Intelligente und effiziente Suche auf semistrukturierten Daten

Gerhard Weikum weikum@mpi-sb.mpg.de http://www.mpi-sb.mpg.de/~weikum/

Outline

- Motivation and Challenges
- XXL & XXL-light: IR on XML Data
- Role of Ontologies
- Efficient Evaluation of Top-k Queries
- Ongoing and Future Work

A Few Challenging Queries (on Web / Deep Web / Intranet / Personal Info)

- Which professors from Saarbruecken (SB) are teaching IR and have research projects on XML?
- Which gene expression data from Barrett tissue in the esophagus exhibit high levels of gene A01g?
- What are the most important results on large deviation theory?
- Which drama has a scene in which a woman makes a prophecy to a Scottish nobleman that he will become king?
- Who was the French woman that I met at the PC meeting where Paolo Atzeni was PC Chair?
- Are there any published theorems that are equivalent to or subsume my latest mathematical conjecture?

IR

What if the Semantic Web Existed and All Information Were in XML?

What if the Semantic Web Existed and All Information Were in XML?

5

What if the Semantic Web Existed and All Information Were in XML?

International Conference ...

Challenge: Ambiguity !

Homepage

Address:

Firstname: Sophie Lastname: Cluet

INRIA Rocquencourt, 78153 Le Chesnay, France Interests: XML, ...

Homepage Firstname: Maria Address: Lastname: Sanchez Gender: female

Main Street, Paris, Texas 94052

Street: City: Rue de la Paris Chimie 138 Country: France Homepage Name: M.-C. Richard **Biography:** France ... mother of two children ...

Name:

Antoinette

Lagrange

Homepage

Address

Hobbies: Painting,

Address: Rue de Voltaire, 10045 Paris,

Our Research Agenda

Outline

- ✓ Motivation and Challenges
- XXL & XXL-light: IR on XML Data
- Role of Ontologies
- Efficient Evaluation of Top-k Queries
- Ongoing and Future Work

Select U, C From www.allunis.de/unis.xml Where Uni As U And U.#.School?.#.(Inst | Dept)+ As D And D Like ,,%CS%" And D.#.Course As C And C.# Like ,,%Markov chain%"

Select U, C From www.allunis.de/unis.xml Where Uni As U And U.#.School?.#.(Inst | Dept)+ As D And D Like "%CS%" And D.#.Course As C And C.# Like "%Markov chain%"

XML-IR Example (4)

Select U, C From www.allunis.de/unis.xml Where Uni As U And U.# As D And D ~ "CS" And D.#.~Course As C And C.# ~ "Markov chain"

Select U, C From www.allunis.de/unis.xml Where Uni As U And U.# As D And D ~ ,,CS" And D.#.~Course As C And C.# ~ ,,Markov chain"

XML-IR Concepts

Example COMPASS (Concept-Oriented Multi-Format Por • query is a pattern simple, extensible core language – app

Where clause: conjunction of restrict with binding of variabl

Query Semantics:

- with relaxable conditions
- results are approximate matches to query with similarity scores

Elementary conditions on names and contents

Select P, C, R From index Where ~professor As P And **P** = "Saarbruecken" And *P//~course = "Information Retrieval"* As C And *P//~research = ,,~XML"* As *R*

Semantic similarity conditions on names and contents ~research = "~XML"

Relevance scoring based on tf*idf similarity of contents, ontological similarity of names, probabilistic combination of conditions

XML-IR Scoring Model

local score for elementary condition: based on tf*idf-style statistics for node or node context with score propagation

global score for query: \sum local scores * compactness

compactness of result: max{∑ node & edge weights | graph connecting matching nodes} → generalized MST (related to Steiner trees)

XML-IR Scoring Model

local score for elementary condition: based on tf*idf-style statistics for node or node context with score propagation

global score for query: \sum local scores * compactness

compactness of result: max{∑ node & edge weights | graph connecting matching nodes} → generalized MST (related to Steiner trees)

XML-IR Scoring Model

local score for

Efficient score computation: heuristics work; advanced algorithms is open issue

statistics ext n

global score for query: \sum local scores * compactness

compactness of result: max{∑ node & edge weights | graph connecting matching nodes} → generalized MST (related to Steiner trees)

Outline

- ✓ Motivation and Challenges
 ✓ XXL & XXL-light: IR on XML Data
- Role of Ontologies
- Efficient Evaluation of Top-k Queries
- Ongoing and Future Work

On Thesauri and Ontologies

- Taxonomy: classification of concepts into groups (and trees of groups)
- **Thesaurus**: repository (,,treasure") of synonyms (and other relationships between words and concepts)
- **Ontology**: metaphysical study of the nature of being & existence
- **Ontology (new definition)**: structured repository of knowledge with a description of concepts and relationships, possibly in the form of description logics formula
- XML schemas, DTDs, namespaces: syntactic conventions and standardized naming (plus typing info)Gazetteer: (geographical) dictionary of names

Reasoning on Ontologies and Thesauri:

Professor \subseteq Lecturer $\cap \exists$ hasStaff.SecretaryTeaching \supseteq Cou
Professor \subseteq Acad
Academician \subseteq H
Human \subseteq CarnivProfessor \subseteq Acad
pragmatic, rich, efficient

- → logical inferences with sub-FOL calculus
- → transitive closures, shortest paths, etc. along generalizations

Example WordNet

7% WordNet 1.6 Browser	
File History Options Help	
Search Word: woman Redispla	ay Overview
Searches for woman: Noun Senses:	
1 of 4 senses of woman	
Sense 1 woman, adult female (an adult female person (as opposed to a man); "the woman kept house while the man hunted") => Eve ((Old Testament) Adam's wife in Judeo-Christian mythology: the first woman and mother of the human race; God created Eve from Adam's rib and p => black woman (a woman who is Black) => white woman (a woman who is White) => uellow woman (affensive term for an Oriental woman)	placed Ada
woman, adult female – (an adult female person)	
=> amazon, virago – (a large strong and aggressive wor	ian)
=> donna (an Italian woman of rank)	
=> geisha, geisha girl ()	
=> lady (a polite name for any woman)	
•••	
=> wife – (a married woman, a man's partner in marriag	ge)
=> witch – (a being, usually female, imagined to	
have special powers derived from the devil)	

=> maenad -- (an unnaturally frenzied or distraught woman) => matron, head nurse -- (a woman in charge of nursing in a medical institution)

Ontology Visualization

4

Ontology Graph

An ontology graph is a directed graph with concepts (and their descriptions) as nodes and semantic relationships as edges (e.g., hypernyms).

Weighted edges capture strength of relationships \rightarrow key for identifying closely related concepts

Statistics for Weighted Ontological Relations

Gather statistics from large corpus or by (focused) Web crawl

Various correlation measures for sim(c1, c2):

Dice coefficient: $\frac{2|\{docs with c1\} \cap \{docs with c2\}|}{|\{docs with c1\}| + |\{docs with c2\}|}$

Jaccard coefficient: $\{ docs with c1 \} \cap \{ docs with c2 \}$

 $|\{ docs with c1\}| + |\{ docs with c2\}| - |\{ docs with c1 and c2\}|$

Conditional *P*[doc has c1 | doc has c2] **probabilites:**

Transitive similarity:

 $sim^*(c1, cn) = max\{\prod_{i=1..n-l} sim(c_i, c_{i+1}) \mid all \text{ paths from } c1 \text{ to } cn\}$

compute by (adaptation of) Dijkstra's shortest-path algorithm

Benefits from Ontology Service

Ontology service accessible via SOAP or RMI Ontology filled with WordNet, geo gazetteer, focused crawl results, extracted tables & forms

usefor for:

- Threshold-based query expansion
- Query keyword disambiguation
- Support for automatic tagging of HTML and enhanced XML tags
- Mapping of concept-value query conditions onto Deep-Web portals

Query Expansion

Threshold-based query expansion:

substitute ~w by $(c_1 | ... | c_k)$ with all c_i for which $sim(w, c_i) \ge \delta$

"Old hat" in IR; highly disputed for danger of topic dilution

Approach to careful expansion:

- determine phrases from query or best initial query results (e.g., forming 3-grams and looking up ontology/thesaurus entries)
- if uniquely mapped to one concept then expand with synonyms and weighted hyponyms

Query Expansion Example

From TREC 2004 Robust Track:

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity, the activity, and, if possible, collaborating organizations and the countries involved.

Query = {international[0.145|1.00],

~META[1.00|1.00][{gangdom[1.00|1.00], gangland[0.742|1.00],

''organ[0.213|1.00] & crime[(mafia[0.154|1.00], ''sicilian[0, ''black[0.066|1.00] & hand[0, organ[0.213|1.00], crime[0.31

columbian[0.686|0.20], cartel

135530 sorted accesses in 11.073 **Results:**

- 1. Interpol Chief on Fight Agai....
- 2. Economic Counterintelligen
- 3. Supreme Procuratorate Wor
- 4. Crime and Punishment in the
- 5. SWITZERLAND CALLED JULI COLLEG

... for organizing the illicit export of metals and import of arms. It is extremely difficult for the law-enforcement organs to investigate and stamp out corruption among leading officials.

A parliamentary commission accused Swiss prosecutors today of doing little to stop drug and money-laundering international networks from pumping billions of dollars through Swiss companies.

Keyword-to-Concept Mapping and Word Sense Disambiguation

Example: "Java class socket" vs. "Java beach snorkeling" Which concept should "Java" be mapped to for query expansion?

Note: unlike in LSI or pLSI, concepts are explicit, not latent!

Approach for query keyword disambiguation:

- form contexts con(w) and con(c_i) for keyword w and potential target concepts $c_i \in \{c_1, ..., c_k\}$
- bag-of-words similarity sim(con(w), con(c)) based on cos or KL diff
- choose concept argmax_c {sim(con(w), con(c))}

What About Deep Web and Web Services? Mapping of concept-value query conditions onto Deep-Web portals: \rightarrow instrument = (flute | piccolo | recorder) ~sheetmusic = ,,~flute" category = reeds \rightarrow style = (classical | jazz | folk) \rightarrow digital sheet music | music books | power search | wish list <element name="WSF_Form0Select0_Enum"> power search find your favorite sheet mu <simpleType> <restriction base="string"> </restriction> search for: all items </simpleType> </element> available in: show all results *Applies to (<simpleType name="WSF_Form0Select1_Enum"> notation type: Call Cleasy play Clpiano/vocal CITAB <restriction base="string"> keyword: <enumeration value=,,Alternative"/> <enumeration value=,,Blues"/> title/song: <enumeration value=,,Children's"/> artist/composer: <enumeration value=,,Classical"/> instrument: <enumeration value=,,Country"/> style: all styles **Observations:** scoring: all scorings • Deep Web has > 500 000 hidden databases difficulty: all levels (for digital sheet music only) with > 500 billion ($5*10^{11}$) dynamic pages vrics: (for digital sheet music only) • High ,,redundancy" among query forms show items per page: 10 \rightarrow enables exploitation of statistics go search now!

go search now!

Outline

✓ Motivation and Challenges
 ✓ XXL & XXL-light: IR on XML Data
 ✓ Role of Ontologies

• Efficient Evaluation of Top-k Queries

• Ongoing and Future Work

<u>Given:</u> query q = t1 t2 ... tz with z (conjunctive) keywords similarity scoring function score(q,d) for docs d \in D, e.g.: $\vec{q} \cdot \vec{d}$ <u>Find:</u> top k results with regard to score(q,d) (e.g.: $\Sigma_{i \in q} s_i(d)$)

Naive QP algorithm:

candidate-docs := \emptyset ; for i=1 to z do {

candidate-docs := candidate-docs \cup index-lookup(ti) }; for each dj \in candidate-docs do {compute score(q,dj)}; sort candidate-docs by score(q,dj) descending; "Fagin's TA" (Fagin'01; Güntzer/Kießling/Balke; Nepal et al.)

scan all lists L_i (i=1..m) in parallel: consider dj at position pos_i in Li; high_i := s_i(dj); if dj ∉ top-k then {

but random accesses are expensive !

look up s_v(dj) in all lists L_v with v≠i; // random access compute s(dj) := aggr {s_v(dj) | v=1..m}; if s(dj) > min score among top-k then add dj to top-k and remove min-score d from top-k; }; threshold := aggr {high_v | v=1..m}; if min score among top-k ≥ threshold then exit;

m=3	f: 0.5 b: 0.4		a: 0.55 b: 0.2		h: 0.35 d: 0.35	top-k:
III–3	c: 0.35		f: 0.2		b: 0.2	
aggr: sum	a: 0.3	5.8	g: 0.2	100	a: 0.1	
k=2	h: 0.1		c: 0.1		c: 0.05	a: 0.95
R-2	d: 0.1				f: 0.05	b: 0.8

applicable to XML data: course ~ "Internet" and ~topic = "performance"

TA-Sorted

scan index lists in parallel: consider dj at position pos_i in Li; $E(dj) := E(dj) \cup \{i\}; high_i := si(q,dj);$ bestscore(dj) := aggr{x1, ..., xm} with xi := si(q,dj) for $i \in E(dj)$, high_i for $i \notin E(dj);$ worstscore(dj) := aggr{x1, ..., xm} with xi := si(q,dj) for $i \in E(dj), 0$ for $i \notin E(dj);$ top-k := k docs with largest worstscore; threshold := bestscore{d | d not in top-k}; if min worstscore among top-k ≥ threshold then exit;

m=3 aggr: sum	f: 0.5 b: 0.4 c: 0.35 a: 0.3		a: 0.55 b: 0.2 f: 0.2 g: 0.2		h: 0.35 d: 0.35 b: 0.2 a: 0.1	
k=2	h: 0.1	100 miles	c: 0.1	Sales and	c: 0.05	
	d: 0.1				f: 0.05	

top-k:
a: 0.95
b: 0.8
candidates:
$f: 0.7 + ? \le 0.7 + 0.1$
$h: 0.45 + ? \le 0.45 + 0.2$
$\frac{-c: 0.35 + ?}{-1: 0.25 + 9} \le 0.35 + 0.35$
$-d: 0.35 + ? \le 0.35 + 0.3$

 $g: 0.2 + ? \le 0.2 + 0.3$

Top-k Queries with Probabilistic Guarantees TA family of algorithms based on invariant (with sum as aggr) $\sum_{i \in E(d)} s_i(d) \le s(d) \le \sum_{i \in E(d)} s_i(d) + \sum_{i \notin E(d)} high_i$ **Relaxed into probabilistic invariant** $p(d) := P[s(d) > \delta] = P[\sum_{i \in E(d)} s_i(d) + \sum_{i \notin E(d)} S_i > threshold]$ $= P[\sum_{\substack{i \notin E(d)}} S_i > threshold - \sum_{i \in E(d)} s_i(d)] =: P[\sum_{\substack{i \notin E(d)}} S_i > \delta'] \leq \varepsilon$ where the RV S_i has some (postulated and/or estimated) distribution in the interval (0,high_i] a: 0.55 h: 0.35 f: 0.5 • Discard candidates with $p(d) \leq \varepsilon$ Exit index scan when candidate list empty

- postulating *uniform or Zipf* score distribution in [0, high_i]
 - compute convolution using LSTs
 - use Chernoff-Hoeffding tail bounds or generalized bounds for correlated dimensions (Siegel 1995)
- fitting *Poisson* distribution (or Poisson mixture)
 - over equidistant values: $P[d = v_j] = e^{-\alpha_i} \frac{\alpha_i^{j-1}}{(i-1)!}$
 - easy and exact convolution
- distribution approximated by *histograms, engineering-wise*
 - precomputed for each dimension *histograms work best!*
 - dynamic convolution at query-execution time

with independent Si's or with correlated Si's

Prob-sorted Algorithm (Smart Variant) *Prob-sorted (RebuildPeriod r, QueueBound b):* ... scan all lists Li (i=1..m) in parallel: ...same code as TA-sorted...

Il queue management

for all priority queues q for which d is relevant do insert d into q with priority bestscore(d); // periodic clean-up if step-number mod r = 0 then // rebuild; single bounded queue if strategy = Smart then for all queue elements e in q do update bestscore(e) with current high_i values; rebuild bounded queue with best b elements; if prob[top(q) can qualify for top-k] < ε then exit;

if all queues are empty then exit;

Performance Results for .Gov Queries

on .GOV corpus from TREC-12 Web track: 1.25 Mio. docs (html, pdf, etc.)

50 keyword queries, e.g.:

- "Lewis Clark expedition",
- "juvenile delinquency",
- "legalization Marihuana",

• "air bag safety reducing injuries death facts"

speedup by factor 10 at high precision/recall (relative to TA-sorted);

aggressive queue mgt. even yields factor 100 at 30-50 % prec./recall

	TA-sorted	Prob-sorted (smart)
#sorted accesses	2,263,652	527,980
elapsed time [s]	148.7	15.9
max queue size	10849	400
relative recall	1	0.69
rank distance	0	39.5
score error	0	0.031

.Gov Expanded Queries

on .GOV corpus with query expansion based on WordNet synonyms: 50 keyword queries, e.g.:

- "juvenile delinquency youth minor crime law jurisdiction offense prevention",
- "legalization marijuana cannabis drug soft leaves plant smoked chewed euphoric abuse substance possession control pot grass dope weed smoke"

	TA-sorted	Prob-sorted (smart)
#sorted accesses	22,403,490	18,287,636
elapsed time [s]	7908	1066
max queue size	70896	400
relative recall	1	0.88
rank distance	0	14.5
score error	0	0.035

Performance Results for IMDB Queries

on IMDB corpus (Web site: Internet Movie Database):
375 000 movies, 1.2 Mio. persons (html/xml)
20 structured/text queries with Dice-coefficient-based similarities of categorical attributes Genre and Actor, e.g.:

• Genre ⊇{Western} ∧ Actor ⊇{John Wayne, Katherine Hepburn}

 \wedge Description \supseteq {sheriff, marshall},

Genre ⊇ {Thriller} ∧ Actor ⊇ {Arnold Schwarzenegger}
 ∧ Description ⊇ {robot}

The set of the set of	TA-sorted	Prob-sorted (smart)
#sorted accesses	1,003,650	403,981
elapsed time [s]	201.9	12.7
max queue size	12628	400
relative recall	1	0.75
rank distance	0	126.7
score error	0	0.25

Outline

✓ Motivation and Challenges
 ✓ XXL & XXL-light: IR on XML Data
 ✓ Role of Ontologies
 ✓ Efficient Evaluation of Top-k Queries
 Ongoing and Future Work

Exploiting Collective Human Input for Collaborative Web Search

- Beyond Relevance Feedback and Beyond Google -

href links are human endorsements → PageRank, etc.
<u>Opportunity</u>: online analysis of human input & behavior may compensate deficiencies of search engine

<u>Typical scenario</u> for 3-keyword user query: a & b & c \rightarrow top 10 results: user clicks on ranks 2, 5, 7

- → top 10 results: u query logs, bookmarks, etc. provide
 - human assessments & endorsements
- → top 10 results: u

 correlations among words & concepts
 u
 u
 and among documents
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 u
 <

Challenge: How can we use knowledge about the collective input of all users in a large community?

Concluding Remarks

long-term goal: exploit the Web's potential for being the world's largest knowledge base

- *XML* and *Semantic Web* are key assets, but by themselves not sufficient; we need to cope with *diversity*, *incompleteness*, and *uncertainty* → absolute need for ranked retrieval
- view *information organization* and *information search* as dual views of the same problem
- combine techniques from *DBS*, *IR*, *CL*, *AI*, and *ML*
- need better *theory* about quality/efficiency *tradeoffs* as well as *large-scale experiments*