	Steady-State Probabilities	Transient Analysis 0 00	Summary	Assignment	Announcement

Ad-hoc Networking - Models and Methods

Holger Hermanns Sven Johr

Universität des Saarlandes

June 15, 2004

Part V

Numerical Solution of Markov Chains

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods		(D) (B) (21.121.2	200	Holger Hermanns, <mark>Sven Johr:</mark> Ad-hoc Networking - Models and Methods			(a) (a) (a)	200
Steady-State Probabilities	Transient Analysis 0 00	Summary	Assignment	Announcement	Recall 00000	Transient Analysis	Summary	Assignment	Announcement
					Direct Methods				

Steady-State and Transient Behaviour

- Steady-State behavior,
 - DTMC: <u>π</u>P = <u>π</u>,
 - CTMC:
- Transient behaviour,
 - DTMC: $\underline{\pi}(n) = \underline{\pi}(0)P^n$,
 - CTMC: , can be solved via

$$\underline{\pi}(t) = \underline{\pi}(0)e^{Qt} =$$

- ٠
- <u>r</u> = (r₁, r₂, ..., r_n) vector,
- $\vec{c} = (c_1, c_2, ..., c_n)^T$ vector,
- π probability vector (column or row),
- π(t) probability vector at (column or row).

100 100 120 120 2 OLC UR

Use of Direct Methods

- · Used to solve systems of linear equations,
 - matrix A, dimension n,
 - vectors $\vec{x} = (x_1, x_2, ..., x_n)^T$ and $\vec{b} = (b_1, b_2, ..., b_n)^T$.
- Computing steady-state <u>m</u>M = <u>0</u>, with
 - for CTMC,
 - for DTMC.
- · Rephrasing necessary,
 - ٠

٠

Recall	Transient Analysis 0 00	Summary	Assignment	Announcement	Recall 0000000	Transient Analysis	Summary	Assignment	Announcement		
Direct Methods					Direct Methods	00					
Gaussian Eliminatio	n – The Meth	nod			Gaussian Eliminatio	on – Reduction	n Phase				
 Transfer Ax = E U upper tria Obtaining U fro n-1 steps, 	angular. om A called	,			• Elements , $i = 1, 2,, n - 1$, • $a_{kl}^{(i)} = $ for $k \le i, l = 1, 2,, n$, • $a_{kl}^{(i)} = $ for $k > i$ and $l = 1, 2,, n$. , called						
 ith step: elir 	minate elements be	low i th diag	gonal element	1	 Elements 	element	set to 0.				
• \vec{x} obtained in	,				• $a_{ii}^{(i)} \neq 0$						
• • x _i =	, , <i>i</i> = <i>i</i>	n — 1, , 2,	, 1.		 May is 	s necessary (stabili	ty).				

• Remark: \vec{b} has to be accordingly.

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods			20120-2	940 E	Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods		(1)	(a) (a) (a)	200
Recall	Transient Analysis	Summary	Assignment	Announcement	Recall	Transient Analysis	Summary	Assignment	Announcement
000000	80				000000	80			
Direct Methods					Direct Methods				

Gaussian Elimination - Markov Chains

- Right hand side equals .
- Rank of system is n 1 (of matrix is 0),
 - resulting steady-state vector,
 - normalisation equation directly.

• Example:
$$\mathbf{Q} = \begin{pmatrix} -4 & 2 & 2 \\ 1 & -2 & 1 \\ 6 & 0 & -6 \end{pmatrix}$$
, $\mathbf{Q}^T = \begin{pmatrix} -4 & 1 & 6 \\ 2 & -2 & 0 \\ 2 & 1 & -6 \end{pmatrix}$

LU Decomposition - The Method

- Write A as , • $A\vec{x} = \vec{b} \Rightarrow = \vec{b},$ • L is , • U is .
- Solve $L\vec{z} = \vec{b}$,
 - simple forward substitution.
- Solve $U\vec{x} = \vec{z}$,
 - simple backward substitution.

Recall 000000 Direct Methods	Transient Analysis 00	Summary	Assignment	Announcement	Recall 000000 Direct Methods	Transient Analysis 0 00	Summary	Assignment	Announcement
Direct methoda					Direct methods				
LU Decomposition	n – Computatio	on of <i>L</i> and	I U		LU Decomposition	- Comparison	to Gaus	s	
 n² equations, 									
	a _{ij} = , i	$j=1,2,\ldots,$	n.	(1)	 LU decomposition related. 	on and		are intimat	ely
 Find 	nkowns,				L matrix of	used in Ga	ussian elin	nination.	
 <i>l_{ik}</i>, <i>i</i> = 1, 		,			 U upper triangu 	lar matrix obtain	ed from		
 u_{kj}, j = 1. 							eu monn	•	
 Choose n unk 					 Benefit, 				
• l _{ii} = 1,1		,			• matrix L	available, he			
• u _{ii} = 1,1					 solving for n 	ore than one	q	uickly possib	le.
 Rewrite Equa 									
	$= u_{ij} + \sum_{k=1}^{i-1} l_{ik} u_{kj} \leq$,						
	$= I_{ij} u_{jj} + \sum_{k=1}^{j-1} I_{ik} u_{kj}$	\Leftrightarrow		,					
and solve	iteratively.								
Holger Hermanns, Sven Johr: Ad-hoc Networking - Models and Met	rods			940 D	Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods			2002 - 2	200
Recall 0000000	Transient Analysis 0 00	Summary	Assignment	Announcement	Recall 0000000	Transient Analysis	Summary	Assignment	Announcement
Iterative Methods					Iterative Methods				

Iterative vs. to Direct Methods

- · Result is computed in
 - no precise solution available.
- Number of steps depends on
 - not a-priori known.
- Efficient
 - sparce matrices,
 - decision diagramms.
- No (see Example).
- Solution of systems possible;
 - direct methods to systems with a states/equations.

can be used.

Power Method - The Method

- For DTMC,
 - multiply (steady-state) vector with P until
- For CTMC,
 - determine DTMC
 λ ≥ max_i{|q_{ii}|}.
- $\underline{\pi}^{(i)}\mathbf{P} = \underline{\pi}^{(i+1)}$.
- Used to solve for left eigenvector with eigenvalue 1.
- Not very effcient.
- .

P =

Recall	Transient Analysis	Summary	Assignment	Announcement	Recall		Transient Analysis	Summary	Assignment	Announcement
0000000	80					0000000	80			
Iterative Methods					Iterative Me	thods				

Jacobi Method - The Method

• Rewrite i^{th} equation: $p_i = \left(\sum_{j=1}^{i-1} p_j a_{ij} + \sum_{j=i+1}^n p_j a_{ij}\right)$.

(difference criterion).

LET LET LET LE DAC

- Use first estimate $\vec{\pi}^{(0)}$,
 - uniform distribution good choice.
- Next estimate
 n^(k+1) = -

$$p_i^{(k+1)} = \frac{1}{|a_i|} \left(\sum_{j=1}^{i-1} p_j^{(k)} a_{ij} + \sum_{j=i+1}^n p_j^{(k)} a_{ij} \right)$$

- Stop iterating:
 - not necessarily solution vector found!
- Check (residual criterion);
 - more expensive, hence
 - use combination of both.
- Slow conversion: use on non-successive iterates.

Gauss-Seidel - The Method

- Structures the Jacobi method,
 - Jacobi method requires storage of two vectors \$\vec{\pi}(k)\$ and \$\vec{\pi}(k+1)\$,
 - now, results are used as soon as computed.

•
$$p_i^{(k+1)} = \frac{1}{|a_{ii}|} \left(\sum_{j=1}^{i-1} p_j^{(k+1)} a_{ij} + \sum_{j=i+1}^n p_j^{(k)} a_{ij} \right),$$

- order of computation is assumed to be from p_1 to p_n .
- Storage of only one probability vector.
- Iteration scheme $D\vec{\pi}^{(k+1)} = L\vec{\pi}^{(k+1)} + U\vec{\pi}^{(k)}$,
 - $\vec{\pi}^{(k+1)} = (D L)^{-1} U \vec{\pi}^{(k)}$
 - iteration matrix $\Phi_{GS} = (D L)^{-1}U$.

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods			(2) (2) (2	200		rmanns, Sven Johr: etworking – Models and Methods	(D) (B) (E) (E)	2 940
Recall 0000000	Transient Analysis	Summary	Assignment	Announcement	Recall	Steady-State Probabilities	Summary Assignment	Announcement
Iterative Methods					Runge-Ku	tta Methods		

Example

Reconsider Q from above examples.

•
$$\Phi_P = I + Q/\lambda = \frac{1}{6} \begin{pmatrix} 2 & 1 & 6 \\ 2 & 4 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
. 10 iterations.
• $\Phi_J = D^{-1}(L+U) = \begin{pmatrix} 0 & \frac{1}{4} & \frac{3}{2} \\ 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{6} & 0 \\ 0 & \frac{1}{4} & \frac{3}{2} \\ 0 & \frac{1}{6} & \frac{3}{4} \\ 0 & \frac{3}{6} & \frac{3}{4} \end{pmatrix}$. 8 iterations.

The Method

- Solving differential equation system <u>π'(t)</u> = <u>π(t)</u>Q, numerically.
- Approximate $\underline{\pi}(t)$ by a $\underline{p}_i, i \in \mathbb{N}$, • use h, hence,
 - use h, he
 p_i = <u>π</u>(ih).
- *p*₀ chosen as <u>π(0)</u>.
- The smaller h,
 - result more accurate,
 - and more expensive.
- <u>p</u>_i is used to compute <u>p</u>_{i+1},
 - but not <u>p</u> to <u>p</u>, <u>i</u>, method
- Fairly efficient.
- Methods of different order exist
- Holger Hermanns, Sven Johr:

Ad-hoc Networking - Models and Methods

Holger Hermanns, Sven Johr: Ad-hoc Networking – Models and Methods

Recall	Steady-State Probabilities		Summary	Assignment	Announcement	Recall	Steady-State Probabilities	0	Summary	Assignment	Announcement
Uniformisat						Uniformisa		00			
	notion • Solution via $\underline{\pi}(t) = \underline{\pi}(0)e^{Qt} = \pi$ not applicable, • infinite summa • severe • Overcome this by • Define • $\lambda \ge \max_i \{ q_{ii} \}$ • P • $\underline{\pi}(t) = \underline{\pi}(0)e^{Qt} = \pi$	tion car } called	nnot be (positive and negati			Bene	fit • Still dealing with • All values are bet • Allows for iterativ • $\underline{\pi}(r) = \sum_{n=0}^{\infty} e_{\underline{\pi}}$ computed • Sum is • k_i is compute • $ \underline{\pi}(r) - \underline{\pi}(r) $ • $\sum_{n=0}^{k} \frac{(\Delta r)^2}{n!}$ • For large λt , • steady-state r	$ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \psi(\lambda t; n) \left(\underline{\pi}(0) P \right) \\ & \mbox{ recursively } \left(\underline{\pi}_{0} \right) \\ & \mbox{ recursively } \left(\underline{\pi}_{0} \right) \\ & \mbox{ after steps,} \\ & \mbox{ d a-priori with } r \\ & \mbox{ } \leq 1 - \sum_{k=0}^{k} \psi \\ & \mbox{ } \\ & \frac{1-\epsilon}{e^{\lambda r}} = (1-\epsilon)e^{\lambda r} \end{array} $	espect to acc $(\lambda t; n)$,	,). curacy ¢,	
Holger Herr	nanns, Sven Johr:					Holger Her	manns, Sven Johr:				

	nanns, <mark>Sven Johr:</mark> working – Models and Methods		(a) (B) (2) (2) (2) (2)	240		rmanns, Sven Johr: atworking – Models and Methods			a.	200
Recall	Steady-State Probabilities 000000 00000	Transient Analysis 00	Assignment	Announcement	Recall	Steady-State Probabilities 0000000 00000	Transient Analysis 0 00	Summary		Announcement

Main Computational Challenges

- Steady-state analysis, $(A\vec{\pi} = \vec{0})$
 - DTMC: product with until convergence,
 CTMC: product with until
 - convergence.
- Transient analysis,
 - DTMC: matrix-vector product, (<u>π</u>(n) = <u>π</u>(n − 1)P)
 - . CTMC: uniformisation, summation over

with

Uniformisation

• Consider
$$Q = \begin{pmatrix} -3 & 2 & 0 & 1 \\ 0 & -4 & 1 & 3 \\ 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix}$$
.

- Assume <u>π</u>(0) = (1,0,0,0).
- Compute the probability distribution for t = 1 with uniformisation and answer thereby the following questions.
 - How large is the uniformisation rate λ ?
 - How large is k_e for e = 10⁻ⁿ, n = 1, 2, 3, 4, 5?

European Championship

Today, 20:45h Result will be added.

Holger Hermanns, Sven Johr: Ad-hoc Networking - Models and Methods

