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Abstract
In this paper, we consider computing the degree of the Dieudonné determinant of a polynomial
matrix A = A` + A`−1s + · · · + A0s`, where each Ad is a linear symbolic matrix, i.e., entries of
Ad are affine functions in symbols x1, . . . , xm over a field K. This problem is a natural “weighted
analog” of Edmonds’ problem, which is to compute the rank of a linear symbolic matrix. Regarding
x1, . . . , xm as commutative or noncommutative, two different versions of weighted and unweighted
Edmonds’ problems can be considered. Deterministic polynomial-time algorithms are unknown for
commutative Edmonds’ problem and have been proposed recently for noncommutative Edmonds’
problem.

The main contribution of this paper is to establish a deterministic polynomial-time reduction from
(non)commutative weighted Edmonds’ problem to unweighed Edmonds’ problem. Our reduction
makes use of the discrete Legendre conjugacy between the integer sequences of the maximum
degree of minors of A and the rank of linear symbolic matrices obtained from the coefficient
matrices of A. Combined with algorithms for noncommutative Edmonds’ problem, our reduction
yields the first deterministic polynomial-time algorithm for noncommutative weighted Edmonds’
problem with polynomial bit-length bounds. We also give a reduction of the degree computation
of quasideterminants and its application to the degree computation of noncommutative rational
functions.
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1 Introduction

The background of this paper goes back to Edmonds [10]. In 1967, Edmonds posed a question
whether there exists a polynomial-time algorithm to compute the rank of a linear (symbolic)
matrix B over a field K, which is in the form

B = B0 +B1x1 + · · ·+Bmxm,
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where B0, B1 . . . , Bm ∈ Kn×n and x1, . . . , xm are commutative symbols. Here, B is re-
garded as a matrix over the polynomial ring K[x1, . . . , xm] or the rational function field
K(x1, . . . , xm). In case where B is the Edmonds or Tutte matrix of a bipartite or nonbipar-
tite graph G, the rank computation for B corresponds to solving the maximum matching
problem on G. More generally, Lovász [27] showed that Edmonds’ problem is equivalent
to a linear matroid intersection problem if all Bi are of rank 1, and to a linear matroid
parity problem if all Bi are skew-symmetric matrices of rank 2. For general linear matrices,
the celebrated Schwartz–Zippel lemma [34] provides a simple randomized algorithm if |K|
is large enough [27]. However, no deterministic polynomial-time algorithm still has been
known; the existence of such an algorithm would imply nontrivial circuit complexity lower
bounds [22, 36].

Recent studies [11, 17, 20] address the noncommutative version of Edmonds’ problem
(nc-Edmonds’ problem). This is a problem of computing the noncommutative rank (nc-rank)
of B, which is the rank defined by regarding x1, . . . , xm as pairwise noncommutative, i.e.,
xixj 6= xjxi if i 6= j. In this way, B is viewed as a matrix over the free ring K〈x1, . . . , xm〉
generated by noncommutative symbols x1, . . . , xm. The nc-rank of B is precisely the rank of
B over a skew (noncommutative) field K<(x1, . . . , xm>) , called a free skew field, which is the
quotient of K〈x1, . . . , xm〉 defined by Amitsur [2]. We call a linear matrix over K having
noncommutative symbols an nc-linear matrix over K. The recent studies [11, 17, 20] revealed
that nc-Edmonds’ problem is deterministically tractable. For the case where K is the set
Q of rational numbers, Garg et al. [11] proved that Gurvits’ operator scaling algorithm [16]
deterministically computes the nc-rank of B in poly(n,m) arithmetic operations on Q.
Algorithms over general field K were later given by Ivanyos et al. [20] and Hamada–Hirai [17]
exploiting the min-max theorem established for nc-rank. In [16] and [20] applied to the case
of K = Q, bit-lengths of intermediate numbers are proved to be bounded by a polynomial of
the input bit-length.

In this paper, we shall consider “weighted” versions of commutative and noncommutative
Edmonds’ problem introduced by Hirai [18]. First, consider commutative symbols x1, . . . , xm
and an extra commutative symbol s. Define a matrix

A = A` +A`−1s+ · · ·+A0s
`, (1)

where Ad = Ad,0 +Ad,1x1 + · · ·+Ad,mxm ∈ K[x1, . . . , xm]n×n is a linear matrix over K for
d = 0, . . . , `. We call (1) a linear polynomial matrix over K. The weighted Edmonds’ problem
(WEP) is the problem to compute the degree (in s) of the determinant of A. Analogously to
Edmonds’ problem, WEP includes a bunch of weighted combinatorial optimization problems
as special cases, such as a maximum weighted perfect matching problem, a weighted linear
matroid intersection problem and a weighted linear matroid parity problem; see [18, Section 5].

Defining noncommutative weighted Edmonds’ problem (nc-WEP) requires some more
involved algebraic notions due to noncommutativity. Let x1, . . . , xm be noncommutative
symbols and s an extra symbol that commutes with any element in K〈x1, . . . , xm〉. An
nc-linear polynomial matrix A over K is a matrix in the form of (1) with each Ad regarded as
an nc-linear matrix. Then A can be viewed as a matrix over the rational function (skew) field
F (s) over F := K<(x1, . . . , xm>) . Since entries of A are noncommutative, the determinant of
A is nontrivial. Here, we employ the Dieudonné determinant [9], which is a noncommutative
generalization of the usual determinant defined for matrices over skew fields. We denote the
Dieudonné determinant of A by DetA. The Dieudonné determinant retains useful properties
of the usual determinant such as DetAB = DetADetB. While the value of DetA is no
longer in F (s), its degree (in s) is well-defined [8, 35]. See Section 2.1 for the definition of
Dieudonné determinant.
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The nc-WEP is the problem to compute deg Det of a given nc-linear polynomial matrix.
Hirai [18] formulated the dual problem of nc-WEP as the minimization of an L-convex
function on a uniform modular lattice, and gave an algorithm based on the steepest gradient
descent. Hirai’s algorithm uses poly(n,m, `) arithmetic operations on K while no bit-length
bound has been given for K = Q.

A weighted combinatorial optimization problem often reduces to an unweighted problem.
This paper explores a reduction from (nc-)WEP (a weighted problem) to (nc-)Edmonds’
problem (an unweighted problem). The main result of this paper is the following.

I Theorem 1. The (nc-)WEP deterministically reduces to (nc-)Edmonds’ problem for an
(nc-)linear matrix of size `n2 with m symbols.

Theorem 1 provides an efficient randomized algorithm for WEP through the Schwartz–
Zippel lemma and a deterministic polynomial-time algorithm for nc-WEP via the rank
computation algorithms [11, 18, 20] for nc-linear matrices. This algorithm for nc-WEP is
much different from Hirai’s algorithm [18]; in particular, while Hirai’s algorithm calls an
oracle of nc-Edmonds’ problem polynomially many times, our algorithm calls it only once
(the matrix size would be augmented instead). Furthermore, in case of K = Q, our reduction
does not exponentially swell the input bit-length because every entry of the nc-linear matrix
constructed in this reduction is some coefficient of an entry in the input nc-linear polynomial
matrix. Thus, by employing an algorithm [11, 18] for nc-Edmonds’ problem with bit-length
bounds, we obtain the following.

I Theorem 2. We can deterministically solve nc-WEP in poly(n,m, `) arithmetic operations
on K. In addition, if K = Q, the bit-lengths of intermediate numbers are bounded by a
polynomial of the input bit-length.

We also give a reduction from computing the degree of a quasideterminant [12, 13],
which is another noncommutative analogy of the determinant, to computing the degree of
Dieudonné determinant. This can be applied to the degree computation of noncommutative
rational functions represented as a noncommutative formula with division. See Section 4 for
details.

Techniques

Let A be an n× n (nc-)linear polynomial matrix over a field K and put F := K(x1, . . . , xm)
or K<(x1, . . . , xm>) . Slightly generalizing (nc-)WEP, we consider the problem to compute

dk(A) := max{deg DetA[I, J ] | |I| = |J | = k} (2)

for given k, where A[I, J ] denotes the submatrix of A indexed by a row set I and a column
set J . Clearly deg DetA = dn(A). In view of combinatorial optimization, computation of
dk(A) corresponds to solving weighted problems under cardinality constraints.

Our reduction scheme is based on a method, which we call matrix expansion, that con-
structs an (nc-)linear matrix Ωµ(A) ∈ Fµn×µn obtained by arranging the coefficient matrices
of A. Through a canonical form of A called the Smith–McMillan form, it is shown that
the integer sequences of (d0(A), d1(A), . . . , dr(A)) with r := rankA and (ω0(A), ω1(A), . . .)
with ωµ(A) := rank Ωµ(A) are concave and convex, respectively. In addition, they are in the
relation of the discrete Legendre conjugate, that is, they satisfy

dk(A) = min
µ≥0

(ωµ(A)− kµ) (0 ≤ k ≤ r), (3)

ωµ(A) = max
0≤k≤r

(dk(A) + kµ) (µ ≥ 0). (4)

ICALP 2020
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The Legendre conjugacy is an important duality relation on discrete convex and concave
functions treated in discrete convex analysis [32]. The formulas (3) and (4) are a generalization
of results on matrix pencils over fields given by Murota [33] and on polynomial matrices over
algebraically closed fields by Moriyama–Murota [28]. For proving the conjugacy, equalities
connecting dk(A) and ωµ(A) are necessary. We present a new short and simple connection
which works even on skew fields through the multiplicativity of Ωµ, i.e.,

Ωµ(A)Ωµ(B) = Ωµ(AB). (5)

The conjugacy formula (3) reduces the computation of dk(A) to a one-dimensional discrete
convex optimization problem, which can be efficiently done by binary search. In each iteration,
the objective function can be evaluated by solving (nc-)Edmonds’ problem. Moreover, we
derive direct formulas with respect to r and dr(A) from (3), which proves Theorem 1.

Related Work

In the field of computer algebra, algorithms were proposed for computing various kinds of
canonical forms of a polynomial matrix A ∈ F [s]n×n (or of its generalization) such as the
Jacobson normal form [26], the Hermite normal form [14], the Popov normal form [23] and
their weaker form called a row-reduced form [1, 4]. These algorithms iteratively solve systems
of linear equations over F whose coefficient matrices are variants of expanded matrices Ωµ(A)
under the name of “linearized matrices” [23] or “striped Krylov matrices” [4]. While these
algorithms can compute deg DetA, their running time is bounded in terms of the number of
operations on F . Hence if F = K(x1, . . . , xm) or F = K<(x1, . . . , xm>) , the expression size
of intermediate numbers might be exponentially large.

Combinatorial relaxation [29, 30] is another framework for deg-det computation based
on combinatorial optimization. Hirai’s algorithm [18] for nc-WEP can also be viewed as a
variant of combinatorial relaxation. Unlike the matrix expansion, it is difficult to give bit
complexity bounds for combinatorial relaxation algorithms because they iteratively perform
the Gaussian elimination on the same matrix and thus the magnitude of its entries might
swell.

Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries on matrices and
polynomials over skew fields. Section 3 describes our proposed reductions after introducing
the matrix expansion and the Legendre conjugacy. Section 4 describes the computation of the
degree of quasideterminants and its application to the degree computation of noncommutative
rational functions.

2 Preliminaries

Let Z denote the set of integers and N the set of nonnegative integers. For n ∈ N, we denote
the set {1, 2, . . . , n} by [n] and {0, 1, 2, . . . , n} by [0, n].

2.1 Matrices over Skew Fields
A skew field, or a division ring is a ring F such that every nonzero element has a multiplicative
inverse in F . A right (left) F -module is especially called a right (left) F -vector space. The
dimension of a right (left) F -vector space V is defined as the rank of V as a module, that is,
the cardinality of any basis of V . The usual facts from linear algebra on independent sets
and generating sets in vector spaces are valid even on skew fields [25].
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A square matrix A ∈ Fn×n is said to be nonsingular if there exists a unique n×n matrix
over F , denoted by A−1, such that AA−1 and A−1A are the identity matrix In of size n. A
square matrix is singular if it is not nonsingular. The rank rankA of a matrix A ∈ Fn×n′ is
the dimension of the right F -vector space spanned by the column vectors of A, and is equal
to the dimension of the left F -vector space spanned by the row vectors of A. The rank is
invariant under (right and left) multiplications of nonsingular matrices. It is observed that a
square matrix A ∈ Fn×n is nonsingular if and only if rankA = n.

The Bruhat decomposition uniquely factors a nonsingular matrix A ∈ Fn×n into the
product of four n × n matrices over F as A = LDPU , where L is lower unitriangular, D
is diagonal, P is a permutation matrix and U is upper unitriangular [7, Theorem 2.2 in
Section 11.2]. Here, a lower (upper) unitriangular matrix is a lower (upper) triangular matrix
whose diagonal entries are 1. Let F×ab := F×/ [F×, F×] denote the abelianization of the
multiplicative subgroup F× = F \ {0} of F , where [F×, F×] :=

〈{
aba−1b−1

∣∣ a, b ∈ F×}〉
is the commutator subgroup of F×. The Dieudonné determinant DetA of a nonsingular
matrix A ∈ Fn×n, which is decomposed as A = LDPU , is an element of F×ab defined by

DetA := sgn(P )e1e2 · · · en mod
[
F×, F×

]
,

where sgn(P ) ∈ {−1,+1} is the sign of the permutation P and e1, . . . , en ∈ F× are the
diagonal entries of D [9]. For a singular matrix A ∈ Fn×n, define DetA as 0 for convenience.
In case where F is commutative, the Dieudonné determinant coincides with the usual
determinant. As the usual determinant, the Dieudonné determinant satisfies the following
properties [3, Chapter 4.1]:
(D1) DetAB = DetADetB for A,B ∈ Fn×n.

(D2) Det
(
A ∗
O B

)
= Det

(
A O

∗ B

)
= DetADetB for A ∈ Fn×n and B ∈ Fn′×n′ , where

blocks in O and ∗ represent zero and any matrices of appropriate size, respectively.

2.2 Polynomials over Skew Fields
Let us consider the polynomial ring F [s] over a skew field F , where s is an indeterminate
that commutes with any element of F . A nonzero polynomial p ∈ F [s] is uniquely written as
p =

∑`
d=0 a`−ds

d, where a0, . . . , a` ∈ F with a0 6= 0. The addition and the multiplication
in F [s] are naturally defined. The degree deg p of p is defined by deg p := ` and we set
deg 0 := −∞. Then the minus of the degree enjoys the discrete valuation property, that is,
deg satisfies deg(p+ q) ≤ max{deg p,deg q} and deg pq = deg p+ deg q for p, q ∈ F [s].

The polynomial ring F [s] is a (right and left) Ore domain, i.e., for each p, q ∈ F [s] \ {0},
there exists u, u′, v, v′ ∈ F [s] \ {0} such that pu = pv and u′p = v′q. This property enables
F [s] to have the (right and left) Ore quotient ring, which is a skew field of fractions each of
whose elements is expressed as f = pq−1 = q′−1p′ for some p, p′, q, q′ ∈ F [s] with q, q′ 6= 0.
Elements of F (s) are called rational functions over F and F (s) is called the rational function
field over F . See [7, Section 9.1] and [15, Chapter 6] for the construction of F (s). The
degree on F [s] is uniquely extended to a valuation on F (s) by deg f := deg p − deg q for
f = pq−1 ∈ F (s); see [8, Proposition 9.1.1]. A rational function f ∈ F (s) is said to be proper
if deg f ≤ 0.

The Laurent series field F ((s−1)) over F in s−1 is the set of formal power series over F
in the form of

f =
∞∑

d=−`
ads
−d (6)

ICALP 2020
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for some ` ∈ Z and a−`, a−`+1, . . . ∈ F . This skew field has the natural addition and
multiplication. The rational function field F (s) can be embedded in F ((s−1)) [6, Proposi-
tion 7.1]. Namely, any rational function f ∈ F (s) can be uniquely expanded in form of (6).
In particular, ` coincides with deg f .

Let A ∈ F (s)n×n be a square matrix over F (s), called a rational function matrix over
F . The degree of the Dieudonné determinant of A is well-defined since all commutators
of F (s)× have degree zero. Note that deg Det of singular matrices are −∞. The following
properties on deg Det are easily seen from (D1) and (D2).
(MV1) deg DetAB = deg DetA+ deg DetB for A,B ∈ F (s)n×n.

(MV2) deg Det
(
A ∗
O B

)
= deg Det

(
A O

∗ B

)
= deg Det(A) + deg Det(B) for A ∈ F (s)n×n

and B ∈ F (s)n
′×n′ .

Recall the notation dk(A) in (2) for A ∈ F (s)n×n
′
. Note that d1(A) is the maximum

degree of an entry in A, and we call d1(A) the degree of A. Similarly to (6), A can be
uniquely expanded as

A =
∞∑

d=−`
Ads

−d (7)

with ` = d1(A) and some A−`, A−`+1, . . . ∈ F (s)n×n
′
. The following proposition gives lower

and upper bounds on dk(A).

I Proposition 3. Let A ∈ F (s)n×n
′
be a rational function matrix over a skew field F . For

k ∈ [0, n∗] with n∗ := min{n, n′}, the following hold:
(1) dk(As`) = dk(A) + `k for ` ∈ Z.
(2) dk(A) ≤ `k, where ` is the degree of A.
(3) dk(A) > −∞ if and only if k ≤ rankA. In addition, if A is a polynomial matrix, then

dk(A) ≥ 0 for k ≤ rankA.

Proof. (1) follows from the fact that for any k × k submatrix A[I, J ] of A, it holds

deg DetA[I, J ]s` = deg Det(A[I, J ] · s`Ik)
= deg DetA[I, J ] + deg det s`Ik
= deg DetA[I, J ] + `k.

(2) Let α1, . . . , αk be the exponents of the Smith–McMillan form of a nonsingular k × k
submatrix A[I, J ] of A. Then the claim follows from deg DetA[I, J ] = α1 + · · · + αk and
` ≥ α1 ≥ · · · ≥ αk.

(3) The former part is obtained from the fact that rankA is equal to the maximum size
of a nonsingular submatrix of A. The latter part can be proved using the Smith normal form,
see e.g. [18, Lemma 2.11]. J

A rational function matrix is said to be proper if its degree is nonpositive. A square
rational function matrix is said to be biproper if it is proper and nonsingular, and its inverse
is also proper. We abbreviate proper and biproper rational function matrices as proper and
biproper matrices, respectively. It is easy to see that the product of proper matrices are
proper, which implies that the product of biproper matrices are biproper again. Equivalent
conditions for proper matrices to be biproper are established as follows.
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I Lemma 4 ([18, Lemma 2.10]). Let A ∈ F (s)n×n be a square proper matrix over a skew
field F . Then the following are equivalent:
(1) A is biproper.
(2) deg DetA = 0.
(3) The coefficient matrix A0 of s0 in the expansion (7) of A is nonsingular.

A biproper transformation is a transformation of a rational function matrix A ∈ F (s)n×n
′

in the form A 7→ SAT , where S ∈ F (s)n×n and T ∈ F (s)n
′×n′ are biproper matrices. Under

biproper transformations, we can establish a canonical form of rational function matrices,
called the Smith–McMillan form. This is well-known for complex rational function matrices
as the Smith–McMillan form at infinity [31, 37] in the context of control theory.

I Proposition 5 (Smith–McMillan form). Let A ∈ F (s)n×n
′
be a rational function matrix of

rank r over a skew field F . There exist biproper matrices S ∈ F (s)n×n, T ∈ F (s)n
′×n′ and

integers α1 ≥ α2 ≥ · · · ≥ αr such that

SAT =
(

diag(sα1 , . . . , sαr ) O

O O

)
.

The integer αi is uniquely determined by

αi = di(A)− di−1(A) (8)

for i ∈ [r]. In particular, dk(A) is invariant under biproper transformations for k ∈ [0, r].

Proof. The proof is the same as that for nonsingular A ∈ F (s)n×n in [18, Proposition 2.9],
which iteratively determines αi from i = 1 to n, except that the iterations stops when
i = r. J

Solving (8) for dk(A), we obtain

dk(A) =
k∑
i=1

αi (9)

for k ∈ [0, r]. This is a key identity that connects dk(A) and the Smith–McMillan form of A.
It is worth mentioning that all αi are nonpositive for a proper matrix A since α1 is equal to
the degree d1(A) of A by (8).

3 Computing the Degree of Dieudonné Determinant

Let A =
∑`
d=0 A`−ds

d ∈ F [s]n×n
′
be a polynomial matrix over a skew field F ; we typically

consider an (nc-)linear polynomial matrix with F := K(x1, . . . , xm) or K<(x1, . . . , xm>) . In
this section, we give reductions of computing dk(A) and rankA to rank computations over
F . Instead of A, we deal with a proper matrix obtained from A by

As−` =
∑̀
d=0

Ads
−d ∈ F (s)n×n

′
. (10)

The value of dk(A) can be recovered from that of (10) through Proposition 3 (1).
Section 3.1 introduces matrix expansion which is our key tool. Section 3.2 connects the

sequence of dk to the rank of expanded matrices via the Legendre conjugacy. Making use of
them, we give reductions and algorithms in Section 3.3, which proves Theorem 1.

ICALP 2020
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3.1 Matrix Expansion
For a proper matrix A ∈ F (s)n×n

′
and µ ∈ N, we define the µth-order expanded matrix

Ωµ(A) of A as the following µn× µn′ block matrix

Ωµ(A) :=



A0 A1 A2 · · · · · · Aµ−1

O A0 A1 A2
...

... O A0 A1
. . .

...
...

. . . . . . . . . A2
...

. . . A0 A1

O · · · · · · · · · O A0


∈ Fµn×µn

′
,

where A0, . . . , Aµ−1 ∈ Fn×n
′ are matrices in the expansion (7) of A. Note that Ωµ(A) is an

(nc-)linear matrix over K. Expanded matrices satisfy the multiplicativity (5).

I Lemma 6. Let A ∈ F (s)n×n
′
and B ∈ F (s)n

′×n′′ be proper matrices over a skew field F .
Then it holds (5) for any µ ∈ N.

Proof. Expand A and B by (7) as A =
∑∞
d=0 Ads

−d and B =
∑∞
d=0 Bds

−d. By

AB =
( ∞∑
d=0

Ads
−d

)( ∞∑
d=0

Bds
−d

)
=
∞∑
d=0

Ad

 d∑
j=0

Bd−js
−j

 =
∞∑
j=0

(
j∑
d=0

AdBd−j

)
s−j ,

the (i, j)th block in Ωµ(AB) is
∑j−i
d=0 AdBd−j if i ≤ j and O otherwise. This coincides with

the (i, j)th block in Ωµ(A)Ωµ(B). J

Let ωµ(A) denote the rank of Ωµ(A). The following lemma claims that ωµ(A) coincides
with that of the Smith–McMillan form of A.

I Lemma 7. Let A ∈ F (s)n×n
′
be a proper matrix over a skew field F . Then it holds

ωµ(A) = ωµ(D) for µ ∈ N, where D is the Smith–McMillan form of A.

Proof. Let S ∈ F (s)n×n and T ∈ F (s)n
′×n′ be biproper matrices such that SAT = D. From

Lemma 6, we have ωµ(D) = rank Ωµ(SAT ) = rank Ωµ(S)Ωµ(A)Ωµ(T ). Let S0 and T0 be
the coefficient matrices of s0 in the expansion (7) of S and T , respectively. Since S0 and
T0 are nonsingular by Lemma 4,the block matrices Ωµ(S) and Ωµ(T ) are also nonsingular.
Therefore we have ωµ(D) = ωµ(A). J

Let 0 ≥ α1 ≥ · · · ≥ αr be the exponents of the Smith–McMillan form of A with
r := rankA. Put

Nd := |{i ∈ [r] | −αi ≤ d}| (11)

for d ∈ N. Lemma 7 leads us to the following lemma; a similar result based on the Kronecker
canonical form is also known for matrix pencils over a field [21, Theorem 2.3].

I Lemma 8. Let A ∈ F (s)n×n
′
be a proper matrix over a skew field F . For µ ∈ N, it holds

ωµ(A) =
µ−1∑
d=0

Nd, (12)

where Nd is defined in (11).
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Proof. LetD =
∑∞
d=0 Dds

−d be the Smith–McMillan form of A and α1, . . . , αr the exponents
of diagonal entries of D, where r := rankA. The ith diagonal entry of Dd is 1 if i ≤ r and
αi = −d, and 0 otherwise. Thus each row and column in Ωµ(D) has at most one nonzero
entry. Hence ωµ(D), which is equal to ωµ(A) by Lemma 7, is equal to the number of nonzero
entries in Ωµ(D). It is easily checked that the (µ − d)th block row of Ωµ(D) contains Nd
nonzero entries for d = 0, . . . , µ− 1. J

The equality (12) is a key identity that connects ωµ(A) and the Smith–McMillan form of
A. We remark that, for d ∈ N, the equality (12) can be rewritten as

Nd = ωd+1(A)− ωd(A). (13)

3.2 Legendre Conjugacy of dk(A) and ωµ(A)

Let A ∈ F (s)n×n
′
be a proper matrix of rank r and α1 ≥ . . . ≥ αr the exponents of the

Smith–McMillan form of A. Put dk := dk(A) for k = 0, . . . , r. From αk ≥ αk+1 and (8), the
inequality dk−1 +dk+1 ≤ 2dk holds for all k ∈ [r−1]. In addition, for µ ∈ N, put ωµ := ωµ(A)
and define Nµ by (11). From Nµ−1 ≤ Nµ and (13), we have ωµ−1 +ωµ+1 ≥ 2ωµ for all µ ≥ 1.
These two inequalities for dk and ωµ indicate the concavity of dk and the convexity of ωµ in
the following sense.

A (discrete) function f : Z→ Z ∪ {+∞} is said to be convex if

f(x− 1) + f(x+ 1) ≥ 2f(x)

for all x ∈ Z. We call a function g : Z → Z ∪ {−∞} concave if −g is convex. An integer
sequence (ak)k∈K indexed by K ⊆ Z can be identified with a function ǎ : Z → Z ∪ {+∞}
by letting ǎ(k) be ak if k ∈ K and +∞ otherwise. We can also identify a with â : Z →
Z ∪ {−∞} defined by â(k) := ak if k ∈ K and â(k) := −∞ otherwise. In this way,
we identify integer sequences (d0, d1, . . . , dr) and (ω0, ω1, ω2, . . .) with discrete functions
ď : Z→ Z ∪ {−∞} and ω̂ : Z→ Z ∪ {+∞}, respectively. From the argument in the previous
paragraph, (d0, d1, . . . , dr) is concave and (ω0, ω1, ω2, . . .) is convex.

Let f : Z → Z ∪ {+∞} be a function such that f(x) ∈ Z for some x ∈ Z. The concave
conjugate of f is a function f◦ : Z→ Z ∪ {−∞} defined by

f◦(y) := inf
x∈Z

(f(x)− xy)

for y ∈ Z. Similarly, for a function g : Z → Z ∪ {−∞} with g(y) ∈ Z for some y ∈ Z, the
convex conjugate of g is a function g• : Z→ Z ∪ {+∞} given by

g•(x) := sup
y∈Z

(g(y) + xy)

for x ∈ Z. The maps f 7→ f◦ and g 7→ g• are referred to as the concave and convex discrete
Legendre transform, respectively. In general, f◦ is concave and g• is convex. In addition, if f
is convex and g is concave,

(f◦)• = f, (g•)◦ = g (14)

hold. Hence the Legendre transformation establishes a one-to-one correspondence between
discrete convex and concave functions. See [32] for details of discrete convex/concave functions
and their Legendre transform.

Indeed, as explained in Section 1, the sequences of dk and ωµ are in the relation of
Legendre conjugate. This can be shown from the key identities (9) and (12) that connect
dk(A) and ωµ(A) through the Smith–McMillan form of A.
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x

y

µ

−α1

−α2

−αr−1

−αr

O 1 2 r − 1 r· · ·

ωµ

∑r
i=1 min{−αi, µ}

Figure 1 Graphic explanation of (15).

I Theorem 9. Let A ∈ F (s)n×n
′
be a proper matrix of rank r over a skew field F . Then (3)

and (4) hold.

Proof. Put dk := dk(A) for k = 0, . . . , r and ωµ := ωµ(A) for µ ∈ N. Since (d0, d1, . . . , dr) is
concave and (ω0, ω1, ω2, . . .) is convex, (3) and (4) are equivalent by (14). We show (4).

First we give an equality

ωµ = rµ−
r∑
i=1

min{−αi, µ} (15)

for µ ∈ N, where α1 ≥ . . . ≥ αr are the exponents of the Smith–McMillan form of A.
Figure 1 graphically shows this equality. Let x and y be the coordinates along the horizontal
and vertical axes in Figure 1, respectively. For i = 1, . . . , r, the height of the dotted
rectangle with i− 1 ≤ x < i is min{−αi, µ}. Hence the area of the dotted region is equal to∑r
i=1 min{−αi, µ}. In addition, the width of the white rectangle with d ≤ y < d+ 1 is equal

to Nd for d = 0, . . . , µ− 1, where Nd is defined by (11). Hence the area of the white stepped
region is equal to N0 + · · · + Nµ−1 = ωµ by (12). Now we have (15) since the sum of the
areas of these two regions is rµ.

Substituting (9) into the right hand side of (4), we have

max
0≤k≤r

(dk + kµ) = max
0≤k≤r

k∑
i=1

(αi + µ) =
k∗∑
i=1

αi + k∗µ, (16)

where k∗ is the maximum 0 ≤ k ≤ r such that αk + µ ≥ 0. Since min{−αi, µ} is −αi if
i ≤ k∗ and is µ if i > k∗, it holds

r∑
i=1

min{−αi, µ} = −
k∗∑
i=1

αi + (r − k∗)µ. (17)

From (16) and (17), we have

max
0≤k≤r

(dk + kµ) = rµ−
r∑
i=1

min{−αi, µ},

in which the right hand side is equal to ωµ by (15). J
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3.3 Reductions and Algorithms
Let A = A0 + A1s

−1 + · · · + A`s
−` ∈ F (s)n×n

′
be the proper matrix (10) of rank r. The

expression (15) of dk(A) indicates that dk(A) is equal to the optimal value of an minimization
problem with objective function

fk(µ) := ωµ(A)− kµ. (18)

Since fk is convex, it is minimized by the minimum µ such that fk(µ+ 1)− fk(µ) ≥ 0. This
can be found by the binary search in O(logM) evaluations of fk, where M is an upper bound
on a minimizer of fk. The following lemma claims that we can adopt `r as the upper bound.

I Lemma 10. Let A =
∑`
d=0 Ads

−d ∈ F (s)n×n
′
be the proper matrix (10) of rank r. Then

the following hold:
(1) The exponents α1, . . . , αr of the Smith–McMillan form of A are at least −`r.
(2) For k ∈ [0, r], the function fk in (18) has a minimizer µ∗ satisfying 0 ≤ µ∗ ≤ `r.

Proof. The claims are trivial if r = 0. Suppose r ≥ 1.
(1) It suffices to show αr ≥ −`r. Since A is proper, dr−1(A) is nonpositive. In addi-

tion, since As` is a polynomial matrix of rank r, we have 0 ≤ dr(As`) = dr(A) + `r by
Proposition 3 (1) and (3). Thus αr = dr(A)− dr−1(A) ≥ −`r holds.

(2) From Lemma 8, the objective function fk can be written as

fk(µ) =
µ−1∑
d=0

(Nd − k)

for µ ∈ N. Hence fk is minimized by the maximum µ ∈ N such that Nµ + k < 0. Note
that such µ exists since fk has the minimum value. From the definition (11) of Nd, it holds
Nd = N−αr for all d ≥ −αr. Hence fk has a minimizer less than or equal to −αr, which is
at most `r by (1). J

Finally, we show direct formulas of rankA and dr(A) for a proper matrix A in (10). These
formulas naturally yield efficient algorithms to compute them, which proves Theorem 1.

I Lemma 11. Let A =
∑`
d=0 Ads

−d ∈ F (s)n×n
′
be the proper matrix (10) of rank r. Then

it holds r = ωln∗+1(A)− ωln∗(A) and dr(A) = ωlr(A)− lr2, where n∗ := min{n, n′}.

Proof. We first show the formula on r. We have ω`n∗+1(A)−ω`n∗(A) = N`n∗ by (13). Since
−αi is at most `r ≤ `n∗ for all i ∈ [r] by Lemma 10 (1), we have r = N`n∗ .

Next we show the formula on dr(A). From (3) and (12), it holds

dr(A) = min
µ≥0

µ−1∑
d=0

(Nd − r). (19)

Since N0 ≤ N1 ≤ · · · ≤ N`r = N`r+1 = · · · = r by Lemma 10 (1), the minimum value of the
right hand side of (19) is attained by µ = `r. Thus we are done. J

I Remark 12. In view of combinatorial optimization, our algorithms are regarded as pseudo-
polynomial time algorithms since the running time depends on a polynomial of the maximum
exponent ` of s instead of poly(log `). Thus it is natural to try to solve the following problem:
Sparse Degree of Determinant (SDD)

Input : A = A1s
w1 + · · ·+Ams

wm ∈ K[s]n×n, where 0 ≤ w1 ≤ . . . ≤ wm are integers.
Output: deg detA.
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However, setting wk := (n + 1)k for k ∈ [m] would make the rank of A the same as
that of a linear matrix A1x1 + · · · + Amxm ∈ K[x1, . . . , xm]n×n (known as the Kronecker
substitution [24]). Since giving a deterministic polynomial-time algorithm for Edmonds’
problem has still been open for more than half a century, SDD is also a quite challenging
problem.

4 Computing the Degree of Quasideterminants

The quasideterminant [12, 13] is another noncommutative analogy of the determinant than
the Dieudonné determinant. Let A ∈ Fn×n be a square matrix over a skew field F . Fix
i, j ∈ [n] and put I := [n] \ {i}, J := [n] \ {j}. The (i, j)th quasideterminant |A|i,j of A is
defined if A[I, J ] nonsingular as

|A|i,j := A[{i}, {j}]−A[I, {j}]A[I, J ]−1
A[{i}, J ] ∈ F.

Analogous to the usual determinant, A is nonsingular if and only if at least one quasideter-
minant of A is defined and nonzero [12, Proposition 1.4.6]. When A is nonsingular, |A|i,j is
defined if and only if the (i, j)th entry a of A−1 is nonzero, and if this is the case, |A|i,j = a−1

holds.
Through the Dieudonné determinant, we can compute the degree of a quasideterminant

of rational function matrices without computing the quasideterminant.

I Proposition 13. Let A ∈ F (s)n×n be a square rational function matrix over a skew field
F . Then for i, j ∈ [n] with S := A[[n] \ {i}, [n] \ {j}] being nonsingular, it holds

deg |A|i,j = deg DetA− deg DetS.

Proof. We assume i = j = 1 without loss of generality. Express A as

A =
(
a r

c S

)
,

where a ∈ F (s), r ∈ F (s)1×(n−1) and c ∈ F (s)(n−1)×1. By elementary row and column
operations, it holds

A =
(
a r

c S

)
=
(

1 rS−1

0 In−1

)(
|A|i,j 0

0 S

)(
1 0

S−1c In−1

)
,

where we used |A|i,j = a− rS−1c. Hence deg DetA = deg |A|i,j + deg DetS, as required. J

Proposition 13 can be applied to the problem of computing the degree of a noncommutative
rational function (nc-rational function) expressed by a noncommutative formula (nc-formula).
Let K be a field and consider pairwise noncommutative symbols x1, . . . , xm. An nc-rational
function is an element of the free skew field K<(x1, . . . , xm>) . An nc-formula (with division)
Φ is a binary tree, whose every leaf is labeled with an element of {x1, . . . , xm} ∪K and every
non-leaf node is labeled with “+”, “×” or “÷”. Each node computes an nc-rational function
in the obvious way, and the output of Φ is the rational function computed by the root. The
size of Φ is the number of nodes.

Cohn [5] showed that for an nc-formula of size r computing f , we can construct a
nonsingular n× n nc-linear matrix B with n = poly(r) such that the top-left entry of B−1

is f . In addition, the top-left entry of B−1 is nonzero if and only if the submatrix of B
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without the first row and column is nonsingular as mentioned above. Therefore, as indicated
by Hrubeš–Wigderson [19], the problem of checking if an nc-formula represents zero can be
reduced to nc-Edmonds’ problem.

We can consider a weighted analog of this reduction. Unlike the commutative case, an
nc-rational function f ∈ K<(x1, . . . , xm>) cannot always be expressed as the ratio of two
noncommutative polynomials. Nevertheless, we can define the (total) degree of f as the
degree (in s) of the rational function g ∈ K<(x1, . . . , xm>) (s) obtained by replacing each xi
with xis. Then given an nc-formula computing f , we construct an nc-linear polynomial
matrix A such that |A|1,1 = f−1 and reduce the degree computation of f to nc-WEP using
Proposition 13. By Theorem 2, we have:

I Theorem 14. We can deterministically compute the degree of the nc-rational function
represented by an nc-formula of size r over a field K in poly(r) arithmetic operations on K.
If K = Q, the bit-lengths of intermediate numbers are polynomially bounded.
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