

Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Program in Computer Science

Bachelor’s Thesis

submitted by

Arnd Hartmanns

on 2007-05-21

Advisor

Prof. Dr.-Ing. Holger Hermanns

Reviewers

Prof. Dr.-Ing. Holger Hermanns

Prof. Bernd Finkbeiner, Ph.D.

Statement

Hereby I confirm that this thesis is my own work and that I have

documented all sources used.

Saarbrücken, 2007-05-21

Declaration of Consent

Herewith I agree that my thesis will be made available through the

library of the Computer Science Department.

Saarbrücken, 2007-05-21

MoDeST is a language to model stochastic timed systems. It pro-

vides a wide range of orthogonal features, but does not have direct

support for passing values between concurrent processes. In the

first part of this thesis, a semantics for value passing in MoDeST

will be developed, with particular focus on the specific differences

between MoDeST and existing value-passing modelling languages.

In the second part, key steps of the implementation of these se-

mantics for use with the Möbius simulation and performance

evaluation framework will be highlighted, most notably concern-

ing timed aspects of value passing.

This thesis has benefited from the support of several people,

whom I would like to thank sincerely.

Holger Hermanns not only offered the topic initially, but has con-

tinually supported my work in every way. Our discussions on

value passing, semantics, MoDeST, and implementation issues

were not only of immediate value for this thesis, but also offered

insights beyond.

Though asked on short notice, Bernd Finkbeiner immediately ac-

cepted to review this thesis, and the interest he showed was of

great mental support during the final days of completing this text.

I further benefited from Reza Pulungan’s unlimited patience when

it came to resolving technical issues, and Christa Schäfer’s imme-

diate organisational support whenever it was needed.

Last but not least, Thomas Mike Peters deserves a special mention

for proofreading and commenting on the thesis in an extremely

constrained timeframe.

– 9 –

1 Value Passing Semantics 11

1.1 MoDeST .. 11

1.2 Motivation .. 12

1.3 Approaches to Value Passing ... 13

1.4 Value Passing MoDeST .. 16

1.5 Examples ... 21

1.6 Full Operational Semantics ... 26

2 Implementation 27

2.1 MoTor ... 27

2.2 Design Decisions .. 29

2.3 Timed Conditional Receive ... 32

2.4 Implementation Details .. 34

2.5 Testing .. 39

2.6 Examples ... 40

Conclusion ... 45

References ... 47

Appendix A: Test Cases and Results ... 49

Appendix B: MoTor on Windows ... 65

– 11 –

MoDeST is a “modelling and description language for stochastic timed systems” [1]. It takes

a modular, compositional approach to modelling reactive systems, in which the language’s

operators such as nondeterministic choice or parallel composition are used to combine

small models into larger and more complex ones. MoDeST is suitable for a variety of appli-

cations, providing concepts known from object-oriented programming languages (e.g. ex-

ceptions and exception handling) and traditional modelling languages like Promela and

LOTOS, and extending these with probabilistic branching and time.

Throughout most of the first part of this thesis, I will use a subset of the MoDeST language

and its semantics, leaving out both probabilistic aspects and time; MoDeST as specified in

[1] will be referred to as full MoDeST. In section 1.6, I will briefly show that my

modifications to the semantics do not interfere with the omitted features and that the nec-

essary modifications to the semantic rules presented before are simple.

The semantics of MoDeST is defined in two steps: First, a MoDeST process is associated with

a Stochastic Timed Automaton (STA), which can then be formally interpreted as a Timed

Probabilistic Transition System (TPTS).

An STA is similar to a labelled transition system, particularly when leaving out time and

probabilities. In the non-timed non-stochastic subset of STA that we will use, states (or loca-

tions) correspond to MoDeST terms, while transitions (or edges) are labelled with an action,

a guard, and an assignment function. The guard is a Boolean expression, possibly referenc-

ing some of the global or local variables, that determines whether an edge is enabled. An

edge that is enabled can be taken: its action is “executed” and the assignments are per-

formed atomically, possibly updating the variables and thus affecting the next transitions’

guards.

It is important to note that an STA is a finite representation of a MoDeST process; the ex-

pressions in the guard and the assignment function are never evaluated, but kept symboli-

cally when constructing the STA.

– 12 –

Figure 1 lists the inference rules we are mainly concerned with: The basic axiom for actions

that allows any action to complete, and the rules for parallel composition of processes. Be-

cause any number of processes can be combined in a par statement, they are first translated

into a sequence of (binary) applications of the || operator, for which inference rules for syn-

chronised and interleaved execution are given. See section 1.6 for a listing of these rules

complete with time, probabilities, and value passing.

The STA in its symbolic nature is too abstract for any reasoning that has to rely on the

evaluations of variables. A concrete interpretation of a MoDeST process can be obtained by

translating the STA into a TPTS, which is an infinite-state labelled transition system where

time, probability distributions and the evaluations of the variables are made explicit.

Even after taking away time and probabilities, the TPTS we get may still have infinitely

many states because of possibly infinite variable domains.

In general, value passing in a modelling language is a way for concurrently executing proc-

esses to exchange data. Examples of communication that we may want to model include

network protocols, interprocess communication on a single machine, or user interaction

involving data input or output. Value passing is needed for these scenarios whenever we

cannot completely abstract from the actual data that is being transferred, particularly if the

correctness of the system depends on it.

Full MoDeST currently has no special constructs for value passing. However, there are global

variables, and processes can synchronise by simultaneously executing a common action;

they could thus exchange data through a global variable and manage the communication

through clever use of synchronisation.

𝑎
𝑎 ,𝑡𝑡 ,∅
 √

par{ ∷ 𝑃1 … ∷ 𝑃n } ≝ … 𝑃1||𝐵1
𝑃2 … ||𝐵𝑛−1

𝑃𝑛

with 𝐵𝑗 = ∪𝑖=1
𝑗

α 𝑃𝑖 ∩ α 𝑃𝑗+1 , α 𝑃 = alphabet 𝑃 ∖ 𝜏, ⇂

𝑃
𝑎 ,𝑔 ,𝐴
 𝑃′ ∧ 𝑎 ∉ 𝐵

𝑃 ||𝐵 𝑄
𝑎 ,𝑔 ,𝐴
 𝑃′ ||𝐵 𝑄

𝑃

𝑎 ,𝑔1 ,𝐴1
 𝑃′ ∧ 𝑄

𝑎 ,𝑔2 ,𝐴2
 𝑄′ ∧ 𝑎 ∈ 𝐵

𝑃 ||𝐵 𝑄
𝑎 ,𝑔1∧𝑔2 ,𝐴1∪𝐴2
 𝑃′ ||𝐵 𝑄′

Figure 1: MoDeST operational semantics: Actions and parallel composition

– 13 –

Figure 2 shows a trivial example for value passing with global variables – two processes

where all nonnegative integers are transferred once, in ascending order, from a sender to a

receiver. It is important to note that in this case, there is not even synchronization between

the two processes, but instead, a Boolean variable is used to indicate when a new value is

available or should be sent. The communication is therefore purely asynchronous, and even

with synchronisation as described above, it is not possible to make it synchronous in terms

of STA transitions: The value to be transmitted would have to be assigned to and read from

val in one shot, which is not possible because of the atomicity of assignment execution.

There are additional complications with trying to simulate value passing this way as soon as

one wants to implement broadcasting or longer asynchronous buffers; all in all, it is limited

in expressivity and inelegant.

Our goal is thus to find a way of introducing explicit constructs for value passing that yield

elegant and concise models while providing a maximum of expressivity. All the while, we

want to preserve MoDeST’s orthogonality of features, making value passing an aspect that

can easily be omitted from or added to the language in the same way as time and probabilis-

tic branching.

There already exist a number of modelling languages that implement some form of value

passing. It is instructive to inspect their approaches in order to avoid common pitfalls and

be able to choose the best and most suited aspects for use in Value Passing MoDeST.

The modelling language Promela, implemented in the SPIN model checker [9], uses chan-

nels for interprocess communication. Channels in Promela are typed buffers of some finite

length. Values can be sent into a channel as long as it is not full, and can be received from a

int val;
bool flag;

process SendCount() {
 int n;
 do { when(!flag) tau {= val=n, flag=true, n++ =} }
};

process ReceiveCount() {
 int m;
 do { when(flag) tau {= m=val, flag=false =} }
};

par { :: send :: receive }

Figure 2: Passing values with global variables

– 14 –

channel as long as it is not empty. This means that communication via channels of positive

length is always asynchronous, but synchronous communication can be achieved with

channels of length zero. In this case, an attempt to send data will block as long as there is no

other process attempting to receive from the same channel.

In addition to this basic communication scheme, Promela offers some more advanced op-

erations on channels such as sorted send and receive, polling, and conditional receive. Con-

ditional receive, probably the most interesting feature, allows the modeller to restrict the

executability of a receive operation depending on the next value in the channel; in practice,

this can be used to allow receiving only when a certain constant would be received.

All in all, value passing via channels is simple and intuitive, particularly in the context of

modelling queues and network protocols. Still, the model of a one-to-one communication

channel as in Promela does not allow broadcasting or any other form of multi-way commu-

nication.

In its basic form without value passing, the ISO Specification Language LOTOS [4] provides

synchronization between processes on common actions (the action name is called gate) in a

similar way to MoDeST’s parallel composition. Full LOTOS keeps this basic synchronization

mechanism, but adds communication: An action is now a gate together with a list of values.

There is a sense of direction for each of these values: We use the exclamation mark followed

by an expression to indicate sending, and the question mark followed by a variable to indi-

cate that we want to receive a value and store it in that variable. Intuitively, and for a single

value, this direction can be interpreted just like sending to or receiving from a channel of

length zero in Promela.

Using the same approach to synchronization as in MoDeST means that some design deci-

sions have to be made when introducing a direction to the actions: When one process wants

to send and others are ready to receive, obviously a value will be passed. What happens,

however, when two processes want to send at the same time, or some processes are ready to

receive, but there is no sender ready?

In the former case, there are two evident approaches: The two sending processes do not

synchronise, but send sequentially, or they synchronise if they are about to send the same

value and block otherwise. For LOTOS, the second approach was chosen, with this kind of

interaction being named value matching.

In the latter case, the receiving processes could either be blocked, waiting for a non-existent

sender, or some arbitrary value (of the right type) could be generated, simulating an un-

known sender that is not (yet) specified in the model. LOTOS again uses the second ap-

proach, called value generation. This makes it possible to model open systems where a part

of the environment is not modelled, but may generate values from a specified domain in

some nondeterministic manner.

– 15 –

An overview of the possible communication scenarios showing these decisions can be found

in Figure 3.

Comparing LOTOS’ synchronization on gates to channel-based communication as in Pro-

mela, the most obvious differences are that communication in LOTOS is always synchro-

nised, but broadcasting is possible. If we were to use the LOTOS approach in MoDeST, we

would prefer not to lose expressivity, so it is essential to show that this approach is at least

as expressive as a channel-based one. Fortunately, assuming the existence of such an exten-

sion to MoDeST, it is easy to simulate communication channels as processes. See Figure 4 for

an example, where a dedicated process acts as a buffer, storing its values in an array, and

offering to receive or send values whenever the channel is not full or not empty, respectively.

There is one advanced feature in LOTOS that is both important and useful: Selection predi-

cates, similar to Promela’s conditional receive. As the name implies, it allows guarding com-

munication with an additional predicate that can reference the receiving variables. In this

Process A Process B Condition Interaction Effect

g !𝐸1 g !𝐸2
value(𝐸1)
= value(𝐸2)

value
matching

synchronization

g !𝐸 g ?𝑥
value(𝐸)
∈ dom(𝑥)

value
passing

synchronization,
𝑥 = value(𝐸)

g ?𝑥 g ?𝑦
dom(𝑥)
= dom(𝑦)

value
generation

synchronization,
𝑥 = 𝑦 = 𝑣,
𝑣 ∈ dom(𝑥)

Figure 3: Communication scenarios in LOTOS

process Channel()
{
 int size, first, last;
 objtype c[capacity];
 do
 {
 :: when(size < capacity)
 in ?c[pos] {= last = (last + 1) % capacity, ++size =}
 :: when(size > 0)
 out !c[first] {= first = (first + 1) % capacity, --size =} }
}

Figure 4: Simulating channels with synchronization on gates

– 16 –

way, receiving can be restricted to certain values depending on the state of the system. Be-

cause synchronisation is forced when it is possible – this depends only on the gate, not on

the values – using selection predicates can lead to deadlock when there are senders trying

to send values that a process does not accept. On the other hand, when there is no sender, a

value that is acceptable to all participating processes will be generated. This kind of value

negotiation is particularly powerful in models where some common initial parameters have

to be agreed upon between different processes.

FSP, short for Finite State Processes [12], is interesting for a comparison because it has a few

simple mechanisms that allow the use of value passing in a very similar way to LOTOS, and

there is a very useful implementation, LTSA1, for simulation and verification.

FSP has no explicit support for value passing, but actions can be parameterised. The set of

parameters for an action has to be finite, and the semantics treats every pair of action and

concrete parameter as a single, distinct action. The FSP equivalent to sending in LOTOS is

simply executing an action with a constant parameter, while a variable name can be used as

a parameter to simulate receiving. Semantically, receiving will result in edges for all possible

values to be generated in the transition system model, though most of them will hopefully

be discarded during parallel composition. In fact, this is similar to LOTOS’ semantics, where

gates with a receiving term imply infinitely many possible actions; the restriction to finite

domains in FSP makes a direct implementation possible.

In FSP, value passing and value generation occur under the same conditions as in LOTOS;

only for value matching there is a difference: For two equal values, FSP processes will syn-

chronise, but when sending different values, they will just send sequentially: The actions are

different, so no synchronization is forced.

We saw that LOTOS-style value passing is at least as expressive as channel-based value pass-

ing. It also fits well into MoDeST because, on the surface, it is simply an extension of the ex-

isting parallel composition. Therefore, LOTOS-style value passing will be the approach I am

going to add to MoDeST.

1 http://www.doc.ic.ac.uk/ltsa/

𝑎
comm.
action

 ? 𝑥
rec.
var.

: 𝑥 < 5 ∧ 𝑥 > 𝑐
receive condition

receive statement
(at position 1)

! 𝑦 + 3
send
expr.

send statement
(at position 2)

communication statements
communication (on a)

Figure 5: Term reference

– 17 –

I will first present the semantics for the simplified case where there is only one value per

action (or gate, if we were to strictly adhere to the LOTOS naming convention). I will then

add conditional receive, and briefly discuss how to extend the semantics to a list of values at

the end.

In order to avoid confusion when going into the details of value passing (or: communica-

tion), it is helpful to agree on a set of terms for the different aspects of communication. The

terms used for the remainder of this thesis are shown in Figure 5.

To translate value-passing MoDeST processes into STA, the axiom for actions and the infer-

ence rule for parallel composition will have to be modified. The naïve approach is to simply

extend the actions with the values being transmitted, similar to the FSP semantics, but still

distinguish between the action and the values.

The resulting semantics in Figure 6 evaluates the send expression for send statements, and

creates all possible edges for receive statements. During parallel composition, we make sure

that the two values of the synchronising actions match; this leads to value matching for two

senders, and discards all unnecessary edges created by the receiving party during value

passing. For value generation, no edges are discarded, so we get the expected result – every

possible value can be generated.

One problem with this approach is already evident: For infinite value domains, which are

not explicitly forbidden in MoDeST, value generation leads to infinitely many edges. Even if

we decide to put up with this consequence, it leads to a fatal problem. Consider the example

in Figure 7: In order to create an edge for out !x, we have to compute eval(x) – but we can-

𝑎 !𝑒
𝑎<eval(𝑒)>,𝑡𝑡 ,∅
 √

𝑣 ∈ dom(𝑥)

𝑎 ?𝑥
𝑎<𝑣>,𝑡𝑡 , 𝑥=𝑣
 √

𝑃
𝑎<𝑣1>,𝑔1 ,𝐴1
 𝑃′ ∧ 𝑄

𝑎<𝑣2>,𝑔2 ,𝐴2
 𝑄′ ∧ 𝑣1 = 𝑣2 ∧ 𝑎 ∈ 𝐵

𝑃 ||𝐵 𝑄
𝑎<𝑣1>,𝑔1∧𝑔2 ,𝐴1∪𝐴2
 𝑃′ ||𝐵 𝑄′

Figure 6: Naïve value passing semantics

process Chan()
{

 x;
 do { :: in ?x; out !x }
}

Figure 7: Fatal process for the naïve semantics

– 18 –

not know the value for x; in fact, infinitely many different values are possible. We see that

for value generation, which happens for in ?x, we would not only have to generate infinitely

many edges, but infinitely many different destination states as well.

Thus, there are two problems with this naïve approach, one of them fatal: We generate

infinitely many edges, which are undesirable considering that, up to this point, the STA has

been finite, and we cannot perform the necessary evaluations at all.

What we need is a semantics that yields finite STA even for value passing processes. The key

to finiteness for the STA for MoDeST was its symbolic nature: Assignments and conditions

were noted as terms, and no evaluations were performed. If it is possible to make the

semantics for Value Passing MoDeST finite, we expect to be able to do this by exploiting the

symbolic capabilities of the STA model.

An example similar to the one from the previous section has been used by H. Lin as a

motivation for Symbolic Transition Graphs with Assignment (STGA) in [11], refining the

symbolic approach from [8]. While the title and the motivation of [11] promises an easy

remedy for the naïve semantics’ flaws – particularly since we already have a symbolic

formalism with assignments, STA – there is one major problem: Lin works with a value-

passing variant of CCS, which only has local identifiers in a functional sense that are

introduced and bound by receiving statements during value passing. MoDeST’s variables, on

the other hand, are of an “imperative” style, i.e., they are declared at some point, are truly

variable, and can be global. Because of this, the STGA semantics for value-passing CCS, which

work with sets of free variables and term substitutions, cannot be directly transferred to

MoDeST.

To solve these issues, the new symbol ? is introduced, which is treated like a variable most

of the time, but cannot be used as such by the user, and is a special case both in the opera-

tional semantics and when translating STA to TPTS. I will refer to ? as the free identifier.

The free identifier is basically a variable without a value; its value is determined nondeter-

ministically when executing actions. This allows us to think of assigning the free identifier to

a variable as “freeing” that variable: it will have some arbitrary value after the assignment. If

we choose to assign some value to the free identifier, this will not be persistent: The free

identifier is local to a transition, so if it gets a concrete value, this will be lost after the execu-

tion of the transition.

This informal behaviour of the free identifier, which will be formalised in the rules for the

transition from STA to TPTS, allows it to be used to identify the value being transmitted dur-

ing value passing as long as that value is not known. The free identifier will therefore only

survive parallel composition in the case of value generation.

– 19 –

The semantic rules for a finite symbolic value passing semantics for MoDeST can be found in

Figure 8. With the help of the free identifier, the axioms for the actions are simple: When

sending, no variable is assigned a value in the current process, but the value being transmit-

ted is known in terms of an expression, which we assign to the free identifier. Conversely,

when receiving, we do not know the actual value that we may receive, so we assign the free

identifier to the receiving variable.

For synchronisation during parallel composition, we first have to determine the complete

action label of the resulting transition, i.e. we need to determine the value of 𝑐: If there is at

least one sender, the value being sent should be available to outer processes, so sending

dominates receiving. If both processes send, value matching has to occur, so we make sure

𝑎 !𝑒
𝑎 !𝑒 ,𝑡𝑡 , ?=𝑒
 √

𝑎 ?𝑥

𝑎 ?,𝑡𝑡 , 𝑥=?
 √

𝑃
𝑎 𝑐1 ,𝑔1 ,𝐴1
 𝑃′ ∧ 𝑄

𝑎 𝑐2 ,𝑔1 ,𝐴1
 𝑄′ ∧ 𝑎 ∈ 𝐵

𝑃 ||𝐵 𝑄
𝑎 𝑐 ,𝑔 ,𝐴
 𝑃′ ||𝐵 𝑄′

 𝑐 =
? if 𝑐1 = ? ∧ 𝑐2 = ?

!𝑒 if 𝑐1 = !𝑒 ∨ 𝑐2 = !𝑒

𝑔 = 𝑔1 ∧ 𝑔2 ∧ 𝑒1 = 𝑒2 if 𝑐1 = !𝑒1 and 𝑐2 = !𝑒2

𝐴 = 𝐴1 ∪ 𝐴2

∪ 𝑥 = 𝑒 𝑥 = ? ∈ 𝐴1 ∧ ? = 𝑒 ∈ 𝐴2
∖ 𝑥 = ? 𝑥 = ? ∈ 𝐴1 ∧ ? = 𝑒 ∈ 𝐴2
∪ 𝑥 = 𝑒 𝑥 = ? ∈ 𝐴2 ∧ ? = 𝑒 ∈ 𝐴1
∖ 𝑥 = ? 𝑥 = ? ∈ 𝐴2 ∧ ? = 𝑒 ∈ 𝐴1

Figure 8: Finite symbolic value passing semantics

Figure 9: Example STAs for parallel composition with the finite symbolic semantics

in?,true,{x=?}

out!x,true,{?=x}

||

,m≤69,Ø

,m>69,Ø

out?,t,{m=?}
in?,t,{x=?}

out!x,t,{?=x,m=x}

†

,m>69,Ø

,m≤69,Ø

– 20 –

that the expressions being sent have the same value by adding this condition to the guard 𝑔.

At this point, it is important to note that the free identifier cannot occur in the expressions

being sent, because we did not allow it to be used as a variable by the user. Finally, we have

to make sure that value passing works as expected, i.e. that receiving variables are assigned

the concrete value being transmitted instead of the free identifier. This happens when com-

puting the new assignment function 𝐴 from 𝐴1 and 𝐴2.

Figure 9 shows an example where these rules are applied to the process Chan from Figure 7

in parallel composition with a simple server that receives from the channel and crashes

when the received value is too large.

We formalise the behaviour of the free identifier by modifying the rules that create TPTS

transitions from an STA; see Figure 10. In this modified rule, 𝑄𝑤 is an additional assignment

function that maps the free identifier to some nondeterministically chosen value 𝑤 from the

correct domain.

At this point, adding conditional receive as conditions for receive statements that can refer-

ence the value that might be received is straightforward: For an action 𝑎 that receives a

value for variable 𝑥 with condition 𝑏, all occurrences of 𝑥 in 𝑏 are replaced with the free

identifier, and the resulting condition is put into the guard. In this case, we get the transition

𝑎 ?𝑥:𝑏
𝑎 ,𝑏 ?/𝑥 ,∅
 √ , or in a concrete example, 𝑎 ?𝑥: 𝑥 ≤ 5 ∧ 𝑥 > 𝑦

𝑎 ,?≤5∧?>𝑦 ,∅
 √.

The TPTS semantics ensures that a value for the free identifier is chosen such that the guard

condition holds. Without conditional receive, the relevant condition had no effect because

the free identifier could not occur in the guard, but now, it forbids the generation of those

values that do not satisfy the receive condition.

LOTOS supports passing a list of values on every gate, allowing any combination of receive

and send statements. To support this in our finite symbolic value passing semantics, we

have to distinguish between the positions in the list of values in order to be able to generate

different values for different positions. The straightforward solution is to allow not only one,

but instead many free identifiers ?1 … ?𝑘 . The rules and conditions that ensure the correct

𝑠
𝑎 ,𝑔 ,𝐴
 𝑠′ ∧ 𝑤 ∈ Val ∧ 𝑣 ∘ 𝑄𝑤 𝑔 holds

 𝑠, 𝑣
𝑎
 𝑠′ , 𝑣 ∘ 𝐴 ∘ 𝑄𝑤

where 𝑄𝑤 ∈ Var Val s.t. 𝑄𝑤 𝑥 =
𝑥 if 𝑥 ≠ ?
𝑤 if 𝑥 = ?

Figure 10: From STA to TPTS

– 21 –

operation of value passing and value matching now have to work with a list of values, but no

fundamental changes have to be made. For the explicit semantics, please refer to section 1.6.

The only design decision here is what to do in case of an arity mismatch, i.e. when two proc-

esses have to synchronise on one action, but one transmits a different number of values

than the other. Both for the semantics and for the implementation, I have chosen to not add

any additional condition to the parallel composition semantics, but simply treat missing

values as if the process would receive anything (intuitively, behave as ?x for the right type).

Although there is evidence that the semantics we chose and adapted is sufficiently powerful

and practically useable (after all, we are very close to the semantics of LOTOS, an ISO stan-

dard), I would like to support this with two examples:

In section 1.3.2.2, we have already seen that (finite) communication channels as known

from other modelling languages can be simulated with a LOTOS-style semantics. In Value

Passing MoDeST, we can even model a channel that can take any number of messages and

thus have infinite capacity. In fact, we do not even have to rely on variables with infinite do-

process IChannel () {
 relabel {ina, inb, outa, outb} by {in, in, out, out}
 hide {syncb, synca}
 par {
 :: ChannelA()
 :: syncb
 }
}

process ChannelA() {
 type x; ina ?x;
 par {
 :: relabel {ina, outa} by {inb, outb} hide {syncb} ChannelB()
 :: syncb; outa !x; synca
 }
}

process ChannelB() {
 type x; inb ?x;
 par {
 :: relabel {inb, outb} by {ina, outa} hide {synca} ChannelA()
 :: synca; outb !x; syncb
 }
}

Figure 11: The infinite channel

– 22 –

main, but just use recursion in parallel composition, complemented by action set manipula-

tions (relabel and hide) to make it work. Being allowed to use full (and even nested) re-

cursion, though, is essential for our construction, which is shown in Figure 11.

The basic idea of the construction is to use one process instance for every message in the

channel. These process instances will be able to receive a message, and will then create a

new inner instance that is able to receive another message, but is blocked from sending its

value until after the outer instance has sent its own value by means of synchronisation re-

quirements.

The IChannel process serves as a wrapper construction, hiding internal actions and

streamlining the interface. Processes ChannelA and ChannelB are used in alternation to

form the channel construction described above. They are almost identical in behaviour –

except for a permutation of action names. We need two processes in order to allow an in-

stance of one of the two to communicate only with its direct outer and inner processes, but

not further up or down the instantiation chain. This is realised by hiding the right synchro-

nisation actions and relabelling the communication actions, effectively “joining” the inner

actions with the current processes’ ones.

In [7], H. Garavel and H. Hermanns have shown how to extend a LOTOS model – used for the

functional model-checking of the SCSI-2 (Small Computer Systems Interface) standard’s bus

arbitration protocol – to incorporate the necessary information for the evaluation of per-

formance issues. The original model relies heavily on LOTOS’ communication and value ne-

gotiation features, which makes translating this model into MoDeST a suitable and relevant

demonstration of the usefulness of value passing in MoDeST.

Garavel’s and Hermanns’ extension mainly consisted of adding delays simulating system

load, bus delay and disk service time to the model. These were added only in an abstract

manner to the LOTOS specification, which was translated into a labelled transition system

and then an Interactive Markov Chain (IMC), thereby instantiating the abstract delays. Con-

verting IMCs to MoDeST specifications – and correctly modelling Markov delays – is a gen-

erally nontrivial problem that is not the focus of this thesis, which is why I will rely on an

intuitive understanding of the delays in the system at hand to obtain a descriptive model.

The emphasis is on the elegant use of the new communication features in MoDeST.

The LOTOS model has two fundamental processes: disk and controller. Several disks and a

controller (and possibly another process representing properties of the bus) will be com-

posed in parallel, communicating on gates ARB, CMD and REC, representing bus arbitration,

commands from the controller and results from the disks, respectively. The essential com-

munication, namely the negotiation of exclusive bus access, occurs on gate ARB. Every disk

and the controller have a unique SCSI number 𝑖𝑑 ∈ 0, … ,7 , and signal a request for bus

access on wire 𝑖𝑑 of the eight electrical wires responsible for arbitration, which can be read

by all devices in the system. The device with the highest SCSI number requesting access

– 23 –

“wins” arbitration and has exclusive bus access for the duration of one command or result.

To model arbitration in LOTOS, an eight-tuple of booleans represents the wires’ voltage lev-

els, and the constraints PASS(𝑊, 𝑛) ≔ ¬𝑤𝑛 , WIN 𝑊, 𝑛 ≔ 𝑤𝑛 ∧ ¬ 𝑤𝑖
7
𝑖=𝑛+1 and

LOSS(𝑊, 𝑛) ≔ 𝑤𝑛 ∧ 𝑤𝑖
7
𝑖=𝑛+1 are applied to the communication by the devices, thus negoti-

ating an acceptable solution (i.e., a correct winner).

Figure 12 shows the disk process in the LOTOS model. To translate this process into MoDeST,

we will first replace the top-level choice and the tail recursion with a MoDeST construct

combining both: do. We then have to decide how to concretely model the abstract Markov

delays; this we can do at all because MoDeST has clock variables, so we can model the pass-

ing of time, and because MoDeST allows sampling probability distributions, which we can

use to model delays of probabilistically determined length.

The direct solution – an in-place substitution of MU !N by {= c=0,

d=Exponential(rate_mu) =}; when(c>=d) tau – does not work because this causes a

disk to block the entire bus while intuitively processing some request, which is neither con-

ceivable in a real system nor the behaviour corresponding to the LOTOS model. The problem

with this approach is that the choice containing the translated delay would not be atomic,

effectively disabling all other possible behaviours while waiting for the end of the delay. We

resolve this by factoring out the delay choice into a process parallel to the remaining choices,

as shown in Figure 13. While this is probably not an absolutely correct translation of a

Markov delay, it matches our intuition of a hard disk being divided into one part communi-

cating with the bus, and another part actually performing disk access, but not blocking the

bus’ communication.

process DISK [ARB, CMD, REC, MU] (N:NUM, L:NAT, READY:BOOL):noexit :=
 CMD !N;
 DISK [ARB, CMD, REC, MU] (N, L+1, READY)
 []
 ARB ?W:WIRE [not (READY) and C_PASS (W, N)];
 DISK [ARB, CMD, REC, MU] (N, L, READY)
 []
 [not (READY) and (L > 0)] ->
 MU !N; (* Markov delay *)
 DISK [ARB, CMD, REC, MU] (N, L-1, true)
 []
 ARB ?W:WIRE [READY and C_LOSS (W, N)];
 DISK [ARB, CMD, REC, MU] (N, L, READY)
 []
 ARB ?W:WIRE [READY and C_WIN (W, N)];
 REC !N;
 DISK [ARB, CMD, REC, MU] (N, L, false)

Figure 12: The SCSI disk process in LOTOS

– 24 –

The final obvious difference between the LOTOS and the MoDeST model is the inclusion of

vacuous receive statements for the actions cmd and rec for values other than the current

disk’s SCSI number. These are needed for the parallel composition of the disks and the con-

troller to work correctly: In the LOTOS model, the disks were composed with synchronisa-

tion limited to gate ARB. In MoDeST, there is no direct way to limit synchronisation without

completely hiding the unwanted actions, so the statements implement a form of input-

enabledness on cmd and rec for the disks; otherwise, a disk would be prevented from exe-

cuting e.g. rec !n because there are no matching partners.

process Disk(int n) {
 int l, _; float d; bool ready; wire w; clock c;

 par {
 :: do {
 :: when(!ready && l>0) {= c=0, d=Exponential(rate_mu) =};
 when(c>=d) {= l=l-1, ready=true =} }
 :: do {
 :: cmd !n; {= l=l+1 =}
 :: when(!ready) arb ?w:pass(w, n)
 :: when(ready) arb ?w:loss(w, n)
 :: when(ready) arb ?w:win(w, n);
 rec !n;
 {= ready=false =}
 :: cmd ?_:_<>n
 :: rec ?_:_<>n }
 }
}

Figure 13: The SCSI disk process

process Controller(int nc) {
 int pending = nc, n; int t[nd]; float d; wire w; clock c;

 par {
 :: do {
 :: when(pending==nc)
 tau ?n:(n>=0 && n<nd && t[n]<8 && n!=nc);
 {= c=0, d=Exponential(rate_mu) =};
 when(c>=d) {= pending=n =} }
 :: do {
 :: when(pending==nc) arb ?w:pass(w, nc)
 :: when(pending!=nc) arb ?w:loss(w, nc)
 :: when(pending!=nc) arb ?W:win(w, nc);
 cmd !pending;
 {= pending=nc, t[pending]=t[pending]+1 =}
 :: rec ?n:(n<>nc && n>=0 && n<nd); {= t[n]=t[n]-1 =} }
 }
}

Figure 14: The SCSI controller process

– 25 –

For completeness, a translation of the controller process obtained with the same method is

shown in Figure 14. An actual simulation and performance evaluation using the MoDeST

model is described in section 2.6.1.

– 26 –

In section 1.1, I stated that the value passing semantics I have introduced would not inter-

fere with the probabilistic and timed aspects of full MoDeST, and that the necessary changes

would be simple. Therefore, I will now present the modified semantic rules for full MoDeST

with value passing; most of the changes compared to the rules from the previous sections

result from the fact that the destination of a transition is now a probability distribution over

states and assignment functions.

𝑃 ∶= … | act 𝑐1 …𝑐𝑘 where 𝑐𝑖 ∶= !𝑒 | ?𝑥: 𝑏, 𝑒 ∈ Exp, 𝑥 ∈ Var, 𝑏 ∈ Bxp

𝛼 act 𝑐1 …𝑐𝑘 = 𝛼 act

A act 𝑐1 …𝑐𝑘 = 𝑥 = ?𝑖 𝑐𝑖 = ?𝑥: 𝑏 ∪ ?𝑖 = e 𝑐𝑖 = !𝑒

𝑎𝑐𝑡 𝑐1 …𝑐𝑘
𝑃

act 𝑐1
′ … 𝑐𝑘

′ , 𝑟 , false
 D A 𝑃 ,√

with 𝑐𝑖 = !𝑒 ⇒ 𝑐𝑖
′ = !𝑒, 𝑐𝑖 = ?𝑥: 𝑏𝑖 ⇒ 𝑐𝑖

′ = ? and 𝑟 = 𝑏𝑖 ?𝑖/𝑥

1≤𝑖≤𝑘
𝑐𝑖=?𝑥 :𝑏𝑖

𝑃1

act 𝑎1…𝑎𝑘 ,𝑔1 ,𝑑1
 𝒲1 ∧ 𝑃2

act 𝑏1…𝑏𝑙 ,𝑔2 ,𝑑2
 𝒲2 ∧ act ∈ 𝐵 ∩ PAct

𝑃1 ||𝐵 𝑃2

act 𝑐1…𝑐𝑘 ,𝑔 ,𝑑1∧𝑑2
 𝒲1 × 𝒲2 ∘ Mpar

−1

𝑃1

act 𝑎1…𝑎𝑘 ,𝑔1 ,𝑑1
 𝒲1 ∧ 𝑃2

act 𝑏1…𝑏𝑙 ,𝑔2 ,𝑑2
 𝒲2 ∧ act ∈ 𝐵 ∩ IAct

𝑃1 ||𝐵 𝑃2

act 𝑐1…𝑐𝑘 ,𝑔 ,𝑑1∨𝑑2
 𝒲1 × 𝒲2 ∘ Mpar

−1

where 𝑎𝑖 = !𝑣 ∨ 𝑏𝑖 = !𝑤 ⇒ 𝑐𝑖 = !𝑣, 𝑎𝑖 = 𝑏𝑖 = ? ⇒ 𝑐𝑖 = ?

and 𝑔 = 𝑔1 𝑒/?𝑖 if 𝑎𝑖 = !𝑒 ∧ 𝑔2 𝑒/?𝑖 if 𝑏𝑖 = !𝑒 ∧ 𝑒1 = 𝑒21≤𝑖≤𝑘
𝑎𝑖=!𝑒1
𝑏𝑖=!𝑒2

Mpar 𝐴1, 𝑃1
′ , 𝐴2, 𝑃2

′ ≝
 ∅, throw inconsistent if 𝐴∪ is not a function
 𝐴∪,𝑃1

′ ||𝐵 𝑃2
′ otherwise

where 𝐴∪ = 𝐴1 ∪ 𝐴2 ∪ 𝑥 = 𝑒 𝑥 = ?𝑖 ∈ 𝐴1 ∧ ?𝑖 = 𝑒 ∈ 𝐴2 ∪ 𝑥 = 𝑒 𝑥 = ?𝑖 ∈ 𝐴2 ∧ ?𝑖 = 𝑒 ∈ 𝐴1

∖ 𝑥 = ?𝑖 𝑥 = ?𝑖 ∈ 𝐴1 ∧ ?𝑖 = 𝑒 ∈ 𝐴2 ∖ 𝑥 = ?𝑖 𝑥 = ?𝑖 ∈ 𝐴2 ∧ ?𝑖 = 𝑒 ∈ 𝐴1

– 27 –

The actual modelling and analysis of MoDeST specifications is supported by MoTor1, the

MoDeST Tool Environment, developed mainly at the University of Twente, Netherlands. The

vast expressiveness of the MoDeST language, which covers many different more limited

models, makes MoDeST specifications in general undecidable. The fact that a generic algo-

rithm for their analysis is thus impossible played a crucial role in the design of MoTor. It was

not intended to offer a single general tool, but instead support the analysis of (analysable)

submodels with specialised algorithms or existing tools.

The basic design of and the philosophy behind MoTor are well-explained in [2] and [10].

The former presents some details of the implementation; these sections are now somewhat

outdated and should only be read as a very general overview of the tool’s architecture and

some of the underlying ideas. I will summarise the design and the current state of MoTor:

MoTor consists of three main parts. The first is the parsing engine that translates textual

MoDeST code into an abstract syntax tree (AST). This tree is then used by the first-state-next-

state interface (fsns), which in essence provides a stepwise exploration of the STA corre-

sponding to a MoDeST specification, and the Möbius interface, where the AST is translated

into C++ code that can be used to simulate a specification, including statistical evaluations of

specified aspects, by the Möbius modelling environment.

MoDeST is nowadays used predominantly from within Möbius. There seems to be a consen-

sus among those who specified MoDeST and developed MoTor that the fsns is deprecated,

and it is not actively developed. A comparable tool that could replace it was recently devel-

oped by Christophe Boutter as part of his work on an Eclipse plugin for MoDeST [5]. Due to

these ongoing developments, I have not done any work on the fsns, but implementing value

passing in the Eclipse plugin as well is expected to be a useful future project.

Möbius is a modelling and performance evaluation tool for complex systems, developed at

the University of Illinois at Urbana-Champaign, USA. The systems can be specified in one of

several available formalisms. This ability to choose between different formalisms and even

combine models specified in different ones is one of the unique characteristics of this tool-

set.

To achieve this flexibility, Möbius has an abstract notion of a model that allows the core sys-

tem to be extended with concrete models of different formalisms, as long as they can be ex-

pressed in such a way as to conform to Möbius’ abstract process definition. This character-

1 http://fmt.cs.utwente.nl/tools/motor/

– 28 –

ises a process as a collection of state variables containing the information of the model in a

particular state, and actions that can change this state. State changes can happen over time,

and a convenient way of sampling different probability distributions is also included, such

that timed and stochastic models can be represented naturally. To evaluate – or measure –

properties of interest, so-called reward variables can also be present.

As such, MoDeST specifications seem to have a natural translation to the Möbius’ interface.

There is, however, a single concept that is not present in Möbius – nondeterminism [3, sec-

tion 2.3]. Möbius evaluates models from an entirely stochastic perspective, where nonde-

terminism does not fit in at all. In MoDeST, on the other hand, nondeterminism is a key lan-

guage concept, which is at the heart of all composition mechanisms (think of parallel com-

position in particular).

The choice of the MoTor designers was to circumvent this limitation by relying on “Ber-

noulli’s principle of insufficient reason, which states that all events over a sample space

should have the same probability unless there is evidence to the contrary” [3, section 3.2],

meaning that whenever there is a nondeterministic choice in MoDeST, this is presented to

Möbius as a probabilistic choice with uniform distribution over the possible alternatives.

This can, however, have unforeseen consequences; for example, repeating a branch in an

alt statement makes it twice as probable. While trivial repetitions can be avoided by care-

ful modelling, small overlaps or partial repetitions are much harder to spot or correct. (The

unification of LOSS and the second part of PASS in the model in section 2.6.1 would be an

obvious example that is hard to resolve immediately.)

Implementation-wise, Möbius is separated into a specification layer implemented in Java

and an execution layer written in C++, which can be accessed by the user through the Java

GUI. Consequently, the abstract functional interface (AFI), which developers extending

Möbius use to access the abstract Möbius model from their code, is a collection of C++ base

classes to be derived from by the concrete models.

A concise introduction to the Möbius framework is presented in [6], while lots of additional

papers can be found on the project’s website1.

When used to incorporate MoDeST specifications for simulation into Möbius, MoTor im-

poses some limitations, both on the aspects of the MoDeST language that can be used and

on the actual semantics that will be in effect during simulation. I will give an overview of the

most important ones – those who affect the implementation of value passing – without in-

tending this to be a complete list:

1 http://www.mobius.uiuc.edu/papers.html

– 29 –

The most severe restriction on the usable language features is on recursion: MoTor allows

only a very simple form of tail recursion; nested recursion, for example, is not possible at all.

This is a fundamental limitation in the way process instantiation is handled internally.

Another restriction of the usable features concerns the use of clock variables in guards and

assignments. Clock variables themselves can only be reset to zero, and guard statements

may only contain one single reference to a clock variable. In a sense, this brings the potential

of clock use in MoDeST close to that in timed automata. Not surprisingly, this limitation

greatly simplifies working with delays; we will notice this when implementing conditional

receive.

The main semantic limitation of MoTor regards delays and the passing of time. Basically,

there is no unnecessary progress of time (as-soon-as-possible semantics); if an action be-

comes enabled only after a certain amount of time, it will then be taken without any addi-

tional delay (if it is taken at all). Further delays not specified in a single guard will thus only

occur if enforced by another guard, e.g. during parallel synchronisation.

Another semantic limitation – or: deviation – is that assignments are not executed atomi-

cally. Whereas the assignment block {= x=y, y=x =} should result in an in-place swapping

of x and y according to the MoDeST semantics in [1], it will result in x and y having the same

value in MoTor. To make matters worse, the exact order of execution for assignments on

parallel actions in synchronisation is not specified, but fixed. Because value passing is essen-

tially an assignment as well, I will correct the behaviour of the assignments before starting

with the implementation of communication in section 2.4.2.

Some additional limitations, like the lack of full support for structs or arrays of clocks,

arise from the current state of implementation and we can hope for these to be lifted in the

future with ongoing development of MoTor.

Several steps during the implementation required decisions that would influence the ex-

pressiveness of the actual value passing implementation in comparison to the semantics

definition in part 1; some other decisions yet did not affect the expressive power of the im-

plementation, but possibly its runtime performance.

The first necessary decision was how to represent communicating actions in the AST. The

grammar given in section 1.6.1 already does not allow the combination of communication

and probabilistic branching (palt) in a single statement: When combined with the full

MoDeST grammar as found in [1], we are allowed to either have a single action a, to have

probabilistic branching a palt …, or to have communication. The straightforward approach

of treating communicating actions the same way as actions leading to a palt statement,

without worrying about combinations of the two (see section 2.4.1), is therefore valid.

– 30 –

In particular, this is straightforward because communication is essentially a combination of

guard and assignment, and assignments are usually only handled by palt (thus {= x=5 =}

implicitly becomes tau palt { :1: {= x=5 =} }). Since we cannot simply encode communi-

cation into palt, we implement it similarly, which is how the distinction between the two

cases – palt or communication – is established implementation-wise.

Not being able to combine communication and explicit assignments may sometimes be un-

handy, but does not remove any expressivity; we can, if we really need it, combine the as-

signment and the communication in par.

Then again, having the possibility to combine both could result in either misleading syntax

or semantic difficulties. Consider the MoDeST code in Figure 15, which combines communi-

cation and palt. This should be considered misleading if communication, probabilistic

branching, and assignments are performed atomically (as we expect), because it is actually

written as assignment-branching-assignment. On the other hand, making the branching de-

pend on the first assignment would break the complete existing semantics, as we would

have to allow some kind of redividing edge in the STA (cf. section 1.1.1).

Conditional receive, on the other hand, is very loosely specified; the grammar in section

1.6.1 allows any Boolean expression as a receive condition, where any occurrence of the

receiving variable will refer to the new value being received. Clearly, this is much too power-

ful to have any chance of being implemented efficiently. For integer variables and only small

restrictions on the expressions, this could be seen as a constraint solving problem; while

these are still NP-hard in general, convenient frameworks1 do exists that can speed up the

solving somewhat in many cases. Still, solutions will not only be needed when an action is

actually taken, but already when deciding whether an action is enabled, so we would have to

compute them very often. For floating-point variables, not even constraint programming

will help.

To be able to find solutions with small computational effort while keeping a reasonable level

of expressiveness for the conditions, I chose to restrict receive conditions such that every

condition will constrain the corresponding value to a single interval in its domain. As clocks

will cause additional complications (see section 2.3 for details), they can only occur once –

that is as the first additive operand of the condition. Only having to deal with single intervals

1 One efficient framework with a usable C++ interface is Gecode, the generic constraint development envi-
ronment, a joint development of Kungliga Tekniska högskolan, Sweden, and Saarland University. See
http://www.gecode.org/.

int x = 3;
a ?x palt {
 :(x/4}: {= y=3*x =} b
 :(2*x/4}: {= y=23*z+5*x =} d
}

Figure 15: Combining communication, branching, and assignments

– 31 –

removes much of the computational complexity; we do not even have to slow down simula-

tions with memory allocation and deallocation since we do not allow multiple intervals. The

resulting grammar for receive conditions is shown in Figure 16.

The most obvious capability we lose in receive conditions is the specification of disjunctive

or inequality constraints. Still, the benefit of extremely fast computation with the memory

footprint known at compile time should be worth having to go through an extra step for

disjunctions: We do not lose the ability to express them, but just have to do so by offering

parallel communication alternatives.

A small technical issue is that communicating actions are limited to a fixed number of com-

munication statements ?x:b or !x. The current value is 16, but this can be raised by chang-

ing a constant and recompiling. The reason for this is that precomputing the number of

communication statements for every possible synchronisation of communicating actions at

compile-time is infeasible, and I would, again, rather avoid dynamic memory allocation and

deallocation at runtime for performance reasons.

Another issue that has technical and semantic reasons is that communication is limited to

primitive data types – int, float and bool. While passing around complex data types

could sometimes be helpful, giving a proper meaning to value generation for data types that

might include structural information and dependencies would be difficult, and implement-

ing this in a generic fashion is impossible since one cannot predict the semantics of, say,

some user-defined struct.

Finally, a decision had to be made that would not affect the expressiveness of the imple-

mented language fragment, but could have possible benefits or disadvantages during com-

pile- or runtime: When should synchronising actions be combined in terms of their commu-

nication semantics, i.e. passing, matching, and generation of values?

Performing all the necessary computations regarding conditions for enabledness and effects

on variables in the MoDeST compiler and emitting highly specialised code for every combi-

nation of actions would most likely give higher performance at runtime, but is not only

difficult to implement: There have already been issues with the MoDeST compiler generat-

ing too much code that would then take far too long to actually compile in the past – this is

B ≔ x op clock_expr
clock_expr ≔ clockfree_expr
 | c addop clockfree_expr

where 𝑜𝑝 ∈ <, >, ≤, ≥ , 𝑎𝑑𝑑𝑜𝑝 ∈ +, − , c is a clock variable, and clockfree_expr any expres-
sion without reference to clock variables

Figure 16: Receive conditions for ?x:B

– 32 –

why the tree structure of the model is not built into the generated code, but only written as

XML and then re-read by the simulation binary.

If we had 𝑛 parallel processes with 𝑚 occurrences of the common action 𝑎 each, we would

have to generate specialised communication code for all 𝑚𝑛 possible combinations, whereas

in the current implementation, merely one ModestSyncAction devoid of any specialisa-

tions is instantiated for every combination. It is to be expected that this compile-time ap-

proach would also increase compile times to unacceptable levels.

On the other hand, restricting the generation of specialised code to single occurrences of

actions and letting the synchronisation take place at runtime results in only 𝑚 ⋅ 𝑛 instances

of communication-related code to be compiled. Because we have made sure that the neces-

sary runtime computations – mostly w.r.t. conditional receive – are cheap, we will trade off

acceptable compile times at the expense of a slight loss in runtime performance.

This section will rely heavily on the use of the terms introduced in section 1.4. For quick

reference, a slightly updated version of the term overview is included in Figure 17.

Without clocks, conditional receive is easy: For synchronising actions 𝑎1 …𝑎𝑘 with commu-

nication statements 𝑎𝑖1
…𝑎𝑖𝑠 each, we have to determine the lower and the upper bound of

the interval 𝐼𝑖𝑗 of values that the receive condition of 𝑎𝑖𝑗 admits; for sending, these bounds

are equal, and for conditional receive, they can immediately be read from the conditions.

The actual values that can then possibly be used for ?𝑗 are those in 𝐼𝑖𝑗
𝑘
𝑖=1 .

As soon as basic receive conditions contain clocks, however, the situation is much more

complicated: When deciding whether a set of synchronizing communicating actions is en-

abled, it is no longer sufficient to just consider the current evaluation of all variables and

answer “yes” or “no” due to the fact that some receive conditions may become true only af-

ter a certain amount of time; yet during this time, other conditions containing clock vari-

ables may become false. We thus do not only have to calculate the possible values for ?𝑗 , but

also the interval of time during which the synchronised communication can occur. As time

progress is “global”, a timed condition in one communication statement always affects all

other communication statements of one action as well.

𝑎
comm.
action

 ? 𝑥
rec.
var.

: 𝑥 < 5
basic rec.
condition

∧ 𝑥 > 𝑐

receive condition

receive statement
(at position 1)

! 𝑦 + 3
send
expr.

send statement
(at position 2)

communication statements

communication (on a)

Figure 17: Updated term reference

– 33 –

Worse yet, time does not only affect enabledness, but possibly also the resulting assign-

ments: For example, par{ :: a ?(x:x<=c) :: a !c } will cause a delay of at least three

time units (if clock variable c is zero initially), and assign to x the length of the delay. We

therefore have a situation where conditions local to a communication statement have to be

composed globally for all communication statements and then be reapplied to the local con-

straints concerning the values for ?. In detail, this works as follows:

In the first step, we obtain two intervals for every communication statement 𝑎𝑖𝑗 . The first

interval 𝐼𝑖𝑗
1 keeps track of the clock-free constraints on the values of ?𝑗 , while the second one,

𝐼𝑖𝑗
2 , is determined by the current evaluation of those conditions containing clocks. As a con-

crete example, a ?(x:x<=c+1 && x>=5) results in 𝐼11

1 = 5, ∞ and 𝐼11

2 = −1,3 if initially

c = 2. (“No bound” for clock constraints is represented as −1). Figure 18 lists the different

intervals resulting from basic types of communication statements.

The second step is to intersect the intervals of all participating actions, i.e. 𝐼𝑗
𝑏 = 𝐼𝑖𝑗

𝑏𝑘
𝑖=1 . In

the implementation, these first two steps are actually performed in one loop.

Up to this point, we have treated timed and clock-free conditions independently. Conse-

quently, the current representation of clock constraints in 𝐼𝑗
2 is just an interval specifying the

values for ?𝑗 licensed by the timed conditions unless time elapses. To be able to compute the

global clock constraint, that is the interval of time during which the whole communication is

 ? 𝒙 ! 𝒆 ? (𝒙:𝒙 ≥ 𝒆𝟏 ∧ 𝒙 ≤ 𝒆𝟐)

 𝑥 not clock 𝑒 clock-free 𝑒 with clock 𝑒1, 𝑒2 clock-free 𝑒1 , 𝑒2 with clock

value
constraint

 −∞, +∞ v(𝑒), v(𝑒) −∞, +∞ v(𝑒1), v(𝑒2) −∞, +∞

clock
constraint

 −1, −1 −1, −1 v(𝑒), v(𝑒) −1, −1 v(𝑒1), v(𝑒2)

Figure 18: Intervals induced by some communication statements

Figure 19: From constraints on ? to constraints on t

0 x

t

c d a b

f

e

0 x

t

c da b

f

e
0 x

t

c da b

f

e

– 34 –

allowed to happen, we have to convert 𝐼𝑗
2, which constrains ?𝑗 , to an interval 𝑇𝑗 constraining

time (using 𝐼𝑗
1 as well).

This conversion is the third step in our transformation; it is illustrated in Figure 19: If

𝐼𝑗
1 = 𝑎, 𝑏 and 𝐼𝑗

2 = 𝑐, 𝑑 , the allowed combinations of values for ?𝑗 and time progress are

shown in grey, so we want 𝑇𝑗 = 𝑒, 𝑓 . The actual calculations are now simple and can be

inferred from the graphs; nevertheless, care has to be taken to accurately compute open- or

closedness of the resulting interval bounds and to correctly cover all special (and degener-

ate) cases.

Once we have computed 𝑇𝑗 for every communication position, we can finally determine the

global clock constraint 𝑇 = 𝑇𝑗
𝑠
𝑗=1 as the fourth transformation step. Again, steps three

and four are performed in a single loop in the actual implementation.

The final, fifth step is to reapply the global clock constraint to the individual constraints for

?𝑗 on each position 𝑗, usually tightening the bounds given by the 𝐼𝑗
1. This is just the inverse of

step three, so we can go back to Figure 19: This time, 𝑇 = 𝑒, 𝑓 and 𝐼𝑗
2 = 𝑐, 𝑑 are given, and

we want to obtain stricter values for 𝐼𝑗
1 = 𝑎, 𝑏 . Again, the necessary calculations are obvi-

ous.

After completion of these five steps, every 𝐼𝑗
1 specifies the possible values for ?𝑗 after time

progress in the interval 𝑇. Because time advances linearly with gradient 1, this would still

allow us to recompute the actual interval of possible ?𝑗 after some fixed time progress in 𝑇,

but for consistency with the rest of MoTor and its as-soon-as-possible semantics, no unnec-

essary time progress will occur in the implementation – the left bounds of T and 𝐼𝑗
1 are the

values that will be chosen.

Many basic cornerstones of the implementation have already been laid out in sections 2.2

and 2.3, though in a mostly abstract manner and most notably without detailing where the

discussed aspects will later fit into MoTor.

This section is therefore intended as an overview of the changes that I implemented, with

the emphasis being not so much on the actual code, but rather on how and where the

changes fit into MoTor and on their interaction with each other and the existing components.

An informal schematic overview of the way a MoDeST specification is processed in Möbius

is shown in Figure 20.

MoTor’s parsing stage is built using the ANTLR1 parser generator, which substantially

simplifies the parser specification. The ANTLR AST representation generated in the parsing

1 “ANother Tool for Language Recognition”, http://www.antlr.org/

– 35 –

stage is used throughout Möbius, however, so the use of ANTLR is not limited to the parser.

Unfortunately, ANTLR also seems to introduce its own set of bugs, makes it hard to avoid

duplicating code whenever one has to walk the trees it generates, and suffers from a lack of

well-structured documentation. Still, except for issues with ANTLR, extending the parsing

stage was straightforward:

The lexer1, the first step in parsing, already recognises all the symbols necessary for com-

munication; I have just added an imaginary token COMM for use in the parser.

In section 2.2.1, I argued that the internal representation of communication can be made

very similar to that of palt. The parser2 is where the foundation for this representation is

laid when creating a communication AST in perform_action. Figure 21 compares the rep-

resentation of palt and communication after running the parser.

1 In file parser/lexer.g
2 In file parser/parser.g

Figure 20: MoDeST processing in Möbius, main MoTor contributions highlighted

Figure 21: Simplified parser representations of palt and communication

MoDeST
specification

Möbius
simulation

C++ code

XML file

model binary

MoDeST
compiler g++

runtime
library

a palt { :5: {= x=3 =} b
:4: {= y=5 =} c } a ?(x:x<5 && x>3) !(y+13)

a

palt

WEIGHT_AST WEIGHT_AST

assignment
block

assignment
block

b c

a

COMM

RCV_AST SEND_AST

x y+13x<5 && x>3

– 36 –

The third parsing step in MoTor is a tree walker1 that walks the AST generated by the parser,

transforms it, and generates non-ANTLR objects for MoDeST constructs. For communication,

a new type of construct, the CommConstruct2, is introduced. This is quite similar to, but

much simpler than, the PaltConstruct as well.

As mentioned in section 2.1.2, MoTor does not execute assignments atomically. This not only

rules out in-place swapping of variables and messes up recursive process calls (after the

first recursion step in process A(x, y) { A(y, x) }, we have x = y), but is also bound to

cause “interesting” effects when normal assignments are combined with communication,

which is essentially just an inter-process assignment. Consequently, the assignments have to

be fixed.

The assignments of one alternative in a PaltConstruct are translated into one class de-

rived from ModestAssignmentFunctor3 for use in the Möbius model. These had a single

operator() that performed the assignment. The violation of atomicity originated in two

places: First, the assignments within a single operator() were executed sequentially, so

the first assignment could already modify values that later ones used. Second, the assign-

ment functors of synchronizing actions with palts were also called sequentially, leading to

the same problem on yet another level.

In order to be able to execute a set of assignments atomically, we have to split an assignment

into two steps, the second of these being the actual assignment of values to the specified

variables. In the first step, we precompute the left- and right-hand sides of the assignments

and store them for the second step. Because we need to resolve the problem at the level of

synchronizing actions, the modified ModestAssignmentFunctors have to expose both

steps so that a ModestSyncAction4 may call the first one for all participating actions before

moving on to the second.

1 In file reptng/model_gen.g
2 In files reptng/constructs.h, reptng/constructs.cpp
3 In file backend/mobius/mobius-runtime-lib/ModestConstruct.h
4 In file backend/mobius/mobius-runtime-lib/ModestSyncAction.h

SyncAction: Fire
 Action 1: Fire
 x := 2*y
 z := 2*x
 Action 2: Fire
 y := x + z

SyncAction: Fire
 Action 1: Prepare
 lhs1 := x, rhs1 := 2*y
 lhs2 := z, rhs2 := 2*x
 Action 2: Prepare
 lhs3 := y, rhs3 := x + z
 Action 1: Assign
 lhs1->setValue(rhs1)
 lhs2->setValue(rhs2)
 Action 2: Assign
 lhs3-setValue(rhs3)

Figure 22: Old assignment behaviour (left) compared to the new assignment behaviour (right)

– 37 –

Figure 22 shows a pseudocode-based comparison of the old and the new assignment behav-

iour for two synchronising actions with assignments that were harmed by the old behaviour.

The parser now generates a suitable representation of actions with communication, and the

assignments work as specified. At this point, we have to think about how to actually do the

communication at runtime (i.e. when simulated by Möbius), and about how to generate the

relevant model code.

At simulation runtime, Möbius has access to all actions in the model, represented as Mode-

stActions1 when not synchronised, or as ModestSyncActions otherwise. It can query

whether they are enabled (Enabled()), ask for the time needed to complete an action

(SampleDistribution()) – which is, in MoDeST, the time until the action becomes en-

abled – and finally Fire() them.

For each of these functions, we have to perform the calculations outlined in section 2.3. An

action (which may be a synchronised one) is then enabled if and only if none of the value

constraint intervals is empty; the time needed for completion is the left bound of the global

clock constraint; and on firing an action, values from the respective intervals have to be cho-

sen and assigned.

Apart from smaller technicalities concerning the operation of these functions, the interest-

ing point is how to actually collect all the information necessary for the computations, and

where and when to perform them.

For this purpose, the ModestCommunicationCollector2 was designed. It contains pairs of

values of the data types relevant for communication (which represent the value constraint

interval bounds), stores the local and global clock constraints, and keeps track of whether

communication occurs at a certain position at all, and if so, of what data type.

Whenever the described computations have to be performed, a ModestCommunication-

Collector is passed to an instance of a customised class derived ModestCommunication-

Info3, which is associated with each participating action. These classes are generated by the

MoDeST compiler and contain the specifics of the communication occurring at a certain ac-

tion; when given a ModestCommunicationCollector cc, they will add their own con-

straints to the ones already in cc, implementing steps one and two of section 2.3.

Steps three, four and five are implemented in ModestCommunicationCollector’s method

transform(), which causes the collector to “normalise” itself.

When an action is being fired, we also have to select and assign correct values. The Modest-

CommunicationAssigner class is central to this, essentially representing a frozen Modest-

1 In file backend/mobius/mobius-runtime-lib/ModestAction.h
2 In file backend/mobius/mobius-runtime-lib/ModestConstruct.h
3 In file backend/mobius/mobius-runtime-lib/ModestConstruct.h

– 38 –

CommunicationCollector where all intervals are singletons. It can be created from a col-

lector, thereby choosing the values – either according to a uniform distribution over the re-

spective interval, or deterministically selecting the left bound when clocks are involved. It is

then passed on to the assigners of the actions, which do nothing but assign the chosen val-

ues to the right variables.

Again, a pseudocode illustration is provided, showing the firing of a synchronised action

containing two communicating ones, in Figure 23.

The process described above makes use of one major abstract base class for which an inher-

iting, specialised subclass has to be generated for every action: ModestCommunication-

Info. Generating these subclasses is handled by ProcessCommunication1 in the MoDeST

compiler, which in turn is called by the WriteModelVisitor2 when it encounters a

CommConstruct.

As generating C++ code is rather involved technically, especially when one has to deal with

an environment (ANTLR) that makes reusing portions of code without just copying them

difficult, ProcessCommunication is relatively long without being particularly interesting,

so I will refrain from a detailed explanation.

To make all of the above actually work, lots of other, mostly mechanical extensions of the

existing code base were necessary. For instance, the (model) code generation and the wiring

of the generated classes to the constructs is actually implemented in a set of tightly inter-

twined “visitors” (implementing the Visitor design pattern and visiting AST nodes); most of

these had nothing to do with communication, but they had to be extended to process

CommConstructs nonetheless. The most interesting one of these might be the Depend-

encyVisitor that generates the code telling Möbius which actions affect which variables

and vice-versa; still, most of what was needed for communication could be adapted from the

existing code for palt and guards.

1 In file backend/mobius/process_communication.g
2 In files backend/mobius/write_model_visitor.h, backend/mobius/write_model_visitor.cpp

SyncAction: Fire
 CommunicationCollector cc()
 Action 1: Fire(cc)
 CommunicationInfo 1: match(cc)
 Action 2: Fire(cc)
 CommunicationInfo 2: match(cc)
 cc.transform()
 CommunicationAssigner ca(cc)
 Action 1: Assign(ca)
 Action 2: Assign(ca)

Figure 23: Executing communication

– 39 –

Testing newly written code with a well-founded set of (unit) tests is imperative to ensure

the success of any programming project. However, the integrated nature of the Möbius envi-

ronment, where the definite results of a MoDeST specification – simulation results – are

obtained by the invocation of a long series of components, involving parts such as the re-

ward model which are essentially black boxes, makes automatically testing small portions of

code infeasible. Even though the MoDeST compiler itself is a largely independent compo-

nent, it only outputs C++ code that is then compiled and used by Möbius, so testing the

MoDeST compiler itself would already mean having to anticipate the generated code in such

detail that an automated procedure could verify the it.

During development, I therefore opted for manual sanity checks of generated code after

every major advance of the compiler. This way, we can be pretty sure that the compiler gen-

erally works as intended once it is complete.

It then still remains to check whether the intended behaviour of the compiler actually yields

the intended results, both in terms of correct translation and correct simulation results, and

whether any non-obvious or boundary cases still lead to unintended behaviour or results.

This can then actually be done in a semiautomatic fashion: All or most relevant correctness

properties of the compiler can be encoded in MoDeST specifications that lead to unexpected

simulation results for errors in code generation or in the static runtime code. If we keep the

specifications small, we can expect to find isolated erroneous aspects of the program and

not have the result skewed by several different bugs occurring in one run.

As a simple example for this approach, let us look at testing the correction of the assign-

ments (cf. test case 14 to test case 20): We first try to see whether assignments still work at

all. This will not reveal any bugs related to atomicity issues, but highlight basic problems

that would affect any assignment. Only then do we go on to include other constructs such as

alt, guards, and clocks. Once we know that assignments still seem to work as they did be-

fore the changes, we can proceed to check the new behaviour, i.e. atomicity of the basic as-

signments in a list and of parallel assignments; see Figure 24 for one of the two relevant test

cases. Everything seems to work correctly, so we can finally try some advanced uses – in this

case, arrays and process instantiations. Arrays are often problematic because accessing an

In-place swapping of values is now possible:

a {= x=9.0, y=-1.0 =};
a {= x=y, y=x =};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
x -1.0 -1,0000000000E00
y 9.0 9,0000000000E00

Figure 24: Test case 17

– 40 –

array is obtaining a single value through a complex expression, in contrast to simply using a

single identifier; errors occurring only with process instantiation are usually issues with

scope, local variables, and parameter passing (which is, in fact, just another assignment).

A list of all the MoDeST specifications used for testing, including the expected results and

those obtained in a specified simulation setting, can be found in Appendix A. Several off-by-

one errors, e.g. occurring only on value generation for float variables without bounds

specified in conditional receive, were found with these test cases (and of course, subse-

quently fixed). As such, the test cases will of course not highlight any bugs still hidden in the

current implementation (although I am confident that these do not even exist…), but they

will be useful for future programmers working on MoTor, allowing them to ensure that their

changes or extensions should not break the current communication functionality and be-

haviour.

In section 1.5, I presented two examples showing the usefulness of Value Passing MoDeST.

For the first one, the Infinite Channel, there is no hope of actually using it in MoTor in that

form due to the nested recursion. We should, however, be able to simulate the SCSI arbitra-

tion example in Möbius, and doing so will give us an insight into how restricting – or maybe

just how inconvenient – the limitations of the implementation are. If we are lucky, the intui-

tive translation of the Markov delays will have been so good that simulation gives us results

close to those obtained in [7].

The MoDeST specification given as a translation of the LOTOS model for SCSI-2 bus arbitra-

tion in section 1.5.2 is still abstract considering the requirements of MoTor in primarily two

ways; that is the actual representation of the wire, and the receive conditions, which are

still way too powerful.

In order to represent the wire, we abstract away from the actual electrical wires one step

further compared to the original model: The only relevant result is the number of the high-

est-numbered wire that is active during an arbitration period. If we thus use a single integer

𝑤 as a representation of the wire, we can still express the three predicates used:

PASS(𝑤, 𝑛) = 𝑤 ≠ 𝑛 , WIN(𝑤, 𝑛) = 𝑤 = 𝑛 , LOSS 𝑤, 𝑛 = 𝑤 > 𝑛 , and let value negotia-

tion determine appropriate values. We do need to take care, however, that no value is gener-

ated that does not correspond to a device in the system.

Rewriting the receive conditions is now mostly straightforward: Disjunctions and inequali-

ties have to be rewritten to separate alternatives, and the complex condition for the value

generation on tau in the controller, which was merely a way to choose an appropriate disk

nondeterministically, is replaced by an alternative for every disk. The MoTor-compliant

– 41 –

processes are shown in Figure 25 and Figure 26; ... marks code in the controller that is

little more than repetition.

process Disk(int n) {
 int l, w, _; float d; bool ready = !true; clock c;

 par {
 :: do {
 :: when(!ready && l>0) {= c=0, d=Exponential(rate_mu) =};
 when(c>=d) {= l=l-1, ready=true =} }
 :: do {
 :: cmd !n; {= l=l+1 =}
 :: when(!ready) arb ?(w:w<n && w>=0) // pass 1/2
 :: arb ?(w:w>n && w<nd) // pass 2/2, loss
 :: when(ready) arb !n; // win
 rec !n;
 {= ready=!true =}
 :: cmd ?(_:_>n && _<nd)
 :: cmd ?(_:_<n && _>=0)
 :: rec ?(_:_>n && _<nd)
 :: rec ?(_:_<n && _>=0) }
 }
}

Figure 25: The SCSI disk process for Möbius

process Controller(int nc) {
 int w, pending = nc, n; int t[nd]; float d; clock c;
 par {
 :: do {
 :: when(pending==nc && t[d1]<8)
 {= c=0, d=Exponential(rate_lambda) =};
 when(c>=d) {= pending=d1 =}
 :: ... (for every disk) ...
 :: do {
 :: when(pending==nc) arb ?(w:w<nc && w>=0) // pass 1/2
 :: arb ?(w:w>nc && w<nd) // pass 2/2, loss
 :: when(pending!=nc) arb !nc; // win
 cmd !pending;
 {= pending=nc, t[pending]=t[pending]+1 =}
 :: rec ?(n:n<nc && n>=0); {= t[n]=t[n]-1 =};
 alt {
 :: when(n==d1) {= ctr1=ctr1+1 =};
 {= tp1=((float)ctr1)/gc =}
 :: ... (for every disk) ... }
 :: rec ?(n:n>nc && n<nd); ...
 }
}

Figure 26: The SCSI controller process for Möbius

– 42 –

When “putting it all together”, i.e. instantiating the processes and adding global declarations,

we add two more new things: A process Bus that models the bus delay, and global variables

for the throughput of the disks, which are updated whenever the controller receives a result.

The complete model can be found in Figure 27.

Our model of the SCSI-2 bus arbitration protocol for three disks can now be put into Möbius

and serve as the foundation for a reward model, indicating that we would like to obtain the

steady-state value of the throughput variables tp1 through tp3, a study that will increment

the load put on the controller (i.e. rate_lambda), and finally a solver that will perform the

simulation.

For disks having SCSI numbers 0 to 2 and the controller having number 3, the result for the

lowest and the highest priority disk are shown in Figure 28. While the result does not ex-

actly coincide with the one in [7], the fundamental trend of relative starvation of the low

priority disk with increasing load is clearly visible. For a model translation relying on intui-

tion – and therefore without any intention of a formal proof of model equivalence – this

should be quite satisfying; even more so when we consider that the as-soon-as-possible se-

mantics implemented in Möbius might skew the result as well.

extern const float rate_mu = 400, rate_lambda = 400, rate_nu = 400;
const int nd = 4; // actual number of devices
const int d1 = 0, d2 = 1, d3 = 2, ctrl = 3;
action arb, cmd, rec;
int ctr1, ctr2, ctr3;
float tp1, tp2, tp3;
clock gc;

process Disk(int n) { ... }
process Controller(int nc) { ... }

process Bus() {
 clock c; float d;

 do {
 :: when(c>=d) arb {= c=0, d=Exponential(rate_nu) =}
 :: rec
 :: cmd }
}

par {
 :: Controller(ctrl)
 :: Disk(d1)
 :: Disk(d2)
 :: Disk(d3)
 :: Bus() }

Figure 27: The complete SCSI model for Möbius

– 43 –

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

th
ro

u
g

h
p

u
t

lambda

Figure 28: Throughput of high priority disk (dotted) and low priority disk (dashed) under increasing load

– 45 –

In the first part of this thesis, we have investigated some existing languages that already

include value-passing. We have then chosen one of the most expressive approaches for use

in MoDeST – LOTOS-style value passing, including value matching, value generation and

value negotiation.

We then realised that giving a semantics for this approach that works well with MoDeST’s

notion of variables is actually far from trivial, and the resulting semantics obviously differs

from other value-passing semantics, like the one introduced for CCS by H. Lin. Still, the in-

troduction of a so-called free identifier ? allowed us to translate value-passing MoDeST to

STA in a purely symbolic way, keeping the finiteness of the representation.

The second part of the thesis introduced the tools supporting simulation and evaluation of

MoDeST specifications, MoTor and Möbius. We saw that some limitations on the previously

developed semantics are necessary to obtain an efficient implementation.

Of particular interest was how to deal with clocks in conditional receive. In this setting, time

deeply affects the behaviour of communication, and we saw a straightforward way of calcu-

lating the corresponding constraints.

The result of this thesis is thus an extension of the MoDeST semantics that introduces new

semantic concepts to preserve finiteness, and a working implementation that allows simula-

tion of value-passing MoDeST processes, including full support for timed aspects.

– 47 –

[1] Henrik C. Bohnenkamp, Pedro R. D'Argenio, Holger Hermanns, and Joost-Pieter Katoen.

MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE

Transactions on Software Engineering, 32(10):812–830, 2006.

[2] Henrik C. Bohnenkamp, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. The

MoDeST modeling tool and its implementation. In Peter Kemper and William H. Sand-

ers, editors, Computer Performance Evaluation / TOOLS, volume 2794 of Lecture Notes

in Computer Science, pages 116–133. Springer, 2003.

[3] Henrik C. Bohnenkamp, Holger Hermanns, Ric Klaren, Angelika Mader, and Yaroslav S.

Usenko. Synthesis and stochastic assessment of schedules for lacquer production. In

QEST, pages 28–37. IEEE Computer Society, 2004.

[4] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[5] Christophe Boutter. An Eclipse plugin for MoDeST. Diploma thesis, May 2007. Advisor-

Holger Hermanns.

[6] T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. H. Sanders. The Möbius modeling envi-

ronment. In Tools of the 2003 Illinois International Multiconference on Measurement,

Modelling, and Evaluation of Computer-Communication Systems, Universität Dortmund

Fachbereich Informatik research report no. 781/2003, pages 34–37, 2003.

[7] Hubert Garavel and Holger Hermanns. On combining functional verification and per-

formance evaluation using CADP. In Lars-Henrik Eriksson and Peter A. Lindsay, editors,

FME, volume 2391 of Lecture Notes in Computer Science, pages 410–429. Springer, 2002.

[8] Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical Computer Sci-

ence, 138(2):353–389, 1995.

[9] Gerard J. Holzmann. The SPIN MODEL CHECKER. Addison-Wesley Pearson Education,

2003.

[10] Joost-Pieter Katoen, Henrik C. Bohnenkamp, Ric Klaren, and Holger Hermanns. Embed-

ded software analysis with MoTor. In Marco Bernardo and Flavio Corradini, editors,

SFM, volume 3185 of Lecture Notes in Computer Science, pages 268–294. Springer, 2004.

[11] Huimin Lin. Symbolic transition graph with assignment. In CONCUR '96: Proceedings of

the 7th International Conference on Concurrency Theory, pages 50–65, London, UK,

1996. Springer-Verlag.

[12] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs. John Wiley &

Sons, Inc., New York, NY, USA, 1999.

– 49 –

All test cases were designed to use a (subset of a) common set of variables, so that we can

use one reward model for all cases. All we have to do when going from one test case to an-

other is thus to change the MoDeST code, but keep a common header with all variable decla-

rations (Figure 29), and compile and run the simulation.

The reward model then measures the variables at time 10.0, so we have enough room to test

timed effects. The solver we use is set to use the Lagged Fibonacci random number genera-

tor with seed 31465 on exactly 10000 batches. We are only really interested in the mean

results, so the confidence intervals will not be reported. For all tests, Möbius version 2.0 was

used.

Some of the results depend on probabilistic choices, i.e. the choice of actions in alt state-

ments, explicit probability sampling, and value generation, and are marked with ≈. Since the

Möbius simulator is instructed to run between 1000 and 10000 simulations, the results we

expect are the appropriate mean values. Since the actual result depends on the random

number generator’s seed and the simulation batch size, they may not precisely match the

mean we expect, but they should be close.

Value passing introduces new syntax: actions with communication. We first check whether

the MoDeST compiler will generate errors on malformed communication statements, which

can mainly be either obvious syntax errors or receive conditions that the implementation

does not allow:

Test case 1
Sending the value of an expression requires brackets:

a !n==0?1:2

expected result: MoDeST compiler error
actual result: MoDeST compiler error

action a, b;
int f, n, m;
float x, y, z;
clock c, d;
bool s, t;
int ar[2];

// Do nothing, but at least refer to all variables so they
// can always be picked up by the reward model:
a {= f=0, n=0, m=0, x=0.0, y=0.0, z=c, s=t =};

Figure 29: Common variable declaration header

– 50 –

Test case 2
Actions cannot be “sent”:

a !b

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 3
We cannot “receive” into actions:

a ?b

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 4
We cannot receive into clock variables:

a ?c

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 5
We cannot have multiple references to clock variables in an expression:

a !(c+c)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 6
Clock variables c can only occur in expressions of the form c+<expression>:

a !(c*2)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 7
Communication cannot lead to palt:

a !n palt b {= :2: b =}

expected result: MoDeST compiler error
actual result: MoDeST compiler error

– 51 –

Test case 8
The left-hand of a conditional receive subexpression must be the receiving expression
string:

a ?(ar[1]:ar[0+1]<5.0)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 9
Receive conditions must be conjunction of simple receive subexpressions:

a ?(x:x<5.0 || x>3.0)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 10
Comparison operators in receive subexpressions have to be from <, >, ≤, ≥ . Equality
would be equivalent to value matching, so use ! instead.

a ?(x:x==10.0)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 11
Timed conditional receive: Comparison operators have to be from ≤, ≥ :

a ?(x:x<c)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 12
Timed conditional receive: Expressions with clocks have the usual restrictions:

a ?(x:x<=c+c)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

Test case 13
Timed conditional receive: Expressions with clocks have the usual restrictions:

a ?(x:x<=c*x)

expected result: MoDeST compiler error
actual result: MoDeST compiler error

– 52 –

We have changed the way assignments behave. We now test whether assignments still be-

have as they did before the changes, except for the situations for which we corrected their

behaviour:

Test case 14
Assignments basically still work:

a {= n=1, m=n, x=3.0*4.0 =};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 1 1,0000000000E00
m 0 0,0000000000E00
x 12.0 1,2000000000E01

Test case 15
Assignments still work in alt, and alt is unbiased:

alt {
 :: a {= n=-1, x=-1.0 =}
 :: a {= n=1, x=1.0 =}
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n ≈ 0 -4,4000000000E-03
x ≈ 0.0 -4,4000000000E-03

Test case 16
Clocks can be assigned to variables, and guards can still force time to advance:

a {= n=3 =};
when(c>=n) a {= z=c =};
when(z<=x) a;
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
n 3 3,0000000000E00
x 0.0 0,0000000000E00
z 3.0 3,0000000000E00

– 53 –

Test case 17
In-place swapping of values is now possible:

a {= x=9.0, y=-1.0 =};
a {= x=y, y=x =};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
x -1.0 -1,0000000000E00
y 9.0 9,0000000000E00

Test case 18
Parallel assignments are now executed atomically:

par {
 :: a {= x=5.0 =}
 :: a {= y=x-5.0 =}; a
};
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
x 5.0 5,0000000000E00
y -5.0 -5,0000000000E00

Test case 19
Processes still work, especially w.r.t. parameters, local variables, and access to global vari-
ables:

process P(int m) {
 int n;
 a {= n=m-2, x=-12.0+m =}
}

a {= n=13 =};
P(13);
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 13 1,3000000000E01
m 0 0,0000000000E00
x 1.0 1,0000000000E00

– 54 –

Test case 20
Assignments work with arrays as intended:

a {= ar[ar[1]+1]=1 =};
par {
 :: a {= ar[0]=ar[1]+5 =}
 :: a {= ar[1]=ar[0]-3 =}
};
{= x=ar[0], y=ar[1], f=1 =}

 expected result actual result
f 1 1,0000000000E00
x 6.0 6,0000000000E00
y -3.0 -3,0000000000E00

Communication statements outside of par only make sense when used to generate values. It

is thus convenient to check the basics of value generation in this setting:

Test case 21
Probabilistic (uniform) resolution of value generation works, though with only 10000
simulation batches and value generation domains −231 , 231 , the values for n and x are
expected to be close to the expected value only relative to 231:

a ?n;
a ?(m:m>0);
a ?x;
a ?(y:y>=-3 && y<=9);
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n ≈ 0 4,4303087439E06 (values vary wildly with RNG seed)
m ≈ 536870912 5,3505798932E08
x ≈ 0.0 4,0977696426E06 (values vary wildly with RNG seed)
y ≈ 3.0 3,0372183266E00

Test case 22
Empty value generation domains yield deadlock:

a ?(x:x<0.0 && x>5.0);
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
x 0.0 0,0000000000E00

– 55 –

Test case 23
Openness of bounds is respected for both integers and floats:

a ?(n:n>3 && n<5);
a ?(x:x<0.0 && x>=0.0);
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
n 4 4,0000000000E00
x 0.0 0,0000000000E00

Value matching is the simplest form of communication between parallel processes, so we

test it first:

Test case 24
Simple forms of value matching work as expected:

par {
 :: a !(1.0+3.0) !(0.0)
 :: a !(4.0) !x
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
x 0.0 0,0000000000E00

Test case 25
Value matching leads to deadlock if the values do not match:

par {
 :: a !(1.0+3.0) !(1.0)
 :: a !(4.0) !x
};
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
x 0.0 0,0000000000E00

– 56 –

Test case 26
Value matching leads to deadlock if the types do not match:

par {
 :: a !(0.0)
 :: a !n
};
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
x 0.0 0,0000000000E00

Test case 27
We are not limited to binary matching, and alternatives are chosen appropriately:

par {
 :: a !(3*3)
 :: a !(9)
 :: alt {
 :: a !(4+5)
 :: a !(4*5)
 }
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00

The next step up from matching values is to actually pass values around:

Test case 28
Value passing works, and it is performed atomically:

par {
 :: a !(3.0) ?y
 :: a ?x !x
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
x 3.0 3,0000000000E00
y 0.0 0,0000000000E00

– 57 –

Test case 29
Arrays are handled correctly:

a {= ar[1]=2 =};
par {
 :: a !(3) ?ar[ar[1]-2]
 :: a ?n !(ar[n+1]+2)
};
{= m=ar[0], f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 3 3,0000000000E00
m 4 4,0000000000E00

Test case 30
Value passing leads to deadlock if the types do not match:

par {
 :: a !(3.0)
 :: a ?n
};
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
n 0 0,0000000000E00

Test case 31
We are not limited to binary value passing, and can even mix it with value matching:

par {
 :: a !(4) !(-3.5) !x
 :: a ?n ?x
 :: a ?m !(0.5*(-7))
 :: a ?f ?y
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 4 4,0000000000E00
m 4 4,0000000000E00
x -3.5 -3,5000000000E00
y -3.5 -3,5000000000E00

– 58 –

Adding conditional receive to communication between parallel processes is putting it all

together: Value generation turns into value negotiation, and it all has to work.

Test case 32
Conditional receive basically works:

a {= m=3 =};
par {
 :: a ?(n:n<=m)
 :: a ?(m:m>n)
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n ≈ 2 2,0012000000E00
m = n 2,0012000000E00

Test case 33
Unsatisfiable conditions disable their alternative:

a {= m=3 =};
par {
 :: a ?(n:n<=m); a ?(n:n<m)
 :: a ?(m:m>n); alt {
 :: a ?(m:m>4); b {= n=15 =}
 :: a ?(m:m>=0)
 }
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00

n ≈ 0.5 5,0040000000E-01 =
1

6
+

1

9
+

2

9

m = n 5,0040000000E-01

– 59 –

Test case 34
Receive conditions work with value passing, but if the value is not licensed by the condi-
tions, lead to deadlock:

a {= m=3 =};
par {
 :: a ?(n:n<=m)
 :: a !m
};
par {
 :: a ?(n:n<=m)
 :: a !(m+2)
};
{= f=1 =}

 expected result actual result
f 0 0,0000000000E00
n 3 3,0000000000E00
m 3 3,0000000000E00

Receive conditions without clocks can either allow some values or deadlock whenever no

value exists or is sent that satisfies the conditions. With clocks, however, a receive condition

can initially allow no values and therefore block, but become enabled when sufficient time

has passed. We check whether this really works:

Test case 35
Timed conditional receive basically works and can force time to elapse:

a ?(x:x>=5.0 && x<=c);
{= f=1, z=c =}

 expected result actual result
f 1 1,0000000000E00
x 5.0 5,0000000000E00
z 5.0 5,0000000000E00

Test case 36
It also works in par when the value being sent determines the time that has to elapse:

par {
 :: a ?(x:x<=c)
 :: a !(3.0)
};
a {= f=1, z=c =}

 expected result actual result
f 1 1,0000000000E00
x 3.0 3,0000000000E00
z 3.0 3,0000000000E00

– 60 –

Test case 37
Sending the value of a clock variable can also cause a wait until it has the right value:

par {
 :: a ?(x:x>=7.0)
 :: a !c
};
a {= f=1, z=c =}

 expected result actual result
f 1 1,0000000000E00
x 7.0 7,0000000000E00
z 7.0 7,0000000000E00

Test case 38
Having a clock variable both in the sending and the conditional receive expression is possi-
ble, but usually yields conditions that are either trivial or, as in this case, unsatisfiable:

par {
 :: a ?(x:x<=c)
 :: a !(c+2.0)
};
a {= f=1, z=c =}

 expected result actual result
f 0 0,0000000000E00
x 0.0 0,0000000000E00
z 0.0 0,0000000000E00

Test case 39
There are other ways (and lots of them, too!) to create unsatisfiable conditions using clocks:

par {
 :: a ?(x:x<=c)
 :: a ?(y:y>=c+1.0)
};
a {= f=1, z=c =}

 expected result actual result
f 0 0,0000000000E00
x 0.0 0,0000000000E00
y 0.0 0,0000000000E00
z 0.0 0,0000000000E00

– 61 –

Test case 40
We can work with multiple clocks, but have to keep in mind that they advance synchro-
nously:

par {
 :: a ?(x:x>=3.0) ?(z:z<=c)
 :: a !c ?(y:y>=5.0)
};
a {= f=1, y=d, z=c =}

 expected result actual result
f 1 1,0000000000E00
x 5.0 5,0000000000E00
y 5.0 5,0000000000E00
z 5.0 5,0000000000E00

In all previous tests, no explicit process declarations and instantiations were used. They

introduce lots of complications with parameters and local variables. We now investigate

whether this adversely affects communication:

Test case 41
Parameters hide global variables:

process P(int n) {
 a ?(n:n>3); a !n
}

par {
 :: P(n+3)
 :: a !(5); a ?m
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 0 0,0000000000E00
m 5 5,0000000000E00

– 62 –

Test case 42
Local variables hide global variables:

process P() {
 float x;
 a ?x; a !x
}

par {
 :: P()
 :: a !(5.0); a ?y
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
x 0.0 0,0000000000E00
y 5.0 5,0000000000E00

Test case 43
Arrays work, too:

process P(int n) {
 float as[3];
 a ?as[0] ?as[1] ?ar[n];
 a !as[ar[1]-1] !as[ar[1]] !as[ar[1]+1]
}

par {
 :: P(1)
 :: a !(5.0) !(n+2.0) !(1);
 a ?x ?y ?z
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 0 0,0000000000E00
x 5.0 5,0000000000E00
y 2.0 2,0000000000E00
z 0.0 0,0000000000E00

– 63 –

Test case 44
Communication even works in simple tail-recursive settings (more advanced settings are
not possible since MoTor does not perform synchronisation between different processes
when using tail-recursion):

process P(int n) {
 par {
 :: when(n!=0) a ?m
 :: when(n!=0) a!(m+n); P(n-1)
 :: when(n==0) {= f=1 =}
 }
}

P(3)

 expected result actual result
f 1 1,0000000000E00
n 0 0,0000000000E00
m 6 6,0000000000E00

Test case 45
Multiple invocations of the same process work as expected:

process P(int n) {
 int m;
 a ?(m:m<n && m>=0); a !m
}

par {
 :: P(13)
 :: P(5*2)
 :: P(3+m+2*4)
 :: a; a ?m
};
{= f=1 =}

 expected result actual result
f 1 1,0000000000E00
n 0 0,0000000000E00
m ≈ 4.5 4,5571000000E00

– 64 –

Last but not least, Boolean variables can also be sent, received, and matched. They behave

somewhat differently (for example, conditional receive is equivalent to value matching and

therefore redundant), so we should test whether they behave as intended:

Test case 46
Boolean value generation generates true or false each with probability 0.5:

a ?s;
a {= f=1, n=s?1:0 =}

 expected result actual result
f 1 1,0000000000E00
n ≈ 0.5 5,0760000000E-01

Test case 47
Boolean value matching works:

par {
 :: a !(1.0==2.0*0.5)
 :: a !(!s)
};
a {= f=1, n=s?1:0 =};
par {
 :: a !(1.0==2.0*0.5)
 :: a !s
};
a {= f=2 =}

 expected result actual result
f 1 1,0000000000E00
n 0 0,0000000000E00

Test case 48
Finally, Boolean value passing works, too:

par {
 :: a !true
 :: a ?s
 :: a ?t
};
a {= f=1, n=s?1:0, m=t?1:0 =}

 expected result actual result
f 1 1,0000000000E00
n 1 1,0000000000E00
m 1 1,0000000000E00

– 65 –

Before I started this thesis, no one had been working with MoTor in a Windows environ-

ment; and in fact, although Möbius ran fine, MoTor as it was would not work on Windows.

Seeing a worthy challenge, I took advantage of Reza Pulungan’s1 infinite patience, which I’d

like to thank him for, to find out the necessary steps to make it work, summarised in this

short guide.

For reference, the environment used consisted of Möbius 2.0 and MoTor 20061129 on Win-

dows XP with Sun’s Java SDK 1.5.0_09 and a recent version of Cygwin2 that had gcc 3.4.4,

GNU Make 3.81 and the tcsh/csh.

The root of most of the problems is that Cygwin of course uses Unix-style paths, for example

representing C:\WINDOWS as /cygdrive/c/windows. Working with these Cygwin-style

paths is fine as long as we stay entirely within the Cygwin environment. However, we have

to leave the this environment at two points: When calling ANTLR to build MoTor, because

this is a Java program and Java is not aware of Cygwin and its path syntax, and when Möbius

calls MoTor to compile models, because again, Möbius is a Java application, and, being out-

side of Cygwin, does not know how to start the csh script that is used to call MoTor.

In order to be able to call java and the Java compiler javac with Cygwin-style paths, we

need wrappers that first convert these to standard Windows paths. Fortunately, complete

wrapper scripts already exist3; these just have to be modified so the paths to java.exe,

javac.exe et al. are correct for the system at hand. Making a copy of each wrapper, adding

the .exe suffix, will allow us to use both java and java.exe to call the wrapper from

within Cygwin, which is important for MoTor’s make script..

In the following, it is assumed that Möbius has been installed. The next step is to make sure

the environment variable CLASSPATH is set; if not, export CLASSPATH=. helps. This should

be all that is needed to run ./configure --with-mobius=<mobius toplevel folder>

from the MoTor root folder without any errors concerning Java or Möbius. If not, there is

most probably a problem with the wrappers or the PATH environment variable.

1 http://depend.cs.uni-sb.de/index.php?254
2 http://www.cygwin.com/
3 http://www.cygwin.com/cgi-bin/cvsweb.cgi/wrappers/java/?cvsroot=cygwin-apps

– 66 –

The next problem is that Möbius will try to call a csh script directly from a Windows (Java)

application. This will fail, so the MoDeST plug-in has to be modified such that it calls a Win-

dows batch file instead.

This can be accomplished by opening MoDeSTInfo.java1, appending .bat to the string in

private String momodestPath="momodest"; around line 86, and ap-

pending .replace('\\', '/') in front of the semicolon in cmd_args[½] =

mif.getSourceFile(); around lines 191 and 198.

Another issue will occur when a compiled model is simulated because an absolute Cygwin-

style path is written into a file. The guilty code can be found in main.cpp2 around line 1055

(ttdfname.append(".ttd");). A very simple (though not elegant) way to resolve this is

to add the lines shown in Figure 30 after the one mentioned above.

At this point, running make from the MoTor root folder should yield lots of warnings, but no

errors. If successful, running make install_mobius will install MoTor into Möbius. Möbius

then has to be started once for configuration; after that, the current user’s My Documents

folder should have a new subfolder named .mobius.

In the PMSettings file in that subfolder, the line <string id="InstalledModule">

Mobius.AtomicModels.MoDeST.MoDeSTInterface</string> must be inserted some-

where next to similar lines.

Now, the batch file that Möbius will call has to be created. It should be called momodest.bat

and put into Möbius’ bin folder with the content shown in Figure 31, adapted to match the

folders on the machine at hand and omitting the line breaks after –c.

1 To be found in backend/mobius/mobius-editor/Mobius/AtomicModels/MoDeST/
2 To be found in backend/mobius/

if(ttdfname.compare(0, 10, "/cygdrive/", 10) == 0) {
 int pos;
 ttdfname.erase(0, 10);
 ttdfname.insert(1, ":");
 while((pos = ttdfname.find("/", 0, 1)) != std::string::npos) {
 ttdfname.replace(pos, 1, "\\");
 ttdfname.insert(pos, "\\");
 }
}

Figure 30: Naïvely rewriting the path

– 67 –

Möbius should now work with MoTor when started from within Cygwin (and if Möbius’ bin

folder is in PATH within Cygwin).

@echo off
IF "%1"=="--quiet" C:\Progra~1\Cygwin\bin\bash --login -i –c
 "/cygdrive/c/mobius/Mobius-2.0/bin/momodest %1 $(cygpath -u
"%2") %3"
IF NOT "%1"=="--quiet" C:\Progra~1\Cygwin\bin\bash --login -i –c
 "/cygdrive/c/mobius/Mobius-2.0/bin/momodest $(cygpath -u "%1") %2"

Figure 31: Batch file for Möbius

