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Customers arrive at a certain frequency, say 
approximately 1 customer per five minutes.

Service requires, say, three minutes.

At most six customers can wait inside the Mc Donalds 
(it’s a small one).

At a small Mc Donalds
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arrival ratearrival rate λ = 1/5 min

service rateservice rate µ = 1/3 min
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M: 1/5 6  M: 1/3

Mc Donalds as a queueing system

arrival stream: hungry people hungry people 
o 1/5 customers per minute,

o Markovian, i.e. no memory, 

queue: space space availableavailable
o queue capactiy

service station: the guy who sells the guy who sells hamburgershamburgers
o 1/3 hamburgers per minute,

o Markovian, i.e. no memory, 

departure stream: stuffed people stuffed people 
M/M/1/6/∞/FIFO 4

Analysing stochastic models
What would you like to know?

Or, what is your measure of performance?
o mean number of customers waiting in the Mc Donalds?
o mean time a customer has to wait?
o percentage of time the Mc Donalds is utilised by someone?  
o number of customers served per minute?
o percentage of customers that are lost, due to lack of space?
o profit made?
o number of wealthy customers lost?
o ...
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Standard performance measures

... and dependability measures

mean queue length,
mean waiting time,
throughput,
probability of loss,
utilization,
...

availability,
point reliability, 
performability, 
...

10

λ

µ

2

λ

µ

4

λ

µ

3

λ

µ

5

λ

µ

6

λ

µ

λ

6

Calculating performance measures

all these performance (and dependability) measures can 
be computed on the basis of

o transient state probabilities P(X(t) = s),
o steady-state probabilities limt→ ∞ P(X(t)=s), 
and possibly state/transition labels.

Computation of state probabilities state probabilities 
is the main technical issue.

Recall: state probabilities describe the likelihood of 
being in a certain state (at a certain time instant)
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Calculating state probabilities

There are three fundamentally different ways 
to calculate these state probabilities:

oo analytical analytical solution,

oo numericalnumerical solution,

oo discrete event simulationdiscrete event simulation.
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Analytical solution

express the state probabilities (or even measures directly) 
as closed formulaeclosed formulae in the parameters of the model

example: utilization utilization of the Mc Donalds ρ(λ,µ) = λ / µ
provided that λ<µ , and that the queue length may become larger than 6, namely infinite

positive:positive:
o very accurate
o very fast, and simple

negative:negative:
o only for highly restricted classes of stochastic processes
o requires study of scientific literature, to find specific formulae
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Numerical solution

state probabilities are obtained by an exact or 
approximative algorithm where model parameters                  
are instantiated with numerical values.

example: state probabilities of the Mc Donalds are obtained by 
(e.g.) Gauss elimination of a 7r7 matrix based on 1/3 and 1/5 entries.

positive:positive:
o accurate, up to numerical precision

negative:negative:
o only reasonable for finite Markov chains
o number of states is a limiting factor          

(about 108)
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Discrete Event Simulation

the stochastic model is mimicked by a simulator rolling 
dices and producing statistics of simulation time spent           
in states. The fraction of simulation time spent in a 
particular state is used as an estimate for the state 
probability.

example: Let a lot of virtual people enter a virtual Mc Donalds  and let 
them ask for virtual hamburgers. Do this 100000 times faster than 
real time, or better, as fas as you can. Compute the fraction of time 
when there is someone in the resto. 

positive:positive:
o very general, suitable for arbitrary stochastic models 

negative:negative:
o good accuracy usually requires long (or very long) simulation runs:    

accuracy grows with the square root of the number of runs. 
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Rules of thumb

Analytical solutionAnalytical solution allows very quickquick and very preciseprecise
insight in your model, but the model tends to be a              
very loose approximationloose approximation of reality.

Simulation Simulation allows relatively slowslow, roughrough and costlycostly insight       
in a singlesingle instance of your model, but the model can 
have a close correspondenceclose correspondence to reality.

Numerical solutionNumerical solution allows quickquick and preciseprecise insight                  
in a singlesingle instance of your Markov chainMarkov chain model, which 
usually is an approximationapproximation of reality 
(due to absence of memory).
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Stochastic modelling and analysis

The standard procedure:
o construct a model,
o determine your performance measure of interest,
o choose a solution method:

• analytical,
• numerical, or
• simulation,

o fix model parameters (λ,µ,...),
o derive performance measure.
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Why play with model parameters?
to pose “what if” questions

perturbation analysisperturbation analysis

to see how performance changes if parameters 
change

sensitivity analysissensitivity analysis

to find the best performance (tuning)
optimisationoptimisation
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Analytical solutionAnalytical solution allows very quickquick and very preciseprecise
insight in your model, but the model tends to be a              
very loose approximationloose approximation of reality.

Simulation Simulation allows relatively slowslow, roughrough and costlycostly insight       
in a singlesingle instance of your model, but the model can              
have a close correspondenceclose correspondence to reality.

Numerical solutionNumerical solution allows quickquick and preciseprecise insight                  
in a singlesingle instance of your Markov chainMarkov chain model, which 
usually is an approximationapproximation of reality 
(due to absence of memory).

Rules of thumb revisited

In order to optimiseoptimise (etc.) that computation
has to be repeated many times 
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Discrete Event Simulation

the stochastic model is mimicked by a simulator rolling 
dices and producing statistics of simulation time spent           
in states. The fraction of simulation time spent in a 
particular state is used as an estimate for the state 
probability.

example: Let a lot of (virtual) people enter a virtual Mc Donalds  and let 
them ask for a virtual hamburger. Do this 100000 times faster than 
real time, or better, as fas as you can. Compute the fraction of time 
when there is someone in the resto. 

pro’spro’s::
o very general, suitable for arbitrary stochastic models 

con’scon’s::
o good accuracy usually requires long (or very long) simulation runs:    

accuracy grows with the square root of the number of runs. 
16

Virtually beyond the Markov property

Phase-type distributions:
o ‘piecewise-Markov’
o The time it takes to reach an 

‘absorbing’ state in a finite 
CTMC is phase-type 
distributed.

o Phase-type distributions can 
approximate arbitrary 
distributions with arbitrary 
precision.
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Beyond the Markov property:             
Semi-Markov Chains

Markov chain on a set of states {0,1,…}, that 
whenever entering state i
o the next state that will be entered is j with 

probability Pij
o given that the next state entered will be j,

the time it spends at state i until 
the transition occurs is a RV with distribution Fij
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Beyond the Markov property:             
Semi-Markov Chains

Markov chain on a set of states {0,1,…}, that 
whenever entering state i
o the next state that will be entered is j with 

probability Pij
o given that the next state entered will be j,

the time it spends at state i until 
the transition occurs is a RV with distribution Fij

{Z(t): t ≥ 0} describing the state the chain is in 
at time t: Semi-Markov Chain

future depends on present state and time spent in the state
memory is lost on state change
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Semi-Markov Chains
Holding time: time spent at state i, before making 
a transition  
Probability distribution function of holding time:

0 0

( ) { } { | next state } ( )i i i ij ij ij
j j

H t P T t P T t j P F t P
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= =
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0
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∞
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Semi-Markov Chains
Holding time: time spent at state i, before making 
a transition  
Probability distribution function of holding time:

Let Xn describe the nth state visited. {Xn: n=0,1,…}
o is a DT Markov chain: embedded Markov chain
o has transition probabilities Pij

0 0

( ) { } { | next state } ( )i i i ij ij ij
j j

H t P T t P T t j P F t P
∞ ∞

= =

= ≤ = ≤ =∑ ∑

0
[ ] ( )i iE T t dH t
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Semi-Markov Chains
Holding time: time spent at state i, before making 
a transition  
Probability distribution function of holding time:

Let Xn describe the nth state visited. {Xn: n=0,1,…}
o is a DT Markov chain: embedded Markov chain
o has transition probabilities Pij

{Z(t): t ≥ 0} is completely determined by 
Pij, Fij and Z(0)

0 0

( ) { } { | next state } ( )i i i ij ij ij
j j

H t P T t P T t j P F t P
∞ ∞

= =
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0
[ ] ( )i iE T t dH t

∞
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Beyond Semi-Markov:
Stochastic models with memory

states, transitions
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labels

o of states
o of transitions

clocksclocks
o serve as the memory of  

time orthogonal to states.
o are sampled from 

distributions, count down.
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A light in the stairway
The light is turned on if 
someone enters the stairway.

It goes off after             
exactly 
10.3 minutes.

People arrive randomly, at 
least every 15 minutes,        
with equal probability 
for each time instant.
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wait for y

wait for x
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Ε : Event Set
X : State Space

Γ(x) : Set of feasible or enabled events at state x 
f : State Transition Function

(partial, undefined for events                 )
x0 : Initial State, 

f X E X: × →

( )e x∉ Γ

x X0 ∈

Automaton: (E, X, Γ,  f, x0)

{ }e e1 2, ,K { }x x1 2, ,K
( )f x e x, '=

Underlying Model: Automaton
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Timed Automaton

Add a Clock Structure V to the Automaton: (E, X, Γ,  f, x0 , V)

where:

and vi is a Clock or Lifetime Sequence: 
one for each event i

{ }V v= ∈i i E :  

{ }K,, 21 iii vv=v

{ }v v1 2, ,K { }x x1 2, ,K
( )f x e x, ' '=

NEXT EVENT

Need an internal mechanism to determine
NEXT EVENT e’ and hence
NEXT STATE ( )x f x e' , '=

26

current state

current event

current event time

Associate a
clock value (or: residual lifetime) yi
with each feasible event ( )i x∈Γ

How the timed automaton works

x∈X  with feasible event set:   Γ(x)

e that caused transition into x

t  associated with e
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NEXT/TRIGGERING EVENT e' :

( )
{ }e y

i x
i' arg min=

∈Γ

NEXT EVENT TIME t' :

( )
{ }

t t y

y y
i x

i

' *

min

= +

=
∈

where:    *
Γ

NEXT STATE x' :

( )x f x e' , '=

How the timed automaton works
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Detemine new clock values
for every event ( )i x∈ Γ

′yi

( ) ( )
( ) ( ){ }

iv

otherwise
exxiv

eixixiyy
y

ij

ij

i

i

event for  lifetimenew   :where

0

 , ,*
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⎧
′−−′∈

′≠∈′∈−
=′ ΓΓ

ΓΓ

How the timed automaton works
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QUEUE SERVER

Customer
Arrivals Customer

Departures

{ } { }E a d X= =, , , , ,    0 1 2 K

( ) { }
( ) { }a

xdax
=

>=
0

0 allfor    ,,
Γ
Γ

( )f x e
x e a
x e d x, ,′ =

+ ′ =
− ′ = >

⎧
⎨
⎩

1
1 0 

{ } { }KK ,,  ,,,   :input Given 2121 dddaaa vvvv == vv

Timed automaton example
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t0

x0 = 0

a

e1 = a

x1 = 1

t1

a
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e2 = a

x2 = 2

t2

a
d

e3 = a

x3 = 3

t3

a
d

x4 = 2

e4 = d

t4

Timed automaton sample path
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• Same idea with the Clock Structure 
consisting of Stochastic Processes
• Associate with each event i a Lifetime 
Distribution based on which vi is generated

Generalized Semi-Markov Process
(GSMP)

In a simulator, vi is generated through a 
pseudorandom number generator

Stochastic timed automaton

{ }K,, 21 iii vv=v
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…is simply a computer-based implementation of the              
sample path generation mechanism described so far

UPDATE TIME
t' = t1

UPDATE STATE
x' = f(x,e1)

INITIALIZE

DELETE INFEASIBLE
(ek, tk)

x' t'

ADD NEW FEASIBLE
(ek, t'+vk)

AND RE-ORDER

new event lifetimes vk

STATE
x TIME

t

RANDOM VARIATE GENERATOR

t'x'

Discrete Event Simulation  (DES)

SCHEDULED
EVENT LIST

e2            t2

..
.

e1            t1

..
.



9

33

DES Simulation Classification
Terminating Simulations:

o stop when given state is reached
o stop when given event count is reached
o stop when given time is reached

Non-terminating Simulations:
o System is perpetually operating
o We are interested in steady-state performance

Example: UdS VoIP performance between 9-10AM daily

Example: Average performance of UdS VoIP
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1. Event Counts:
o number of events in a given time interval
o number of events in a random time interval
o number of events satisfying a given condition

• Nd(T) = no. departures in fixed T

• THROUGHPUT = Nd/T(Nd)   (Nd fixed,  T(Nd) random)

• QUALITY-OF-SERVICE:  Na(K,T) = no. arrivals that see x > K
in fixed T

a d
x(t)

DES Performancs metrics
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2. Event times:
o event time for a given event count
o interval between specified events 

• T(Nd) = time required to obtain Nd departures   (Nd fixed)

• Response time or Delay D =  T(Nd) - T(Na)
(Nd = Na = N fixed)   

a d
DELAY  D 

DES Performance metrics (more)

36

In the GSMP setting, performance metrics are
parameters of stochastic processes:

Expectations:

Expected Response Time or Expected Delay :  
E[D] = E[T(Nd) - T(Na)] (Nd = Na = N fixed)

Probabilities:
P[D > t] = E[1(D > t)] (measures Quality-of-Service)

INDICATOR FUNCTION 

DES Performance metric estimation
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DES Performance metric estimation
Terminating Simulations:
o Expectations estimated over multiple sample paths 

(ensemble averaging)

Non-terminating Simulations:
o Expectations estimated over long time periods 

(time averaging)
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A systematic way to construct sample paths.
Simulators are normally equipped with data collection
and output processing capabilities

used to estimate performance metrics of stochastic     
models of virtually arbitrary complexity 

Limitations:
Slow and costly, limited real-time capabilities

Requires expertise to interpret statistical results 

Discrete Event Simulation: Summary
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DELAY TIMER

PLOTTER

QUEUE DATA

TIMER DATA

Typical Simulation Engine 
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Assignements
1. Can you rephrase a CTMC as an SMC?                 

If so, what is the embedded DTMC of this 
SMC?

2. What happens if in a GSMP, two enabled 
events have identical residual lifetimes? 
Can/must this be avoided?


