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—— Abstract

Many graph properties are expressible in first order logic. Whether a graph contains a clique or a
dominating set of size k are two examples. For the solution size as its parameter the first one is
W]1]-complete and the second one W[2]-complete meaning that both of them are hard problems in
the worst-case. If we look at both problem from the aspect of average-case complexity, the picture
changes. Clique can be solved in expected FPT time on uniformly distributed graphs of size n, while
this is not clear for Dominating Set. We show that it is indeed unlikely that Dominating Set can be
solved efficiently on random graphs: If yes, then every first-order expressible graph property can be
solved in expected FPT time, too. Furthermore, this remains true when we consider random graphs
with an arbitrary constant edge probability. We identify a very simple problem on random matrices
that is equally hard to solve on average: Given a square boolean matrix, are there k rows whose
logical AND is the zero vector? The related Even Set problem on the other hand turns out to be
efficiently solvable on random instances, while it is known to be hard in the worst-case.
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1 Introduction

The worst-case analysis of problems has a long tradition and has led to a complexity theory
that allows us easily to classify many problems. Such complexity theories do not only exist
for the time complexity, but also for other resources such as space. There are complexity
classes for approximations, parallel computations, randomization, parameterized algorithms,
and many more. Usually they come with complete problems under certain reductions.

The average-case analysis of problems is less developed, but Levin showed quite early that
there exist problems that are hard to solve even on random inputs [19]. He considered problems
together with input distributions and defined reductions that take the probability distribution
into account. This also led to complete problems for an analogue of NP in the average-case
? Jan Dreier, Henri Lotze, and Petel.r Rossmanith;
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world. This theory has been constantly refined. For example, Gurevich [17] showed some
inherent limitations of these techniques. Ben-David et al. showed a rare connection to the
worst-case world: If all problems in NP with a “simple” probability distribution on the
inputs can be solved in average polynomial time, then NEXPTIME = EXPTIME [1]. Such
connections are extremely rare and the latter one together with all others suffer from a severe
problem: They rely on quite unnatural probability distributions. Up to today no connection
seems to exist that shows, e.g., that if some natural problem in NP is hard to solve on average
under a uniform distribution, then P # NP. Such a result would be a big breakthrough.

It has to be noted, however, that it is in general not easy even to find problems that
are hard on average (with a uniform distribution). Having such problems is crucial in
cryptography. The RSA system is based on the assumption that factoring the product of two
primes is hard on average, but we cannot prove today that the existence of an algorithm that
can factor in polynomial time on average would imply some unexpected collapse between
worst-case complexity classes.

Many problems that are hard in the worst-case become easy on average. Take for example
the three-coloring problem on graphs. While NP-complete this problem can be solved in
constant time on average when drawing the graph from a uniform distribution of all graphs
of size n: It is easy to see that you can find a triangle in expected constant time by just
looking for one among the first three vertices, then the next three and so on. Each time you
find a triangle with probability % and you find a triangle on average with only eight tries.
See for example [4] for a similar but more complicated example.

The same holds for finding any fixed size subgraph or induced subgraph. This means that
p-CLIQUE, the problem of finding a clique of size k, can be solved in expected f(k)poly(n)
time for some function f if the input is a uniformly distributed graph of size n. Parameterized
complexity shows that it is unlikely to solve the same problem in f(k)poly(n) time in the
worst-case [9]. Fountoulakis, Friedrich, and Hermelin showed that finding cliques is in FPT
if the probability in the random graph is an almost arbitrary function of its size [14].

In this paper we look at first-order model checking on uniformly distributed random
graphs and more generally on Erdés—Rényi graphs with a constant edge probability. In this
model we assume that each possible edge in a graph with n vertices exists independently with
a probability of p. While in the worst-case the FO model checking problem seems to become
harder the more quantifier alternations we have, this hierarchy collapses when looking at
the average time complexity. We will show that the dominating set problem is as hard as
the whole model checking problem. We also identify a very natural problem on boolean
matrices that has the same complexity: Does a random boolean matrix have k rows whose
logical AND is the zero vector? We conclude that this matrix problem and the dominating
set problem are hard on average (unless the very general model checking problem is easy,
which would be unexpected). Finally we consider also the Even Set problem, which has been
finally shown to be W[1]-hard in the worst-case [2] and is similar to the above mentioned
matrix problem. Nevertheless it turns out that Even Set can be efficiently solved on random
instances.

Among the techniques “half”-reductions play an important role. While in a reduction f
from A to B you require that w € A iff f(w) € B, we often need only one direction: Showing
“if w € A then f(w) € B” is sufficient if f(w) € B holds with a very small probability. Having
an algorithm for B we can then solve A as follows. Compute f(w) and find out whether
f(w) € B holds. If not, conclude that w ¢ A. If yes, then solve w € A with a very slow, but
simple algorithm. As this happens with a small probability it does not spoil the expected
running time.
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2 Preliminaries

Parameterized complexity

Parameterized complexity was introduced by Downey and Fellows in a series of papers to

investigate further what makes problems hard to solve (see, e.g., [5, 6, 7, 8, 9, 13, 22]).

Instead of measuring the run time solely as a function on the input length, it may also depend
on other parameters of the input. A parameterized problem has therefore a parameter k
and the input length n and we classify a problem as fized parameter tractable if it can be
solved in time f(k)poly(n) for some computable function f. If an NP-hard problem is fixed
parameter tractable, then it runs in polynomial time for every fixed value of k£ and the degree
of the polynomial does not depend on k. In particular this means that there exist efficient
algorithms for scenarios where the parameter is small.

In this paper we will look at distributional problems on random graphs and boolean
matrices. Here a distributional problem will be a parameterized problem together with a
probability distribution of the inputs. Usually we will denote such a distributional problem
by stating the problem and the probability distribution separately.

We use the notation of Flum and Grohe [13] for parameterized problems. The first two
important problems we consider are the dominating set problem on undirected graphs and a
simple problem on boolean matrices:

» Definition 1.

p-DOMINATING SET

Input: A graph G and k € N.
Parameter: k
Problem: Is there a dominating set of size < k for G?

P-MATRIX(A)
Input:

A boolean matrix M € {0,1}"*™ and k € N.

Parameter: k
Problem: Are there k rows in M whose logical AND is the zero vector?

Logic on graphs and the zero-one law

We use graphs as a structure (V, E) where V is the vertex set and E the binary edge relation.

Instead of Fuv we will write u ~ v, which expresses that there is an edge between u and
v in an undirected graph. First-order (FO) formulas on graphs are atomic formulas of the
form z = y or x ~ y or one of the following: ¢ A, ¢V ¢, ¢, Vro, Jxd, where ¢ and 1) are
already FO-formulas. The semantics are as expected. A sentence is a formula without free
variables.

» Definition 2. We define the first-order model checking problems on graphs. The more
general problem on relational structures can be reduced to this more special problem [13].

p-MC(FO)
Input: A first-order sentence ¢ and a graph G
Parameter: |¢|, the length of ¢
Problem: Does ¢ hold in G, i.e., G |E ¢?
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For example, the formula 3z13xs ... 32 Vy \V,(z; = y V z; ~ y) expresses that a graph
has a dominating set of size at most k. If a formula ¢ holds for a graph G we write G = ¢.
If a formula ¢ follows from a set of formulas ® we write ® |= ¢. This is the case iff there is
a formal derivation of ¢ from ®, which we write as ® F ¢. Sometimes we will use colored
graphs, which we represent by a graph G and a coloring function x mapping vertices to a set
of colors. Formulas can speak about colors via atomic formulas of the form x(z) = red and
we write (G, x) = ¢ if the formula ¢ is true for G with colors x.

By G(n,p) we denote an Erdés—Rényi-graph with n vertices and edge probability p, where
edges exist independently from each other with a probability of exactly p € [0, 1]. Fagin [11]
proved the zero-one law for first-order sentences, which states that for every sentence ¢
either lim, o Pr[G(n,1/2) = ¢] = 0 or lim,, o Pr[G(n,1/2) E ¢] = 1. With other words,
a graph property that is expressible in first-order logic either holds asymptotically almost
surely or almost never. Given ¢ as an input, it can be decided whether the limit is 0
or 1 and Grandjean showed that it turns out to be a PSPACE-complete problem [15]. An
important role in the proof of the zero-one law play the so-called extension azioms (not to
be confused with the axiom of extension in Zermelo—Fraenkel set theory). They state that
every constant-size set of vertices is connected in every possible way to other vertices. For a
set or vector of variables z1,...,z; we will often write x. With this notation an extension
axiom can be written as

vagﬂz(/\xi #y; — /\(a:Z ~ZNANY; A z))
ij i

For an extension axiom it is easy to see that it holds almost surely, but if we look at the
whole set ® of all extension axioms it turns out that there is only one countable model
up to isomorphisms, the so-called Rado graph, which contains every finite and countable
infinite graph as an induced subgraph. Hence by the Lo$—Vaught Theorem [20, 23], ® = ¢
or ® = —¢ for every first-order sentence ¢. This means also that either ® - ¢ or ® + —¢. To
find out out which one is true we can just enumerate all proofs. Note that in a proof only a
finite number of formulas from ® are used and the proof itself is of course also finite. The
result by Grandjean states that this can be done in polynomial space.

All these observations suggest that FO-model checking should be easy on random graphs:
Just find out from ¢ alone whether it holds almost surely or almost never. Then verify that
this is indeed the case for the given GG. The strategy of using an abundance of witnesses
suggests itself, just as the triangle finding described in the introduction. While this intuition
is correct for purely existential formulas, life becomes much harder when considering formulas
with quantifier alternations.

In worst-case complexity FO-model checking with a fixed number of quantifier alternations
form the complete problems for the A-hierarchy [12]. Among known results about the
relationship to other complexity classes are W[t] C Aft] and W[1] = A[l]. To today’s
knowledge this hierarchy appears to be proper, see e.g. [3]. A collapse of the A-hierarchy
implies a collapse of both the W-hierarchy and of the polynomial hierarchy.

In this paper we investigate how hard FO-model checking is on average, which could be
interpreted as looking at the average-case analogue to the A-hierarchy. In the worst-case
model checking purely existential formulas is already W[1] = A[1]-complete, while it is easy
to see that you can achieve expected FPT time (because of abundance of witnesses). If
we turn to edge probabilities apart from % and look at Erdés—Rényi graphs G(n,p) with a
constant p the problem stays in expected FPT time. Grohe showed that for sparse Erdés—
Rényi graphs G(n,d(n)/n) with d(n) = n°") the whole p-MC(FO) can be solved in expected
FPT time [16]. The latter result also holds for graphs with vertex colors and it turns out
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that for colored random graphs Grohe’s result is optimal with regard to the edge density:
For no € > 0 and G(n,n®/n) is it possible to solve colored-p-MC(FO) in expected FPT time
unless AW[x] C FPT /poly [10].

Universal sets, bisectors, and colorings

» Definition 3. Let n € N and k € N with n > 2k.

1. A family U of functions [n] — {0, 1} is called an (n, k)-universal set if for every subset
M C [n] of size |[M| =k and every M’ C M there is a function f € U such that f(¢) =0
for every t € M’ and f(t) =1 for every t € M — M’.

2. A family B of functions [n] — {0,1} is called a k-universal bisector family if for every
subset M C [n] of size |M| = k there is a function f € B such that f(¢) = 0 for every t € M
and every function f bisects [n] in two sets of almost the same size: |f~1(0)| = [n/2].

3. A family C of functions [n] — {black, white, gray} is called a k-universal coloring if for
every subset M C [n] of size |M| = k and every M’ C M there is a function f € C such
that f(t) = black for every t € M’ and f(t) = white for every t € M — M’'. Moreover,

|~ (gray) = [n/2] for every f € C.

(n, k)-universal sets are a well-known concept that has been used, e.g., in the derandom-
ization of algorithms. Naor, Schulman, and Srinivasan designed such a family that can be
constructed in linear time and has size 2FkC1°8) logn [21].

The concept of a universal bisector is somehow orthogonal to (n, k)-universal sets. Com-
bining both concepts leads to (n, k)-universal colorings that will always color half of the
nodes gray.

A simple idea to build a k-universal bisector family of small size is this: For every size k
subset M of [2k] we define the function

bar ] s (0.1}, b (8) — {o if + mod 2k € M O

1 otherwise,

where a mod b is the remainder when dividing a by b.

Assume that S C [n] with |S| < k. If we choose M such that it contains ¢t mod 2k for
every t € S (and some more elements), then clearly by (i) = 0 for every i € S. Hence, we
have a k-universal bisector family. If n is a multiple of 2k then |b;,(0)| = n/2 because every
group of 2k elements is split equally. The last group, however, can be split unevenly leading
to an error of O(k). Algorithmically such a family of functions that bisects with a small
error would be sufficient for our purposes. It is, however, possible to achieve perfect balance
at a small cost in the size of the family, which makes their application slightly easier. The
next lemma shows that universal bisector families exist.

We leave the smallest possible size of such families as an open question as it is not a
critical issue for the results of this paper, but give two comments on the issue: If n = 2k you
have to use all (Qkk) = O(k~1/24F) possible balanced bipartitions and it seems that a size of
O*(4%) is already optimal. If n is much bigger, however, a random perfect bipartition works
with a relatively high probability of Q*(27%) and suggests that families of size O*(2¥) exist,
although it is not immediately clear how to construct families of that size.

» Lemma 4. For every k € N and n > 2k(2k 4 1) there is a k-universal bisector family of
size O(4%k). A table of all functions in the family can be computed in time O(4¥kn), which
is linear in the size of the table.
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Proof. We use a slight modification of the construction in (1). Let n = 2kd + r with r < 2k.
Let us call the last r elements of [n] the jokers. We define

0 if t < 2kd and t mod 2k € M,
bu(t) =<1 if t < 2kd and ¢t mod 2k ¢ M,
tmod 2 ift > 2kd.

Such a function by (t) maps exactly [n/2] elements to 0 and is therefore perfectly balanced,
but those function do not give us a universal family of bisectors. If S contains odd jokers, not
all of S is mapped to 0. We can overcome this problem by using 2k + 1 families build in this
way, but where each family uses a different interval in [n] to place the jokers. In that way for
each S C [n] of size up to 2k there will be one family where S does not contain a joker (by
the pigeon-hole principle). There is enough space for these intervals if n > 2k(2k 4+ 1) and
the resulting universal family of bisectors has size (2k + 1)4*. <

Combining k-universal bisectors and (n, k)-universal sets leads easily to (n, k)-universal
colorings.

» Lemma 5. For every k € N and n > 2k(2k+1) there is an (n, k)-universal coloring family
of size 8kC08k) logn. A table of all functions in the family can be computed in linear time.

Proof. We use a k-universal bisector family B of size O(4¥k) from Lemma 4 and an (n, k)-
universal set U of size 28k°0°8%) logn according to [21]. For f € U and g € B we define a
function h: [n] — {black, white, gray} as follows:

gray if g(v) =1
h(v) = < black if g(v) =0 and f(v) =0
white if g(v) =0 1

It is easy to see that the set of all such A’s forms an (n, k)-universal family of colorings. <«

3 Results

We define the following three formulas:

k k
10} EV&EV@}HZ( /\ Ty #Y; — /\(Jh ~zZNY; Z))
i,j=1 i=1
k k
¢ = Vivgﬂz(/\ (X(xb) = black A x(y:) = white) — x(z) = gray A /\(1’1 ~z Ny o z))
i=1 i=1
k k
(X(xl) = black A x(y:) = white) — x(z) = gray A /\(-Tz A ZNY; o z)
i=1 i=1

¢ = Va:Vyﬂz(

The next lemma uses k in the formulas ¢ and ¢’ as the parameter.

» Lemma 6. If there is an algorithm that, given a graph G = G(n,1/2) and a coloring
x: G — {gray, black, white}, can decide in expected FPT time whether (G, x) |= ¢, then there
is an algorithm that can decide for G = G(n,1/2) in expected FPT time whether G = ¢.



J. Dreier, H. Lotze, and P. Rossmanith

Proof. Let X be a 2k-universal family of colorings. Given a graph G first solve (G, x) E ¢
for every x € X in expected FPT time. If the answer is yes for every x, then we can conclude
G E ¢, as by using a universal family of colorings, we have covered all distinguishable ways
to color the nodes of G: Assume that (G, x) | ¢ for every x € X, but G }= ¢. Then there
exist ,y where Z and y are distinct such that for all z, /\le(xi ~ z \y; % z) is unsatisfied.
However, as |Z| = |y| = k and X is a 2k-universal family of colorings, there is in particular a
coloring x € X such that x(Z) = black and x(y) = white. If we assume that G [~ ¢ for these
particular Z, g, then clearly also (G, x) & ¢’ for these choices of x and Z, 3.

We cannot tell whether G = ¢ holds or not if (G, x) £ ¢’ for at least one coloring x € X.
The probability that this happens is exponentially small in n as we will show in the following.
The negation of ¢’ reads

31:3sz<;\ (x(xi) = black A x(y;) = white) A (X(z) = gray — \k/(xz A2V y; ~ z)))

i=1 i=1

Once the coloring and z, y are fixed, the probability that a gray vertex z is not connected to
some x; or connected to some ;, is exactly 1 — 272*, This happens with all 5 + O(k) many
gray vertices with a probability of (1 —272F)3+O()  Altogether the probability of G [~ ¢’ is

ST PG &) < X (Z) (” . ’“) (1- L) -

XEX

_ gkpOk) (1 _ i)%JrO(k) _ ~n2 % 4Ok logn)
22k ’

because there are | X | < 8*poly(n) (Lemma 5) many colorings and at most (})) (";k) =nOk)
ways to choose Z and y. In that case, we can solve G |= ¢ by brute force in n9®) time. For
big enough n, the expected running time of the complete algorithm then remains in expected
FPT time as long as (G, x) = ¢’ is decidable in expected FPT time. The tradeoff works as
long as n* is subexponential and for large k the problem is automatically in FPT even in
the worst-case. <

Let Gy, = (V, E’) be defined as follows: If x(u) = gray and x(v) = black or x(u) = black
and x(v) = gray then uwv € E' iff uv ¢ E. Otherwise uv € E’ iff uv € E.

Informally speaking, C_JX is the same graph as G, but edges are replaced by non-edges
and vice versa between a vertex pair that is colored black and gray. It is important to note
that if G is random then Gx is also random, although the edge probability of the flipped
edges of éx are inverted. This poses no problem if the edge probability is 1/2, but wrecks

havoc when it is not. Edge probabilities different from 1/2 are discussed in Section 4.
» Lemma 7. Let G be a graph and X a coloring. Then (G,x) = ¢' iff (Gy,x) = ¢".

Proof. The only difference between ¢’ and ¢” is z; ~ z versus z; # z. This subformula is
only relevant when x; is black and z is gray, as it is guarded by that condition. |

A coloring x: [n] — {black, white, gray} is balanced if [n/2] numbers are mapped to gray.

» Lemma 8. If we can solve p-MATRIX(A) on random n X n-matrices in expected FPT time,
then we can solve (G, x) | ¢" for every balanced coloring x on G(n,1/2) in expected FPT
time.
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Figure 1 A graph G (left) with a node coloring x and the corresponding graph Gy (right) with
gray-black edges flipped.

Proof. Let G = (V, E) be a random graph with n vertices and x: G — {gray, black, white}
be a balanced coloring. Assume first that n is even and that V' = {v1,...,vn/2,u1,. .., Up 2}
where v; are not gray and u; are gray. We construct a matrix M € Fg/ /2 quch that
M;; = 0 iff vju; € E. This matrix is random and therefore we can find out in expected FPT
time whether there are 2k rows i1, . .., i2; whose logical AND is 0. If this is not the case then
(G,x) E ¢": Choosing Z and g corresponds to picking 2k rows i1, ..., 4, of M. Choosing z
corresponds to picking a column j of M. As M is a no-instance regardless what iy, ..., 2
are, the AND of the corresponding rows is never 0. So there is a column j with M;; =1 for
all i € {i1,...,i21} and correspondingly in G there is a gray z for every black Z, white g
that is non-adjacent to all of Z or y and we can conclude (G, x) E ¢”.

Otherwise (if there are no such 2k rows) we can test in time n®*) whether (G, x) |= ¢".
The probability for this to happen is at most (272)(1 — ﬁ)"m because there are (27;6
to choose 2k rows and for each column the probability is 272* that it contains ones in all

selected rows.

) ways

It remains to consider an odd n. In that case x colors [n/2] vertices gray. Using the
above construction leads to a matrix M with one more column than rows. The premise
of the lemma allows us, however, only to assume that p-MATRIX(A) is solvable on square
matrices. If we just remove the last column of M we are left with a random square matrix.
The probability is still exponentially small that the truncated matrix is a yes-instance of
p-MATRIX(A), but if it is a no-instance we can conclude that M is also a no-instance and then
(G,x) | ¢" follows. Otherwise, we can again use a brute-force solution in time n®*). <

» Lemma 9. If we can solve p-DOMINATING SET on G(n,1/2) in expected FPT time, then
we can solve p-MATRIX(A) on random matrices in expected FPT time.

Proof. (Sketch) Let M € F3”*" be a random matrix. Let M = M @ 1 (pointwise negation
of M). Then M contains k rows whose AND is zero iff the directed graph H with M as its
adjacency matrix has a dominating set of size k, which corresponds to the logical OR of k&
rows in M to be equal to the one vector.
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‘ Solving p-DOMINATING SET on G(n,1/2) ‘

l Lemma 9

‘ Solving p-MATRIX(A) on uniformly distributed square matrices ‘

Lemma 8

‘Solving (G,x) E ¢" on G(n,1/2) ‘

Lemma 7

‘Solving (G,x) E¢' on G(n,1/2) ‘

Lemma 6
‘ Solving G = ¢ on G(n,1/2) ‘
l Lemma 10
‘ Solving the FO-model checking problem on G(n,1/2) ‘
l subproblem

‘ Solving p-DOMINATING SET in G(n,1/2) ‘

Figure 2 Structure of the main proof. “Solving” means that the problem can be solved in
expected FPT time. A — B means that if A is in expected FPT time then so is B.

By using k-universal bisector families we can assume that a dominating set is among the
first third of the vertices and that the k rows of a solution can be found in the upper third
of M. Decompose M into nine blocks and rearrange them as follows:

A B C D' B AT
M=|D E F - M=|BY E C
G H I A ¢cT F

Here BT is the transposed matrix B and A’ is a symmetric matrix built from the upper

triangular part of A. It is easy to see that M’ is symmetric and random, if M is random.

This means that M’ is the adjacency matrix of a random, undirected graph G. It is also
clear that if M contains k rows whose logical OR is the one vector, then M’ contains 3k
such rows and G has a dominating set of size 3k. We can construct G and find out whether
it has a dominating set of size 3k. If not, then we know that M does not contain k rows
whose logical AND is the zero vector. Otherwise, we can run a brute-force n®®*) algorithm,

because the probability that we have to do this is at most (4} )(1 — 75 )" 3% <

» Lemma 10. If there is an algorithm that can decide G |= ¢ on G(n,1/2) in expected FPT
time, then there is an algorithm that solves p-MC(FO) on G(n,1/2) in expected FPT time.

Proof. Let @ be the set of extension axioms and 1 be a first-order formula on the logic of
graphs. Remember that then either ® F ¢ or ® - —¢) [11]. We can enumerate all proofs
that use axioms in ® in ascending order of length. Eventually we will find a proof ®' F v
or ® - for a finite subset & C ®. In our formulation of extension axioms (where
and y have the same size and only z; # y;, but not z; # x;, y; # y, is required), a longer
axiom implies all shorter ones. Therefore there is a single extension axiom ¢ with 2k + 1
variables such that ¢ 1 or ¢ - —). The length of ¢ and k are bounded by a function of
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the length of 1 because the whole proof that we found depends only on ¥. We decide in
expected FPT time on the parameter |¢| and therefore also on the parameter || whether
G = ¢. If the answer is yes we can conclude whether G |= ¢ holds and we are done. The
answer is no only with an exponentially small probability in the number n of vertices if |¢|
is small (for example if |¢| = O(logn)): There are n — 2k possibilities to choose z outside
of Z and ¢ and then the probability that z is correctly connected to them is exactly 272%.
Hence the probability of no is at most n?*(1 — 272k)n=2k = Q(e="/2k+Flogn) and we can use

a brute-force n®*) algorithm in that case. <

» Theorem 11. p-DOMINATING SET can be solved on G(n,1/2) in expected FPT time iff
p-MC(FO) can be solved on G(n,1/2) in expected FPT time.

Proof. Assume p-DOMINATING SET can be solved on G(n,1/2) in expected FPT time. By
Lemmas 9, 8, 7, 6, and 10 we can conclude that p-MC(FO) can be solved on G(n,1/2)
in expected FPT time. The other direction is trivial as p-DOMINATING SET is a special
case of p-MC(FO), where the length of the formula is linear in the size of the sought-after
dominating set. See Figure 2 for an overview. <

4 Playing with the probability

Up to now we were looking at the uniform distribution of graphs, which corresponds to an
edge probability of 1/2. It seems at first glance that all the proof techniques should also
work for an arbitrary constant probability of 0 < p < 1. A close look at the proofs, however,
shows that Lemma 7 uses the fact that p = 1/2 in a crucial way: We flip gray—black edges,
which changes their probability from p to 1 — p, which is only harmless when p = 1/2. The
next lemma shows that we can prove a variant for an arbitrary edge probability.

» Lemma 12. If we can solve G |= ¢" on G(n,p) in expected FPT time for some rational
number 0 < p < 1/2, then we can also solve G |= ¢’ on G(n,p) in expected FPT time.

Proof. Let G’ be a graph and y a coloring and ég( be the same graph with edges between
a black and gray vertex flipped. Then (G',x) = Eb” iff (G, x) E ¢'. However, if the edge
probability in G’ is p then the edge probability in G is different: 1 — p for gray-black edges
and p for the others. Assume we can change that by turning every gray—black edge that is
present in C;';( into a non-edge with probability ﬁ such that the resulting probability for
each edge is exactly p. Let us call the resulting graph C_v';é, which is distributed as G(n,p) if
G’ is distributed as G(n,p).

It is easy to see that (G', x) | ¢’ follows from (G‘;) E ¢” because ¢ remains true when
removing edges. Nevertheless, the probability of (GY) = ¢” is exponentially close to one.
Therefore we can solve (G’,x) = ¢ as follows: First find out whether (G, x) = ¢" in
expected FPT time. If the answer is yes, we can conclude that (G’, x) = ¢’. Otherwise, we
solve (G',x) = ¢/ in n®®) time.

We have, however, assumed that we can delete an edge with probability p/(1 — p), which
would be true for a randomized algorithm. Using bisector families iteratively by applying
the next family on the vertices that were mapped to 0 we can assume that the x, y that are
witnesses for (G;, X) & ¢ are among the first en vertices for any e > 0. Instead of testing
whether ¢ holds on the whole graph we can now test only the subgraph induced by the first
en black and white vertices and all gray vertices. There are at most en? edges between a
relevant black and some gray vertex. Hence, we need only to simulate en? coin tosses with a
heads probability of p(1 — p), which is a rational number. Using von Neumann’s trick we can
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simulate such a coin toss using expected O(1) random bits [24]. Chernoff bounds show that
the total number of such bits needed remains O(en?) with a probability exponentially close
to one. We can thus use the edges between gray vertices, there are (”42) many, as a coin
toss with probability p. If we run out of simulated random bits, we can use a brute-force
algorithm. <

Finally, we show that changing the probability does not make the problems harder
or easier. This shows a certain robustness of the average-case complexity of p-MC(FO),
p-MATRIX(A), and p-DOMINATING SET.

» Theorem 13. Let 0 < p,q <1, p,q € Q. p-MC(FO) can be solved on G(n,p) in expected
FPT time iff dominating set can be solved on G(n,q) in expected FPT time.

Proof. You can check that all steps in Figure 2 work for a probability other than 1/2 except
Lemma 7 (Lemmas 8 and 9 change p to 1 — p and together leave it untouched). Plugging
in Lemma 12 instead makes the whole chain work for any 0 < p < 1/2. If we can solve
p-MC(FO) on G(n,p) we can solve it on G(n,1 — p), too, by complementing the graph and
interchanging ~ and +¢ in the formula. So far this shows that all problems in Figure 2 are in
expected FPT or none of them on inputs distributed with an edge probability p for the graph
problems and a probability of p that an entry is 1 for p-MATRIX(A), but we still have to

show that we can change the probability to ¢ without making the problem harder or easier.

For this purpose we use p-MATRIX(A). Let M be a matrix with probabilty p and we
assume that p < ¢, otherwise we can invert the matrix and use 1 — p and 1 — ¢. Similar to
the proof of Lemma 12 we use iterated bisectors to reduce the problem of finding k rows to
finding them in the first en rows. We can then take a square submatrix consisting of the
first en rows and columns. Using the entries outside of this submatrix as coin tosses with
heads probability p, we simulate coin tosses with a head probability of 1 — ¢/p. As before the
probability is exponentially small that we do not succeed in the simulation (and have to use
a brute-force algorithm). We use the 1 — g/p-coins to change a 1 in the submatrix to a 0 with
probability 1 — ¢/p. Then the probability of a 1 in the submatrix becomes gq. Now we can
use the postulated algorithm to solve p-MATRIX(A) on the transformed submatrix. If the
answer is no for all bisectors then we can answer no. If the answer is at least once yes, which
happens with an exponentially small probability, we can use a brute-force algorithm. <

The technique used above relies on p and g being rational numbers as we need to simulate
a coin toss with head probability 1 — ¢/p, which is not necessarily possible for uncomputable
probabilies (or even for very inefficiently computable ones).

5 Average Case Complexity of Even Set

The problem p-MATRIX(A) turned out to be as hard as p-MC(FO) on random graphs.

Instead of looking for k rows whose logical AND is the zero vector, we can also consider the
related problem where we look for k& rows whose exclusive or is zero. This variant is actually
a problem well-known under the name Even Set and has many other equivalent definitions.

» Definition 14.
p-EVEN SET

Input: A matrix A € F3*" and a number k > 0
Parameter: k

Problem: Are there k rows in A whose exclusive or is 07
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This problem was one of the original open problems in Downey and Fellows’ book on
parameterized complexity [8] and one of the few that has not been solved for a long time.
Bhattacharyya et al. recently succeeded to classify the problem as W([1]-hard [2] under
randomized fpt-reductions. As the problem is very similar to p-MATRIX(A) we could expect
that it is similarly hard on random matrices. It turns out, however, that we can solve it on
uniformly distributed boolean square matrices in expected FPT time.

» Theorem 15. p-EVEN SET can be solved in expected FPT time on uniformly distributed
random square matrices.

Proof (Sketch). Assume that M is a boolean n/2 xn matrix for an even n and Pr[M;;] = 1/2
independently for every 1 < i < n/2, 1 < j < n. It is easy to see and well-known (see,
e.g., [18]) that the probability that M has not full rank is exponentially small in n.

Hence, we can proceed as follows to solve p-EVEN SET: First use a universal bisector
family on a square matrix to select half the rows to form an n/2 x n matrix. If the original
matrix was a yes-instance of p-EVEN SET, then it contained k rows whose exclusive or is
the zero vector. Then the same holds for at least one of the transformed n/2 x n matrices.
We check all of them for full rank. If all have full rank, then we conclude that the original
matrix was a no-instance. Otherwise we use a brute-force n©*) algorithm. This happens
with small probability: As the n/2 x n-matrices are random, all of them have full rank with
high probability. The proof can easily be adjusted for odd n. |

It has to be noted that p-EVEN SET might behave quite differently on rectangular matrices.
If a matrix has n columns, but n? rows it seems impossible to reduce the problem back to a
square matrix and it is quite possible that the problem is then hard on average.

6 Conclusion

We have shown that the dominating set problem, which is with one quantifier alternation
fairly low in the hierarchy of first-order definable properties, is nevertheless as hard to solve
on average as any other problem that is first-order expressible. Stronger evidence for hardness
under random instances would be a theorem that bridges the worlds of average-case and
worst-case complexities. For example, some collapse in the W- or A-hierarchies implied by
an efficient algorithm for dominating set on average instances would be a breakthrough.

A detail that is missing in this paper is the generalization of Theorem 13 to non-rational
probability. We believe that more complicated techniques beyond the scope of this paper
prove a generalization to even non-computable numbers, but we leave it as an open question
to find a simple argument, which probably exists.
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