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—— Abstract
We give a characterization of star-free languages in a A-calculus with support for non-commutative
affine types (in the sense of linear logic), via the algebraic characterization of the former using
aperiodic monoids. When the type system is made commutative, we show that we get regular
languages instead. A key ingredient in our approach — that it shares with higher-order model
checking — is the use of Church encodings for inputs and outputs. Our result is, to our knowledge,
the first use of non-commutativity in implicit computational complexity.
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1 Introduction

A type-theoretic implicit automata theory. This paper explores connections between the
languages recognized by automata and those definable in certain typed A-calculi (minimalistic
functional programming languages). It is intended to be the first in a series, whose next
installments will investigate the functions computable by transducers (automata with output,
see e.g. [15, 36]). Insofar as programming language theory is related to proof theory, via the
Curry—Howard correspondence, we are therefore trying to bridge logic and automata. That
said, our work does not fit in the “logics as specification languages” paradigm, exemplified
by the equivalence of recognition by finite-state automata and Monadic Second-Order Logic
(MSO). One could sum up the difference by analogy with the two main approaches to machine-
free complexity: implicit computational complexity (ICC) and descriptive complexity.
? Lé Thanh Diing Nguyén and Pierr.e Pradic;
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Aperiodicity in a Non-Commutative Logic

Both aim to characterize complexity classes without reference to a machine model, but the
methods of ICC have a more computational flavor.

programming paradigm ‘ declarative functional
complexity classes Descriptive Complexity  Implicit Computational Complexity
automata theory subsystems of MSO this paper (and planned sequels)

To our knowledge, very few works have looked at this kind of “type-theoretic” or “proof-
theoretic” ICC for automata. Let us mention a few recent papers (that we will discuss
further in §7) concerning transducers [13, 10] and multi-head automata [46, 28] and, most
importantly, a remarkable result from 1996 that provides our starting point:

» Theorem 1.1 (Hillebrand & Kanellakis [24, Theorem 3.4]). A language L C ¥* can be
defined in the simply typed A-calculus by some closed A-term of type Strs[A] — Bool for
some type A (that may depend on L) if and only if it is a regular language.

Let us explain this statement. We consider a grammar of simple types with a single base
type: A,B ::=0| A — B, and use the Church encodings of booleans and strings:

Bool=0—0—o0 Stry=(0—0)—...>(0—=0)=0—0

with |X| arguments of type (o — o), where ¥ is a finite alphabet. Moreover, given any other
chosen type A, one can form the type Stry[A] by substituting A for the ground type o:

» Notation 1.2. For types A and B, we denote by B[A] the substitution B{o := A} of every
occurrence of o in B by A.

Every closed A-term ¢ of type Stry can also be seen as a term of type Strx[A]. (This is a
way to simulate a modicum of parametric polymorphism in a monomorphic type system.)
It follows that any closed A-term of type Strr[A] — Bool in the simply typed A-calculus
defines a predicate on strings, i.e. a language L C X*.

Although little-known'!, Hillebrand and Kanellakis’s theorem should not be surprising
in retrospect: there are strong connections between Church encodings and automata (see
e.g. [45, 48, 34]), that have been exploited in particular in higher-order model checking for
the past 15 years [2, 38, 25, 21, 23, 49]. This is not a mere contrivance: these encodings have
been a canonical data representation for A-calculi for much longer?.

Star-free languages. We would like to extend this result by characterizing strict subclasses
of regular languages, the most famous being the star-free languages. Recall that the canonicity
of the class of regular languages is firmly established by its various definitions: regular
expressions, finite automata, definability in MSO and the algebraic characterization.

» Theorem 1.3 (cf. [44, §11.2.]). A language L C ¥* is regular if and only if for some finite
monoid M, some subset P C M and some monoid morphism ¢ € Hom(X%*, M), L = ¢~ 1(P).

Similarly, the seminal work of Schiitzenberger, Petrone, McNaughton and Papert in the
1960s (see [47] for a historical discussion) has led to many equivalent definitions for star-free
languages, with the algebraic notion of aperiodicity playing a key role:

1 See e.g. Damiano Mazza’s answer to this MathOverflow question: https://mathoverflow.net/q/296879

2 They were introduced for booleans and integers by Church in the 1930s, and later generalized by Béhm
and Berarducci [12], see also http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html.
(Similar ideas appear around the same time in [31].) As for the refined encodings with linear types that
we use later, they already appear in Girard’s founding paper on linear logic [17, §5.3.3].
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» Definition 1.4. A monoid M is aperiodic when any sequence of iterated powers is eventually
constant, i.e. for any x € M there exists an exponent n € N such that ™ = x" 1,

» Theorem 1.5 (cf. [47]). For a language L C X*, the following conditions are equivalent:
L is defined by some star-free regular expression: E,F' .= @ | {a} | FEUE' | E-E'| E°
where a can be any letter in ¥ and E° denotes the complement of E ([E°] = £*\ [E]);
L = ¢~ Y(P) for some finite and aperiodic monoid M, some subset P C M and some
monoid morphism ¢ € Hom(X*, M);

L is recognized by a deterministic finite automaton whose transition monoid is aperiodic;
L is definable in first-order logic.

Attempting to capture star-free languages in a A-calculus presents a serious methodological
challenge: they form a strict subclass of uniform AC?, and, as far as we know, type-theoretic
ICC has never managed before to characterize complexity classes as small as this.

Non-commutative affine types. Monoids appear in typed A-calculi when one looks at the
functions from a type A to itself, i.e. at the (closed) terms of type A — A. At first glance, it
seems difficult indeed to enforce the aperiodicity of such monoids via a type system. For
instance, one needs to rule out not = Ab. Axz. \y.by x : Bool — Bool since it “has period
two”: its iteration yields the sequence (modulo Sn-conversion) not,id,not, id,... (where
id = A\b. b) which is not eventually constant. Observe that not essentially exchanges the two
arguments of b; to exclude it, we are therefore led to require functions to use their arguments
in the same order that they are given in.

It is well-known that in order to make such a non-commutative A-calculus work — in
particular to ensure that non-commutative A\-terms are closed under S-reduction — one
needs to make the type system affine, that is, to restrict the duplication of data. This is
achieved by considering a type system based on Girard’s linear® logic [17], a system whose
“resource-sensitive” nature has been previously exploited in ICC [20, 19]. Not coincidentally,
the theme of non-commutativity first appeared in a form of linear logic ante litteram, namely
the Lambek calculus [29], and resurfaced shortly after the official birth of linear logic: it is
already mentioned by Girard in a 1987 colloquium [18].

We shall therefore introduce and use a variant of Polakow and Pfenning’s Intuitionistic
Non-Commutative Linear Logic [39, 40], making a distinction between two kinds of function
arrows: A — B and A — B are, respectively, the types of affine functions and non-affine
functions from A to B. Accordingly:

» Definition 1.6. A type is said to be purely affine if it does not contain the “—” connective.

In our system that we call the Ap-calculus, the types of Church encodings become
Bool =0-o00-00 Strgy =(0—0) = ... = (0 —0) = (0 —0)

where Stry, has |3| arguments? of type (o — 0). Setting true = Xz. Xy.x : Bool and
false = Xz. X°y.y : Bool for the rest of the paper, we can now state our main result:

» Theorem 1.7. A language L C ¥* is star-free if and only if it can be defined by a closed
Ap-term of type Strs[A] —o Bool for some purely affine type A (that may depend on L ).

The main difference between so-called linear and affine type systems is that the latter allow weakening,
that is, to not use some argument. Typically, Az. Ay. z is affine but not linear while \z. z = is neither
linear nor affine. The type system that we use in this paper is affine, not strictly linear.

4 0 — 0 occurs |X| + 1 times in Stry: |X| arguments plus the output.
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However, if we use the commutative variant of the Ap-calculus instead, then what we get is
the class of regular languages (Theorem 5.1), just as in Hillebrand and Kanellakis’s theorem.

As far as we know, non-commutative type systems have never been applied to implicit
complexity before (but they have been used to control the expressivity of a domain-specific
programming language [26]). Previous works indeed tend to see non-commutative A-terms (or
proof nets) as static objects, and to focus on their topological aspects (e.g. [6, 51, 35]), though
there is another tradition relating self-dual non-commutativity to process algebras® [41, 22].

Proof strategy. As usual in implicit computational complexity, the proof of Theorem 1.7
consists of a soundness part — “every Ap-definable language is star-free” — and an extensional
completeness part — the converse implication. In our case, soundness is a corollary of the
following property of the purely affine fragment of the Agp-calculus — what one might call the
planar® affine \-calculus (cf. [1, 51]):

» Theorem 1.8 (proved in §3). For any purely affine type A, the set of closed Ap-terms
of type A — A, quotiented by Bn-convertibility and endowed with function composition
(fog=Xx.f(gx)), is a finite and aperiodic monoid.

Extensional completeness turns out here to be somewhat deeper than the “programming
exercise of limited theoretical interest” [33, p. 137] that one generally finds in ICC. Indeed, we
have only managed to encode star-free languages in the Ap-calculus by relying on a powerful
tool from semigroup theory: the Krohn—Rhodes decomposition [27].

Plan of the paper. After having defined the Ap-calculus in §2, we prove Theorem 1.7:
soundness is treated in §3 and extensional completeness in §4. Then we discuss the analogous
results for the commutative variant of the Ap-calculus and its extension with additives (§5),
our plans for the next papers in the series (§6) and finally some related work (§7).

Prerequisites. We assume that the reader is familiar with the basics of A-calculi and type
systems, but require no prior knowledge of automata theory. This choice is motivated by the
impression that it is more difficult to introduce the former than the latter in a limited number
of pages. Nevertheless, we hope that our results will be of interest to both communities.

2  Preliminaries: the Ag-calculus and Church encodings
The terms and types of the Ap-calculus are defined by the respective grammars
AB:=0|A—-B|A—B tus=x|tu| X x.t] Xa.t

As always, the \p terms are identified up to a-equivalence (both A” and X° are binders).
There are two rules for S-reduction (closed under contexts)

N z.t)u —pg t{z :=u} Nz.t)u —p t{z :=u}

5 This connection with the sequential composition of processes can be seen as a sort of embodiment of
Girard’s slogan “time is the contents of non-commutative linear logic” [18, IV.6]. But generally, these
works follow a “proof search as computation” paradigm (logic programming) rather than “normalization
as computation” (functional programming).

5 Hence our choice of name: the “Weierstra$ P” character “p” in “\p” stands for “planar”.
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'NA+t:A—B Foru:A Fw{z:A}|AFt:B

Fw{z: A} | oz A I'Artu:B 'AFXz.t:A— B
PA+t:A—B A ¢Fu:A PA-(z:A)+t:B
Dz:AkFz: A FA-A'Ftu:B 'AFXNz.t:A—oB
F'|AFt: A
————— when A is a subsequence of A’
F'|A'Ft: A

Figure 1 The typing rules of the Ap-calculus (see Appendix C in [37] for examples of derivations).

and the remaining conversion rules are the expected n-reduction/n-expansion rules.

The typing judgements make use of dual contexts (a common feature originating in [7]):
they are of the form I' | A+ ¢ : A where ¢ is a term, A is a type, ' is a set of bindings of the
form z : B (x being a variable and B a type), and A is an ordered list of bindings — this
order is essential for non-commutativity. The typing rules are given in Figure 1, where A - A’
denotes the concatenation of the ordered lists A and A’. For both T',T”,... and A, A’,... we
require each variable to appear at most once on the left of a colon.

» Remark 2.1. Unlike Polakow and Pfenning’s system [39, 40], the Ap-calculus:
contains two function types instead of four”, with the top two rows of Figure 1 corre-
sponding almost exactly® to the rules given for those connectives in [39];
is affine instead of linear, as expressed by the “ordered weakening” rule at the bottom of
Figure 1 — this seems important to get enough expressive power for our purposes®.
» Remark 2.2. Morally, the non-affine variables “commute with everything”. More formally,
one could translate the Ap-calculus into a non-commutative version of Intuitionistic Affine

“'77

Logic whose exponential modality “!” incorporates the customary rules (see e.g. [50])

T,IA,B,AFC I,B,IA,AFC
T,B,/AAFC T,IA,B,AFC

» Proposition 2.3. The Ap-calculus enjoys subject reduction and admits normal forms (that
is, every well-typed \p-term is convertible to a S-normal n-long one).

Proof sketch. This is routine: subject reduction follows from a case analysis, while the fact
that the simply typed A-calculus has normal forms entails that the Agp-calculus also does
(the obvious translation preserves the S-reduction and n-expansion relations). <

We have already seen the type Stry, = (0 — 0) = ... = (0 — 0) — (0 —o 0) of
Church-encoded strings in the introduction. Let us now introduce the term-level encodings:

Our “—” and “—” are called “intuitionistic functions” and “right ordered functions” in [39]; we have
no counterpart for the “linear [commutative] functions” and “left ordered functions” in the Agp-calculus.
The only difference is that we drop the linear commutative context.

Usually, the linear/affine distinction does not matter for implicit computational complexity if we allow
collecting the garbage produced during the computation in a designated part of the output, as in
e.g. [30]. But non-commutativity obstructs the free movement of garbage.

135:5
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» Definition 2.4. Let ¥ be a finite alphabet, w = w[1]...w[n] € £* be a string, and for each
c €Y, let t. be a Ap-term (on which the next proposition will add typing assumptions). We
abbreviate (t.)ces; as ts, and define the Ap-term w'(ts) = Xz typn) (.. (fwpm @) ...).

Given a total order c1 < ... < ¢z on the alphabet ¥ = {ci,...,cx|}, the Church
encoding of any string w € ¥* is W= X" fe,. ... X7 fery- wT(fE)

This is simpler than the notation might suggest: as an example, for ¥ = {a, b} with a < b,
baa = X" f,. X fy. Xx. fy, (fa (fa ). Our choice of presentation is meant to stress the role
of the open subterm (baa)T(fj{a’b}) =Xz fp (fo (fo 7)), cf. Remark 2.9.

We now summarize the classical properties of the Church encoding of strings.

» Proposition 2.5. We reuse the notations of the above definition.
Assume that there is a type A and a typing context T' | A such that for all ¢ € X,
I'|Akt.:A— A ThenT |AFwi(ty): A — A.
In particular, {f.:0—o0|ce L} | @+ wi(fs): 0 — o for any variables (f.)ees.
Furthermore, in the case of variables, w € ¥* — wT(fg) is in fact a bijection between the
strings over ¥ and the Ap-terms u such that {fo:0—oo0|c€ X} |@Fu:0— 0 and
considered up to Bn-conversiont®.
It follows from the above that w € ¥* +— W is a bijection from ¥* to the set of closed
Ap-terms of type Stry modulo Pn.

Finally, with the assumptions on t. of the first item, we have Wt,, ... tejs) —5 wT(fE).

» Example 2.6. Given two closed Ap-terms t,,t;, : Bool —o Bool, one can define the term
g = Xs. 5t 1y false : Stry, ) [Bool] —o Bool. Then for any w = w[l] ... w[n] € {a,b}*, we
have g w —j wT(f{mb}) false —5 ty) (... (tw) false)).
For t, = Xx. true and t;, = Xx. z, g decides the language of words in {a,b}* that
contain at least one a; this language is indeed star-free as it can be expressed as F°a°.
Coming back to a point raised in the introduction, if negation were definable by a Ap-term
not : Bool —o Bool, then for ¢, = t;, = not, the language decided by g would consist of
words of odd length: a standard example of regular language that is not star-free.

» Remark 2.7. Actually, the Ap-term not’ : X°b. b false true : Bool[Bool] — Bool does
“define negation”. A point of utmost importance is that because of the heterogeneity of the
input and output types, this term does not contradict Theorem 1.8 and cannot be iterated by
a Church-encoded string. Monomorphism is therefore crucial for us: if our type system had
actual polymorphism, one could give not’ the type (Va. Bool[a]) — (Va. Bool[a]), whose
input and output types are equal, and then the words of odd length would be Agp-definable.

An analogous phenomenon in the simply typed A-calculus is that one can define n — 2"
on the type of Church numerals Nat by a term of type Nat[o — o] — Nat, but not by a term
of type Nat — Nat (since iterating it would give rise to a tower of exponentials of variable
height, which is known to be inexpressible by any Nat[A] — Nat).

Yet our ersatz of polymorphism still allows for some form of compositionality that will
prove useful in several places in §4 (the proof may be found in Appendix B in [37]):

» Lemma 2.8. If-t: A[T] — B and - u: B[U] — C, then - Xz.u(tz) : A[T[U]] — C.

» Remark 2.9. One final observation on Church encodings: when the context I' of non-affine
variables contains f. : 0 —o o for each ¢ € ¥, then any string w € ¥* can be represented as

10 _conversion is necessary to identify X~ f. f : Striqy with @ = X"f. Xz. f o : Stry,,.
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the open Ap-term ' | ... F w'(f5) : 0 —o 0 in that context, and such strings can even be
concatenated by function composition. The point is that this gives us a kind of purely affine
type of strings, which will allow us in §4.2 to encode sequential transducers as Ap-terms of
type Stry[A] —o Stry for some purely affine type A (compare Theorem 1.7).

3 Proof of soundness

As stated in the introduction, the soundness part of our main Theorem 1.7 will follow from
Theorem 1.8, so we start this section by proving the latter. First, the monoid structure on the
closed Ap-terms of any type A —o A can be verified routinely: both (fog)oh and fo(goh)
B-reduce to Xz. f (¢ (h x)), and Xz.z provides the identity element. The finiteness of this
monoid for A purely affine comes from a slightly more general statement:

» Proposition 3.1. For any purely affine type B, there are finitely many Sn-equivalence
classes of closed \p-terms of type B.

Proof. This is a well-known property of affine type systems: here, non-commutativity plays
no role. We provide a proof in Appendix B in [37]. <

The substantial part of Theorem 1.8 is the aperiodicity of this monoid. It is here that
non-commutativity comes into play. Morally, it is a kind of monotonicity condition that
Ap-terms obey. A first idea would therefore be to seek to exploit the fact that the monoid of
monotone functions on an ordered set is aperiodic. What we end up using is closely related:

» Lemma 3.2. For any k € N, the monoid of partial non-decreasing functions from {1,...,k}
to itself (endowed with usual function composition) is aperiodic.

Proof. Let f : {1,...,k} — {1,...,k} be non-decreasing. For any i € {1,...,k}, the
sequence (f"(i))nen is either non-increasing or non-decreasing as long as it is defined
(depending on whether ¢ > f(i) or ¢ < f(i)); so at some n = Nj, either it becomes undefined
or it reaches a fixed point of f. By taking N = maxj<;<x N;, we have f~¥ = fN+1, <

This underlies the proof of the key lemma below, that allows one to reduce the aperiodicity
of some t: A — A to the aperiodicity of A\p-terms at smaller types.

» Notation 3.3. A ¢: A is an abbreviation for @ | A+t : A (indeed, the context of
non-affine variables will be generally empty in our proof).

» Notation 3.4. Let uy,...,u; and vq,...,v; be Ap-terms. The notation ¥[y := ] denotes
the componentwise parallel substitution (v;[y1 := w1, ..., Yk = ugl)1<i<i-

» Lemma 3.5. Lett = Xx. Xy1. ... Xypm.xug ... ug be a well-typed closed Ap-term of

type A — A in n-long form, so that x : A, y1 : By, ..., yr : B F xuy ... up : o with
A=DB; —...— By —o0. Then:
t" = to...ot (n times) is B-convertible to Xx. Xy;. ... X’yk.xugn) u;") where
a0 = (y1,...,yp), @) = a7 = @)
For large enough n € N, each uEnH) depends only on ugn) for the same ¢ € {1,...,k}.

More precisely, there exists N € N such that for all i € {1,...,k} there exists a well-typed
closed Ap-term ] : B; — B; such that for alln > N, u{"*" = ¢/ u{™.

135:7
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Proof. The first item is established by induction: abbreviating Xy;. ... Xyg. as X°¢.,

to Xz Xgzul™ .. ul™) =5 Xz X7 (Xgzul™ )y
=5 Xu. X7z (Vg =) ... o ([ = )

(We invite to reader to reproduce the full computation to check that no spurious capture of
free variables happens.)

For the second item, let us define the partial function pz : {1,...,k} — {1,...,k}
by pz(i) = j <= yi € FV(u;). (FV(u) denotes the set of free variables of w.) The
relation on the right-hand side of the equivalence is indeed a partial function because of
the affineness of ¢t = X°z. Xy1. ... Xyg.zuy ... ugp. One can also show that for all n € N,
FV(ui™) = {y; | (na)"(j) = i}

As a consequence of non-commutativity, pug is non-decreasing. This is because for the
typing judgment on x u; ... ug to hold, there must exist Aq,..., Ag such that:

forall j € {1,....k}, Aj Fu; and Vi, y; € FV(u;) <= (y;: Bi) € Aj;

Ap ... Ay is an ordered subsequence of (y1 : B1) + ... (yx : Bg).

Therefore, by Lemma 3.2, there exists N € N such that (ugz)Y = (uz)V+L.
Next, let 4 € {1,...,k}. We may reformulate our goal as finding ¢, : B; — B; such that

t N =g, uN+HD for all n € N. The simple case is when i ¢ (uz)™ ({1,...,k}): u™)
has no free variables, so uENH) = uEN) [7:=] = uEN): we may then take ¢, = X°z. z. For

the remainder of the proof we assume otherwise, that is, we take i in the range of (uz)™.
First, @™t = @[ij := @™] because parallel substitution is associative'’. Thus,

Vn e N, uNTT =y, [yj = u§-N+n) for j € {1,...,k} such that pz(j) =1

i

Any j € {1,...,k}\ {¢} such that ugz(j) = is not a fixed point of uz, and therefore is not in

the range of (ug)" since (uz)™ = (uz)V ! = pzo (uz)™. By the simple case already treated,
we then have ug )= ug . This allows us to write the above equation as

u§N+n+1) = rly; = u§N+n)] where r; =u; |y; = u;N) for j #is.t. ug(j) = z}
Using -conversion, u§N+"+1) =5 (Ny;. 1) uEN'HL). We conclude by setting ¢, = (Xy;.7;).

It is clear that this Ap-term is closed, but one should check that it is well-typed; to do so,
;N) are closed (because j ¢ (uz)™N ({1,...,k})) and
well-typed (as closed subterms of a reduct of the N-fold composition V). <

one convenient observation is that the u

The remainder of the proof of Theorem 1.8 is essentially bureaucratic.

Proof of the aperiodicity part of Theorem 1.8. Let ¢t : A — A; our goal is to show that
the sequence t" =to...ot is eventually constant modulo 8n. We shall do so by induction
on the size of A. The type A is purely affine by assumption, and can therefore be written
as By —o ... — B, —o 0 where the B; are also purely affine for ¢ € {1,...,m}. The base
case m = 0 being trivial, we assume m > 1. In this case, by Proposition 2.3, ¢ has an n-long
B-normal form t = X°xz. Xy1. ... Xym.2zuy ... up where z is a variable. There are two cases:
z = y; for some ¢. Then (y; : B;) - A F zuy ... ux by application rule (we omit the
non-affine context I' which will always be empty during this proof). The abstraction rule
only allows introducing Xy; when (y; : B;) is on the right, so by then A must have been

—

" More precisely, (£1[% := £3])[7 := 3] = £1[% := £3[§ := £3]] when §N (FV (1) \ 7) = 2.
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entirely emptied out by previous abstractions. This means that Xy;. ... Xym.2u1 ... ug
is a closed term, so in particular it contains no free occurrence of x: t is a constant
function from A to A. So the sequence of iterations stabilizes from n = 1.

z = x, which entails & = m since the variable x is of type A= By — ... — B,;, —o 0 and
we must have x : A, y1 : By, ..., Ym : Bm Fxuy ... ug : 0. Lemma 3.5 gives us closed

Ap-terms ¢, : B; — B; (i € {1,...,k}) whose iterates eventually determine those of ¢.

Since the type B; has size strictly smaller than A, the induction hypothesis applies: each
((t)™)nen is eventually constant modulo 87. Therefore, this is also the case for t. <

Let us now apply Theorem 1.8 to the Ap-terms defining languages.

» Lemma 3.6. Let ¥ = {c1,...,¢n} be a finite alphabet, A be a purely affine type and
t: Stry[A] — Bool be a closed Ap-term. Then there exist some closed A\p-terms g. : A — A
forceT and h: (A —o A) —oBool such that t =g, X°s.h(sge, --- Gey)-

Proof. By inspection of the normal form of ¢, see Appendix B in [37]. <

Reusing the notations of this lemma, let us define ¢ : ¥* — {v |v: A — A}/ =4, to be
the monoid morphism such that ¢(c) = g. for ¢ € ¥. Then for all w € X*, p(w) = w(gs)
(in the quotient): by a similar computation than for f o (goh) =g, (f o g) o h, we have
Gu[1] © -+ © Guln] — w'(gx). Therefore, by Proposition 2.5, ¢~ 1({v | hv =g, true}) is
none other than the language defined by the ¢ : Strs[A] —o Bool in the lemma. Thus, L fits
the second definition of star-free languages given in Theorem 1.5: indeed, the codomain of ¢
is finite and aperiodic by Theorem 1.8. This proves the soundness part of Theorem 1.7.

4  Expressiveness of the Ag-calculus

We now turn to the extensional completeness part in Theorem 1.7: our goal is to construct,
for any star-free language, a closed Ap-term of type Stry[A] — Bool (for some purely
affine A) that defines this language. To do so, the most convenient way that we have
found is to take a detour through automata that compute an output string instead of a
single bit (acceptance/rejection). We will recall the notion of aperiodic sequential function
(Definition 4.4), and then establish that:

» Theorem 4.1. Any aperiodic sequential function ¥* — II* can be expressed by a Ap-term
of type Strx[A] —o Stryy for some purely affine type A.

The advantage of working with this class of functions is that they can be assembled from small
“building blocks” by function composition, as the Krohn—-Rhodes decomposition (Theorem 4.8)
tells us. Our proof strategy for the above theorem will consist in encoding these blocks
(Lemma 4.10) and composing them together (as a special case of Lemma 2.8).

To deduce the desired result, we rely on two lemmas (proved in Appendix B in [37]):

» Lemma 4.2. If a language L C ¥* is star-free, then its (string-valued) indicator function
XL : 2% = {1}*, defined by xp(w) = 1 if w € L and xr(w) = ¢ otherwise, is aperiodic
sequential.

» Lemma 4.3. There exists a Ap-term nonempty : Stry;}[Bool] —o Bool that tests whether
its input string is non-empty.

Let L be a star-free language. Combining Lemma 4.2 and Theorem 4.1, x, is definable
by some Ap-term indicy : Strx[A] —o Stry;y; where A is purely affine. To compose
this with the non-emptiness test of Lemma 4.3, we use Lemma 2.8 again: the Ap-term
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ala bla b|bb
—() ()
end|ab albb end|bbb

Figure 2 A schematic representation of a sequential transducer whose formal definition is
Q = {qa7qb}7 6((]7 a) = (qa7a‘) and 5(qa b) = (qbvbb) fOI‘ q € Q? qI = qav F(qﬂ) = a’b a‘nd F(qb) = bbb

t;, = Xz. nonempty (indicy x) : Stry[A[Bool]] —o Bool defines L. Since A and Bool are
purely affine, so is A[Bool]: we just deduced extensional completeness from Theorem 4.1.
Proving the latter is the goal of the rest of this section.

4.1 Reminders on automata theory

Sequential transducers are among the simplest models of automata with output. They are
deterministic finite automata which can append a word to their output at each transition,
and at the end, they can add a suffix to the output depending on the final state. The
definition is classical; a possible reference is [44, Chapter V].

» Definition 4.4. A sequential transducer with input alphabet ¥ and output alphabet 11
consists of a set of states @), a transition function § : Q x ¥ — @Q x IT*, an initial state
qr € Q, and a final output function F' : Q — IT*. We abbreviate §; = m; 0§ for i € {1,2},
where mp : Q X IT* — @ and w9 : Q x II* — II* are the projections of the product.

Given an input string w = w[l]...w[n] € *, the run of the transducer over w is the
sequence of states qo = qr, q1 = Ost(qo, w[1]), ..., ¢n = Ost(qn—1,w[n]). Its output is obtained
as the concatenation dout(qo, w[1]) - ... - dout(gn-1,w[n]) - F(qn).

A sequential function is a function X* — II* computed as described above by some
sequential transducer.

» Definition 4.5. The transition monoid of a sequential transducer is the submonoid of
Q — Q (endowed with reverse function composition: fg = go f) generated by the maps
{st(—,¢) | c € } (where d(—, ) stands for ¢ — dx(q,c)).

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic. A
function that can be computed by such a transducer is called an aperiodic sequential function.

» Example 4.6. The transducer in Figure 2 computes f : w € {a,b}* — a - p(w) - b where
1 is the monoid morphism that doubles every b: ¥(a) = a and ¢(b) = bb. Its transition
monoid T is generated by G = {(0st(—, a) : ¢ = qa), (0st(—,b) : ¢ — q»)}; one can verify that
T = G U{id} and therefore Vh € T, h o h = h. Thus, f is an aperiodic sequential function.

» Remark 4.7. The converse to Lemma 4.2 is also true; more generally, the preimage of a
star-free language by an aperiodic sequential function is star-free, and the preimage of a
regular language is regular. But we will not need this here.

» Theorem 4.8 (Krohn—-Rhodes decomposition, aperiodic case, cf. Appendix A in [37]). Any
aperiodic sequential function f : ¥* — II* can be realized as a composition f = fio...0 f,
(with f; : Ef — Ef_ 1, Zo = II and Z,, = X) where each function f; is computed by some
aperiodic sequential transducer with 2 states.
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Figure 2 gives an example of aperiodic transducer with two states.

» Remark 4.9. This is not the standard way to state this theorem, though one may find it in
the literature, usually without proof (e.g. [10, §1.1]); see [8] for a tutorial containing a proof
sketch of this version. In Appendix A in [37], we show how Theorem 4.8 follows from the
more usual statement on wreath products of monoid actions.

4.2 Encoding aperiodic sequential transducers

Thanks to the Krohn—Rhodes decomposition and to the fact that the string functions
definable in the Agp-calculus (as specified by Theorem 4.1) are closed under composition (by
Lemma 2.8), the following entails Theorem 4.1, thus concluding our completeness proof.

» Lemma 4.10. Any function X* — II* computed by some aperiodic sequential transducer
with 2 states can be expressed by some \p-term of type Strs[A] —o Stryy, for a purely affine
type A depending on the function.

Let us start by exposing the rough idea of the encoding’s trick using set-theoretic maps. We

reuse the notations of Definition 4.4 and assume w.l.o.g. that the set of states is @ = {1, 2}.

Suppose that at some point, after processing a prefix of the input, the transducer has
arrived in state 1 (resp. 2) and in the meantime has outputted w € II*. We can represent
this “history” by the pair (ky, () (resp. ({, kyw)) where

Cybog : II" — II* C:xm—e Ky : T W-T

For instance, in the case of Example 4.6, after reading a string s = s'b, the transducer is in
the state ¢, and has outputted'? w = a - ¥(s’), which we represent as (, Ka-p(s')) (taking
do = 1 and g, = 2; ¢ is described in Example 4.6). In general, some key observations are

C O Ry = ( Ry © Ky’ = Ryw!’ Hw(w/)g(w/l> = C(U}”)Kiw(w/) = U)U}/

Now, consider an input letter ¢ € ; how to encode the corresponding transition 6(—, ¢) as a
transformation on the pair encoding the current state and output history? It depends on the
state transition ds(—, ¢); we have thanks to the above identities:

(hyg) = (ho ks, (1,c), 9 © Koui(2,¢)) When dgi(—,¢) = id;
(hy @) 7 (BR(Suu (1,6))9(50ns (2,))> ) When dge(—, ¢) : ¢ — 1 (note that h = ¢ xor g = ();
(s 9) = (C5 Bh(Boue (1,0))9(80ut (2,c))) When Gse(—,¢) 1 ¢" = 2;

The remaining case dgt(—, ¢) : ¢ — 3 — ¢ is excluded by aperiodicity. This point is crucial:

this case would correspond to (h, g) + (g © ks, (2,c)s P © Ks, (1,c)) Which morally “uses
its arguments h, g in the wrong order”.
Coming back to Example 4.6, let us say that after the transducer has read a prefix s = s'b
of its input string as we previously described, the next letter is a. Then the expression
h(dout(1,¢))g(0out (2, ¢)) above is in this case ((a)rq.y(s)(bb) = €-a-1(s") -bb = a-1(s) which
is indeed the output that the transducer produces after reading the input prefix sa = s’ba.
Next, we must transpose these ideas to the setting of the Ap-calculus.

12 This is indeed a - ¢(s’) and not a - ¥(s) = a - ¥(s’) - bb. If the input turns out to end there, the final
output function will provide the missing suffix F(qy) = bbb to obtain f(s) = a-(s)-b=a-(s") - bbb.
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Proof of Lemma 4.10. We define the Ap-term meant to compute our sequential function as
N8 X fay- oo X fayy-out (strans,, ... trans.,, ) : Stre[A] — Strp
where ¥ = {c1,...,¢x}, I = {a1,...,am} and, writing I' = {f, : 0 — 0 | a € II},
I' ok trans.: A— A (forallceX) F'okout:(A—oA)—(0—o0)

In the presence of this non-affine context I', the type S = 0 — o morally serves as a purely
affine type of strings, as mentioned in Remark 2.9. Moreover this “contextual encoding of
strings” supports concatenation (by function composition), leading us to represent the maps
¢ and K., as open terms of type T'= S —o S that use non-affinely the variables f, for a € II.

We shall take the type A, at which the input Stry is instantiated, tobe A=T — T — S,
which is indeed purely affine as required by the theorem statement. This can be seen morally
as a type of continuations [42] taking pairs of type T'® T (although our Ap-calculus has no
actual ® connective). Without further ado, let us program (the typing derivations for some
of the following Ap-terms are given in Appendix C in [37]):

cat = Xw. Xw' . NXz.w(w'z): S —o85 —o0-—o00=5-—085-—085=5—T plays the roles

of both the concatenation operator and of w — k,, (thanks to currying)

zeta=Xw'. Nz.x: S —o0—o00=T

Ug = dous (4, O)'(fi1) : 0 — o (by Proposition 2.5) represents the output word dout (g, ¢)

that corresponds to a given input letter ¢ € ¥ and state g € Q@ = {1,2}

case 0gt(q,¢) = q: trans, = Xk. Xh. Xg. k (Xy.h(catui y)) (Xz. g (catug z)) — if we

wanted to handle the excluded case g (g, ¢) = 3 — ¢, we would write a similar term with

the occurrences of h and g exchanged (Xk. X°h. Xg.k (Xy.g ...) (Xz.h ...)), violating

the non-commutativity requirement (contrast with the proof of Theorem 5.4);

case dgt(q, c) = 1: trans. = Xk. Xh. Xg. k (cat (cat (huy) (guz))) zeta

case 0g(q,c) = 2: trans. = Xk. X’h. X°g. kzeta (cat (cat (hu1) (guz)))

out = X°j.j (Nh. Xg.cat (hv1) (gv2)) (Nx. x) zeta, where v, = F(q)'(fi1) represents

the output suffix for state ¢ € {1,2}, assuming w.l.o.g. that the initial state is 1 (also,

here Xz. x represents k. since the latter is the identity on IT*)
We leave it to the reader to check that these Ap-terms have the expected computational
behavior; again, see Appendix C in [37] for typing derivations. Note that in functional
programming terms, the use of continuations turns the “right fold” of the Church-encoded
input string into a “left fold”, and the latter fits with the left-to-right processing of a sequential
transducer. |

5 Regular languages in extensions of the Ag-calculus

5.1 The commutative case

The Agp-calculus adds two restrictions to the simply typed A-calculus, namely affineness and
non-commutativity, with the latter depending on the former as already mentioned. One
could wonder whether affineness by itself would be enough to characterize star-free languages.
We now show that it is not the case.

The commutative variant of the Ap-calculus — let us call this variant the Aa-calculus'3
— has the same grammar of types and terms as the Ap-calculus (cf. §2). The typing rules
are also given by Figure 1, but their interpretation differs from the previous one as follows:

13 a standing for “affine”.
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A, A’ stand for sets of bindings x : A, A - A’ denotes the disjoint union of sets, and one must
read “subset” instead of “subsequence”. In other words, the main difference is that in the
Aa-calculus, the affine context A does not keep track of the ordering of variables.

By plugging this commutative system in the statement of our main result (Theorem 1.7),
we get reqular languages instead of star-free languages:

» Theorem 5.1. A language L C X* is regular if and only if it can be defined by a closed
Aa-term of type Strs[A] —o Bool for some purely affine type A (that may depend on L).

Proof. Soundness is a consequence of Hillebrand and Kanellakis’s Theorem 1.1, by a simple
translation from the Aa-calculus to the simply typed A-calculus which “forgets affineness”.

For extensional completeness, consider a regular language L = ¢~ (P) where P is a
subset of a finite monoid M and ¢ : ¥* — M is a morphism (cf. Theorem 1.3). If we
represent an element m € M by a M-indexed bit vector v, such that v,,[i] =1 <= i =m,
then a translation m +— mp can be represented by a purely disjunctive formula:

Umpli] = vm[1] V...V om[jk] where {j1, ... jr} = {j € M | jp =i}

Moreover, this is linear in the following sense: given a fixed p € M, each index j € M is
involved in the right-hand side of this formula for exactly one i € M.

Let ttt = Xx.true : Bool — Bool and fff = Nz.x : Bool —o Bool. This makes the
type B = Bool —o Bool into a kind of type of booleans that supports a disjunction of type
B — B — B (by function composition) and a type-cast function of type B —o Bool (by
applying to false). (Of course B has other closed inhabitants besides ttt and £ff, but we
only use those two.) Using this type and the “iteration+continuations” recipe of the proof of
Lemma 4.10, one can define a Aa-term of type Stry[A] —o Bool that decides the language L
with A= B — ... —o B —o Bool (with |M| arguments of type B). <

Let us go further. According to Theorem 4.1, the Ap-calculus can define all aperiodic
sequential functions; we show that as one can expect, the aperiodicity condition is lifted
when moving to the commutative Aa-calculus. However, the trick used in the direct encoding
of the above proof does not work, and we have only managed to encode general sequential
functions by resorting to the Krohn—Rhodes theorem.

» Theorem 5.2 (Krohn—-Rhodes decomposition, non-aperiodic case, cf. Appendix A in [37]).

Any sequential function f: 3* — II* can be realized as a composition f = f1o...0 f, (with
fi:BEf =5 =, Eo =1l and Z,, = X) where each function f; is computed by some sequential
transducer whose transition monoid is either aperiodic or a group.

» Remark 5.3. By Theorem 4.8, the aperiodic transducers among the f; can be further
decomposed into two-state aperiodic transducers.

» Theorem 5.4. Any sequential function 3* — II* can be expressed by some Aa-term of type
Stry[A] — Stry, for a purely affine type A depending on the function.

Proof sketch. First, by Theorem 4.1, we can already encode aperiodic sequential functions,
since every well-typed Ap-term is also a well-typed Aa-term. One can also show that
Lemma 2.8 applies to the Aa-calculus. By the general Krohn—Rhodes theorem, we just need
to handle the case of a sequential transducer whose transition monoid is a group.

The idea, in terms of set-theoretic maps as in our explanation of the proof of Lemma 4.10
(whose notations we borrow here), is as follows. The current state ¢ € @ and output history
w € II* is represented by a @-indexed family (g4 )qeq of functions such that g, = ,, and for
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¢ # q, 9o = ¢. The transition 6(—, c) is represented by (9q)ge@ — (Jo(q) © Ko,ui (o(q),c))a€Q
where o = (05 (—,¢)) "1 — the latter is well-defined because the group assumption means that
dst(—, ¢) is a permutation of Q). The final output is obtained at the end as the concatenation
9 (F(q1)) - - - gq, (F(gqn)) where Q@ = {q1,...,¢n} (with an arbitrary enumeration of Q).
The elaboration of the corresponding Aa-term is left to the reader. Keep in mind that
the reason this term will not be well-typed for the Agp-calculus is that the inversions in the
permutation dg;(—, ¢) correspond to violations of non-commutative typing. |

5.2 Extension with additive pairs

Let’s look at what happens if we add the additive conjunction connective of linear logic to the
Ag-calculus. The Ap¥-calculus is obtained by adding A, B ::= ... | A& B to the grammar of
types and ¢,u = ... | (t,u) | 71 t | w2t for terms, with the typing rules

FlAFt:A T|Aru:B F'|AFt: A & As
T'|AF (t,u): A& B T'|AFmt: A

(see [39, §4])

the S-reduction rules m; (t1,t2) — 5 t;, and the corresponding 7-conversion rules.

Recall that we discussed both in the introduction and in Remark 2.7 the need to prevent
the existence of a Ap-term of type Bool —o Bool for negation. However, if we use the additive
conjunction to define the type Bool® = (0 & 0) —o o, the following are well-typed Ap®-terms:

true® = X°p. m p false® = Xp. m p not® = X°b. X°p. b (ma p,m p)
More generally:

» Proposition 5.5. Let Fin®(n) = (o0& ... & 0) — 0. For all n € N, there is a canonical
bijection between {1,...,n} and the closed A\p¥-terms of type Fin®(n). Furthermore, using
this encoding, every map {1,...,n1} X ... x {1,...,ng} = {1,...,m} can be defined by a
closed Ap¥-term of type Fin®(n;) —o ... Fin%(ny) —o Fin®(m).

» Corollary 5.6. FEvery regular language can be defined by a closed A\p%-term of type
Stry[A] —o Bool for some purely affine type A — we consider “&” as an affine connective
and therefore allow it in A.

Proof idea. Take A = Fin®(|M|) where M is any finite monoid that recognizes the language
as specified in Theorem 1.3. (We could also prove the converse by relying on an extension of
Hillebrand and Kanellakis’s Theorem 1.1 to the simply typed A-calculus with products.) <

Similarly, one could show that the addition of the additive disjunction “®” of linear logic
to the Ap-calculus would be sufficient to encode all regular languages.

5.3 On regular and first-order tree languages: a discussion

There is a rich theory of tree automata that extends the notion of regular language to trees
over ranked alphabets instead of strings. Such trees admit Church encodings; for instance,
for an alphabet with arities (a : 2,b: 2,2 : 0) (i.e. for trees with two kind of binary nodes
and one kind of leaf) one would have Tree 20) = (0 — 0 — 0) — (0 — 0 —0 0) = 0 — 0.

» Remark 5.7. A string over an alphabet ¥ = {c1,...,¢x|} can be seen as a tree with arities
(c1:1, ..., ¢y : 1,e:0). This would lead to defining the type of Church-encoded strings as
Stry, = (0 —0) — ... = (0 — 0) = 0 — 0. Our type Stry, which is the traditional choice
in linear logic (see the discussion on Church numerals in [17, §5.3.2]), is a bit more precise
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since it expresses that such a “unary tree” can only contain one € node. But as there exist
conversion functions Stry, — Strf;, and Str{[o — 0] — Stry, this choice does not make
much difference (thanks again to Lemma 2.8).

We shall not go into the details of tree automata here, but the knowledgeable reader
may check that Proposition 5.5 can be used to encode all regular tree languages over

(a:2,b:2,x:0) as closed A\p¥-terms of type Tree(z,2,0)[A] —o Bool for purely affine A.

Predictably, this fails for the A\p-calculus without additive connectives. More noteworthy
is the failure of the trick used to prove Theorem 5.1 for the commutative Aa-calculus when
one replaces strings with trees. Thus, it seems (though this remains conjectural) that the
additives of linear logic might be required to express some reqular tree languages.

We believe that this is no accident and that some fundamental difficulty of automata
theory is being manifested here. Indeed, if we had a characterization of regular tree languages
in the Aa-calculus, we could expect that moving to the Agp-calculus would yield the first-order
tree languages, which are the commonly accepted counterpart of star-free languages for
trees. (Recall from Theorem 1.5 that definability in first-order logic is among the equivalent
definitions of star-free languages.) However, while Theorem 1.5 demonstrates that star-free
languages are well-understood, the situation is quite different for first-order tree languages:
there is no known algebraic characterization, and neither is there any known algorithm to
decide whether a tree automaton recognizes a first-order language (see e.g. [9, §3]). Another

argument for the necessity of additives, discussed in the next section, comes from transducers.

6 Next episode preview: transducers in typed A-calculi

We started from Hillebrand and Kanellakis’s Theorem 1.1 and obtained an analogous
statement for star-free languages instead of regular languages. Another direction that we could

have pursued is to replace languages by functions, by looking at the type Strx[A] — Stry.

Indeed, an immediate consequence of this “regular = A-definable” result is:

» Corollary 6.1. If f : 3X* — II* is definable by a closed simply typed A-term of type
Stry[A] — Strr, then for any regular language L C I1*, f~1(L) C X* is also regular.

Proof idea. Let u : Strp[B] — Bool and t : Stry[A] — Strp be simply typed A-terms
defining L and f respectively. Then f~!(L) is defined by Az.u (tz) which is well-typed with
type Stry[A[B]] — Bool (analogously to Lemma 2.8). <

This suggests a connection between these A-definable string functions and automata theory.
But while it is not too hard to define functions of hyperexponential growth in the simply
typed A-calculus, most classes of string functions from automata theory (see [36] for a recent
survey) grow much more slowly (polynomially or even linearly in the input size). The
challenge then becomes to restrict the expressiveness via types to capture such classes. This
calls for the recipes that have worked here, namely affine types and non-commutativity.

> Claim 6.2 (to be proved in a sequel). The functions definable by closed terms of type
Stry[A] —o Stry, for purely affine A, are the MSO transductions'* [14] (a.k.a. regular
functions'®) in the Aa-calculus and the FO transductions in the Ap-calculus.

14 MSO stands for Monadic Second-Order Logic while FO stands for First-Order Logic, cf. the introduction.
15 This name is somewhat confusing, since there are multiple classes of string functions that collapse to
the single class of regular languages when we consider indicator functions. For example, in-between
the sequential functions (Definition 4.4) and the regular (MSO-definable) functions, there is a widely
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This goes beyond the encodings of sequential transducers presented in this paper (Theorem 4.1
and Theorem 5.4). But the latter are an important stepping stone, since we do not know
how to prove the above claim without using the Krohn—Rhodes decomposition somewhere.
To summarize the results of the present paper together with its planned sequel:

calculus ‘ affine  commutative Stry[A] —o Bool Strx[A] — Strn
Ap yes no star-free (FO-definable) languages FO transductions
Aa yes yes regular (MSO-definable) languages MSO transductions

While the connection between non-commutativity and aperiodicity came as a surprise to
us, we had more reasons to suspect that affine types should have something to do with
transducers. Indeed, the term “linear” itself has been used to describe the copyless assignment
condition on streaming string transducers (SSTs) [5], a machine model for MSO transductions,
e.g. “updates should make a linear use of registers” [15, §5] (in our terminology, the register
assignments of SSTs are in fact affine, not strictly linear). Moreover, it seems (informally
speaking) that the more sophisticated single-use-restricted assignments of streaming tree
transducers [3] correspond to a form of linearity that incorporates an additive conjunction,
whereas copyless assignments are purely multiplicative; compare with the discussion of §5.3.

7 Related work

We have already mentioned in the introduction several lines of tangentially related research,
such as higher-order model checking or the topology of non-commutative proofs. In this
section, we discuss a few references that we deemed to be more directly relevant.

Automata as circular proofs. Aside from Hillebrand and Kanellakis’s Theorem 1.1, perhaps
our most direct precursors in “implicit automata theory” are the works by DeYoung and
Pfenning [13] on sequential transducers (their version seems to be equivalent to Definition 4.4)
and by Kuperberg, Pinault and Pous [28] characterizing regular languages and deterministic
logarithmic space complexity. Both rely on a proofs-as-programs interpretation of circular'®
proof systems for some variants of linear logic with fixed points.

The Church encoding of strings is obtained by a systematic procedure [12] from the
inductive definition s :=¢ |c1-s|... [ ¢y -5 (X = {c1,...,¢xn}). Using fixed points of
formulas, one can instead turn it into the recursive type'” Stri = 1@ Strl, & ... @ Strl;
this is the definition of the type of strings in [13], and it is also implicitly at work in'® [28].

So both our approach (following Hillebrand and Kanellakis [24]) and those using fixed
point logics morally work because the consumption of strings represented as inductive data
types is similar to their traversal by automata. However, while the use of the “right fold”
provided by a Church-encoded string involves an “inversion of control” (in programming
jargon) that, in the case of the simply typed A-calculus, has drastic effects on expressive
power!? (contrast Theorem 1.1 with the fact that Sn-convertibility of simply typed A-terms is
not elementary recursive [32]), circular proofs seem to give the programmer more degrees of
freedom: Kuperberg et al. do not need to add polymorphism to go beyond regular languages.

studied strictly intermediate class called the rational functions. (The adjective “rational” is used to
refer to regular languages in a French tradition going back to Nivat and Schiitzenberger.)

16 These are sometimes called “cyclic” proofs, but in our context, this would create a confusion with an
unrelated non-commutative logic, cyclic linear logic [50].

7 Formally, this is expressed as the least fixed point Str; =pe.1@ad... 6.

18 The left rules given in [28, Figure 1] for A and A* correspond to A=1@®...®1and A* = 1@ (AR A*).

19To overcome those limits and express any elementary recursive function as a simply typed A-term,
Hillebrand and Kanellakis use an alternative representation of inputs inspired by database theory [24].
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Recognizable languages of A-terms. A modern point of view on Hillebrand and Kanel-
lakis’s Theorem 1.1 can be implicitly found in a paper by Terui [48] emphasizing the method
of evaluation in a finite denotational semantics used to prove it. Along these lines, general
notions of recognizable languages of closed A-terms of a given type (specializing to regular
languages for the type of Church-encoded strings) have been proposed, based on finite
semantics, in the simply-typed A-calculus by Salvati [45] and in an infinitary A-calculus
by Mellies [34]. It is plausible that Theorem 1.1 can be extended to give an equivalent
syntactic definition for Salvati’s recognizable languages: for a simple type B they would be
the languages definable by B[A] — Bool. An interesting question would be whether one
can give an encoding of higher-dimensional trees in the simply typed A-calculus so that this
notion of recognizability coincides with Rogers’s automata for those trees [43, 16].

Other implicit automata results. In a recent preprint, Bojaniczyk [10] introduces a new
class of string-to-string functions that admits several equivalent definitions (see also [11]).
One of them uses the simply typed A-calculus enriched with a ground type of lists and several
primitive functions on lists. Strings are represented as lists of characters, which differs from
our use of functional encodings in a A-calculus without any primitive data type.

Using a computational model inspired by denotational semantics of linear logic, Seiller [46]
gives a characterization of each level of the k-head two-way non-deterministic automata
hierarchy. The lowest level (k = 1) corresponds to regular languages, while the union over
k € N> gives the complexity class NL (non-deterministic logarithmic space). Something in
common with our work is that the representation of strings used by [46] is more or less a
semantic version of Church encodings (see [46, §3.2]). There is one main difference with what
one usually calls implicit complexity: Seiller’s result does not take place inside a syntactically
defined programming language (and it is far from obvious how to turn this model into a
similarly expressive syntax, because of the previously mentioned inversion of control).

Controlling expressible functions with non-commutativity. The tree-processing program-
ming language of Kodama, Suenaga and Kobayashi [26] uses non-commutative types to force
programs to process their input in a depth-first, left-to-right fashion. This allows them to
be compiled into a target language that works on a stream of tokens, suggesting a possible
connection with nested word automata [4]. The non-commutativity is restricted to arguments
of ground type in [26], whereas it is important for our Ap-calculus that it applies at all orders
(indeed, since we encode data as functions, higher-order functions are pervasive).
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