Little's Law - MIMI1 Queue MIMI1 Queueing Models More General Models Queueing Networks Assignments

Ad-hoc Networking - Models and Methods

Holger Hermanns Sven Johr

Universität des Saarlandes

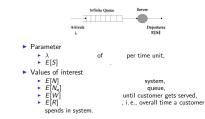
June 1, 2004

Part III

Queueing Models

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods	(D) < B)	121 121 2 DAG	Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods		(D) < B > < 2 > < 2 >	2 200
Introduction Little's Law - M M 1 Queue 0000 00	M M 1 Queueing Models More General 000 0 0	Models Queueing Networks Assignments	Introduction Little's Law - M M 1 Queue 0000 00	M M 1 Queueing Models 000 0	More General Models Queueing	Networks Assignments

Queues


- Important class of
- Queueing phenomena occuring in
- Examples
 - aueues in front of
 - computer systems with a (shared resources), station.

counters.

(D) (**(**) (2) (2) (2)

- call handling in a
- Modelling issues
 - time between
 - population.
 - amount of waiting room,
 - amount of a customer requires,
 - number of available.
 - strategy.
- used interchangeably. Terms and

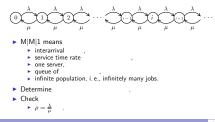
Graphical Representation - Notation

Holger Hermanns, Sven Johr: Ad-hoc Networking - Models and Methods

Introduction Little's Law - M M 1 Queue M M 1 Queueing Models More General Models Queueing Networks Assignments	Introduction Little's Law – MIMI1 Queue MIMI1 Queueing Models More General Models Queueing Networks Assignments 000 00		
*	•		
Kendall Notation	Modelling Issues		
 Describes queueing stations in unambigous way. : customer arrival process, : customer service process requirements, : number of servers, : maximum number of customers, : size of the customer population, : implemented scheduling strategy. 	 : described by random variables M: Markovian, G: General, : finite or infinite number of server entities. : finite or infinite number of allowed customers. : finite or infinite number of available customers. : finite or infinite number of available customers. First Come First Serve, Shortest Job Next, Round Robin, Priority Scheduling. 		
Holger Hermannis, See John Abbon Etenories, Model and Methods Introduction Little's Law – M[M]1 Queue M[M]1 Queue M[M]	Heiger Hermanner, Sava Jahr		
Little 5 Law	Little's Law		
Setup	Understanding the Law Queueing system as , at in time, arrival rate E[R] 		
 Relates to Arriving job either no other job in the system, or has to wait until all jobs 	► $E[N]$ ► jobs arrived more than $E[R]$ time units ago: () be gone; ► jobs arrived within the past $E[R]$ time units: () present in the system. ► : $\lambda \cdot E[R]$ jobs. ► $E[N] = \lambda \cdot E[R]$. ► Think of ► No losses! ► No losses! ► System equals λ .		
Holmer Harmoner, Sume John	Heiner Hermaner Sum John		

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods 100 100 100 100 10 DAG

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods

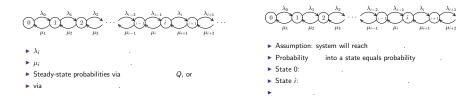


- . λ iobs arrive. F
- E[S] time in the server.
- $E[N_s] = \lambda \cdot E[S]$ jobs in server.
- Remark: E[N_s] average time server is busy.

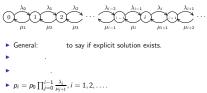
- Little's Law independent of
 - number of
 - used

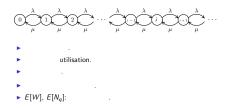
Analysing the M|M|1 Queue

CONTRACTOR AND A DARKED

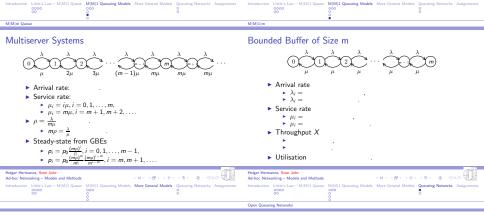

Results

- $\blacktriangleright E[N_{\alpha}] = \lambda \cdot E[W], E[N] = \lambda \cdot E[R], E[R] = E[W] + E[S].$
- (oisson rrivals ee ime verages) property: E[W] = E[N]E[S].
- $\blacktriangleright E[W] =$
- $\blacktriangleright E[N] =$
- $\blacktriangleright E[N_a] = .$


Transition Diagram – Generator Matrix


Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods	(D) (B) (2) (2) 2 990	Holger Hermanns, <mark>Sven Johr:</mark> Ad-hoc Networking – Models and Methods	101 (B) (2) (2) 2 990
Introduction Little's Law - M[M]1 Queue 0000 00	More General Models Queueing Networks Assignments	Introduction Little's Law - M M 1 Queue M M 1 Queueing Models	More General Models Queueing Networks Assignments
General Model		Constant Rates	

Solving the GBEs



p0 can be calculated. (Try at home.)

Measures of Interest

Holger Hermanns, Sven Johr: Ad-hoc Networking - Models and Methods

Generally Distributed Service Times

Overview

- M|G|1 queues.
 - •
- No memoryless distribution.
- of a job.
- of service time distribution.
- G|G|1 queues.
 - Exact result of
 - More practical:

- Combination of single
- Number of customers not known
- •
- Series of queues.
- General FFQNs,

- Arrival process not necessarily
- Approximate results.

Las cas cas a secola

Introduction Little's Law - M M 1 Queue 0000 00	M M 1 Queueing Models More General Models 000 0	Queueing Networks Assignments o	Introduction Little's Law – M[M]1 Queue M[M]1 Queueing Models More General Models Queueing Networks Assignments
Closed Queueing Networks			
Overview			M M 1 Queue – Constant Rates
 queues. 	f customers. queueing networks given. IC can be solved directly. t methods		 Calculate E[W] and E[N_q]. What is the probability to have at least k jobs in the system?
Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods Introduction Little's Law – M[M]1 Queue 0000 000	← □ → ← Ø → ← ≷ M[M]1 Queueing Models More General Models		Holger Hermann, Sven John: Ad-hoc Networking – Models and Methods

СТМС

- Draw the finite CTMC for the depicted GNQN.
- Use triples (i, j, k) to indicate the number of customers in each node.

(D) (B) (2) (2) 2 980