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Abstract
We introduce MTT, a dependent type theory which sup-

ports multiple modalities.MTT is parametrized by a mode

theory which specifies a collection of modes, modalities,

and transformations between them. We show that different

choices of mode theory allow us to use the same type theory

to compute and reason in many modal situations, includ-

ing guarded recursion, axiomatic cohesion, and parametric

quantification. We reproduce examples from prior work in

guarded recursion and axiomatic cohesion — demonstrating

thatMTT constitutes a simple and usable syntax whose in-

stantiations intuitively correspond to previous handcrafted

modal type theories. In some cases, instantiating MTT to

a particular situation unearths a previously unknown type

theory that improves upon prior systems. Finally, we inves-

tigate the metatheory of MTT. We prove the consistency

of MTT and establish canonicity through an extension of

recent type-theoretic gluing techniques. These results hold

irrespective of the choice of mode theory, and thus apply to

a wide variety of modal situations.

CCS Concepts: • Theory of computation→Modal and
temporal logics; Type theory; Proof theory.

Keywords: Modal types, dependent types, categorical se-

mantics, gluing, guarded recursion
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1 Introduction
In order to increase the expressivity of Martin-Löf Type

Theory (MLTT) we often wish to extend it with new con-

nectives, and in particular with unary type operators that

we call modalities or modal operators. Some of these modal

operators arise as shorthands, while others are introduced as

a device for expressing structure that appears in particular

models. Whereas the former class of modalities are internally

definable [62], the latter often require extensive modifica-

tions to the basic structure of type-theoretic judgments. In

some cases we are even able to prove that these changes are

necessary, by showing that the modality in question can-

not be expressed internally: see e.g. the ‘no-go’ theorems

by Shulman [67, §4.1] and Licata et al. [42]. This paper is

concerned with the development of a systematic approach

to the formulation of type theories with multiple modalities.

The addition of a modality to a dependent type theory is a

non-trivial exercise. Modal operators often interact with the

context of a type or term in a complicated way, and naïve

approaches lead to undesirable interplay with other type

formers and substitution. However, the consequent gain in

expressivity is substantial, and so it is well worth the effort.

For example, modalities have been used to express guarded

recursive definitions [10, 15, 16, 33], parametric quantifi-

cation [54, 55], proof irrelevance [3, 54, 57], and to define

global operations which cannot be localized to an arbitrary

context [42]. There has also been concerted effort towards

the development of a dependent type theory correspond-

ing to Lawvere’s axiomatic cohesion [41], which has many

interesting applications [32, 40, 64, 65, 67].

Despite this recent flurry of developments, a unifying ac-

count of modal dependent type theory has yet to emerge.

Faced with a new modal situation, a type theorist must hand-

craft a brand new system, and then prove the usual battery

of metatheorems. This introduces formidable difficulties on

two levels. First, an increasing number of these applications

aremultimodal: they involve multiple interacting modalities,

which significantly complicates the design of the appropri-

ate judgmental structure. Second, the technical development

of each such system is entirely separate, so that one can-

not share the burden of proof even between closely related

systems. To take a recent example, there is no easy way to

transfer the work done in the 80-page-long normalization

https://doi.org/10.1145/3373718.3394736
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proof forMLTTµ [30] to a normalization proof for the modal

dependent type theory of Birkedal et al. [14], even though

these systems are only marginally different. Put simply, if

one wished to prove that type-checking is decidable for the

latter, then one would have to start afresh.

We intend to avoid such duplication in the future. Rather

than designing a new dependent type theory for some preor-

dained set of modalities, we will introduce a system that is

parametrized by a mode theory, i.e. an algebraic specification

of a modal situation. This system, which we callMTT, solves
both problems at once. First, by instantiating it with different

mode theories we will show that it can capture a wide class

of situations. Some of these, e.g. the one for guarded recur-

sion, lead to a previously unknown system that improves

upon earlier work. Second, the predictable behavior of our

rules allows us to prove metatheoretic results about large

classes of instantiations of our system. For example, our

canonicity theorem applies irrespective of the chosen mode

theory. As a result, we only need to prove such theorems

once. Returning to the previous example, careful choices of

mode theory yield two systems that closely resemble the

calculi of Birkedal et al. [14] and MLTTµ [30] respectively,

so that our proof of canonicity applies to both.

In fact, we take things one step further: MTT is not just

multimodal, but also multimode. That is, each judgment of

MTT can be construed as existing in a particular mode. All
modes have some things in common—e.g. there will be depen-

dent sums in each—but some might possess distinguishing

features. From a semantic point of view, different modes cor-

respond to different context categories. In this light, modal-

ities intuitively correspond to functors between those cate-

gories: in fact, they will be structures slightly weaker than

dependent right adjoints (DRAs) [14].

Mode theories. At a high level, MTT can be thought of

as a machine that converts a concrete description of modes

and modalities into a type theory. This description, which

is often called a mode theory, is given in the form of a small
strict 2-category [43, 44, 61]. A mode theory gives rise to the

following correspondence:

object ∼ mode

morphism ∼ modality

2-cell ∼ natural map between modalities

The equations between morphisms and between 2-cells in a

mode theory can be used to precisely specify the interactions

we want between different modalities. We will illustrate this

point with an example.

Instantiating MTT. Suppose we have a mode theory

M with a single object 𝑚, a single generating morphism

𝜇 : 𝑚 → 𝑚, and no non-trivial 2-cells. Equipping MTT
withM produces a type theory with a single modal type

constructor, ⟨𝜇 | −⟩. This is the simplest non-trivial setting,

and we can prove very little about it without additional 2-

cells.

If we add a 2-cell 𝜖 : 𝜇 ⇒ 1 toM, we can define a function

extract𝐴 : ⟨𝜇 | 𝐴⟩ → 𝐴

inside the type theory. If we also add a 2-cell 𝛿 : 𝜇 ⇒ 𝜇 ◦ 𝜇
then we can also define

duplicate𝐴 : ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | ⟨𝜇 | 𝐴⟩⟩
Furthermore, we can control the precise interaction between

duplicate𝐴 and extract𝐴 by addingmore equations that relate

𝜖 and 𝛿 . For example, we may ask thatM be the walking
comonad [63] which leads to a type theory with a dependent

S4-like modality [27, 57, 67]. We can be even more specific,

e.g. by asking that (𝜇, 𝜖, 𝛿) be idempotent.
Thus, a morphism 𝜇 : 𝑛 → 𝑚 introduces a modality

⟨𝜇 | −⟩, and a 2-cell 𝛼 : 𝜇 ⇒ 𝜈 ofM allows the definition of

a function of type ⟨𝜇 | 𝐴⟩ → ⟨𝜈 | 𝐴⟩ @ 𝑚.

Relation to other modal type theories. Most work on

modal type theories still defies classification. However, we

can informatively position MTT with respect to two qualita-

tive criteria, viz. usability and generality.

Much of the prior work on modal type theory has fo-

cused on bolting a specific modality onto a type theory. The

benefit of this approach is that the syntax can be designed

to be as convenient as possible for the application at hand.

For example, spatial/cohesive type theory [67] features two

modalities, ♭ and ♯, and is presented in a dual-context style.

This judgmental structure, however, is applicable only be-

cause of the particular properties of ♭ and ♯. Nevertheless,

the numerous pen-and-paper proofs in op. cit. demonstrate

that the resulting system is easy to use.

At the other end of the spectrum, the framework of Licata-

Shulman-Riley (LSR) [44] comprises an extremely general

toolkit for simply-typed, substructural modal type theory.

Its dependent generalization, which is currently under de-

velopment, is able to handle a very large class of modalities.

However, this generality comes at a price: its syntax is com-

plex and unwieldy, even in the simply-typed case.

MTT attempts to strike a delicate balance between those

two extremes. By avoiding substructural settings and some

kinds of modalities we obtain a noticeably simpler apparatus.

These restrictions imply that, unlike LSR, we do not need

to annotate our term formers with delayed substitutions,

and that our system straightforwardly extends to dependent

types. Crucially, we ensure that no rule of MTT ‘trims’ the

context, which would necessitate either delayed substitu-

tions [16, 44] or often delicate admissible rules [10, 14, 30]

in order to ensure the validity of substitution. We also show

thatMTT can be used for many important examples, and that

it is simple enough to be used in pen-and-paper calculations.

Contributions. In summary, we make the following con-

tributions:
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• We introduce MTT, a general type theory for multiple

modes and multiple interacting modalities.

• We define its semantics, which constitute a category

of models.

• We prove that MTT satisfies canonicity, an important

metatheoretic property, subject to technical restriction

through a modern gluing argument [5, 24, 37, 66].

• We instantiate MTT with various mode theories, and

show its value in reasoning about guarded recursion [16],

degrees of relatedness [54], and other modal situations.

For want of space we omit many details and proofs, which

can be found in the accompanying technical report.

2 The Syntax of MTT
We now present the syntax of MTT. As mentioned in the

introduction, the syntax of MTT is parameterized by a small

2-category called a mode theory. In Section 6, we will instan-

tiate MTT with several specific mode theories to recover

particular modal type theories, but at present we will work

with over an arbitrary mode theory. Accordingly, for the

rest of this paper we fix a mode theoryM, and use𝑚,𝑛, 𝑜

to stand for modes (the objects ofM), 𝜇, 𝜈, 𝜏 for modalities

(the morphisms), and 𝛼, 𝛽,𝛾 for 2-cells.

In broad terms,MTT consists of a collection of type the-

ories, one for each mode𝑚 ∈ M. These type theories will

eventually appear in one another, but only as spectres under

a modality. We thus begin by describing the individual type

theories at each mode, and only then discuss how modalities

can be used to relate them.

2.1 The Type Theory at Each Mode
Each mode in MTT is inhabited by a standard Martin-Löf

Type Theory (MLTT), and accordingly includes the usual

judgments. For example, we have the judgment Γ ctx @𝑚

which states that Γ is a well-formed context in that particular
mode𝑚. There are likewise judgments for types, terms, and

substitutions at each mode.

In lieu of an exhaustive list of rules, we show only the im-

portant ones in Fig. 1. Briefly, each mode contains ordinary

intensional type theory with dependent sums, dependent

products, intensional identity types, booleans, and one uni-

verse. Both sums and products satisfy an 𝜂-rule.

Universes à la Coquand. There are several ways to intro-
duce universes in type theory [34, §2.1.6] [45, 56]. We use the

approach of Coquand [23], which is close to Tarski-style uni-

verses. However, instead of inductively defining codes that
represent particular types, Coquand-style universes come

with an explicit isomorphism between types and terms of the

universe U.
Nevertheless, if this isomorphism were to cover all types

then Girard’s paradox [22] would apply, so we must restrict

it to small types. This, in turn, forces us to stratify our types

into small and large. The judgment Γ ⊢ 𝐴 type
0

@𝑚 states

that 𝐴 is a small type, and Γ ⊢ 𝐴 type
1

@𝑚 that it is large.

The universe itself must be a large type, but otherwise both

levels are closed under all other connectives. Finally, we

introduce an operator that lifts a small type to a large one:

ℓ ≤ ℓ ′ Γ ⊢ 𝐴 typeℓ @𝑚

Γ ⊢ ⇑𝐴 typeℓ′ @𝑚

The lifting operation commutes definitionally with all the

connectives, e.g. ⇑(𝐴 → 𝐵) = ⇑𝐴 → ⇑𝐵. We will use large

types for the most part: only they will be allowed in contexts,

and the judgment Γ ⊢ 𝑀 : 𝐴@𝑚 will presuppose that 𝐴 is

large. As we will not have terms at small types, we will not

need the term lifting operations used by Coquand [23] and

Sterling [68].

We will often suppress ⇑− as well as the isomorphism

between elements of the universe and types for readability.

2.2 Introducing a Modality
Having sketched the basic type theory inhabiting each mode,

we now show how these type theories interact.

SupposeM contains a modality 𝜇 : 𝑛 →𝑚. We would like

to think of 𝜇 as a ‘map’ from mode 𝑛 to mode𝑚. Then, for

each ⊢ 𝐴 type @𝑛 we would like a type ⊢ ⟨𝜇 | 𝐴⟩ type @𝑚.

On the level of terms we would similarly like for each ⊢ 𝑀 :

𝐴@𝑛 an induced term ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩@𝑚.

These constructs would be entirely satisfactory, were it

not for the presence of open terms. To illustrate the problem,

suppose we have a type Γ ⊢ 𝐴 type @𝑛. We would hope

that the corresponding modal type would live in the same

context, i.e. that Γ ⊢ ⟨𝜇 | 𝐴⟩ type @𝑚. However, this is not

possible, as Γ is only a context at mode 𝑛, and cannot be

carried over verbatim to mode𝑚. Hence, the only pragmatic

option is to introduce an operation that allows a context to

cross over to another mode.

Forming a modal type. There are several different pro-
posed solutions to this problem in the literature [e.g. 20, 58].

We will use a Fitch-style discipline [10, 14, 30]: we will re-
quire that 𝜇 induce an operation on contexts in the reverse
direction, which we will denote by a lock:

cx/lock

Γ ctx @𝑚

Γ,µ𝜇 ctx @𝑛

Intuitively, µ𝜇 behaves like a left adjoint to ⟨𝜇 | −⟩. However,
⟨𝜇 | −⟩ acts on types while −,µ𝜇 acts on contexts, so this

cannot be an adjunction. Birkedal et al. [14] call this situation

a dependent right adjoint (DRA). A DRA essentially consists

of a type former R and a context operation L such that

{𝑁 | L(Γ) ⊢ 𝑁 : 𝐴} � {𝑀 | Γ ⊢ 𝑀 : R(𝐴)} (†)

See Birkedal et al. [14] for a formal definition.

Just as with DRAs, theMTT formation and introduction

rules for modal types effectively transpose types and terms
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Γ ⊢ 𝐴 typeℓ @𝑚

Γ ctx @𝑚

Γ ⊢ U type
1

@𝑚

Γ ctx @𝑚

Γ ⊢ B typeℓ @𝑚

Γ ctx @𝑚 Γ ⊢ 𝐴 typeℓ @𝑚 ℓ ≤ ℓ ′

Γ ⊢ ⇑𝐴 typeℓ′ @𝑚

Γ ctx @𝑚 Γ ⊢ 𝐴 typeℓ @𝑚 Γ ⊢ 𝑀, 𝑁 : ⇑𝐴@𝑚

Γ ⊢ Id𝐴 (𝑀, 𝑁 ) typeℓ @𝑚

Γ ctx @𝑚 Γ ⊢ 𝐴 typeℓ @𝑚 Γ, 𝑥 : ⇑𝐴 ⊢ 𝐵 typeℓ @𝑚

Γ ⊢ (𝑥 : 𝐴) → 𝐵 typeℓ @𝑚 Γ ⊢ (𝑥 : 𝐴) × 𝐵 typeℓ @𝑚

Figure 1. Selected mode-local rules.

across this adjunction:

tp/modal

Γ,µ𝜇 ⊢ 𝐴 typeℓ @𝑛

Γ ⊢ ⟨𝜇 | 𝐴⟩ typeℓ @𝑚

tm/modal-intro

Γ,µ𝜇 ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩@𝑚

It remains to show how to eliminate modal types. Previous

work on Fitch-style calculi [14, 30] has employed elimination

rules which essentially invert the introduction rule tm/modal-

intro. Such rules remove one or more locks from the context

during type-checking, and sometimes even trim a part of it.

For example, a rule of this sort would be

µ𝜇 ∉ Γ′ Γ ⊢ 𝑀 : ⟨𝜇 | 𝐴⟩@𝑚

Γ,µ𝜇, Γ
′ ⊢ open(𝑀) : 𝐴@𝑛

This kind of rule tends to be unruly, and requires delicate

work to prove even basic results about it, such as the admis-

sibility of substitution: see the technical report by Gratzer

et al. [31] for a particularly laborious case. The results in op.
cit. could not possibly reuse any of the work of Birkedal et al.
[14], as a small change in the syntax leads to many subtle

changes in the metatheory. Consequently, it seems unlikely

that one could adapt this approach to a modality-agnostic

setting like ours.

We will use a different technique, which is reminiscent

of dual-context calculi [39]. First, we will let the variable

rule control the use of modal variables. Then, we will take a

‘modal cut’ rule, which will allow the substitution of modal

terms for modal variables, to be our modal elimination rule.

Accessing amodal variable. The behavior ofmodal types

can often be clarified by asking a simple question: when can

we use 𝑥 : ⟨𝜇 | 𝐴⟩ to construct a term of type 𝐴? In previ-

ous Fitch-style calculi we would use the modal elimination

rule to reduce the goal to ⟨𝜇 | 𝐴⟩, and then—had the modal
elimination rule not eliminated 𝑥 from the context—we would
simply use the variable. We may thus write down a term of

type 𝐴 using a variable 𝑥 : ⟨𝜇 | 𝐴⟩ only when our context

has the appropriate structure, and the final arbiter of that is

the modal elimination rule.

MTT turns this idea on its head: rather than handing con-

trol over to the modal elimination rule, we delegate this

decision to the variable rule itself. In order to ascertain

whether we can use a variable in our calculus, the vari-

able rule examines the locks to the right of the variable. The
rule of thumb is this: we should always be able to access

⟨𝜇 | 𝐴⟩ behind µ𝜇 . Carrying the −,µ𝜇 ⊣ ⟨𝜇 | −⟩ analogy fur-

ther, we see that the simplest judgment that fits this, namely

Γ, 𝑥 : ⟨𝜇 | 𝐴⟩,µ𝜇 ⊢ 𝑥 : 𝐴@𝑛, corresponds to the counit.
To correctly formulate the variable rule, we will require

one more idea: following modal type theories based on left
division [1, 2, 54, 55, 57], every variable in the context will

be annotated with a modality, 𝑥 : (𝜇 | 𝐴). Intuitively a

variable 𝑥 : (𝜇 | 𝐴) is the same as a variable 𝑥 : ⟨𝜇 | 𝐴⟩, but
the annotations are part of the structure of a context while

⟨𝜇 | 𝐴⟩ is a type. This small circumlocution will ensure that

the variable rule respects substitution.

The most general form of the variable rule will be able

to handle the interaction of modalities, so we present it in

stages. A first ‘counit-like’ approximation is then

tm/var/counit

µ ∉ Γ1 Γ0,µ𝜇 ⊢ 𝐴 type
1

@𝑛

Γ0, 𝑥 : (𝜇 | 𝐴),µ𝜇, Γ1 ⊢ 𝑥 : 𝐴@𝑛

The first premise requires that no further locks occur in Γ1.

Context extension. The switch to modality-annotated

declarations 𝑥 : (𝜇 | 𝐴) also requires us to revise the context

extension rule. The revised version, cx/extend, appears in

Fig. 2 and closely follows the formation rule for ⟨𝜇 | −⟩: if
Γ,µ𝜇 ⊢ 𝐴 type

1
@𝑛 is a type in the locked context Γ, then we

may extend the context Γ to include a declaration 𝑥 : (𝜇 | 𝐴),
so that 𝑥 stands for a term of type 𝐴 under the modality 𝜇.

The elimination rule. The difference between a modal

type ⟨𝜇 | 𝐴⟩ and an annotated declaration 𝑥 : (𝜇 | 𝐴) in the

context is navigated by the modal elimination rule. In brief,

its role is to enable the substitution of a term of the former

type for a variable with the latter declaration. The full rule

is complex, so we first discuss the case of a single modality

𝜇 : 𝑛 →𝑚. The rule for this 𝜇 is

tm/modal-elim/single-modality

Γ ⊢ 𝑀0 : ⟨𝜇 | 𝐴⟩@𝑚 Γ, 𝑥 : (1 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type
1

@𝑚

Γ, 𝑦 : (𝜇 | 𝐴) ⊢ 𝑀1 : 𝐵 [mod𝜇 (𝑦)/𝑥]@𝑚

Γ ⊢ let mod𝜇 (𝑦) ← 𝑀0 in𝑀1 : 𝐵 [𝑀0/𝑥]@𝑚
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Forgetting dependence for a moment, we see that this rule

is close to the dual context style [39, 58]: if we think of

annotations as separating the context into multiple zones,

then 𝑦 : (𝜇 | 𝐴) clearly belongs to the ‘modal’ part.

In the dependent case we also need a motive Γ, 𝑥 : (1 | ⟨𝜇 |
𝐴⟩) ⊢ 𝐵 type

1
@𝑚, which depends on a variable of modal

type, but under the identity modality 1. This premise is then

fulfilled by𝑀0 in the conclusion. In a sense, this rule permits

a form ofmodal induction: every variable 𝑥 : (1 | ⟨𝜇 | 𝐴⟩) can
be assumed to be of the form mod𝜇 (𝑦) for some 𝑦 : (𝜇 | 𝐴).
This kind of rule has appeared before in dependent modal

type theory, mainly in the work of Shulman [67].

In the type theory of Birkedal et al. [14] modalities are

taken to be dependent right adjoints, with terms witnessing

Eq. (†). This isomorphism can encode tm/modal-elim/single-

modality, but that rule alone cannot encode Eq. (†). As a
result, modalities in MTT are weaker than DRAs.

2.3 Multiple Modalities
Thus far we have only considered a single modality. In this

section we discuss the small changes that are needed to

support multiple interacting modalities. The final version of

the modal rules is given in Fig. 2.

Multimodal locks. We have so far only used the opera-

tion −,µ𝜇 on contexts for the single modality 𝜇 : 𝑛 → 𝑚.

This operation also works for any modality with the same

rule cx/lock, hence expressing an action of locks on con-

texts that is contravariant with respect to the mode. The

only question is how these locks should interact, and this

is where the mode theory comes in: locks should be func-
torial, so that 𝜈 : 𝑜 → 𝑛, 𝜇 : 𝑛 → 𝑚, and Γ ctx @𝑚 imply

Γ,µ𝜇,µ𝜈 = Γ,µ𝜇◦𝜈 ctx @𝑜 . We additionally ask that the iden-

tity modality 1 : 𝑚 →𝑚 at each mode has a trivial, invisible

action on contexts, i.e. Γ,µ1 = Γ.
These two actions, which are encoded by cx/compose and

cx/id, ensure that µ is a contravariant functor onM, map-

ping each mode𝑚 to the category of contexts Γ ctx @𝑚. The

contravariance originates from the fact thatM is a specifi-

cation of the behavior of the modalities ⟨𝜇 | −⟩, so that their

left-adjoint-like counterparts −,µ𝜇 act with the opposite

variance.

The full variable rule. We have seen that µ induces a

functor fromM to categories of contexts, but we have not

yet used the 2-cells of M. In short, a 2-cell 𝛼 : 𝜇 ⇒ 𝜈

contravariantly induces a substitution from Γ,µ𝜈 to Γ,µ𝜇 .

We will discuss this further in Section 4, but for now we only

mention that this gives rise to an admissible operation on
types: for each 2-cell we obtain an operation (−)𝛼 such that

Γ,µ𝜇 ⊢ 𝐴 type @𝑚 implies Γ,µ𝜈 ⊢ 𝐴𝛼 type @𝑚.

In order to prove the admissibility of this operation we

need a more expressive variable rule that builds in the action

of 2-cells. The first iteration (tm/var/counit) required that

the lock and the variable annotation were an exact match.

We relax this requirement by allowing for a mediating 2-cell:

tm/var/combined

𝜇, 𝜈 : 𝑛 →𝑚 𝛼 : 𝜇 ⇒ 𝜈

Γ, 𝑥 : (𝜇 | 𝐴),µ𝜈 ⊢ 𝑥𝛼 : 𝐴𝛼
@𝑛

The superscript in 𝑥𝛼 is now part of the syntax: each vari-

ablemust be annotatedwith the 2-cell that ‘unlocks’ it and en-

ables its occurrence, though we will still write 𝑥 to mean 𝑥1𝜇
.

The final form of the variable rule, which appears as tm/var

in Fig. 2, is only a slight generalization which allows the

variable to occur at positions other than the very front of the

context. In fact, tm/var can be reduced to tm/var/combined

by using weakening to remove variables to the right of 𝑥 ,

and then invoking functoriality to fuse all the locks to the

right of 𝑥 into a single one with modality locks(Γ1).

The full elimination rule. Recall that the elimination

rule for a single modality (tm/modal-elim/single-modality)

allowed us to plug a term of type ⟨𝜇 | 𝐴⟩ for an assumption

𝑥 : (𝜇 | 𝐴). Some additional generality is needed to cover

the case where the motive 𝑥 : (𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type @𝑚

depends on 𝑥 under a modality 𝜈 ≠ 1. This is where the

composition of modalities inM comes in handy: our new

rule will use it to absorb 𝜈 by replacing the assumption 𝑥 :

(𝜈 | ⟨𝜇 | 𝐴⟩) with 𝑥 : (𝜈 ◦ 𝜇 | 𝐴).
The new rule, tm/modal-elim, is given in Fig. 2. The sim-

pler rule may be recovered by setting 𝜈 ≜ 1. In this simpler

case, we will suppress the subscripted 1 on let, just as in
tm/modal-elim/single-modality. However, many natural ex-

amples require eliminations where 𝜈 ≠ 1. For instance, in

Section 3 we show that ⟨𝜈 ◦ 𝜇 | 𝐴⟩ ≃ ⟨𝜈 | ⟨𝜇 | 𝐴⟩⟩. The func-
tion from the right-hand side to the left crucially depends on

the ability to pattern-match on a variable 𝑥 : (𝜈 | ⟨𝜇 | 𝐴⟩),
which requires the stronger tm/modal-elim.

Modal dependent products. In the technical report we

have supplementedMTT with a primitive modal dependent
product type, (𝑥 : (𝜇 | 𝐴)) → 𝐵, which bundles together

⟨𝜇 | −⟩ and the ordinary product. If we ignore 𝜂-equality,

(𝑥 : (𝜇 | 𝐴)) → 𝐵 can be defined as (𝑥0 : ⟨𝜇 | 𝐴⟩) →
(let mod𝜇 (𝑥) ← 𝑥0 in 𝐵). This modal

∏
-type is convenient

for programming but it is not essential, so we defer further

discussion to the technical report.

Definitional equality in MTT. A perennial problem in

type theory is that of deciding where the boundary between

derviable and definitional equalities should lie. We have fol-

lowed standard practices regarding definitional equalities for

dependent products, sums, etc.. The situation is somewhat

more complicated regarding modal types. On the one hand,

we have the expected 𝛽-rule tm/modal-beta (see Fig. 2). On

the other hand, we do not include any definitional 𝜂-rules:

as the eliminator is a positive pattern-matching construct,

the proper 𝜂-rule would need commuting conversions, which
would enormously complicate the metatheory.
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Γ ctx @𝑚

cx/lock

𝜇 : 𝑛 →𝑚 Γ ctx @𝑚

Γ,µ𝜇 ctx @𝑛

cx/extend

𝜇 : 𝑛 →𝑚 Γ ctx @𝑚 Γ,µ𝜇 ⊢ 𝐴 type
1

@𝑛

Γ, 𝑥 : (𝜇 | 𝐴) ctx @𝑚

cx/id

Γ ctx @𝑚

Γ = Γ,µ1 ctx @𝑚

cx/compose

𝜈 : 𝑜 → 𝑛 𝜇 : 𝑛 →𝑚 Γ ctx @𝑚

Γ,µ𝜇,µ𝜈 = Γ,µ𝜇◦𝜈 ctx @𝑜

Γ ⊢ 𝐴 typeℓ @𝑚 Γ ⊢ 𝑀 : 𝐴@𝑚

tp/modal

𝜇 : 𝑛 →𝑚 Γ,µ𝜇 ⊢ 𝐴 typeℓ @𝑛

Γ ⊢ ⟨𝜇 | 𝐴⟩ typeℓ @𝑚

tm/var

𝜈 : 𝑚 → 𝑛 𝛼 : 𝜈 ⇒ locks(Γ1)
Γ0, 𝑥 : (𝜈 | 𝐴), Γ1 ⊢ 𝑥𝛼 : 𝐴𝛼

@𝑚

tm/modal-intro

𝜇 : 𝑛 →𝑚 Γ,µ𝜇 ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩@𝑚

tm/modal-elim

𝜇 : 𝑛 →𝑚 𝜈 : 𝑚 → 𝑜 Γ, 𝑥 : (𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type
1

@𝑜

Γ,µ𝜈 ⊢ 𝑀0 : ⟨𝜇 | 𝐴⟩@𝑚 Γ, 𝑥 : (𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑀1 : 𝐵 [mod𝜇 (𝑥)/𝑥]@𝑜

Γ ⊢ let𝜈 mod𝜇 (𝑥) ← 𝑀0 in𝑀1 : 𝐵 [𝑀0/𝑥]@𝑜

tm/modal-beta

𝜈 : 𝑚 → 𝑜 𝜇 : 𝑛 →𝑚 Γ, 𝑥 : (𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type
1

@𝑜

Γ,µ𝜈◦𝜇 ⊢ 𝑀0 : 𝐴@𝑛 Γ, 𝑥 : (𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑀1 : 𝐵 [mod𝜇 (𝑥)/𝑥]@𝑜

Γ ⊢ let𝜈 mod𝜇 (𝑥) ← mod𝜇 (𝑀0) in𝑀1 = 𝑀1 [𝑀0/𝑥] : 𝐵 [mod𝜇 (𝑀0)/𝑥]@𝑜

locks(Γ)

locks(·) = 1 locks(Γ, 𝑥 : (𝜇 | 𝐴)) = locks(Γ) locks(Γ,µ𝜇) = locks(Γ) ◦ 𝜇

Figure 2. Selected modal rules.

3 Programming with Modalities
In this section we show howMTT can be used to program

and reason with modalities. We develop a toolkit of modal

combinators, which we then use in Section 3.2 to effortlessly

present a type theory for an idempotent comonad.

3.1 Modal Combinators
We first show how each 2-cell 𝛼 : 𝜇 ⇒ 𝜈 with 𝜇, 𝜈 : 𝑛 →𝑚

induces a natural transformation ⟨𝜇 | −⟩ → ⟨𝜈 | −⟩, which
we call a coercion. Given Γ,µ𝜇 ⊢ 𝐴 type

1
@𝑚, we define

coe[𝛼 : 𝜇 ⇒ 𝜈] (−) : ⟨𝜇 | 𝐴⟩ → ⟨𝜈 | 𝐴𝛼 ⟩
coe[𝛼 : 𝜇 ⇒ 𝜈] (𝑥) ≜ let mod𝜇 (𝑥0) ← 𝑥 in mod𝜈 (𝑥𝛼

0
)

With this operation, we have completed the correspondence

from Section 1: objects of M correspond to modes, mor-

phisms to modalities, and 2-cells to coercions.

We can also show that the assignment 𝜇 ↦→ ⟨𝜇 | −⟩ is,
in some sense, functorial. Unlike the action of locks, this

functoriality is not definitional, but only a type-theoretic

equivalence [70, §4]. Fixing Γ,µ𝜇◦𝜈 ⊢ 𝐴 type
1

@𝑚, let

comp𝜇,𝜈 : ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩ → ⟨𝜇 ◦ 𝜈 | 𝐴⟩
comp𝜇,𝜈 (𝑥) ≜ let mod𝜇 (𝑥0) ← 𝑥 in

let𝜇 mod𝜈 (𝑥1) ← 𝑥0 in
mod𝜇◦𝜈 (𝑥1)

and

comp-1𝜇,𝜈 : ⟨𝜇 ◦ 𝜈 | 𝐴⟩ → ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩
comp-1𝜇,𝜈 (𝑥) ≜ let mod𝜇◦𝜈 (𝑥0) ← 𝑥 in mod𝜇 (mod𝜈 (𝑥0))

We elide the 2-cell annotations on variables, as they are all

identities (i.e. we only need tm/var/counit). Even in this

small example the context equations that involve locks are

essential: for ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩ to be a valid type we need that

Γ,µ𝜇,µ𝜈 = Γ,µ𝜇◦𝜈 , which is ensured by cx/compose. Fur-

thermore, observe that comp𝜇,𝜈 crucially relies on the mul-

timodal elimination rule tm/modal-elim: we must pattern-

match on 𝑥0, which is under 𝜇 in the context.
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These combinators are only propositionally inverse. In

one direction, the proof is

_ : (𝑥 : ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩) → Id⟨𝜇 | ⟨𝜈 |𝐴⟩⟩ (𝑥, comp-1𝜇,𝜈 (comp𝜇,𝜈 (𝑥)))
_ ≜ 𝜆𝑥 . let mod𝜇 (𝑥0) ← 𝑥 in let𝜇 mod𝜈 (𝑥1) ← 𝑥0 in

refl(mod𝜇 (mod𝜈 (𝑥)))
This is a typical example of reasoning about modalities: we

use the modal elimination rule to induct on a modally-typed

term. This reduces it to a term of the form mod (−), and the

result follows definitionally. It is equally easy to construct

an equivalence ⟨1 | 𝐴⟩ ≃ 𝐴.

As a final example, we will show that each modal type

satisfies the K axiom, a central axiom of Kripke-style modal

logics. This combinator will be immediately recognizable to

functional programmers as the term that shows that ⟨𝜇 | −⟩
is an applicative functor [48].

− ⊛𝜇 − : ⟨𝜇 | 𝐴→ 𝐵⟩ → ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩
𝑓 ⊛𝜇 𝑎 ≜ let mod𝜇 (𝑓0) ← 𝑓 in

let mod𝜇 (𝑎0) ← 𝑎 in
mod𝜇 (𝑓0 (𝑎0))

We can also define a stronger combinator, which corresponds

to a dependent form of the Kripke axiom [14], and which

generalizes ⊛𝜇 to dependent products (𝑥 : 𝐴) → 𝐵(𝑥).
This operation has precisely the same implementation as

the simply-typed case, but the type is more complex:

⟨𝜇 | (𝑥 : 𝐴) → 𝐵⟩ →
(𝑥0 : ⟨𝜇 | 𝐴⟩) → (let mod𝜇 (𝑥) ← 𝑥0 in ⟨𝜇 | 𝐵⟩)

In order to ensure that ⟨𝜇 | 𝐵⟩ is well-typed, the context

must contain 𝑥 : (𝜇 | 𝐴), but instead we have bound 𝑥0 : (1 |
⟨𝜇 | 𝐴⟩). We correct this mismatch by eliminating 𝑥0 and

binding the result to 𝑥 , which bestows on it the correct type.

3.2 Idempotent Comonads in MTT
A great deal of prior work in modal type theory has focused

on comonads [27, 30, 58, 67], and in particular idempotent
comonads. Shulman [67, Theorem 4.1] has shown that such

modalities necessitate changes to the judgmental structure,

as the only idempotent comonads that are internally defin-

able in type theory are of the form−×𝑈 for some proposition

𝑈 . In this section we present a mode theory for idempotent

comonads, and prove that the resulting type theory internally

satisfies the expected equations, using just the combinators

of the previous section.

We define the mode theoryMic to consist of a single mode

𝑚, and a single non-trivial morphism 𝜇 : 𝑚 → 𝑚. We will

enforce idempotence by setting 𝜇 ◦ 𝜇 = 𝜇. Finally, in order to

induce a morphism ⟨𝜇 | 𝐴⟩ → 𝐴 we include a unique non-

trivial 2-cell 𝜖 : 𝜇 ⇒ 1. In order to ensure that this 2-cell to be

unique, we add equations such as 𝜖★1𝜇 = 1𝜇 ★𝜖 : 𝜇 ◦ 𝜇 ⇒ 𝜇,

where ★ denotes the horizontal composition of 2-cells. The

resulting mode theory is a 2-category, albeit a very simple

one: it is in fact only a poset-enriched category.

We can show that ⟨𝜇 | 𝐴⟩ is a comonad by defining the

expected operations using the combinators of Section 3.1:

dup𝐴 : ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | ⟨𝜇 | 𝐴⟩⟩ extract𝐴 : ⟨𝜇 | 𝐴⟩ → 𝐴𝜖

dup𝐴 ≜ comp-1𝜇,𝜇 extract𝐴 ≜ coe[𝜖 : 𝜇 ⇒ 1]
We must also show that dup𝐴 and extract𝐴 satisfy the como-

nad laws, but that automatically follows from general facts

pertaining to coe and comp.1 This is indicative of the benefits
of usingMTT: every general result about it also applies to

this instance, including the canonicity theorem of Section 5.

4 The Substitution Calculus of MTT
Until this point we have presented a curated, high-level

view of MTT, and we have avoided any discussion of its

metatheory. Yet, syntactic matters can be quite complex, and

have historically proven to be sticking points for modal type

theory. While such details are not necessary for the casual

reader, it is essential to validate that MTT is syntactically

well-behaved, enjoying e.g. a substitution principle.

We have opted for a modern approach in the analysis

of MTT by presenting it as a generalized algebraic theory
(GAT) [18, 38]. While this simplifies the study of its seman-

tics (see Section 5), it can also be used to study the syntax.

For example, the formulation of MTT as a GAT naturally

leads us to include explicit substitutions [25, 29, 47] in the

syntax. Thus, substitution in MTT is not a metatheoretic

operation on raw terms, but a piece of the syntax. This pre-

sentation helps us carefully state the equations that govern

substitutions and their interaction with type formers. We

consequently obtain an elegant substitution calculus, which
can often be quite complex for modal type theories. We only

discuss the modal aspects of substitution here; the full calcu-

lus may be found in the technical report.

Modal substitutions. In addition to the usual rules,MTT
features substitutions corresponding to the 1- and 2-cells of

the mode theory. First, recall that for each modality 𝜇 : 𝑛 →
𝑚 we have the operation µ𝜇 on contexts. In keeping with

the algebraic syntax, we will write −.µ𝜇 instead of −,µ𝜇 in

this section. We extend its action to substitutions:

sb/lock

𝜇 : 𝑛 →𝑚 Γ ⊢ 𝛿 : Δ@𝑚

Γ.µ𝜇 ⊢ 𝛿.µ𝜇 : Δ.µ𝜇 @𝑛

Second, each 2-cell 𝛼 : 𝜇 ⇒ 𝜈 induces a natural transforma-
tion between µ𝜈 and µ𝜇 , whose component at Γ is

sb/key

𝛼 : 𝜇 ⇒ 𝜈

Γ.µ𝜈 ⊢ ¤𝛼
Γ : Γ.µ𝜇 @𝑛

Recalling thatMcoop
is the 2-category with morphisms and

2-cells opposite from M, we see that these substitutions

1
In particular, our modal combinators satisfy a variant of the interchange
law of a 2-category.
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come with equations that ensure that −.µ𝜇 is a functor, ¤
𝛼
Γ

is a natural transformation, and that together they form a

2-functorMcoop → Cat: see Fig. 3.
While it is no longer necessary to prove that substitution

is admissible, we would like to show that explicit substitu-

tions can be pushed inside terms, and ultimately eliminated

on closed terms. The proof of canonicity (Theorem 5.5) im-

plicitly contains such an algorithm, but that is overkill: a

simple, direct argument proves that explicit substitutions

can be propagated down to variables.

Moreover, we may define the admissible operation men-

tioned in Section 2.3 by letting 𝐴𝛼 ≜ 𝐴[¤𝛼
Γ ], and using this

algorithm to derive steps that eliminate the ‘key’ substitu-

tion.

Pushing substitutions under modalities. In order for

the aforementioned algorithm to work, we must specify

how substitutions commute with the modal connectives of

MTT. Unlike previous work [31], the necessary equations

are straightforward:

⟨𝜇 | 𝐴⟩[𝛿] = ⟨𝜇 | 𝐴[𝛿.µ𝜇]⟩
mod𝜇 (𝑀) [𝛿] = mod𝜇 (𝑀 [𝛿.µ𝜇])

This simplicity is not coincidental. Previous modal type

theories included rules that, in one way or another, trimmed
the context during type checking: some removed variables [58,

60, 67], while others erased context formers, e.g. locks [14,

30]. In either case, it was necessary to show that the trim-

ming operation, which we may write as ∥Γ∥, is functorial:
Γ ⊢ 𝛿 : Δ should imply ∥Γ∥ ⊢ ∥𝛿 ∥ : ∥Δ∥. Unfortunately, the
proof of this fact is almost always very complicated. Some

type theories avoid it by ‘forcing’ substitution to be admis-

sible using delayed substitutions [12, 44], but this causes

serious complications in the equational theory.

MTT circumvents this by avoiding any context trimming.

As a result, we need neither delayed substitutions nor a

complex proof of admissibility.

5 The Semantics of MTT
As mentioned in Section 4, we have structured MTT as a

GAT. As a result, MTT automatically induces a category

of models and (strict) homomorphisms between them [18,

38]. However, this notion of model follows the syntax quite

closely. In order to work with it more effectively we factor it

into pieces, using the more familiar definition of categories
with families (CwFs) [28].2 We will then use this notion of

model to present a semantic proof of canonicity via gluing [5,
24, 37, 66].

Like MTT itself, the definition of model is parametrized

by a mode theory, so we fix a mode theoryM.

2
In the technical report we have used a more categorical presentation of

CwFs, known as natural models [9]. However, in the interest of clarity we

state our results in terms of CwFs here.

Mode-local structure. Recall that MTT is divided into

several modes, each of which is closed under the standard

connectives of MLTT. Accordingly, a model of MTT requires

a CwF for each mode 𝑚 ∈ M: a small category C[𝑚], a
presheaf of types T𝑚 : PSh (T̃𝑚) and a presheaf of terms

T̃𝑚 : PSh (
∫
T𝑚). Each CwF is required to be a model of

MLTTwith
∑
,

∏
and Id types, and a Coquand-style universe.

This part of the definition is entirely standard, and can be

found in the literature [9, 28, 34]. The novel portion of aMTT
model describes the relations between CwFs induced by the

1- and 2-cells ofM.

Locks and keys. Recall that for Γ ctx @𝑚 and 𝜇 : 𝑛 →𝑚

we have a context Γ,µ𝜇 ctx @𝑛, and that this construction

extends functorially to substitutions. Hence, we will require

for each modality 𝜇 : 𝑛 →𝑚 a functor Jµ𝜇K : C[𝑚] → C[𝑛].
Similarly, each 𝛼 : 𝜇 ⇒ 𝜈 induces a natural transformation

from −,µ𝜈 to −,µ𝜇 . Accordingly, a model should come with

a natural transformation J¤𝛼K : Jµ𝜈K ⇒ Jµ𝜇K. Moreover,

the equalities of Fig. 3 require that the assignments 𝜇 ↦→ µ𝜇

and 𝛼 ↦→ ¤𝛼
be strictly 2-functorial. Thus, this part of the

model can be succinctly summarized by requiring a 2-functor

C[−] :Mcoop → Cat. The contravariance accounts for the
fact 𝜇 corresponds to ⟨𝜇 | −⟩, but that the functor Jµ𝜇K
models −,µ𝜇 , which acts with the opposite variance.

Modal comprehension structure. Context declarations
inMTT are annotated with a modality, and the context exten-

sion rule cx/extend involves locks. Thus, our CwFs should be

equipped with more structure than mere context extension

to support it.

Recall that, in an ordinary CwF C, given a context Γ ∈ C
and a type 𝐴 ∈ T(Γ) we have a context Γ.𝐴 along with a

substitution p : Γ.𝐴→ Γ, and a term q ∈ T̃(Γ.𝐴,𝐴[p]).
To modelMTTwe need a modal comprehension operation,

which for each context Γ ∈ C[𝑚], modality 𝜇 : 𝑛 →𝑚, and

type 𝐴 ∈ T𝑛 (Jµ𝜇K(Γ)) yields
• a context Γ.(𝜇 | 𝐴) ∈ C[𝑚],
• a substitution p : Γ.(𝜇 | 𝐴) → Γ, and

• a term q ∈ T̃𝑛 (Jµ𝜇K(Γ.(𝜇 | 𝐴)), 𝐴[Jµ𝜇K(p)])
where Γ.(𝜇 | 𝐴) is universal in an appropriate sense.

Intuitively, q corresponds to tm/var/counit. As mentioned

before, this suffices to model the full variable rule tm/var, as

p, ¤𝛼
−, and q can be used to define it from tm/var/counit.

Modal type structure. The interpretation of the modal

type ⟨𝜇 | −⟩ for a modality 𝜇 : 𝑛 → 𝑚 requires operations

for the formation, introduction, and elimination rules. Just

as with the other connectives, these are a direct transla-

tion of the rules tp/modal, tm/modal-intro, and tm/modal-

elim to the language of CwFs. For example, for every Γ ∈
C[𝑚], 𝐴 ∈ T𝑛 (Jµ𝜇K(Γ)), and 𝑀 ∈ T̃𝑛 (Jµ𝜇K(Γ), 𝐴), we re-

quire mod𝜇 (𝑀) ∈ T̃𝑚 (Γ,Mod𝜇 (𝐴)).
This discussion leads to the following definition.
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sb/lock-id

𝜇 : 𝑛 →𝑚

Γ.µ𝜇 ⊢ id.µ𝜇 = id : Γ.µ𝜇 @𝑛

sb/id-lock

Γ ⊢ 𝛿 : Δ@𝑚

Γ ⊢ 𝛿.µ1 = 𝛿 : Δ@𝑚

sb/lock-compose

𝜇 : 𝑛 →𝑚 Γ0 ⊢ 𝛾1 : Γ1
@𝑚 Γ1 ⊢ 𝛾2 : Γ2

@𝑚

Γ0.µ𝜇 ⊢ (𝛾2 ◦ 𝛾1).µ𝜇 = (𝛾2 .µ𝜇) ◦ (𝛾1.µ𝜇) : Γ2.µ𝜇 @𝑚

sb/compose-lock

𝜇 : 𝑛 →𝑚 𝜈 : 𝑜 → 𝑛 Γ ⊢ 𝛿 : Δ@𝑚

Γ.µ𝜇◦𝜈 ⊢ 𝛿.µ𝜇◦𝜈 = 𝛿.µ𝜇 .µ𝜈 : Δ.µ𝜇◦𝜈 @𝑚

sb/natural

𝜇, 𝜈 : 𝑛 →𝑚 𝛼 : 𝜈 ⇒ 𝜇 Γ ⊢ 𝛿 : Δ@𝑚

Γ.µ𝜇 ⊢ ¤𝛼
Δ ◦ (𝛿.µ𝜇) = (𝛿.µ𝜈 ) ◦¤𝛼

Γ : Δ.µ𝜈 @𝑛

Figure 3. Selection of rules from the equational theory of modal substitutions.

Definition 5.1. A model of MTT is a 2-functor C[−] :

Mcoop → Cat, equipped with the following structure:

• for each𝑚 ∈ M, a CwF (C[𝑚],T𝑚, T̃𝑚) that is closed
under

∏
,

∑
, Id, and U,

• a modal comprehension structure for M on these

CwFs, and

• for each modality 𝜇 : 𝑛 →𝑚, a modal type structure

(Mod𝜇,mod𝜇, open𝜇).

Definition 5.2. A morphism between models 𝐹 : C[−]1 →
C[−]2 is a strict 2-natural transformation such that each

𝐹𝑚 : C[𝑚]1 → C[𝑚]2 is part of a strict CwF morphism [19]

which strictly preserves modal comprehension and types.

We observed in Section 2.3 that modalities in MTT are

weaker than DRAs [14].
3
Since DRAs are often easier to

construct, we make this relation formal.

Theorem 5.3. A 2-functor C[−] :Mcoop → Cat satisfying
the following two conditions induces a model of MTT:

1. for each𝑚 ∈ M, there is a CwF (C[𝑚],T𝑚, T̃𝑚) that is
closed under

∏
,
∑
, Id, and U.

2. for each 𝜇 : 𝑛 →𝑚, Jµ𝜇K : C[𝑚] → C[𝑛] has a DRA.

In practice virtually all the models of MTT that we con-

sider will be constructed by applying Theorem 5.3. We can

also use it to immediately prove consistency:

Corollary 5.4. There is no closed term of type IdB (tt,ff).

Proof. By Theorem 5.3, any model C of MLTT is a valid

model of MTT: send each mode to C, and each modality to

the identity. Therefore, a closed term of type IdB (tt,ff) in
MTT would also be a term of the same type in MLTT. We

may therefore reduce the consistency of MTT to that of a

model of MLTT, and in particular the set-theoretic one. □

5.1 Canonicity
We can now use MTT models to prove canonicity via glu-

ing. Canonicity is an important metatheoretic result: it es-

tablishes the computational adequacy of MTT by ensuring

that every closed term already is in or is equal to a canon-
ical form—a value. Canonicity is traditionally established

3
While Birkedal et al. [14] only consider endofunctors, there is no obstacle

to extending the definition of a DRA to different categories.

through a logical relation [46, 69]. However, this method be-

comes very complicated when we have universes, as their

presence makes the definition by induction on types impos-

sible. It is instead necessary to construct a (large) relation

on types, which associates a pair of types with a PER; the

logical relation on terms is then subordinated to this relation

on types [4, 6]. This technique requires significant effort, and

involves many proofs by simultaneous induction.

This approach can be simplified by replacing proof-irrelevant

logical relations by a proof-relevant gluing construction [49].

This leads to the construction of a model in which (a) types

are paired with proof-relevant predicates and (b) terms are

equivalence classes of syntactic terms, along with a (type-

determined) proof of their canonicity. The proof-relevance

is crucial in the case of the universe, which contains not just

the canonicity data for 𝐴 : U but also the predicate for El(𝐴).
In order to simplify the construction of the glued model,

we add an additional definitional equality toMTT, namely

·.µ𝜇 = · ctx @𝑚. This equation is satisfied by all the con-

crete examples described in Section 6. Semantically, it states

that the functors Jµ𝜇K strictly preserve the chosen terminal

objects. Without this assumption we would have to establish

canonicity not just for terms in the empty context, but for

terms in a locked empty context, i.e. of the form ·.µ𝜇 . This

would semantically correspond to gluing along the nerve of

the inclusion of locked empty contexts into the categories

of contexts. This situation is comparable to that of proving

canonicity for cubical type theories, where it is necessary to

consider terms with open dimension variables [7, 35]. How-

ever, the attendant glued model is complex, so we restrict

this discussion to this simpler and more common case.

The full details of the glued model can be found in the

technical report. Once we construct it, the initiality of syn-

tax [18, 38] provides a witness of canonicity for every term.

Theorem 5.5 (Canonicity). If we extendMTT with the def-
initional equality ·.µ𝜇 = · ctx @𝑚 for all modalities 𝜇, for
every closed term · ⊢ 𝑀 : 𝐴@𝑚 the following conditions hold:

• If 𝐴 = B, then · ⊢ 𝑀 = ¯𝑏 : B@𝑚 where ¯𝑏 ∈ {tt,ff}.
• If 𝐴 = Id𝐴0

(𝑁0, 𝑁1) then · ⊢ 𝑁0 = 𝑁1 : 𝐴0
@𝑚 and

· ⊢ 𝑀 = refl(𝑁0) : Id𝐴0
(𝑁0, 𝑁1)@𝑚.

• If 𝐴 = ⟨𝜇 | 𝐴0⟩ then there is a term · ⊢ 𝑁 : 𝐴0
@𝑛 such

that · ⊢ 𝑀 = mod𝜇 (𝑁 ) : ⟨𝜇 | 𝐴0⟩@𝑚.
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6 Applying MTT
We will now show concretely how MTT can be used in spe-

cific modal situations by varying the mode theory.Wewill fo-

cus on two different examples: guarded recursion [16, 21, 51],

which captures productive recursive definitions through a

combination of modalities, and adjoint modalities [43, 44, 61,
67, 71], where two modalities form an adjunction internal to

the type theory. In both cases we will show how to recon-

struct examples from op. cit. in MTT. The case of guarded
recursion is particularly noteworthy, as the specialization of

MTT to the appropriate mode theory leads to a new syntax

which is considerably simpler than previous work.

6.1 Guarded Recursion
The key idea of guarded recursion [51] is to use the later
modality (�) tomark datawhichmay only be used after some

progress has been made, thereby enforcing productivity at

the level of types. Concretely, the later modality is equipped

with three basic operations:

next : 𝐴→ �𝐴 (⊛) : �(𝐴→ 𝐵) → �𝐴→ �𝐵

löb : (�𝐴→ 𝐴) → 𝐴

The first two operators make � into an applicative func-

tor [48] while the third, which is known as Löb induction,

encodes guarded recursion: it enables us to define a term

recursively, provided the recursion is provably productive.

The perennial example is, of course, the guarded stream

type Str𝐴 � 𝐴×�Str𝐴. This recursive type requires that the
head of the stream is immediately available, but the tail may

only be accessed after some productive work has taken place.

This allows us to e.g. construct an infinite stream of ones:

inf_stream_of_ones ≜ löb(𝑠 . cons(1, 𝑠))
However, Str𝐴 does not behave like a coinductive type: we

may only define causal operations on streams, which ex-

cludes commonplace operations such as tail. In order to

regain coinductive behavior, Clouston et al. [21] introduced

a modality 2 (‘always’), an idempotent comonad for which

2�𝐴 ≃ 2𝐴. (∗)
Combining this modality with � has proved rather tricky:

previous work has used delayed substitutions [16], or has
replaced 2 with clock quantification [8, 10, 17, 50]. The for-

mer poses serious implementation issues, and—while more

flexible—the latter does not enjoy the conceptual simplicity

of a single modality. In contrast, MTT enables us to effort-

lessly combine the two modalities and satisfy Eq. (∗).
To encode guarded recursion inside MTT, we must

1. choose a mode theory which induces an applicative

functor � and a comonad 2 satisfying Eq. (∗),
2. construct the intended model ofMTT with this mode

theory, i.e. a model where these modalities are inter-

preted in the standard way [15], and

𝑡 𝑠ℓ

𝛿

𝛾

𝛿 ◦ 𝛾 ≤ 1 1 = 𝛾 ◦ 𝛿
1 ≤ ℓ 𝛾 = 𝛾 ◦ ℓ

Figure 4.M𝑔: a mode theory for guarded recursion.

3. include Löb induction as an axiom.

To begin, we defineM𝑔 to be the mode theory generated

by Fig. 4. We require that M𝑔 is poset-enriched, i.e. that

there is at most one 2-cell between a pair of modalities, 𝜇, 𝜈 ,

which we denote 𝜇 ≤ 𝜈 when it exists. AsM𝑔 is not a full

2-category, we do not need to state any coherence equations

between 2-cells.

Unlike prior guarded type theories, Fig. 4 has two modes.
We will think of elements of 𝑠 as being constant types and
terms, while types in 𝑡 may vary over time. The reason for

enforcing this division will become apparent in Theorem 6.3,

but for now observe that we can construct an idempotent

comonad 𝑏 ≜ 𝛿 ◦ 𝛾 .

Lemma 6.1. ⟨𝑏 | −⟩ is an idempotent comonad and ⟨ℓ | −⟩
is an applicative functor.

Proof. Follows from the combinators in Section 3. □

Next, Eq. (∗), which was hard to force in previous type

theories, is provable: as 𝛾 ◦ ℓ = 𝛾 the combinator comp
𝑏,ℓ

from Section 3.1 has the appropriate type:

comp
𝑏,ℓ

: ⟨𝑏 | ⟨ℓ | 𝐴⟩⟩ ≃ ⟨𝑏 ◦ ℓ | 𝐴⟩ = ⟨𝑏 | 𝐴⟩
In order to construct the intended model, recall that the stan-

dard interpretation of guarded type theory uses the topos of
trees PSh (𝜔): see Birkedal et al. [15] for a thorough discus-

sion. Crucially, it is easy to see that 2 = Δ ◦ Γ, where
Γ : PSh (𝜔) → Set Δ : Set→ PSh (𝜔)
Γ ≜ 𝑋 ↦→ Hom (1, 𝑋 ) Δ ≜ 𝑆 ↦→ 𝜆_. 𝑆

As both Set and PSh (𝜔) are models of MLTT [15, 34], we

may use Theorem 5.3 to construct the intended model.

Theorem 6.2. There exists a model of MTT with this mode
theory where ⟨𝑏 | −⟩ is interpreted as 2 and ⟨ℓ | −⟩ as �.

Proof. We construct the 2-functor which sends 𝑠 ↦→ Set and
𝑡 ↦→ PSh (𝜔). We define JµℓK, Jµ𝛿K, and Jµ𝛾 K to be the left

adjoints of �, Δ, and Γ respectively [14, 53]. □

From this point onwards we will write � ≜ ⟨ℓ | −⟩, Δ ≜
⟨𝛿 | −⟩, and 2 ≜ ⟨𝛿 ◦ 𝛾 | −⟩.
The only thing that remains is to add Löb induction. This

is a modality-specific operation that cannot be expressed in

the mode theory, so we must add it as an axiom: see Fig. 5

for the precise formulation. Unfortunately, the addition of an

axiom means that the canonicity theorem no longer applies.
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tm/lob

Γ, 𝑥 : (ℓ | 𝐴1≤ℓ ) ⊢ 𝑀 : 𝐴@ 𝑡

Γ ⊢ löb(𝑥 . 𝑀) : 𝐴@ 𝑡

tm/lob-beta

Γ, 𝑥 : (ℓ | 𝐴1≤ℓ ) ⊢ 𝑀 : 𝐴@ 𝑡

Γ ⊢ löb(𝑥 . 𝑀) = let modℓ (𝑥) ← next(löb(𝑥 . 𝑀)) in𝑀 : 𝐴@ 𝑡

Figure 5. Axiomatization of Löb induction inMTT

However, adding it to the type theory is sound, as the model

supports it. At this point we may as well assume equality
reflection [36], as is commonplace in previous guarded type

theories [16]. This is stronger than necessary (function ex-

tensionality would suffice), but it simplifies proofs andmakes

comparison to previous work more direct.

Programming with Guarded MTT. We can now use

MTT to program with and reason about guarded recursion.

For instance, we can define coinductive streams:

Str : U→ U @ 𝑠

Str(𝐴) ≜ Γ(löb(𝑆. Δ(𝐴) ×�𝑆))
Unlike prior guarded type theories, we have defined this

stream operator not in mode 𝑡 , which represents PSh (𝜔),
but in mode 𝑠 , which represents Set. Accordingly, this def-
inition does not use 2. It first uses Δ to convert 𝐴 to a 𝑡-

type, and then Γ to move the recursive definition back to 𝑠 .

This alleviates some bookkeeping: in previous work [16] the

stream type was coinductive only if 𝐴 was a constant type

(i.e. 𝐴 ≃ 2𝐴). Accordingly, theorems about streams had to

pass around proofs that the type of elements of the stream

is constant. In our case, defining Str at mode 𝑠 automatically

ensures that. Hence, Str(𝐴) is equivalent to the familiar defi-

nition, but it is no longer necessary to carry through proofs

of constancy. Therefore, for any 𝐴 : U@ 𝑠 we have

Theorem 6.3. Str(𝐴) is the final coalgebra for 𝑆 ↦→ 𝐴 × 𝑆 in
mode 𝑠 .

We can also program with Str(𝐴) by more directly appeal-

ing to the underlying guarded structure. For instance, we can

define a ‘zip with’ function. Let Str′
𝐴
= löb(𝑆. Δ(𝐴) × �𝑆)

and write 𝑧ℎ and 𝑧𝑡 for pr0
(𝑧) and pr

1
(𝑧) respectively:

go : Δ(𝐴→ 𝐵 → 𝐶) → Str′
𝐴
→ Str′

𝐵
→ Str′

𝐶

go(𝑓 ) ≜ löb(𝑟 . 𝜆𝑥,𝑦. (𝑓 ⊛𝛿 𝑥ℎ ⊛𝛿 𝑦ℎ,modℓ (𝑟 ) ⊛ℓ 𝑥𝑡 ⊛ℓ 𝑦𝑡 ))

zipWith : (𝐴→ 𝐵 → 𝐶) → Str(𝐴) → Str(𝐵) → Str(𝐶)
zipWith(𝑓 ) ≜ 𝜆𝑥,𝑦. mod𝛾 (go(mod𝛿 (𝑓 ))) ⊛𝛾 𝑥 ⊛𝛾 𝑦
where ⊛𝜇 is defined in Section 3.1.

We can also use dependent types to reason about guarded

recursive programs. For example:

Theorem 6.4. If 𝑓 is commutative then zipWith(𝑓 ) is com-
mutative. That is, given 𝐴, 𝐵 : U and 𝑓 : 𝐴→ 𝐴→ 𝐵 there is

𝑛 𝑚

𝜂 : 1⇒ 𝜇 ◦ 𝜈
𝜖 : 𝜈 ◦ 𝜇 ⇒ 1

1𝜇 = (1𝜇 ★ 𝜖) ◦ (𝜂 ★ 1𝜇)
1𝜈 = (𝜖★1𝜈 ) ◦ (1𝜈 ★𝜂)𝜈

𝜇

Figure 6.Madj: a mode theory for adjunctions

a term of the following type:

((𝑎0,𝑎1 : 𝐴) → Id (𝑓 (𝑎0, 𝑎1), 𝑓 (𝑎1, 𝑎0))) →
(𝑠0, 𝑠1 : Str(𝐴)) → Id (zipWith(𝑓 , 𝑠0, 𝑠1), zipWith(𝑓 , 𝑠1, 𝑠0))

All things considered, instantiatingMTT withM𝑔 yields

a highly expressive guarded dependent type theory with

coinductive types. Unlike prior systems, e.g.that of Bahr et al.

[10], we do not need clock variables or syntactic checks of

constancy. Moreover, the syntax is more robust than previous

work that combines 2 and � [16, 21], as there is no need for

delayed substitutions. Unfortunately, the addition of the Löb

axiom means our canonicity theorem (Theorem 5.5) does

not apply, but the syntax remains sound and tractable.

6.2 Internal Adjunctions
We have by now considered many poset-enriched mode the-

ories, i.e. ones where there is at most one 2-cell between

any pair of modalities. This has worked well for describing

strict structures (Section 3.2), as well as some specific set-

tings (Section 6.1). However, we would like to use MTT to

reason about less strict categorical models. In this section

we will show that we can readily useMTT to reason about a

pair 𝜈 ⊣ 𝜇 of adjoint modalities.

Adjoint modalities are common in modal type theory,

much in the same way that adjunctions are ubiquitous in

mathematics [42–44, 61, 67]. For example, the adjunction

𝛿 ⊣ 𝛾 played an important role in the previous section. How-

ever, that particular case is unusually well-behaved, as it

arises from a Galois connection. In contrast, the behavior of

general adjoint modalities is much more subtle. We will show

that by instantiating MTT with a particular mode theory we

can internally prove many properties of adjoint modalities

that have previously been established only in special cases.

To begin, we pick thewalking adjunction [63] for our mode

theory, i.e. the 2-category generated by Fig. 6. This mode

theory is the classifying 2-category for internal adjunctions:

every 2-functorMadj
coop ≃ Madj → Cat determines a pair

of adjoint functors, and vice versa. Consequently, substitu-

tionsΔ→ Γ.µ𝜇 are in bijectionwith substitutionsΔ.µ𝜈 → Γ.
However, this is not enough on its own: we must also show

that ⟨𝜈 | −⟩ and ⟨𝜇 | −⟩ form an adjunction inside MTT.
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Recovering the adjunction in MTT. We can construct

the unit and counit internally:

unit : 𝐴→ ⟨𝜇 | ⟨𝜈 | 𝐴𝜂⟩⟩ counit : ⟨𝜈 | ⟨𝜇 | 𝐴⟩⟩ → 𝐴𝜖

unit(𝑥) ≜ mod𝜇 (mod𝜈 (𝑥𝜂))
counit(𝑥) ≜ let mod𝜈 (𝑦0) ← 𝑥 in let𝜈 mod𝜇 (𝑦1) ← 𝑦0 in 𝑦𝜖1

In order to account for dependence wemust adjust the type𝐴

by a 2-cell. For example, in the definition of unit we assume

Γ ⊢ 𝐴 type
1

@𝑚, so ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩ is ill-typed. We can,

however, obtain a version of 𝐴 that is typable in the context

Γ,µ𝜇◦𝜈 by applying (−)𝜂 to it, as in tm/var.

We can prove that these two operations form an adjunc-

tion by showing they satisfy the triangle identities, e.g.

_ : (𝑥 : ⟨𝜈 | 𝐴⟩) → Id⟨𝜈 |𝐴⟩ (𝑥, counit(mod𝜈 (unit) ⊛𝜈 𝑥))
_ ≜ 𝜆𝑥. let mod𝜈 (𝑦) ← 𝑥 in refl(mod𝜈 (𝑦))

This proof relies on the fact that the modalities 𝜈 and 𝜇 satisfy

the triangle identities themselves inMadj.

The existence of the unit and counit is enough to inter-

nally determine an adjunction. We might want to use an

alternative description, e.g. to manipulate a natural bijection

of hom-sets, Hom (𝐿(𝐴), 𝐵) � Hom (𝐴, 𝑅(𝐵)).
Unfortunately, this isomorphism cannot be recovered in-

ternally. First, notice that ⟨𝜈 | 𝐴⟩ → 𝐵 and 𝐴 → ⟨𝜇 | 𝐵⟩
are types in different modes—𝑛 and𝑚 respectively—so (⟨𝜈 |
𝐴⟩ → 𝐵) ≃ (𝐴 → ⟨𝜇 | 𝐵⟩) is ill-typed. Second, even if

𝑛 = 𝑚 so that 𝜈 and 𝜇 are endomodalities and this equiv-

alence is well-typed, an internal equivalence is a stronger

condition than a bijection of hom-sets: it is equivalent to an

isomorphism of exponential objects 𝐵𝐿 (𝐴) � 𝑅(𝐵)𝐴.
Prior work [42] addressed this by introducing a third

modality2, such that terms of2𝐴 represent global elements

of 𝐴, and then requiring transposition only for functions un-

der2. Global elements of𝐵𝐴 are in bijectionwithHom (𝐴, 𝐵),
so the postulated equivalence corresponds to the expected

bijection. We can rephrase this argument in MTT. Suppose
that 𝑛 = 𝑚, and that Hom (𝑚,𝑚) is equipped with an ini-

tial object, i.e. a modality 𝜏 : 𝑚 → 𝑚 and a unique 2-cell

! : 𝜏 → 𝜉 for all 𝜉 . Then,

Theorem 6.5. The following equivalence is definable inMTT:
⟨𝜏 | ⟨𝜈 | 𝐴!⟩ → 𝐵⟩ ≃ ⟨𝜏 | 𝐴→ ⟨𝜇 | 𝐵!⟩⟩.

In fact, because modalities inMTT preserve finite products
(a consequence of ⊛𝜈 ), an alternative phrasing of transposi-

tion is possible.

Theorem 6.6. The following equivalence is definable inMTT:
⟨𝜇 | ⟨𝜈 | 𝐴𝜂⟩ → 𝐵⟩ ≃ 𝐴→ ⟨𝜇 | 𝐵⟩.

Crisp induction for the left adjoint. Many classical re-

sults about adjunctions can be replayed inside MTT. For
instance, by carrying out a proof that left adjoints preserve

colimits we recovermodal or crisp induction principles for the
left adjoint 𝜈 [43, 67]. We can then show e.g. that ⟨𝜈 | B⟩ ≃ B.

However, in order to construct this equivalence it will be

convenient to formulate an induction principle for ⟨𝜈 | B⟩.
Supposing that Γ,µ𝜈◦𝜇 ⊢ 𝐶 : ⟨𝜈 | B⟩ → U@𝑚, we can

define a term

if𝜈𝐶 : ⟨𝜈 ◦ 𝜇 | 𝐶 (mod𝜈 (tt))⟩ → ⟨𝜈 ◦ 𝜇 | 𝐶 (mod𝜈 (ff))⟩
→ (𝑏 : ⟨𝜈 | B⟩) → 𝐶𝜖 (𝑏)

This is a version of the conditional that operates on ⟨𝜈 | B⟩
rather thanB. In fact, more is possible: in the technical report

we prove that if𝜈 can be constructed for any𝐶 , not just small

types. Using this stronger induction principle, we can show

Theorem 6.7. ⟨𝜈 | B⟩ ≃ B

We can similarly prove that 𝜈 preserves identity types.

Theorem 6.8. There is a type-theoretic equivalence

⟨𝜈 | Id𝐴 (𝑀, 𝑁 )⟩ ≃ Id⟨𝜈 |𝐴⟩ (mod𝜈 (𝑀),mod𝜈 (𝑁 ))

This instantiation of MTT withMadj yields a systematic

treatment of an internal transposition axiom [42], and is suf-

ficiently expressive to derive crisp induction principles [67].

In both cases we can useMTT instead of a handcrafted modal

type theory. Note that we have not needed the addition of

any new axioms, so our canonicity result applies.

6.3 Further Examples
In addition to the examples described above, we have applied

MTT to a wide variety of other situations, including

• parametricity, via degrees of relatedness [54],

• synchronous and guarded programmingwithwarps [33],

• finer grained notions of realizability and local maps of

categories of assemblies [13].

While interesting, we cannot discuss the details of these

applications here for want of space. We invite the interested

reader to consult the accompanying technical report.

7 Related Work
MTT is related to many prior modal type theories. In partic-

ular, its formulation draws on three important techniques:

split contexts, left division, and the Fitch style.

Split-context type theories [26, 27, 39, 52, 58, 59, 67, 71] di-

vide the context into different zones—one for each modality—

which are then manipulated by modal connectives. This has

proven to be an effective approach for a number of modali-

ties, and sometimes even scales to full dependent type theo-

ries [27, 67, 71]. However, the structure of contexts becomes

very complex as the number of modalities increases.

In order to manage this complexity, some modal type the-

ories employ left-division: each variable declaration in the

context is annotated with a modality, and a left-division op-
eration, which is a left adjoint to post-composition of modal-

ities,
4
is used to state the introduction rules [1–3, 54, 55, 57].

4
Since composition may be understood as a multiplication operation, this

left adjoint behaves like division: 𝜇 ≤ 𝜈𝜉 ⇐⇒ 𝜈\𝜇 ≤ 𝜉 .
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Left-division calculi handle multiple modalities and support

full dependent types, but many important modal situations

cannot be equipped with a left-division structure.

Another technique stipulates that modalities are essen-

tially right adjoints, with the corresponding left adjoints

being constructors on contexts. These Fitch-style type theo-
ries [10, 11, 14, 20, 30] are relatively simple, which has made

them convenient for programming applications [11, 30]. Nev-

ertheless, scaling this approach to a multimodal setting has

proven difficult. In particular, extending the original elimina-

tion rule to a multimodal setting remains an open problem.

MTT synthesizes these approaches by including both Fitch-
style locks and left-division-style annotations in its judgmen-

tal structure. The combination of these devices circumvents

many previously encountered difficulties. For example, this

combination obviates the need for a left division operation, as

MTT uses a Fitch-style introduction rule. On the other hand,

the left-division-style elimination rule of MTT smoothly

accommodates multiple interacting modalities.

Most prior work on modal type theory has focused on

incorporating a specific collection of modalities. The sole

exception is the LSR framework of Licata et al. [44]. The LSR

framework supports an arbitrary collection of substructural

modalities over simple types, and there is ongoing work on a

dependently-typed system. The price to pay for this expres-

sivity is practicality: the modal connectives require delayed
substitutions [12, 16], which complicate the equational the-

ory, and make pen-and-paper calculations cumbersome. The

relationship between the modalities of MTT and those of the

LSR framework is not clear. The introduction rule tm/modal-

intro mirrors the introduction rule for𝑈 types. This is to be

expected, as𝑈 types behave like right adjoints. On the other

hand, the elimination rule tm/modal-elim/single-modality

does not match the rule for 𝑈 types, but instead is closer to

the elimination rule for 𝐹 types. In fact, this is a necessary

compromise to avoid the introduction of delayed substitu-

tions. In op. cit. the elimination rule for 𝑈 types and the

introduction rule for 𝐹 types both require annotation with a

substitution to bring the context into a specific shape.MTT
avoids this by by mixing these two styles of presentation.

8 Conclusions & Future Work
We introduced and studiedMTT, a dependent type theory
parametrized by a mode theory that describes interacting

modalities. We have demonstrated thatMTT may be used to

reason about several important modal settings, and proven

basic metatheorems about its syntax, including canonicity.

In the future we plan to further develop the metatheory

of MTT. In addition to extending our canonicity result to

remove the restriction that locks preserve the empty context,

we hope to prove thatMTT enjoys normalization, and hence

that type-checking is decidable (provided themode theory is).

Both of these theorems can be proven by gluing arguments

similar to that discussed in Section 5.1 by gluing along the

appropriate nerves. The latter result would pave the way to

a practical implementation of a multimodal proof assistant.

Presently MTT only supports modalities which behave

like right adjoints. While this covers a wide class of exam-

ples, many modalities are instead left adjoints. We hope to

extend MTT to allow left adjoints to act on types instead of

merely contexts while retaining its practical syntax. Simi-

larly, we also hope to extend our analysis to some class of

modality-specific operations, e.g. Löb induction. These oper-
ations cannot be captured by a mode theory, and so can only

be added axiomatically to MTT (as was done in Section 6.1),

thus invalidating some of our metatheorems. However, such

operations play an important role in many applications, and

should be accounted for in a systematic way.
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