Cost-Optimization of IPv4 Zeroconf Protocol

Henrik Bohnenkampm, Peter der Stok, Holger Hermanns, Frits Vaandrager

Ad hoc Networking Models and Methods

By Mohammad Alrifai

Outline

- Motivation
- IPv4 Zeroconf Protocol
- The Model
 - Family of DRMs
 - No answer probabilities
 - Abstrat cost
- Mean total cost
 - Cost function
 - Optimization
- Reliability
- Assesing the protocol
- conclusion

Motivation

- Electronic devices to get connected via Local network based on IP protocol
- IP protocol required to get upper layer protocols supported (ftp etc...)
- No DHCP server
- No manual configuration
- Problem:
 - How to assign unique IP address?
 - Self-configuring (plug and play) devices

Motivation

- Proposed IPv4 zeroconf Protocol
 - Internet-draft end 2002
 - Randomized assignment of link-local addresses
- We discuss here Costs:
 - Cost during initialization phase
 - Cost when address collision occurs
- Questions to be addressed:
 - How to optimize the cost incurred
 - Trade-off between cost and reliability

IPv4 Zeroconf Protocol

- Based on ARP Protocol:
 - Address Resolution Protocol
 - A knows B's IP address, wants to know MAC address of B
 - A broadcasts ARP query pkt containing B's IP address
 - All machines on LAN receive this ARP query
 - B receives ARP pkt, replies to A with ist (B's) MAC address

IPv4 Zeroconf Protocol

- Zeroconf Protocol:
 - Fresh connected host (A) chooses randomly IP address from within 65024 link-local addresses between 169.254.1.0 and 169.254.254.255 allocated by IANA
 - A broadcasts ARP probe pkt containing chosen IP address
 - All hosts on LAN receive this ARP query
 - A waits for an answer or timeout r
 - If no answer, repeats **n** times
 - answer received,
 - A doesn't care about MAC addres
 - A knows chosen IP address is used
 - A chooses randomly new IP address and repeats
 - After **n** probes, if no reply, A adopts chosen IP address

IPv4 Zeroconf Protocol

- Zeroconf Protocol:
 - Suggestions in draft:
 - n = 4,
 - r = 2 sec for unreliable(wireless) networks and,
 - r =0.2 sec for reliable ones
 - user must wait for 8 sec till new (unused) IP address is adopted
 - Decreasing n or r may lead to address collision
 - Cost of collision is very heigh (break active connections)
 - Trade-off between reliability (assigning unique IP address) and not disturbing the user too much
 - Q:What is the probability that a collision occurs for a given n & r?
 - Q:What is the optimal n and r s.t. overall (mean) cost of protocol is minimum?

The Model

- Consider a single freshly connected device trying to connect to an existing ad hoc network (initialization phase)
- The network consists of m devices
- At most n ARP probes have to be sent to check the chosen IP address
- Time to wait between two queries is set to r
- Assume during initialization other devices neither added nor removed nor trying to get a new address
- Family of dicrete-time Markov reward models
 - Different DTMCs for n = 1,2,3,... with costs associated with transitions as rewards

 p_1 probability of not receiving a reply of 1st ARP probe after r sec.

 p_1 probability of not receiving a reply of 1st ARP probe after r sec.

The Model: No-answer probability

- P1: Pr(no answer of probe1 received within $0 \rightarrow r$)
- P2: Pr(neither answer of probe1 nor of probe2 received in $r \rightarrow 2r$)
- P3: Pr(neither answer of probe1,2 nor probe3 received in $2r \rightarrow 3r$)
-

• Pn:

Pr(neither answer of probe1,2,3,... nor of probe n received in $r \rightarrow 2r$)

- $F_{X}(t) = Pr(X \le t),$
 - X: time at which a reply to an ARP probe is received
 - F_X : defective distribution function s.t $\lim_{t \to \infty} F_X(t) = L < 1$ i.e packets may get lost

$$\mathsf{P}(i,r) = \prod_{j=1}^{i} \left(1 - \frac{F_{\mathbf{X}}(jr) - F_{\mathbf{X}}((j-1)r)}{1 - F_{\mathbf{X}}((j-1)r)} \right)$$

The Model: Abstract cost

- Sources of cost:
 - time cost : reprsented by r
 - Network usage cost: c
 - Cost of erroneously accepting already used IP address: E
 - Cost of beaking connections
 - Cost of reconfiguration of both hosts
 - Cost of user dissatisfaction with the product
 - ...etc
- The mean total cost of the protocol
 - Mean total cost incurred during initialization
 - Starting from state "start" ending with steady states "OK" or "error"
 - Sum up all costs of all possible paths

The Model: cost function

- Probability matrices $P_n = (p_{ij}^{(n)})$, i, j = 1, 2, 3, ..., n+3 for n=1, 2, ...
- Cost matrices $C_n = (c_{ij}^{(n)})$, i, j = 1, 2, 3, ..., n+3 for n=1, 2, ...

	1 Start	2	3	4		n	n+1	n+2 error	n+3 OK
1 Start	0	q (r+c)	0	0		0	0	0	1-q (n(r+c))
2	1-p ₁	0	P ₁ (r + c)	0		0	0	0	0
3	1-p ₂	0	0	P ₂ (r + c)		0	0	0	0
•	•	•	•	•	•	•	•	•	•
• •	•	•	•	•	•	•	•	•	•
n	1-p _{n-1}	0	0	0		0	p _{n-1} (r+c)	0	0
n+1	1-p _n	0	0	0		0	0	P _n (E)	0
n+2 error	0	0	0	0		0	0	1	0
n+3 OK	0	0	0	0		0	0	0	1

The Model: cost function

- Mean total cost: $\underline{a} = (a_1^{(n,r)}, \dots, a_{n+1}^{(n,r)})^T$
- the mean total cost of state *i* :

$$a_i^{(n,r)} = \sum_{j=1}^{n+3} p_{ij}^{(n)} \left(C_{ij}^{(n)} + a_j^{(n)} \right) , i = 1, 2, 3, ..., n+1$$

• Let
$$\mathbf{P'_n} = (p_{ij}^{(n)})$$
, $i, j = 1, 2, 3, ..., n+1$

and
$$\underline{w} = (w_1, ..., w_{n+1})^T$$
, $w_i = \sum_{j=1}^{n+3} p_{ij} c_{ij}$

Then <u>a</u> can be computed from <u>a</u> = $\mathbf{P'_n} \cdot \underline{a} + \underline{w}$ or better <u>a</u> = - ($\mathbf{P'_n} - \mathbf{I}$)

The Model: cost function

• We consider the mean total cost of state "start": $a_{I}^{(n,r)}$

$$C(n,r) = \frac{(r+c)\left(n(1-q) + q\sum_{i=0}^{n-1} \pi_i(r)\right) + qE\pi_n(r)}{1-q(1-\pi_n(r))}$$

where
$$\pi_i(r) = \prod_{j=0}^i p_j(r)$$
, for $i = 0, ..., n$

- Next step:
 - Fix c, q, E and F_x to find **optimal** n and r for minimal cost
 - Fix n and r and perform sensitivity analysis

• Example plots:

•
$$F_X(r) = \begin{cases} L.(1 - e^{-\lambda(r-d)}) & \text{for } r \ge d \\ 0 & \text{otherwise} \end{cases}$$

- d = 1, round-trip delay
- λ = 10, mean time a reply is received after sending ARP probe d+1/λ
- m = 1000, hence q = 1000/65024

•
$$c = 2$$
, $E = 10^{35}$

• Example plots:

•
$$F_X(r) = \begin{cases} L.(1 - e^{-\lambda(r-d)}) & \text{for } r \ge d \\ 0 & \text{otherwise} \end{cases}$$

- d = 1, round-trip delay
- λ = 10, mean time a reply is received after sending ARP probe d+1/λ
- m = 1000, hence q = 1000/65024

•
$$c = 2$$
, $E = 10^{35}$

- Optimal *n*:
 - Find N(r) such that:

 $C_{\min} = C(N(r), r)$

The lower r is,

the lower the cost is

• Optimal *n*:

$$A_{n}(r) = \frac{(r+c)\left(n(1-q)+q - \frac{1-(1-L)^{n}}{L}\right) + qE(1-L)^{n}}{1-q}$$

• Hence, the minimal value of n is:

$$v = \left[-\frac{\log (E)}{\log (I-L)} \right]$$

To minimize the cost this should approach zero

• Reliability: probability that unused IP addressed is selected at the end of initialization phase. i.e probability to end up in state OK

	1 Start	2	3	4		n	n+1	n+2 error	n+3 OK
1 Start	0	q (r+c)	0	0		0	0	0	1-q (n(r+c))
2	1-p ₁	0	P ₁ (r + c)	0		0	0	0	0
3	1-p ₂	0	0	P ₂ (r+c)		0	0	0	0
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
n	1-p _{n-1}	0	0	0		0	p _{n-1} (r+c)	0	0
n+1	1-p _n	0	0	0		0	0	P _n (E)	0
n+2 error	0	0	0	0		0	0	1	0
n+3 OK	0	0	0	0		0	0	0	1

 Reliability: probability that unused IP addressed is selected at the end of initialization phase. i.e probability to end up in state OK

- Reliability: probability R(n,r) that unused IP address is selected at the end of initialization phase (probability to end up in state OK).
- We drive 1 R(n,r)

$$1-R(n,r) = \sum_{K=1}^{\infty} \sum (\mathbf{P'}_{\mathbf{n}})^{k-1} \underline{e}_n = \underline{s}_n (\mathbf{I} - \mathbf{P'}_{\mathbf{n}})^{-1} \underline{e}_n$$

$$\rightarrow \qquad 1 - R(n,r) = \frac{q\pi_n(r)}{1 - q (1 - \pi_n(r))}$$

• Error probability (of adopting used IP address)

• Error probability (of adopting used IP address)

$$1 - R(N(r), r) = \frac{q\pi_n(r)}{1 - q(1 - \pi_n)}$$
 the lower the reliability is

Summary and Conclusion

- Family of Discrete-time Markov reward models has been used to model the protocol run
- Cost function :

$$C(n,r) = \frac{(r+c)\left(n(1-q) + q\sum_{i=0}^{n-1} \pi_i(r)\right) + qE\pi_n(r)}{1-q(1-\pi_n(r))}$$

- Optimal parameters can be computed using numerical solutions
 - Optimal n : $n > \begin{bmatrix} -\log(E) \\ \log(1-L) \end{bmatrix}$
- Trade-off between cost and Reliability
 - The lower r is set, the lower the cost become, but also the reliability decreases then