P may also exchanges messages of type W1 × . . .×Wk.

E{n1 ←W1, . . . , nk ←Wk} ` P : W1 × . . .×Wk

E ` (n1 : W1, . . . , nk : Wk).P : W1 × . . .×Wk
(Proc Input)

For an output process 〈M1, . . . ,Mk〉 we state the rule:

E `M1 : W1 . . . E `Mk : Wk

E ` 〈M1, . . . ,Mk〉 : W1 × . . .×Wk
(Proc Output)

Obviously each message Mi has its own type Wi. Hence, the output process is typed with
the crossproduct of all types Wi since we exchange tuples.

Finally we combine the reduction relation→ with the type system since each well-typed process
must be well-typed after a reduction and get the subject reduction property [1, p.4]:

E ` P : U P → Q

E ` Q : U

To demonstrate that the type system is strong enough to detect certain run-time errors consider
the following syntactical possible process: (vn : Amb[T ])n.P . When deriving its type we get a
type clash error :

φ{n← Amb[T ]} ` n : Cap[T ] φ{n← Amb[T ]} ` P : T
φ{n← Amb[T ]} ` n.P : ?
φ ` (vn : Amb[T ])n.P : ? (Proc Res)

(Proc Action) 

When applying the (Proc Action) rule, n is assumed to be typed as Cap[T ] but was typed as
Amb[T ]. Hence, a type clash error is detected. As a further example which contains movement
and communication of processes, assume the environment:

E := {w = Amb[Amb[Amb[Shh]]], n = Amb[Amb[Shh]], u = Amb[Shh]}
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and the process:
u[(v : Amb[Shh])v[]|openw]|w[in u|〈n〉]

First we derive the types of openw.0 and (n : Amb[Shh]).v[]:
E`w:Amb[Amb[Amb[Shh]]]

E`open w:Cap[Amb[Amb[Shh]] (Exp Open) E`�
E`0:Amb[Amb[Shh]] (Proc Zero)

E ` openw.0 : Amb[Amb[Shh]] (Proc Action)

E{v←Amb[Shh]}`v:Amb[Shh] E{v←Amb[Shh]}`�
E{v←Amb[Shh]}`0:Shh

(Proc Zero)
E{v←Amb[Shh]}`v[]:Amb[Amb[Shh]] (Proc Amb)
E ` (v : Amb[Shh]).v[] : Amb[Amb[Shh]] (Proc Input)

Hence, the type of their parallel composition is given as:
E ` (v : Amb[Shh]).v[] : Amb[Amb[Shh]] E ` openw.0 : Amb[Amb[Shh]]

E ` (v : Amb[Shh])v[]|openw : Amb[Amb[Shh]] (Proc Par)

Finally, we get again a type clash error in the (Proc Amb) rule:
E`u:Amb[Shh] E`(v:Amb[Shh])v[]|open w.0:Amb[Amb[Shh]]

E`u[(v:Amb[Shh])v[]|open w.0]: ? (Proc Amb) E ` w[in u|〈n〉] : ?
E ` u[(v : Amb[Shh])v[]|openw.0]|w[in u|〈n〉] : ? (Proc Par)

3 Modal Logics for Mobile Ambients

In the previous sections we introduced the ambient calculi and studied how to model mobile
system. Additionally we defined some kind of type-safety. For the following let’s assume we have
formalized a mobile system. Since we are not sure if everything works fine we want to check
some specification properties to argue about the system. The most obvious thing we could do is
doing a formal proof over the reduction relation. This works quite well as long as the system and
the properties are simple, e.g. structural properties. But this technique seems to be too complex
for properties like "eventually the exist some ambient n" or "always ambient n enters ambient m"
that talk about the structure of the system over time. A more practical approach is the usage
of a modal logic which provides formulas consisting of temporal and spatial operators. Hence,
as an computational application we consider model checking which we shall see is decidable for
some sub-logic.

3.1 Space and Time

In the definition of processes in (1.1), ambients are hierarchically organized. Let’s assume a
fixed state of our mobile system. Hence, each process consisting only of process 0, ambients,
the replication and composition operator defines a spatial configuration over ambients or named
locations. For example the process a[b[0]]|c[0] defines a spatial configuration in which a and c
are top-level ambients because of the composition operator. b instead is a nested ambient of
a. Therefore talking about spatial configurations means talking about space. Since executing a
process may instruct an ambient to move, executions change the spatial configurations. Hence,
there exist an evolution of the initial spatial configuration over time. Hence, our logic should
also consider spatial configurations and their evolutions. This leads to a modal logic over space
and time.

3.2 Formulas

In the following we will only consider ambient calculi expressions without the restriction operator.
This implies, there exist only public names for ambients. We do this because it simplifies the
logic. The logical formulas are given by the following listing.
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Definition 3.1 (Logical Formulas).
A,B, C ::=

T (True)
¬A (Negation)
A ∨ B (Disjunction)
0 (Void)
η[A] (Location)
A|B (Composition)
∀x.A (Universal quantification over names)
♦A (Sometime modality)
�A (Somewhere modality)
A@ η (Location adjunct)
AB B (Composition adjunct)

Note: η is a name or a variable.

The first three formulas define propositional logic. The next three ones are needed to specify
spatial configurations. For example, 0 says there is nothing. n[0] is a formula meaning there
is an empty location n. Composition is used to describe contiguous locations, e.g. n[0]|m[0].
Additionally we have universal quantification over names to specify properties that should hold
nevertheless which ambient we consider. Sometime and somewhere are our modality operators.
The last two are used for security properties.

The set of free variables of a formula A is given as usually through a function fv(A). The
definition of fv is then straight forward. We have only to be careful with quantifiers since they
bind variables, i.e., fv(∀x.A) = fv(A)−{x}. Hence, we say a formula A is closed iff fv(A) = ∅.

3.2.1 Satisfaction

Next we define a satisfaction relation |=. Informally we use this relation to express that some
process P satisfies a formula A and denote it as P |= A. Hence, |= gives us a truth value when
evaluating A in P . Before we study how exactly |= is defined, let’s note that the meaning of
our modalities will be defined over reductions of the operational semantics given by the ambient
calculus. Hence, for the somewhere modality � we need a sub-location relation P ↓ P ′. It
indicates that P ′ is embedded in P one step away in space, i.e., P ↓ P ′ iff ∃n, P ′′.P ≡ n[P ′]|P ′′.
The reflexive and transitive closure of ↓ is then ↓∗. In the following definition of the satisfaction
relation, Π is the set of processes, Φ is the set of formulas, ϑ is the set of variables and Λ is the
set of names.

Definition 3.2 (Satisfaction relation |=).
∀P : Π. P |= T
∀P : Π,A : Φ. P |= ¬A , ¬P |= A
∀P : Π,A,B : Φ. P |= A ∨ B , P |= A ∨ P |= B
∀P : Π. P |= 0 , P ≡ 0
∀P : Π, n : Λ,A : Φ. P |= n[A] , ∃P ′ : Π. P ≡ n[P ′] ∧ P ′ |= A
∀P : Π,A,B : Φ. P |= A|B , ∃P ′, P ′′ : Π. P ≡ P ′|P ′′ ∧ P ′ |= A ∧ P ′′ |= B
∀P : Π, x : ϑ,A : Φ. P |= ∀x.A , ∀m : Λ. P |= A{x← m}
∀P : Π,A : Φ. P |= ♦A , ∃P : Π. P →∗ P ′ ∧ P ′ |= A
∀P : Π,A : Φ. P |= �A , ∃P : Π. P ↓∗ P ′ ∧ P ′ |= A
∀P : Π,A : Φ. P |= A@n , n[P ] |= A
∀P : Π,A,B : Φ. P |= AB B , ∀P ′ : Π. P ′ |= A ⇒ P |P ′ |= B

Let’s take a closer look to some of these definitions in (3.2). Well, P satisfies n[A] if the top-level
ambient of P is n and its inner process satisfies A. A|B is satisfied by a process P if it is a
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parallel composition of two processes P ′, P ′′ and P ′ satisfies A and P ′′ satisfies B. A process
P satisfies ∀x.A if nevertheless which binding m for variable x in A we consider, P satisfies A.
♦A is satisfied by P if after some time its reduction P ′ satisfies A. That means, at some point
in the future (inclusive now) the spatial structure of the process changed to a structure which
satisfies A. Similarly is �A satisfied by a process P . Here we use ↓∗ to indicate that there exist a
sub-location in the current spatial configuration were A is satisfied. P satisfies A@n if we place
it in some ambient n and that still satisfies A. And finally, AB B is satisfied by a process P if
nevertheless which opponent P ′ that fulfils A we choose, P in parallel with P ′ always satisfies
B. Hence, P is safe under security attacks.
Additionally there exist some derived operators which are often useful when formalizing speci-
fication properties:

F , ¬T (False)
A ∧ B , ¬(¬A ∨ ¬B) (Conjunction)
A ⇒ B , ¬A ∨ B (Implication)
A ⇔ B , (A ⇒ B) ∧ (B ⇒ A) (Equivalence)
A‖B , ¬(¬A|¬B) (Decomposition)
A∀ , A‖F (Every component satisfies A)
A∃ , A|T (Some component satisfies A)
∃x.A , ¬∀x.A (Existential quantification over names)
�A , ¬♦¬A (Everytime modality)
�A , ¬�¬A (Everywhere modality)
A ∝ B , ¬(B B ¬A) (Fusion)
A|⇒B , ¬(A|¬B) (Fusion adjunct)

Some of these might need an explanation for what we use them. The decomposition A‖B for
example is the dual of composition. It is satisfied if for every decomposition of P into P ′|P ′′
either one of these processes satisfies A or the other B. A∀ is used to express that every decom-
position of P must satisfy A. The existential version is then satisfied if there exist at least one
decomposition which satisfies A. The fusion operators are useful when talking about contexts
of processes. Since A ∝ B is satisfied by P if there exist a context of it that satisfies B and
furthermore that helps to satisfy A. Instead, P satisfies A|⇒B if one process of its decomposition
fulfils A and implicitly the other one satisfies B.

An useful property [2, p.4] of the satisfaction relation is its invariance under structural congru-
ence:

P |= A ∧ P ≡ P ′

P ′ |= A
Since structural congruence is decidable we can construct on top of this a model checking
algorithm which we will do in the next section.

3.3 Decidability

Model checking in the ambient calculi will be the computational task to decide if some process
P satisfies a formula A. Unfortunately we achieve a Turing-complete problem when P is not
replication-free or A contains the B-operator [2, p.11]. Consider P |= TBA which requires to
check if for all processes P ′, P ′|P satisfies B. Hence, there is infinite choice for P ′. Same prob-
lems encounters with the replication operator, since termination of a system is in generally not
decidable. Therefore we will restrict P to replication-freedom and A to B-free in the following.
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3.3.1 Normal form

The model-checking algorithm presented later on will use the so-called normal forms. A normal
form is a product (=composition) of prime processes:

Definition 3.3 (Normal form).
Πi∈1...k Pi , P1| . . . |Pk|0 (Product)
π ::= M [P ] ‖n.P ‖ inM.P ‖ outM.P ‖ openM ‖ (n).P ‖〈M〉 (Prime process)
Πi∈1...k πi (Normal form)

To convert a replication-free process P into normal form we use the recursive procedure Norm
defined as:

Norm(0) , []
Norm(P |P ′) , [π1 . . . πk, π

′
1 . . . π

′
k′ ] if Norm(P ) = [π1 . . . πk] ∧Norm(P ′) = [π′1 . . . π

′
k′ ]

Norm(M [P ]) , [M [P ]]
Norm(M.P ) , [M.P ] if M ∈ {n, inN, outN, openN}
Norm(ε.P ) , Norm(P )
Norm((M.N).P ) , Norm(M.(N.P ))
Norm((n).P ) , [(n).P ]
Norm(〈M〉) , [〈M〉]

Hence, one can show that if Norm(P ) = [π1 . . . πk] then P ≡ Πi∈1...k πi [2, p.10].
+ Norm(P ) is unique up to structural congruence of P .

3.3.2 Model checking

Before we define the model checking algorithm we take a look at the formulas we want to satisfy.
Since we consider B-free formulas, they may contain modalities like sometime and somewhere.
For them we need two procedures Reachable and SubLocations. Reachable(P ) computes the
set of processes Q we get when applying →∗ on process P . SubLocations(P ) works similarly
but uses the ↓∗ relation. Hence, their formal properties are [2, p.10]:

• If Reachable(P ) = [P1, . . . , Pk] then for all i ∈ [1 . . . k]. P →∗ Pi and for all Q, if P →∗ Q
then Q ≡ Pi for some i ∈ [1 . . . k].

• If SubLocation(P ) = [P1, . . . , Pk] then for all i ∈ [1 . . . k]. P ↓∗ Pi and for all Q, if P ↓∗ Q
then Q ≡ Pi for some i ∈ [1 . . . k].

Now we have all requirements for the model checking algorithm:

Definition 3.4 (Model checking of replication-free processes P and B-free formulas A).
Check(P,T) , T
Check(P,¬A) , ¬Check(P,A)
Check(P,A ∨ B) , Check(P,A) ∨ Check(P,B)
Check(P, 0) , if Norm(P ) = [] then T else F
Check(P, n[A]) , if Norm(P ) = [n[Q]] for some Q, then Check(Q,A) else F
Check(P,A|B) , let Norm(P ) = [π1, . . . , πk]

in ∃I, J.I ∪ J = 1 . . . k ∧ I ∩ J = ∅∧
Check(Πi∈I πi,A) ∧ Check(Πi∈J πi,B)

Check(P,∀x.A) , let {m1, . . . ,mk} = fn(P ) ∪ fn(A) and m0 /∈ {m1, . . . ,mk}
in ∀i ∈ [0 . . . k]. Check(P,A{x← mi})
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Check(P,♦A) , let [P1, . . . , Pk] = Reachable(P ) in ∃i ∈ [1 . . . k]. Check(Pi,A)
Check(P,�A) , let [P1, . . . , Pk] = SubLocations(P ) in ∃i ∈ [1 . . . k]. Check(Pi,A)
Check(P,A@n) , Check(n[P ],A)

Hence, given a replication-free process P and a B-free formula A one can proof that P |= A
iff Check(P,A) = T [2, p.10]. Termination is guaranteed because the recursive calls work on
sub-formulas. The time-complexity of Check is at least exponential in the size of P since for
Check(P,A|B), 2k subsets of [1 . . . k] have to be computed [2, p.10].
As an example consider the process: P = a[p[out a.in b〈m〉]]|b[open p.(x).x[]].
Let ann , n[T]∃ and p parents q , p[q[T]∃]∃. Then the following properties are evaluated:

Check(P, an a) = T "There is a top-level ambient a"
Check(P, an p) = F "There is a top-level ambient p"
Check(P,�an p) = T "There is an ambient p"
Check(P,♦�an a) = T "Sometime there is an ambient m"
Check(P, b parents p) = F "p is parent of b"
Check(P,♦b parents p) = T "Sometime p is parent of b"

4 Conclusion and future work

Initially our motivation was to study mobility in sense of moving code and data. Therefore
we introduced the Mobile Ambients calculi which describes mobile computation as so-called
ambients. These are places where computation and communication happens. Furthermore
they are structured in a hierarchical manner to describe administrative domains. Therefore
ambients are allowed to move which is controlled by embedded processes. On top of that we
used the calculi to describe locks, authentication, communication mechanisms like channels.
Later on we have seen that it is Turing-complete by a direct encoding of Turing-Machines.
Since the syntax of the calculi allows several "illegal" processes and message exchanges between
two processes it should be restricted to values of same type, we studied type-safety. Even if
the types which have been presented are somehow unusual they are general enough to describe
arbitrary scenarios. Depending on the size of a mobile system, proofing certain properties can
be a complex task by hand. To overcome that we studied a modal logic for mobile ambients
which is based on structural congruence. When restricting ourselves to replication-free processes
and B-free formulas it is possible to apply model-checking to some decidable sub-logic. How to
include replication in processes and composition adjuncts in formulas is an open question. All
in all we got a quite powerful tool with the calculi to explore the interaction and properties of
mobile systems. Especially security issues are of interest in nowadays internet. Current research
introduced some dialects of the ambient calculi so-called safe ambients [5], robust ambients [8],
controlled ambients [7] and probabilistic ambients [4]. Here the safe ambients calculi focuses
on the interference of processes, meaning, the situation when processes damage other processes
activities. The authors of the robust ambients come up with an improvement for the safe
ambients calculi because it offers some security breaches to the hole calculi. Since concurrent
systems nowadays are highly parallel and reconfigurable they rely on a lot of subsystems and
communication protocols. But this is an open door for Denial of Service attacks since there may
exist bugs whose number multiply in sense of parallelism. Therefore the controlled ambients
approach tackles the control of resources in such systems. The probabilistic ambient calculi
introduces a probabilistic choice operator and adapts the modal logic for this. Further research
could be the development of new programming languages and techniques with use ambients as
their semantics. One approach to that is AmbIcobjs [6]. It provides an ambient simulator that
enables ambient programming in a graphical way. As an example, the authors developed a taxi
demo with different cabs and clients which want to travel between different sites in a city.
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