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—— Abstract

A set function f: 2% — R on the subsets of a set F is called submodular if it satisfies a natural
diminishing returns property: for any S C E and z,y ¢ S, we have f(SU{z,y}) — f(SU{y}) <
Ff(SU{z}) — f(S). Submodular minimization problem asks for finding the minimum value a given
submodular function takes. We give an algebraic algorithm for this problem for a special class of
submodular functions that are “linearly representable”. It is known that every submodular function
f can be decomposed into a sum of two monotone submodular functions, i.e., there exist two
non-decreasing submodular functions f1, f such that f(S) = f1(S) + f2(E \ S) for each S C E.
Our class consists of those submodular functions f, for which each of fi and f> is a sum of k rank
functions on families of subspaces of F", for some field F.

Our algebraic algorithm for this class of functions can be parallelized, and thus, puts the problem
of finding the minimizing set in the complexity class randomized NC. Further, we derandomize our
algorithm so that it needs only O(log?®(kn|E|)) many random bits.

We also give reductions from two combinatorial optimization problems to linearly representable
submodular minimization, and thus, get such parallel algorithms for these problems. These problems
are (i) covering a directed graph by k a-arborescences and (ii) packing k branchings with given root
sets in a directed graph.
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1 Introduction

Submodular functions have been studied in a wide variety of contexts like combinatorics,
electrical networks, game theory, and machine learning. For a set F, a submodular function
is a set function f: 2 — R that satisfies a natural diminishing returns property: for any
TCSCFandxzeFE\S, we have

f(SU{z}) = £(S) < fF(TU{z}) — f(T).

That is, the marginal value of an element with respect to a set decreases as the set grows.
Another equivalent way to describe submodularity is: for any S, T C E, we have f(S)+f(T) >
fSUT)+ f(SNT). Submodular functions appear in a diverse set of areas. To give a few
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examples, a linear function, maximum number in the given subset, the rank function on a
set of vectors or subspaces, the cut function on the set of vertices of a graph, entropy on a
set of random variables, the coverage function on a collection of subsets, are all submodular.

There are various natural optimization problems involving submodular functions: Sub-
modular Minimization asks for the set that minimizes a given submodular function among
all subsets of the ground set. Similarly, Submodular Maximization asks for the maximizing
set. Note that the these two questions are interesting only for non-monotone submodular
functions like graph cut. There are also constrained versions of minimization and maxim-
ization, for example, optimizing a submodular function over subsets of a given size. The
submodular function might be given by an explicit representation, for example, a given graph
can represent the corresponding cut function. However, not all submodular functions are
succinctly representable, as their number grows as doubly-exponential in the ground set
size [27]. In the most general framework, the function is given via a value oracle, i.e., given
any subset S C FE, the oracle will provide the function value on S.

Submodular minimization is in some sense a discrete version of convex minimization [20],
and thus, admits polynomial time algorithms (even with just the value oracle). The initial
algorithms for it were based on the ellipsoid algorithm [11, 12], but later on combinatorial
algorithms were also obtained [6, 15, 28]. Submodular maximization, on the other hand, is
known to be hard: Max-cut [16] and maximum facility location [5] are instances of submodular
maximization which are NP-hard. Moreover, in the oracle model, there is an exponential
lower bound known on the number of queries required [9].

When we put cardinality constraints, then in fact, both minimization and maximization
problems become hard even for monotone submodular functions. Examples of such maxim-
ization problems that are NP-hard include max-k-cover (set-cover, which is NP-hard [16],
reduces to it) and sparse approximation [7] (for a set E of vectors and fixed vector v, the
function f,(S) = ||projspan(s)(v)||2 for S C E is submodular). Similarly, min-k-vertex-cover
is an example of an NP-hard minimization question (see [13]). Moreover, in the oracle model,
cardinality constrained submodular minimization has a sub-exponential lower bound on the
number of queries (follows from [31]).

Parallel complexity of submodular minimization. In this paper, we investigate the question
of parallel complexity of unconstrained submodular minimization. In the oracle model, the
parallel complexity question can be phrased as follows: if one is allowed to simultaneously
make polynomially many function value queries in one round, how many rounds are required
to find the minimum value (and the minimizing set). The number of rounds required is
also known the adaptivity (see [1]). To the best of our knowledge, the best upper bound
on the adaptivity of submodular minimization is O(nlog(nM)) [19], where M is the largest
absolute value the function takes (they use a separation oracle that can be implemented
with one round of n parallel queries to the value oracle). While on the lower bound side,
there is a known impossibility result for one round [2], and Q(n?/k®) query lower bound for

k rounds [1]. Very recently, it was shown that there are no adaptive algorithms that run in
logn

(log logn

the adaptivity of submodular minimization can be sublinear.

) rounds with poly(n) queries per round [3]. In particular, it is not clear whether

On the other hand, if we consider explicitly given submodular functions, there are
instances for which the minimization problem admits parallel algorithms. Such special cases
of submodular minimization include (s,¢)-min-cut (small capacities), maximum bipartite
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matching', and its generalization linear matroid intersection. These problems have algebraic
algorithms, which just involve randomized reductions to matrix rank computation and thus,
fall into the class randomized NC (RNC) [17, 21, 23, 24]. In recent years, these algorithms
have also been partially derandomized [10, 14], i.e., they can work with only O(log2 n) random
bits. A natural question arises: what is the most general class of submodular functions for
which such algebraic algorithms can work. One would expect such algebraic algorithms for
submodular functions that are linear algebraic in some sense. Towards this, we define a class
of linearly representable submodular functions.

Linearly representable (LR) submodular functions. Suppose we have a family of subspaces
V = {V. C F"}.cp, for some field F. Recall that the rank function of the family V given
by r(S) = dim(},.g Ve) for S C E is submodular. The rank function is non-decreasing,
and hence, the minimization question for it is not interesting. One can try to consider the
difference of two rank functions, but that is not submodular. Interestingly, there is a way to
construct a non-increasing submodular function from a non-decreasing submodular function:
if a function f(S) is submodular then so is g(S) := f(E\S). So, if we have two non-decreasing
submodular functions f1(S) and f2(S), we can get a non-monotone submodular function by
considering f1(S)+ f2(E\ S) (since the sum of two submodular functions is also submodular).
In fact, using this way one can arrive at any submodular function. It is known (see [6])
that every submodular function f can be decomposed into two non-decreasing submodular
functions f; and f3 such that for any S C E, f(S) = f1(S) + f2(E\ 5).

Our contributions

The above facts motivate us to define the following natural class of linear algebraic submodular
functions that are not necessarily monotone. For a ground set F, let S := E '\ S.

» Definition 1 (Linearly representable (LR) submodular functions). We call a submodular
function f: 28 5 7 linearly representable (LR) by k families of subspaces V; = {Vj e C
F"}ecr for 1 < j <k and a number { < k if

4 k
F8)=>"ri(S)+ > ri(9),
j=1 j=t+1

where 1;: 2¥ — 7 is the rank function for family V;.

This class includes many interesting submodular functions like directed graph cut, hy-
pergraph cut, coverage function, integral linear function (up to additive normalization),
and more interestingly, any combination of them in the above form. Our main results are
a randomized algebraic algorithm for minimizing LR submodular functions that puts the
minimization problem in RNC, and an almost complete derandomization of the algorithm;
see Section 3.

» Theorem 2 (Linearly representable submodular minimization). Given an LR submodular
function f: 2F — 7 via families of subspaces Vi ={Vje CF"}ecp for1 < j <k and a num-
ber £ < k (Definition 1), we can find a set minimizing f(S) in RNC. Further, the randomized
algorithm can be almost completely derandomized so that it uses only O(log?(kn|E|)) random
bits.

! For a bipartite graph G(Vi UVa, E), the maximum matching size is equal to |Vi|+mingcy, (|N(S)| — |S])
(Hall’s theorem), where N (S) C V5 is the set of neighbor of S. The function |N(S)|—|S| is submodular.

61:3

ICALP 2020



61:4

Minimizing Linearly Representable Submodular Functions

Another way to put the derandomization result is that minimizing an LR submodular
function is in quasi-NC (see [10, 14] for the details of class quasi-NC). Our results also imply
a randomized parallel algorithm and its almost deterministic version for a problem called
linear polymatroid intersection, generalizing the corresponding results for linear matroid
intersection [24, 14].

In the linear polymatroid intersection problem, we are given two families of subspaces,
V; ={Vje CF"}ccp for j = 1,2, with their rank functions 71,79, respectively. And the goal
is to find

max{z Te | ke > 0Ve € B, and er <ri(9), er < rg(S) for each S C E}.
ecE eesS ecS
Min-max relation. It is known that this maximum value is equal to mingc g r1(S) + 72(5)
(see [29, Corollary 46.1c]). Thus, the maximization problem is captured by LR submodular
minimization.

» Corollary 3. Linear polymatroid intersection has a randomized NC algorithm that uses
only O(log?(n|E|)) random bits.

Linear matroid intersection is the special case of linear polymatroid intersection when
each of the above subspaces Vj . is of dimension 1. Thus, the above min-max relation with a
LR submodular function also holds for linear matroid intersection. Our parallel algorithm has
a crucial difference from the known parallel algorithms [24, 14] for linear matroid intersection.
They give the minimum value of the corresponding LR submodular function, but they do
not lead to a minimizing set, while our algorithm also finds a minimizing set.

Further applications

As mentioned above, LR submodular minimization captures linear matroid intersection
and thus, several other combinatorial optimization problems that reduce to linear matroid
intersection, like bipartite matching, packing spanning trees, finding arborescences (see [29]),
packing a-arborescences [29, Theorem 53.10], and hypergraph min-cut [18]. Since linear
matroid intersection already has parallel algorithms [24, 14], so do these problems.
However, there are also combinatorial problems that reduce to submodular minimization
but are not captured by linear matroid intersection. We show that two such problems, in
fact, reduce to LR submodular minimization (see Section 4.2 for definitions and reductions).
Covering by a-arborescences. For a given directed graph and a number k, decide
whether the edge set is covered by k a-arborescences.
Packing of branchings. For a given directed graph and given subsets R1, R, ..., R
of vertices, decide whether there exist k edge-disjoint branchings that are rooted at
Ry, Ro, ..., Ry, respectively.
To the best of our knowledge, there is no straightforward reduction known from these
problems to linear matroid intersection. Using Theorem 2, we get the following.

» Theorem 4. Covering by a-arborescences and packing of branchings can be solved in RNC
using only O(log2 n) random bits, n being the size of the input graph.
Variants

Furthermore, we list out two problems, one of which is an extension of LR submodular
minimization and the other one is equivalent to it (see Section 4.1).
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1. Minimization with containment constraints: There is a variant of submodular
minimization that appears frequently in combinatorial optimization. Given two subsets
So € S1 C E, the goal is to minimize the given submodular function f(S) subject to
Sy € S C S7. We can extend our algorithm to LR submodular minimization with this
kind of constraints. This is a generalization of the minimum (Sp, S;) cut problem in a
graph G(V, E) with two given disjoint subsets Sy, S; C V.

2. Separation oracle for a linear polymatroid: Given a family V = {V, C F"}.cg of
subspaces with its rank function r: 2¥ — Z, the corresponding polymatroid is a polytope
P. C RF defined as

Pr:{xERE\xZO, ergr(S)VSgE}.
eesS

Given a rational point 3 € RF, one needs to decide if 3 lies in P,, and if not then find
a violating constraint from the above set. We reduce this problem to LR submodular
minimization assuming the coordinates in § are rational numbers with a polynomially
bounded common denominator.

2 Preliminaries

Complexity Class NC. NC represents the class of problems that can be solved by polynomi-
ally many parallel processors in poly-logartihmic time. RNC, i.e., randomized NC, represents
problems that can be solved with the same resources, but with the use of randomness.

2.1 Submodular functions

For a set F, a submodular function is a set function f: 2F — R for any S, T C E, we have
FS)+f(T) > fF(SUT)+ f(SNT). If f satisfies this with equality then it is called modular.
There are various properties of submodular functions that are useful for us and are easy to
verify. For S C FE, S will denote E \ S.

If f1 and fy are submodular then so is f; + fo.

If f is submodular then so is g(S) = f(S9).
For a set E and a family of subspaces V = {V, C F"}.cpg, its corresponding rank function
r: 2F — Z is defined to be as r(S) = dim(}_ g Ve) for S C E. It is not hard to verify that
the rank function is submodular for any family of subspaces.

2.2 Polynomial identity testing

To design our randomized algorithm, we will need a fundamental result about zeros of
polynomials, which says that if a polynomial is nonzero then at a random point, its evaluation
is nonzero with high probability (see, for example, [25, 30, 33, 8]).

» Lemma 5. Let there be an n-variate degree-d nonzero polynomial P(z1, za,...,2zn). If for
each 1 <1 < n, the variable x; is substituted with a random number R; chosen uniformly
and independently from a set of size D then

Pr{P(Ry,Rs,...,R,) =0} < d/D.

Note that D should be at least as large as the degree. Throughout the paper, we will
assume that the underlying field is large enough. This lemma gives a simple algorithm to
test if a given polynomial is nonzero: just evaluate it at a random point and output nonzero
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if and only if the evaluation is nonzero. To derandomize our submodular minimization
algorithm, we will need to derandomize this test of nonzeroness of a polynomial. For general
polynomials, there is no non-trivial derandomization known. However, we will need the
derandomization result only for polynomials that have certain special structure.

Let U be a square matrix whose entries are all linear polynomials (degree-1). The
polynomials of interest in our setting will be determinants of such symbolic matrices, where
any particular variable appears in at most one column of the matrix. For this class of
polynomials, an almost complete derandomization of nonzero testing is known. A way to do
deterministic nonzero testing is to obtain a small hitting-set — a set of points such that any
nonzero polynomial in the class of our interest gives a nonzero evaluation on at least one of
the points.

The work of [14] gave a quasi-polynomial size hitting-set for polynomials of the following
form which subsume the above case: P(z) = det(}.;_, A;z;), where each A; is a rank-1
matrix. The result of [14] can be easily modified to generate a slightly stronger notion of a
hitting-set, though it is not explicitly stated there.

» Lemma 6 ([14]). There is an NC-computable hitting-set generator, that is, a function
h: {0,1}t - F", t = O(log2 mn), with the following property: for any nonzero polynomial
P(z) = det(}_]_, A;zi) where each A; € F™ ™ is a rank-1 matriz

Reﬁ){l}t{P(h(R)) = 0} < 1/poly(mn).

3 Parallel algorithm for linearly representable submodular
minimization

Our first step towards the parallel algorithm is to consider one of the special cases of LR
submodular minimization. We give an algebraic algorithm for this special case. The algorithm
is essentially a reduction to basic linear algebraic operations like computing rank and inverse
of a matrix, which are doable in NC. The reduction is randomized and thus, puts the special
case in RNC. Finally, we reduce the LR submodular minimization problem to this special
case. We start with describing the special case and a solution for it.

3.1 LR submodular minimization for a special case

The special case we first consider is when the submodular function is the difference of a rank
function and a positive linear function. Let V = {V, C F"}.cg be a family of subspaces
for a ground set F and a field F, and r: 2 — Z be the corresponding rank function. Let
w € Z¥ be a positive integer vector and define a modular function w(S) := 3", g w. for any
S C E. Consider the function defined as f(S) = r(S) — w(S) for S C E. Note that since
w is modular, so is —w, and hence, f is submodular because both r and —w are. We show
that there is a randomized algebraic algorithm to find a minimizing set for f(S) over S C E.

» Lemma 7. Given a family of subspaces V = {V, C F"}.c g with rank function r and a vector
w € Z¥, there is an RNC algorithm to find the minimizing set S* C E for f(S) = r(S)—w(S)
that uses only O(log®(nw(E))) random bits.

To prove the Lemma 7, we work with a random/generic vectors that belong to any
subspace V.. Let us first build some terminology towards that. Let B, C F" be a basis
for V, for e € E. For any set S C E, let us define S, = {(e,i) | e € S, 1 < i < w.}.
Clearly, |Sy,| = w(S). We will construct a matrix U whose columns will consist of w, many
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generic vectors from the subspace V, for e € E. Formally, consider a tuple of indeterminates
a = (| (e,i) € Ey, v € B.). Now, construct an n x E,, matrix U over F[a] whose
columns are as follows:

U(ei) = Z Qe ;w0 for (e,7) € E,,. (1)
vEB.

All notions of rank and linear independence for columns of U will be over the field of fractions

F(a). For any set T C E,,, let Ur denote the set of columns of U indexed by elements in T

Our first step is to show a lower bound on ming f(.5) in terms of rank of U.
> Claim 8. For any set S C F,

f(S) =r(S) —w(S) > rank(U) — |Ey| = rank(U) — w(E). (2)
Proof. Consider the sets S, C E,, and Sy, := F,, \ Sw. One can write

rank(U) < rank(Us,,) + rank(Usg, ) < r(S) + |Su|.

The first inequality is from basic linear algebra. The second inequality holds because every

column in Sy, is in the space ) . 4 V. and rank of Ug ~can be at most its cardinality. Writing

— eeS
|Sw| = |Ew| — |Sw| = w(F) —w(S) and rearranging the above inequality will give us the
claim. 4

Once we obtain this lower bound, a natural approach to find ming f(S) is to find a set
S* C FE which satisfies (2) with equality. We describe a construction of such a set. First let
us define T* C E,, to be the set of elements (e, 7) such that the column w ;) participates
non-trivially in some linear dependency among the columns of U. Equivalently,

T* :={(e,i) € By | rank(U) = rank(Ug,\ (e,i)) }-
Then define
S*={ee E|(ei) € T" for some i}.

» Lemma 9. S* is a set minimizing f(S) over all subsets S C E.

Proof. As mentioned above, the strategy is to show that S* satisfies (2) with equality.

Towards this we will first prove that
rank(Up~) = r(S™). (3)

Recall that the columns Up+ are contained in )
is that >

ces+ Ve- What we need to show for (3)

ccs+ Ve is in the linear span of Ur~. We show this for each V;, € € ™.

> Claim 10. For each é € S*, the subspace V5 is in the linear span of columns in Up-.
Proof. By definition of S*, there must be some 1 < i < wg so that (¢,1) € T*. By definition

of T, the column u ;) non-trivially participates in some linear dependency among the
columns of Ur-. So, there exists a set J C T* \ {(¢,7)} and a vector I' € F[a]” such that

Now, recall that Uz 7y Is a generic vector in Vg, and thus, can be used to express any vector in
Vz. Hence, Equation (4) implies that every vector in V; is in the linear span of the columns
in U;y. Below, we argue this point more formally.
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Recall (1) that gives w7y as >, cp. @7 ,v. One can invert (4) to write the vector I' as a
function of indeterminates {a;; , }» as follows. By basic linear algebra, there is an invertible

€,1,v

submatrix Uy of U and a truncation Gz ;) of u(g ;) such that

L =050 (5)

Consider any vector v' € Vz. Suppose v’ can be expressed using the basis Bz as ZveBé Opv.
We can substitute (a;;,)u = (0), in the right-hand side of (5) to obtain a vector I'". Note
that since the matrix Uy is free of indeterminates {c, ; ,}», this substitution in (5) does not

create any issues like division by zero. It will follow that
U/ = UJF/.
To conclude, every vector v’ € V; is in the linear span of columns in Urp-. <

Claim 10 proves Equation (3). Now, we come back to proving that S* satisfies (2) with
equality. From (3), we have

f(S*) =r(S*) —w(S*) = rank(Up~) — w(S™) < rank(Ur~) — |T7|.

The inequality holds because w(S*) = |Sk| > |T*| by the definition of S*. By construction
of T, the columns in Ug, \7- do not participate in any column dependency. Thus, we have
rank(U) — rank(Urp~) = |Ey \ T*| = |Eyw| — |T*|. Putting this in the above inequality, we get

f(S*) =7(S*) —w(S*) <rank(U) — |Eyl.

This together with (2) implies that S* is a set that minimizes f(S) over S C E. <

Proof of Lemma 7: the parallel algorithm

Let us review the construction of the minimizing set S* from the previous subsection.
Construct a matrix U, whose columns are generic vectors from the given subspaces. To
be precise U has exactly w, generic vectors from V, for each e € E.
Construct the set 7™ := {(e, i) € Ey, | rank(U) = rank(Ug,\ (c,i)) }-
Construct the set S* C E that contains all those elements e such that T contains (e, 4)
for some 1 < ¢ < w,.

The rank computations in the second step can all be done in parallel. Importantly,
rank computation for any matrix over the base field F can be done in NC. However, this
computation is not efficient for U (or its submatrices) as it is a matrix with indeterminates c.
To overcome this, we plan to substitute all the indeterminates with field constants. Observe
that as long as our substitution preserves the ranks of all column subsets of U, one can safely
run the above procedure on the substituted matrix and expect to get the correct answer.

How do we find the right substitution? We argue that a random substitution from a large
enough set of field elements does the job. It is known that the rank of a subset of columns
remains the same with high probability if each indeterminate is replaced with a field element
randomly chosen from a set of size poly(size(U)) = poly(n x w(E)). One can see this by
applying Lemma 5 on the largest nonzero minor. But, note that we need one substitution
that preserves ranks for U and each submatrix Ug, \ (c,s) simultaneously. One can use union
bound to argue that with high probability, all the desired submatrices preserve their rank.
Note that this algorithm needs to use polynomially many random bits. Next we show how
to reduce this number of random bits.
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Derandomization

To reduce the number of random bits, we use results from deterministic polynomial identity
testing. Recall Lemma 6 that gives a pseudorandom substitution that preserves nonzeroness
of polynomials of the form det(>"" ; A;z;) for rank(A4;) = 1, with high probability. Note
that any minor of U is also a polynomial of this form because any variable a ;. appears in
exactly one column of U. Again, one can use union bound to argue that with high probability,
the substitution preserves nonzeroness for all the desired minors of U and each Ug,\ (i
simultaneously.

To conclude, the pseudorandom substitution from Lemma 6 uses O(log? (nw(E))) random
bits and with that substitution our algorithm will give the correct minimizing set S* with
high probability.

3.2 Reduction to the special case

Recall Definition 1 which defines LR submodular functions to be those which can be written
as a sum of a collection of rank functions together with another collection of rank functions
applied on the complement set. We will first argue that the same class of functions is also
captured by just taking sum of a rank function and another rank function applied on the
complement.

» Observation 11. Let f: 2F — Z be an LR submodular function given as

4 k
F8)=>"ri(S)+ > ri(9),
j=1 j=t+1

for some £ < k, where r; is the rank function for a family of subspaces V; = {V; e CF"}ecp
for 1 <j<k. Then f can also be written as

f(8) =r1(8) +75(5).

where r] and rh are the rank functions of the families Vi = {@ﬁ.zlv,e C F"}eer and
Vo =A{&h_,  Vie CFF=Om} p, respectively.

Next, we show that we can, in fact, take one of the rank functions to be modular. That
is, any LR submodular function can be written as a sum of a rank function and a modular
function. In context of general submodular functions, this is a known fact and was used in
the first pseudo-polynomial time submodular minimization [6, Lemma 2.1]. Here, we show a
more specific result for LR submodular functions that says that the new rank function is
also linearly representable and the corresponding family of subspaces can be constructed
efficiently.

» Lemma 12. Given an LR submodular function f(S) by k families of subspaces of F™ as
in Definition 1, one can compute in NC a family of subspaces V = {V. C IF’“”‘E|}66E with
rank function r, a vector w € {1,2,...,kn}¥, and a constant C such that for each S C E,

f(S) =r(S) —w(S) + C.

To prove Lemma 12, the first step is to use Observation 11 to get the LR submodular

function in the form 71 (S) 4 r5(S). Then the next step is to write r5(S) as a sum of a rank
function on S and a modular function, which is what the following lemma does. Final step
is to combine the new rank function with | (S) to get a single rank function, again using
Observation 11.
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> Lemma 13. Let V = {V. C F"}.cr be a family of subspaces with its rank function
r: 28 — Z. Then one can construct in NC another family of subspaces V* = {V* C IF"/}EGE
with rank function r* for some n’ < n|E|, and a vector b € {1,2,...,n}¥ such that for each
SCE,

r(S) = r*(S) = b(S) +r(E).

Proof. For each e € E, let b, be the dimension of the subspace V. and B, = {u,; | 1 <1i <b.}
be a basis for it. Let B = {(e,i) | e € E, 1 < i < b.} be a new ground set. Note that
since b, < n, we have |E’| < n|E|. Consider an n x |E’| matrix M whose set of columns is
{te i }e,i- Without loss of generality, we can assume that M has full row-rank, i.e., n = r(E)
(otherwise we could drop some rows). Let M* be a (|E’| —n) x |E’| matrix whose row-space
is the orthogonal complement of the row-space of M (for a construction in NC, see [4, 22]).
The following claim is well known in matroid theory and is used for representation of a dual
matroid (see [26, 2.1.9 and 2.2.8]). For any 7' C E’ and matrix M, let My stand for the set
of columns of M corresponding to the set of indices T'.

> Claim 14. For any set T C E’,
rank(Mpgn ) = rank(M7) — |T'| + n.

Let {u,;}ci be the set of columns of M*. Consider the family of subspaces V* = {V C
FIF1=7} cp, where V* = span{u; | 1 <i <b.}. Let r*: 2% — Z be the rank function of
V*. Then for any S C E, take T = {(e,i) |e € S, 1 <i < b.} in Claim 14, and we get

r(E\S)=r"(S)—b(S)+n. <

Proof of Theorem 2. Lemma 12 gives an NC-reduction from LR submodular minimization
to minimizing functions of the form f(S) = r(S)—w(S)+C. To minimize f(S), it is sufficient
to minimize r(S) — w(S), which is what Lemma 7 does. This concludes the RNC algorithm
for LR submodular functions as claimed in Theorem 2. |

4 Variants and Applications

In this section, we first consider two variants of submodular minimization which can be
reduced to submodular minimization. Here we basically show that this kind of reductions
can also made to work in the setting of LR submodular functions. Later on, we also show
reductions from two combinatorial problems to LR submodular minimization.

4.1 Variants

Submodular minimization with containment constraints. We first consider an extension
of submodular minimization that asks for a minimizing set with containment constraints.
Given a submodular function f: 2 — R and two sets Sy C S; C E, suppose the goal is to
minimize f(S) subject to So C S C S;. It is known that there is a submodular function g
on the ground set S; \ Sy such that for any Sy C S C Sy, f(S) = g(S\ So) + C’ for some
constant C’. If f is linearly representable then we would like to come up with such a function
g that is also linearly representable. Towards this, we will need the following claim.

> Claim 15. Let V = {V, CF"}.cg be a family of subspaces and r be the corresponding
rank function. Let there be two sets Sop C S; C E. Then we can construct a family of
subspaces V' = {V/}ccs,\5, With rank function 7’ such that for each Sy € S C 54

7(S) —r(So) = '(S\ So).
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Proof. Let Vg, be the subspace > Ve. For each e € 51\ Sp, we define V to be the

ecSy '€
quotient space V! =V, /Vg,. Now, for any Sy C .S C 57, we have

r'(S\ So) =dim( Y V) =dim | ( Y Vi)/Vs, | =dim(Ve/Vs,) = r(S) = r(So).
e€S\So e€S\So

<

From Lemma 12, any linearly representable submodular function can be given as f(S) =
r(S) —w(S) + C, for a rank functions r(S) on a family of subspaces V, a modular function
w(S) and a constant C. For given two sets So C S; C E, let 7’ be the function constructed
in Claim 15 from r. For any T' C S \ Sy define ¢(T") = '(T) — w(T) + C. Using Claim 15,
one can verify that for any Sy C S C 57,

9(8\So) = r'(S\S0) —w(S\So) +C = r(S) —r(So) —w(S) +w(So) +C = f(F) = f(S0) +C.

Choose C’ = C'—f(Sp) and we get the desired relation. Now, to minimize f under containment
constraints, one can just minimize g on the smaller ground set.

Submodular minimization over non-empty sets. In applications, one often needs to minim-
ize a submodular function over non-empty sets, for example, min-cut in an undirected graph.
To do this, one can go over all elements e € E and minimize f(S) with the containment
constraint {e} C S (as discussed above). This will give us a minimum value for each choice
of e. The minimum among these values will be the minimum over non-empty subsets.

Separation oracle for a linear polymatroid. Given a family of subspaces V = {V, C F"}.cp
with its rank function 7: 2¥ — Z, the corresponding polymatroid is a polytope P, C R¥
defined as

Po={xeRP|[2>0,) . <r(S)VSCE}
ecsS

Given a rational point 3 € R¥, one needs to decide if 8 lies in P,, and if not then find
a violating constriant. The non-negativity constraints are easy to check. The other rank
constraints are equivalent to
min (r(S) —=(S)) > 0.

Thus, to check if § satisfies the rank constraints, it suffices to minimize the function
f(S) =r(S) — B(S). Moreover, if there is a violating constraint, then the set S* minimizing
f(S) will give a violating constraint. If 8 is an integer vector, we have already seen how to
find S* in Lemma 7. When $ has rational coordinates, then one can assume them to have a
common denominator g, i.e., 8. = p./q for integers p.,q. Now, the minimization function
becomes ¢ x r(S) — p(S). Now, p(S) is an integral function. To get the multiplicative factor
q in the rank, for each subspace V. in the family, one can take the direct sum with its copies
as @?ZlVe. Note that this is efficient as long as the number ¢ is polynomially bounded.

4.2 Applications

In this section, we show that the two combinatorial problems mentioned in Section 1
reduce to LR submodular minimization. To the best of our knowledge, these problems do
not have any known reduction to linear matroid intersection. We start with defining the
necessary terminology. Branchings and arborescences are directed analogues of forests and
spanning trees.
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» Definition 16 (Branching and Arborescence). For a directed graph G(V, E), a subset BC E
of edges is a branching if it contains no undirected cycles (i.e, there are no cycles induced by
B if edges in B are considered to be undirected) and for every vertex v, there is at most one
edge in B that is incoming to v. A wvertex is a root of B if it has no incoming edges in B.
An arborescence is a branching with exactly one root, that is, it is a rooted tree. If the root
vertex of an arborescence is a, then we call it an a-arborescence.

Covering by a-arborescences

A directed graph G(V, E) is said to be covered by k a-arborescences if there exists subsets
By, Bs,...,Bi C E, each of which is an a-arborescence and F = By U By U - --U By. Vidyas-
ankar [32] gave the following characterization for the graph to covered by k a-arborescences.
For any set of vertices S C V, let H[S] := {u € S| Jv € V\ S, (v,u) € E} and let
§7(8) :={(v,u) € E|Jv € V\ S, u € S} be the set of incoming edges in S. Let deg™®(v)
be the number of incoming edges to v.

» Theorem 17 ([32]). For a vertex a € V and a positive number k, the directed graph
G(V,E) is be covered by k a-arborescences if and only if

deg™(a) = 0 and deg™(v) < k for each v € V and

> vems (k= deg™(v)) > k — [|6™(9)|, for each non-empty subset S of V' \ {a}.

Reduction to submodular minimization. We show that testing the conditions required in
Theorem 17 can be reduced to LR submodular minimization. Testing the first condition is
trivial. We come to the second one. Let us define a function f: 2V M@} — 7 as follows:

F(8) =Y (k—deg™(v)) +1[8"(S)]-

vEH[S]

We will just show that f(S) is a linearly representable submodular function. Clearly, one can
check the required condition by finding mingcy ¢4y f(S) and verifying that it is at least k.

For any vertex u € V, let x, € {0,1}V be the characteristic vector of v. Let us define
two families of subspaces £1 and Lo with rank functions r; and rs.

Ly ={L1, SR>V}, v, where Ly, = Z @?;flegm(v) span(y,) and

Vv=u Or
(uv)€E
£2 — {LQ,’U. g ka‘vl}uev7 Where L2’u — @?;ngln(u) Span(Xu)
One can observe that for any set S C V, 71(S) is just the sum of the quantity k — deg™(v)
over all vertices v that are either in S or out-neighbors of S, and r5(S) is sum of the same

quantity over all the vertices of S. Thus, we can write

ri(S) —r2(S) = Y (k—deg™(v)), (6)

vEH(S]

where S = V'\ S. Note that —r(S) is same as 5(S) — r2(V). Thus,

D (k- deg™(v)) = r1(S) + 72(S) — r2(V). (7)

vEH|[S]

Now, we will express the second part of f(S), that is [§*(5)|, as a LR submodular
function. For any edge e € F, let x. € {0,1}¥ be the characteristic vector of e. Let us define
three families of subspaces L3, £4 and L5 with rank functions r3, 4 and rs5, respectively.
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L3 ={Ls, CRF},cv, where L3, = span{y. | € = (u,v) for some v € V}.
L4={Ls, CRF},cv, where Ly, = span{x. | e = (v,u) for some v € V'}.
Ls = {Ls. CRF},cv, where L5, = span{x. | e = (u,v) or e = (v,u) for some v € V}.

One can observe that for any set S C V', r3(.5) is the total number of edges which are
outgoing from some vertex in S, r4(.5) is the total number of edges which are incoming to
some vertex in S, and r5(S) is the total number of edges that are incident (outgoing or
incoming) to some vertex in S. Thus, one can write

206" (S)| = 73(S) +ra(S) + r5(S) +15(5) — 2| B]. (8)
Together with (7) and (8), we can write,
2f(8) =2 x (r1(S) +r2(8) — r2(V)) 4+ r3(S) + ra(S) + r5(S) + r5(5) — 2| E|.

The terms r2(V') and 2| E| are constants here. The other terms give us a linearly representable
submodular function.

Recall that we have to minimize the function f(S) over subsets S that do not contain
the vertex a. We had reduced such a constrained minimization to general minimization in
the previous subsection.

Packing of branchings

For a given directed graph and given subsets Ry, Rs, ..., Ry of vertices, we need to decide

if there exist k edge-disjoint branchings that are rooted at R, Ro,..., Ry, respectively.

Edmonds (see [29, Theorem 53.1]) gave the following characterization.

» Theorem 18. Let G = (V, E) be a directed graph with Ry, Ra, ..., Ry being subsets of V.

Then there exist disjoint branchings By, Ba, ..., By such that B; has root set R; for 1 <i <k
if and only if |67 (S)| > |i : R;NS = 0| for each non-empty subset S of V.

Let f(S) = [6"(S)| —|i : R;NS = 0|. To check the condition in the theorem, it is
sufficient to minimize f(S) over non-empty subsets of V. We have already expressed [§?"(9)]
as a linearly representable submodular function in (8). We need to now express the other
part of the function. Let us define

gi(S) ==

0 otherwise.

{1 if SNR; #0

One can verify that g; is the rank function of the following family of subspaces: £; = {L; ., C
R}yev, where L; , = {1} if u € R; and L; , = {0} otherwise. Now, one can express the
desired function in terms of g;’s.

k
—|2RlﬂS:@| :Zgi(S)—k‘.
i=1

Together with (8), this gives us a linear representation for f(S) (up to additive constants).
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5

Discussion

We have given a parallel algorithm for submodular minimization in the special case of linearly
representable submodular functions. It would be interesting to know if there are other classes
of submodular functions that admit parallel algorithms. More generally, it is not clear if
there can be an efficient parallel algorithm for submodular minimization in the oracle model.

We have given two examples of combinatorial problems that are captured by LR submod-

ular minimization, but are not known to be reducible to linear matroid intersection. One
needs to investigate what are other examples of such problems.
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