Holger Hermanns Sven Johr
Universität des Saarlandes
June 15， 2004

> Part V

Numerical Solution of Markov Chains

Gaussian Elimination－The Method

Gaussian Elimination－Reduction Phase

－Transfer $A \vec{x}=\vec{b}$ to with，
－U upper triangular．
－Obtaining U from A called
－$n-1$ steps，
－$i^{\text {th }}$ step：eliminate elements below $i^{\text {th }}$ diagonal element．
－\vec{x} obtained in
－

$$
x_{i}=\quad, i=n-1, \ldots, 2,1
$$

－Elements $\quad, i=1,2, \ldots, n-1$ ，
－$a_{k l}^{(i)}=\quad$ for $k \leq i, I=1,2, \ldots, n$ ，
－$a_{k l}^{(i)}=\quad$ for $k>i$ and $I=1,2, \ldots, n$ ． ，called
－Elements element set to 0 ．
－$\quad a_{i i}^{(i)} \neq 0$ ．
－May is necessary（stability）．
－Remark：\vec{b} has to be accordingly．
－Right hand side equals ．
－Rank of system is $n-1$（ of matrix is 0 ），
－resulting steady－state vector，
－normalisation equation directly．
－Example： $\mathbf{Q}=\left(\begin{array}{ccc}-4 & 2 & 2 \\ 1 & -2 & 1 \\ 6 & 0 & -6\end{array}\right), \mathbf{Q}^{T}=\left(\begin{array}{ccc}-4 & 1 & 6 \\ 2 & -2 & 0 \\ 2 & 1 & -6\end{array}\right)$

Holger Hermanns，Sven Johr：
Ad－hoc Networking－Models and Methods

Direct Methods

Gaussian Elimination－Markov Chains

Holger Hermanns，Sven Johr：
Ad－hoc Networking－Models and Methods
Recall
Direct Methods
Gaussian Elimination－Markov Chains

LU Decomposition－The Method
－Write A as
－$A \vec{x}=\vec{b} \Rightarrow \quad=\vec{b}$ ，
－L is
－U is
－Solve $L \vec{z}=\vec{b}$ ，
－simple forward substitution．
－Solve $U \vec{x}=\vec{z}$ ，
－simple backward substitution．

- n^{2} equations,

$$
\begin{equation*}
a_{i j}=\quad, \quad i, j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

- Find unkowns,
- $l_{i k}, i=1,2, \ldots, n$,
- $u_{k j}, j=1,2, \ldots, n$,
- Choose n unknowns,
- $l_{i i}=1,1 \leq i \leq n$,
- $u_{i i}=1,1 \leq i \leq n$,
- Rewrite Equation (1),
- $i \leq j: a_{i j}=u_{i j}+\sum_{k=1}^{i-1} I_{i k} u_{k j} \Leftrightarrow$
- $i>j: a_{i j}=l_{i j} u_{j j}+\sum_{k=1}^{j-1} l_{i k} u_{k j} \Leftrightarrow$
- and solve iteratively.

Ad-hoc Networking - Models and Methods Recall

Iterative vs. to Direct Methods

- Result is computed in
- no precise solution available.
- Number of steps depends on
- not a-priori known.
- Efficient can be used,
- sparce matrices,
- decision diagramms.
- No (see Example).
- Solution of systems possible;
- direct methods to systems with a states/equations.

Power Method - The Method

- For DTMC,
- multiply (steady-state) vector with \mathbf{P} until
- For CTMC,
- determine DTMC $\quad \mathbf{P}=$ $\lambda \geq \max _{i}\left\{\left|q_{i i}\right|\right\}$.
- $\underline{\pi}^{(i)} \mathbf{P}=\underline{\pi}^{(i+1)}$.
- Used to solve for left eigenvector with eigenvalue 1.
- Not very effcient.

Jacobi Method - The Method

- Rewrite $i^{\text {th }}$ equation: $p_{i}=\left(\sum_{j=1}^{i-1} p_{j} a_{i j}+\sum_{j=i+1}^{n} p_{j} a_{i j}\right)$.
- Use first estimate $\vec{\pi}^{(0)}$,
- uniform distribution good choice.
- Next estimate

$$
\text { - } p_{i}^{(k+1)}=\frac{1}{a_{i j}}\left(\sum_{j=1}^{i-1} p_{j}^{(k)} a_{i j}+\sum_{j=i+1}^{n} p_{j}^{(k)} a_{i j}\right) .
$$

- Stop iterating:
(difference criterion),
- not necessarily solution vector found!
- Check (residual criterion);
- more expensive, hence
- use combination of both.
- Slow conversion: use on non-successive

Gauss-Seidel - The Method

- Structures the Jacobi method,
- Jacobi method requires storage of two vectors $\vec{\pi}^{(k)}$ and $\vec{\pi}^{(k+1)}$,
- now, results are used as soon as computed.
- $p_{i}^{(k+1)}=\frac{1}{\mid a_{i i}}\left(\sum_{j=1}^{i-1} p_{j}^{(k+1)} a_{i j}+\sum_{j=i+1}^{n} p_{j}^{(k)} a_{i j}\right)$,
- order of computation is assumed to be from p_{1} to p_{n}.
- Storage of only one probability vector.
- Iteration scheme $D \vec{\pi}^{(k+1)}=L \vec{\pi}^{(k+1)}+U \vec{\pi}^{(k)}$,
- $\vec{\pi}^{(k+1)}=(D-L)^{-1} U \vec{\pi}^{(k)}$,
- iteration matrix $\Phi_{G S}=(D-L)^{-1} U$.

Iterative Methods

Example

- Reconsider Q from above examples.
- $\Phi_{P}=I+Q / \lambda=\frac{1}{6}\left(\begin{array}{lll}2 & 1 & 6 \\ 2 & 4 & 1 \\ 2 & 1 & 0\end{array}\right) .10$ iterations.
- $\Phi_{J}=D^{-1}(L+U)=\left(\begin{array}{ccc}0 & \frac{1}{4} & \frac{3}{2} \\ 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{6} & 0\end{array}\right) .8$ iterations.
- $\Phi_{G S}=(D-L)^{-1} U=\left(\begin{array}{ccc}0 & \frac{1}{4} & \frac{3}{2} \\ 0 & \frac{1}{4} & \frac{3}{2} \\ 0 & \frac{1}{8} & \frac{3}{4}\end{array}\right) .2$ iterations.

Runge-Kutta Methods

The Method

- Solving differential equation system $\underline{\pi}^{\prime}(t)=\underline{\pi}(t) Q$, numerically.
- Approximate $\underline{\pi}(t)$ by a

$$
\underline{p}_{i}, i \in \mathbb{N},
$$

- use
- $\underline{p}_{i}=\underline{\pi}(i h)$.
h, hence,
- \underline{p}_{0} chosen as $\underline{\pi}(0)$.
- The smaller h,
- result more accurate,
- and more expensive.
- \underline{p}_{i} is used to compute \underline{p}_{i+1},
- but not \underline{p}_{0} to p_{i-1} method.
- Fairly efficient.
- Methods of different order exist.

Main notion

Benefit

－Solution via
expansion
$\underline{\pi}(t)=\underline{\pi}(0) e^{Q t}=$ not applicable，
－infinite summation cannot be
－severe（positive and negative entries of Q ）．
－Overcome this by
－Define
－$\lambda \geq \max _{i}\left\{\left|q_{i i}\right|\right\}$ called
－P
－$\underline{\pi}(t)=\underline{\pi}(0) e^{Q t}=\quad=\underline{\pi}(0) e^{-\lambda t} e^{\lambda P t}$.
－$\underline{\pi}(t)=$
－Still dealing with Taylor series．
－All values are between 0 and 1 ．
－Allows for iterative solution，
－$\underline{\pi}(t)=\sum_{n=0}^{\infty} \psi(\lambda t ; n)\left(\underline{\pi}(0) P^{n}\right)=$
－$\underline{\pi}_{n}$ computed recursively（ $\underline{\pi}_{0}=\underline{\pi}(0)$ ，
－Sum is after steps，
－k_{ϵ} is computed a－priori with respect to accuracy ϵ ，
－$\|\underline{\pi}(t)-\tilde{\pi}(t)\| \leq 1-\sum_{n=0}^{k_{c}} \psi(\lambda t ; n)$
－$\sum_{n=0}^{k_{e}} \frac{(\lambda t)^{n}}{n!} \geq \frac{1-\epsilon}{e^{\lambda t}}=(1-\epsilon) e^{\lambda t}$ ．
－For large λt ，
－steady－state reached？Stop computing

Main Computational Challenges

－Steady－state analysis，$(A \vec{\pi}=\overrightarrow{0})$
－DTMC：
product with convergence，
－CTMC：
product with
until convergence．
－Transient analysis，
－DTMC：matrix－vector product，$(\underline{\pi}(n)=\underline{\pi}(n-1) P)$
－CTMC：uniformisation，summation over with

Uniformisation

－Consider $Q=\left(\begin{array}{cccc}-3 & 2 & 0 & 1 \\ 0 & -4 & 1 & 3 \\ 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & -2\end{array}\right)$ ．
－Assume $\underline{\pi}(0)=(1,0,0,0)$ ．
－Compute the probability distribution for $t=1$ with uniformisation and answer thereby the following questions．
－How large is the uniformisation rate λ ？
－How large is k_{ϵ} for $\epsilon=10^{-n}, \quad n=1,2,3,4,5$ ？

European Championship
Germany
vS.
Netherlands

Today, 20:45h Result will be added.

Holger Hermanns, Sven Johr:
Ad-hoc Networking - Models and Methods

