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Abstract
In the replacement paths (RP ) problem we are given a graph G and a shortest path P between
two nodes s and t 1. The goal is to find for every edge e ∈ P , a shortest path from s to t that
avoids e. The first result of this paper is a simple reduction from the RP problem to the problem of
computing shortest cycles for all nodes on a shortest path.

Using this simple reduction we unify and extremely simplify two state of the art solutions for
two different well-studied variants of the RP problem.

In the first variant (algebraic) we show that by using at most n queries to the Yuster-Zwick
distance oracle [FOCS 2005], one can solve the the RP problem for a given directed graph with
integer edge weights in the range [−M,M ] in Õ (Mnω) time 2 3 . This improves the running time
of the state of the art algorithm of Vassilevska Williams [SODA 2011] by a factor of log6 n.

In the second variant (planar) we show that by using the algorithm of Klein for the multiple-
source shortest paths problem (MSSP ) [SODA 2005] one can solve the RP problem for directed
planar graph with non negative edge weights in O (n logn) time. This matches the state of the art
algorithm of Wulff-Nilsen [SODA 2010], but with arguably much simpler algorithm and analysis.
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1 Introduction

The replacement paths problem is defined as follows. We are given a graph G and a shortest
path P connecting two nodes s and t. The problem is to find for every edge e ∈ P a shortest
path from s to t in the graph (V,E\e). As in previous works, we focus on computing the
lengths of the replacement paths instead of the paths itself. Our results can be modified to
return the paths as well.

1 For the rest of this paper we assume G = (V,E), n = |V |, m = |E|.
2 ω denotes the matrix multiplication exponent (ω < 2.373).
3 The Õ notation suppresses polylogarithmic factors.
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29:2 Replacement Paths in Weighted Directed Graphs

The motivation for studying replacement paths is rooted in the fact that real-world
graphs are vulnerable and are subject to nodes and links failures and having backup paths
is a desirable property. Replacement paths are also well motivated by other important
applications. One application stems from auction theory, where we use replacement paths to
compute the Vickrey pricing of edges owned by selfish agents [15, 7]. In addition, Replacement
paths are also used to compute the k shortest simple paths between two given vertices, as
one can compute the k shortest simple paths by k calls to the replacement paths algorithm.
The k shortest simple paths has many applications in and of itself [4].

1.1 Upper bounds
For undirected graphs with arbitrary (non negative) edge weights, Malik et al. [12] gave an
O(m+n logn) algorithm; Nardelli et al. [14] later improve the running time to O(mα(m,n))4
in the Word RAM model for positive edge weights. For directed graphs with arbitrary edge
weights (possibly negative), Gotthilf and Lewenstein [5] gave anO(mn+n2 log logn) algorithm.
For unweighted directed graphs, Roditty and Zwick [16] gave a randomized combinatorial
algorithm that solves the problem in Õ(m

√
n) time. For directed graphs with integer edge

weights in the range [−M,M ], Weimann and Yuster [17] obtain a randomized algorithm
that runs in Õ(Mn1+ 2

3ω) time. Vassilevska Williams [18] improved the latter by giving a
randomized algorithm that runs in Õ(Mnω) time for w > 2 and in O(Mnω+ε) time for any
ε > 0 for ω = 2. The replacement paths problem was also studied for special family of graphs.
For planar directed graphs with non negative edge weights, Emek, Peleg, and Roditty [3]
obtain a recursive algorithm that runs in O(n log3 n) time. Klein, Mozes, and Weimann [10]
improve the running time to O(n log2 n). At last, Wulff-Nilsen [20] improved the latter by
giving an O(n logn) time algorithm.

1.2 Lower bounds
Hershberger et al. [8] showed a Ω(m

√
n) time lower bound for the replacement paths problem

for directed graphs with non negative edge weights, in the path − comparison model of
Karger et al [9]. Vassilevska-Williams and Williams [19] showed that the replacement paths
problem in directed graphs with arbitrary edge weights is equivalent to the all pairs shortest
paths problem (APSP), under subcubic reductions. Agarwal and Ramachandran [1] showed
that the All-Nodes Shortest Cycles problem (ANSC) for directed graph with arbitrary edge
weights, in which we are required to find for every node a shortest cycle containing it, is
at least as hard as computing the replacement paths problem in directed graphs. This
reduction can be used to solve the replacement paths problem using an oracle to the ANSC
problem. However, the reduction does not preserve the range of the weights. That is, the
reduction they present increases the weights of the graph by a factor of n. This means that
the reduction is not applicable in the algebraic variant, as it would lead to a Õ ((Mn)nω)
solution. Moreover, the reduction does not preserve planarity, and therefore is not applicable
in the planar variant as well.

1.3 Our result
The first result of this paper is a simple linear time reduction from the RP problem to
the problem of computing shortest cycles for all nodes on a shortest path. The reduction
maps the graph G into a new graph Gr with the following properties; The mapping from

4 α(m,n) is the functional inverse of the Ackermann function.
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G to Gr is invertible and is the inverse of itself. i.e. (Gr)r = G. The reduction preserves
the range of the edge weights i.e. if G has integer weights in the range [−M,M ] then
so does Gr. The reduction preserves planarity i.e. if G is planar then so does Gr. The
first property implies that the problem of computing shortest cycles for all nodes on a
shortest path is equivalent to the RP problem. The second property enable us to solve
the RP problem for directed graphs with integer edge weights in the range [−M,M ] in
O(PreprocessA(n,m,M) + n · QueryA(n,m,M)) time, where A is a distance oracle. In
particular, using Yuster-Zwick distance oracle, we solve the problem in deterministic Õ(Mnω)
time. Vassilevska Williams solved the problem using few techniques such as; Node sampling,
graph compression and recursion. The running time of Vassilevska Williams’s algorithm
is at least log

ω
ω−2 (n) · PreprocessA (n,m,M). Therefore, when considering polylogarithmic

factors, our algorithm improves the running time of Vassilevska Williams’s algorithm by
a factor of log

ω
ω−2 (n). Hence, for ω < 2.373 we improve the running time by at least a

factor of log6(n). The third property enable us to solve the RP problem for directed planar
graphs with non negative edge weights using an oracle to the MSSP problem. In particular,
using Klein algorithm for the MSSP problem, we solve the problem in O(n logn) time.
The MSSP problem is as follows; Given a planar graph G, and a list of distance queries
from a source to a target, such that all sources share the same face, answer all distance
queries. In fact, our reduction is to a simpler problem than the MSSP problem, that is,
computing at most O(n) distance queries where both the source and the target are on the
given face. Moreover, the boundary of the face consists of two shortest paths. The fact that
our reduction is to a simpler problem than the MSSP problem gives additional insights on
the RP problem that might lead to further improvements.

2 Preliminaries

2.1 General notations
Let G = (V,E) be a directed graph with n vertices and m edges, and let w be a weight
function over E.

Let P be a path in G. We denote by w(P ) the length of the path P which is defined
as the sum of the weights of the edges along P , and by |P | the number of edges in P . We
assume G does not contain negative cycles, hence the distance between every two nodes
u, v ∈ V is well defined and denoted by d(u, v).

Let e ∈ E, we denote by G\e the graph (V,E\{e}), and by de(u, v) the distance from u

to v in the graph G\e.
Path concatenation: Given two paths Ω1 = 〈u, ..., v〉 Ω2 = 〈v, ..., w〉 we denote by Ω1 · Ω2

the concatenation of Ω1 and Ω2.

Path slicing: Given a path Ω = 〈x0, x1, ..., xk〉, we denote by Ω[xi, ..., xj ] for i ≤ j the
subpath of Ω connecting xi to xj .

We denote the set {0, 1, ..., N} by [N ].

2.2 Distance oracle
I Definition 1. Distance product - Let A be an m×n matrix and B an n× p matrix, where
A and B have entries from Z ∪ {∞}. Then their distance product A ? B is an m× p matrix
defined as

(A ? B)ij = min
k∈[n]

Aik +Bkj

ICALP 2020



29:4 Replacement Paths in Weighted Directed Graphs

I Theorem 2 (Alon, Galil and Margalit [2]). One can compute the distance product of two
n× n matrices with entries in [−M,M ] in Õ(Mnω) time.

I Theorem 3 (Yuster-Zwick [21]).Given a directed graph G with edge weights in [−M, ...,M ],
one can compute in Õ(Mnω) time a n× n matrix A, so that the (i, j) entry of the distance
product A ? A is the distance between nodes i and j in G.

By Theorem 3, there exists a distance oracle A with the following preprocessing and query
time; PreprocessA(n,m,M) = Õ(Mnω) and QueryA(n,m,M) = O(n). At the preprocess
step, we compute the matrix A, and we answer a distance query between two nodes, i and j,
by computing the (i, j) entry of A ? A.

2.3 Replacement path
Let G be a weighted directed graph, and let P = 〈v0, ..., vk〉 be a shortest path in G from
s = v0 to t = vk.

We think of the path P = 〈v0, .., vk〉 as going from left to right, so for vi, vj ∈ P whenever
we say vi is to the left (respectively right) of vj we mean i ≤ j (respectively i ≥ j).

I Definition 4. Let D be simple path connecting vi to vj for i < j. We call D a detour
from vi to vj for the path P , if D ∩ P = {vi, vj} and E(D) ∩ E(P ) = ∅ (note that we need
the second requirement for the case that j = i+ 1).

Let D be a detour for the path P , connecting vi to vj . We denote by Prefix(P,D) the path
P [v0, ..., vi] , by Suffix(P,D) the path P [vj , ..., vk], and by S(P,D) (S for segment) the
path P [vi, ...., vj ]. We say the detour D is skipping e = (u, v) if vi is to the left of u and vj
is to the right of v.

When P is clear from the context we abbreviate Prefix(P,D) and simply write Prefix(D)
instead, and similarly for Suffix(D) and S(D).

Figure 1 Partition of the path P , with respect to a detour D, into Prefix(D), S(D) and
Suffix(D).

The following Lemma is folklore.

I Lemma 5. Let P be a shortest path in G connecting two nodes s, t ∈ V , and let e ∈
P . Suppose t is reachable from s in G\e, then there exists a detour D skipping e s.t.
Prefix(D)·D·Suffix(D) is a shortest path from s to t in G\e.

In the next section we present the idea of reducing the RP problem to the problem of
computing shortest cycles for all nodes on a shortest path. The results of this section are
applicable for both the algebraic variant and the planar variant as well. In Section 4 we
focus on directed graphs with integer weights in the range [−M,M ], and in section 5 we
focus on directed planar graphs with non negative weights.
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3 Replacement paths in weighted directed graphs

Let s, t ∈ V , and P = 〈v0 = s, v1, ..., vk = t〉 be a shortest path connecting s to t in G.
We first start with two simple observations.

Observation 1. Let D be a detour of P . If we flip the orientation of P , i.e. replace every edge
e = (u, v) in P , with a new edge er = (v, u), then in the new graph, the concatenation of
D with S(D) forms a directed cycle.

Observation 2. Let e ∈ P , and let D be a detour skipping e. D minimizes w(Prefix(D)) +
w(D) + w(Suffix(D)) if and only if it minimizes w(D) − w(S(D)). This holds, as
P = Prefix(D) · S(D) · Suffix(D).

These two simple observations lead us to consider a new graph where we flip the orientation
of P , and flip the sign of the weights of P . As we prove later, the minimal cycle containing e
in the new graph, corresponds to some detour D skipping e, that minimize the expression
w(D)− w(S(D)). The fact that the weight of the minimal cycle containing e is not smaller
than what we are actually looking for ( min

D skip e
w(D)− w(S(D))), requires some details.

I Definition 6. Let Q = 〈u0, u1, .., uN 〉 be a path in G, we denote by Qr the path
〈uN , ..., u1, u0〉 with new weights wr(ui+1, ui) = −w(ui, ui+1).

In other words, we flip the orientation of Q and flip the sign of it’s weights.

I Definition 7. (See Figure 2 for illustration) Denote by Gr = (V r, Er) the following graph:
V r = V

Er = E ∪ E(P r)\E(P )
and denote by G+ = (V +, E+) the following graph:

V + = V

E+ = E ∪ E(P r)
Finally, let P+ = P ∪ P r

I Remark 8. If there were already edges in the opposite direction of P then we disregard
them. Notice w(v, u) ≥ −w(u, v) (as otherwise we would have a negative cycle), hence after
adding an edge (v, u) with weight of −w(u, v) there is no reason to keep the original weight
of (v, u) when considering shortest paths.

In the following we show that G+ does not contain negative cycles.

Figure 2 An example of transformation of a graph G into Gr and G+.

ICALP 2020



29:6 Replacement Paths in Weighted Directed Graphs

I Lemma 9. Consider the graph G+, and let u, v ∈ P+. The simple path from u to v that
lies in P+ is a shortest path (notice u can be to the left of v, to the right of v, or even equal
to v).

Proof. We first show that there is a shortest path (not necessarily simple) from u to v that
is fully contained in P+. Let P ′ = 〈x0 = u, ...., xN = v〉 be a shortest path connecting u to v
in G+. The proof is by induction on the number of edges of P ′. The base case, |P ′| = 0 is
clear, so we assume |P ′| ≥ 1. If the first edge of P ′ belongs to P+, we can easily continue by
induction over P ′[x1, .., xN ] so we assume otherwise. Let xi ∈ P ′ be the first vertex except
x0 itself that belongs to P (xi might be equal to xN ). We partition P ′ into two paths,
P ′1 = P ′[x1, .., xi] P ′2 = P ′[xi, .., xN ]. Notice that the edges of P ′1 are not in P+ (hence the
edges of P ′1 belong to E). We separate to two cases:
1. xi is to the right of x0. In that case we replace P ′1 with the path P1 := P [x0, ..., xi].

w(P ′1) ≥ d(x0, xi) = w(P [x0, ..., xi]), where the first inequality follows as P ′1 is edge
disjoint from P+ and therefore is contained in G.

2. xi is to the left of x0. In that case we replace P ′1 with the path P1 := P r[x0, ..., xi].

Notice P [xi, ..., x0] · P ′1 is a cycle in G hence its weight is non negative, so we have the
following:

w(P ′1) + w(P [xi, ..., x0]) ≥ 0 =⇒ w(P ′1) ≥ −w(P [xi, ..., x0]) = wr(P r[x0, ..., xi]).
Therefore we can replace P ′1 with P1 without increasing the total weight of P ′. By the

induction hypothesis we can replace P ′2 with a path P2 that lies in P+ without increasing
the total weight of P ′. The concatenation of the paths P1 and P2 is a path from u to v that
lies entirely in P+ and it’s length is at most w(P ′).

Finally, notice we can assume the shortest path from u to v that lies in P+, lies entirely
in P or entirely in P r, depending if u is to the left or to the right of v (there is no reason to
go left and right over the same edge as the weights will cancel each other). J

I Corollary 10. The graph G+ does not contain negative cycles (hence Gr as well).

Proof. Let C be a cycle in G+. If C does not contain any vertex in P we are done (since
the cycle C exists in G, and G does not contain negative cycles), so we assume otherwise.
Let v ∈ C ∩ P . Note that C is a path from v to itself. By Lemma 9 we can replace C with a
simple path in P+ from v to itself without increasing the cycle weight, that path is simply
〈v〉 with zero weight. J

I Corollary 11. The path P r is a shortest path in the graph Gr.

Proof. By Lemma 9, P r is a shortest path in G+, hence it’s also a shortest path in Gr (Gr
is a subgraph of G+ that contains P r) J

I Lemma 12. Let e = (u, v) ∈ P . Suppose that v is reachable from u in Gr, then there exists
a shortest cycle in Gr containing er of the form D · S(D)r where D is a detour skipping e.

Proof. Let C = 〈x0, ..., xN 〉 be a minimal cycle in Gr containing er s.t. x0 = v, x1 = u and
xN = v.

Let l ∈ [N ] be the largest index s.t. xl ∈ P and xl is to the left of u in P .
Let r ∈ {l + 1, ..., N} (i.e. r is greater than l) be the smallest index s.t. xr ∈ P (notice

it implies that xr is to the right of v in P ). By Corollary 11 we can replace C[x0, ..., xl]
with P r[v, ..., xl] and C[xr, ..., v] with P r[xr, ..., v] without increasing the weight of the cycle.
The middle part D := C[xl, ..., xr] is a detour skipping e, and P r[xr, ..., xl] = S(D)r. Hence
D · S(D)r is a cycle containing er with weight of at most wr(C). J
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Notice the similarity of Lemma 5 and Lemma 12.

I Definition 13. Let e ∈ P . We denote by Ce the shortest cycle in Gr containing er.
Moreover, by Lemma 12 we may assume that Ce is of the form D · S(D)r for some detour D
skipping e. If er is not contained in any cycle in Gr, then Ce is defined as having weight
infinity (we define this to ease notation).

We denote by dr the distance function over Gr.
I Remark 14. For any edge e = (u, v) ∈ P , wr(Ce) = dr(u, v)− w(u, v).

I Theorem 15. For any edge e = (u, v) ∈ P , de(s, t) = w(P ) +wr(Ce) (= w(P )−w(u, v) +
dr(u, v)).

Proof. From Lemma 5 it follows that de(s, t) = min
D skip e

w(Prefix(D))+w(D)+w(Suffix(D))

(where the right expression equals to ∞ if there is no such detour D).
From Lemma 12 it follows that min

D skip e
w(D)− w(S(D)) = min

C contain er
wr(C).

Hence in total we have:
de(s, t) = min

D skip e
w(Prefix(D)) + w(D) + w(Suffix(D)) = w(P ) + min

D skip e
w(D) −

w(S(D)) = w(P ) + min
C contain er

wr(C) = w(P ) + wr(Ce) J

Figure 3 An example of a shortest path in G\(v1, v2) and the corresponding minimal cycle in Gr.

4 Replacement paths in graphs with integer weights

In this section, we aim to solve the replacement paths problem for directed graphs with integer
weights in [−M,M ]. Let A be a distance oracle for directed graphs with integer weights
in [−M,M ]. We let PreprocessA(n,m,M) be the computation time of A to preprocess
the graph and QueryA(n,m,M) be the computation time of A to answer a distance query.
Finally, we denote by dA(u, v) the answer of the oracle A to the query of the distance from
u to v.

I Theorem 16. Let A be a distance oracle for weighted directed graph with integer weights
in [−M,M ]. Then, there is an algorithm for the replacement paths problem that runs in
O(PreprocessA(n,m,M) + n ·QueryA(n,m,M)) time.

Proof. We first compute Gr in linear time. Then we preprocess Gr to compute a distance
oracle A in PreprocessA(n,m,M) time, and finally for every edge e = (u, v) ∈ P we compute
dr(u, v) using the oracle A in QueryA(n,m,M) time, and store de(s, t)← dr(u, v)− w(e) +
w(P ) (= wr(Ce) + w(P )). The number of calls to the distance query is equal to the number
of edges in P which is bounded by n. The correctness of the algorithm follows directly from
Theorem 15. J

ICALP 2020



29:8 Replacement Paths in Weighted Directed Graphs

I Theorem 17. The replacement paths problem for weighted directed graph, with integer
weights in [−M,M ] can be solved in deterministic Õ(Mnω) time.

Proof. We denote byA the distance oracle of Y uster−Zwick (recall Theorem 3). PreprocessA(n,m,M) =
Õ(Mnω) and QueryA(n,m,M) = O(n).

Hence, by Theorem 16 we can solve the replacement paths problem in total time of
Õ(Mnω) +O(n2) = Õ(Mnω). J

Algorithm 1 ReplacementPaths.

1. Input: [G,P, s, t]
2. Compute Gr (for every edge in P , flip its orientation and its sign)
3. Compute a distance oracle A for the graph Gr
4. de(s, t)← dA(u, v)− w(e) + w(P ) for e = (u, v) ∈ P
5. Output: [de(s, t) for e ∈ P ]

5 Replacement paths in planar graphs

In this section we aim to solve the replacement paths problem for directed planar graphs
with non negative edge weights.

I Definition 18 (MSSP problem). Let G be a directed planar graph with arbitrary weights
(possibly negative). Let U = {u1, u2, .., u`} be a set of nodes sharing the same face, T
be a shortest path tree rooted at u1, and L ⊆ U × V be a list of k pairs. The MSSP

(Multiple-source shortest paths) problem is as follows; Given G,T, L, output d (u, v) for all
(u, v) ∈ L.

Let A be an algorithm that solves the MSSP problem. We denote by TA(n, k) the running
time of A to solve the MSSP problem for a graph with n nodes, and a list of k pairs.

I Theorem 19 (Klein [11]). There exists an algorithm A that solves the MSSP problem in
time TA(n, k) = O (n logn+ k logn).

Let e = (u, v) ∈ P . By Theorem 15, de (s, t) = w (P ) + dr (u, v)− w (u, v). That is, in order
to solve the RP problem we need to compute dr (u, v) for every (u, v) ∈ P . We will do so by
invoking the MSSP algorithm. However, there are two slight obstacles with this approach.
The first obstacle is that the nodes of P r are not necessarily belong to the same face. The
second obstacle is that even though the MSSP algorithm can handle negative weights, it
requires a computation of a shortest path tree. The graph Gr contains negative weights,
thus a naive computation of a shortest path tree would be too time consuming, as the best
running time for computing SSSP (single source shortest path) with negative weights in
planar graphs is O

(
n log2 n/ log logn

)
[13]. We will face the first obstacle using a standard

approach of creating a new planar graph, denoted as H1, such that all nodes of P r (more
precisely a copy of them) belong to the same face in H1. For tackling the second obstacle,
notice that the only edges in Gr with negative weights belong to E (P r). We will see how
we can utilize this to compute a shortest path tree rooted at t in time O (n) by creating a
new planar graph, denoted by H2.

I Definition 20. Given three edges e1, e2, e3 ∈ E (Gr) incident with v, we say that e2 is
between e1 and e3 if a counterclockwise traversal of the edges incident with v that begins at
e1 reaches e2 before it reaches e3.
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Let vi ∈ P r\ {s, t}, and let e be an edge incident with vi such that e /∈ E (P r). We say
that e is to the right of P r at vi, if e is between the edge (vi+1, vi) and the edge (vi, vi−1).
Otherwise, we say that e is to the left of P r.

I Definition 21 (See Figure 4 for illustration). We define a new graph, denoted as H1,
obtained from Gr, with the following modifications;

1. For every node vi ∈ {v1, v2, ..., vk−1}, replace vi with two new nodes vli and vri (l for left
and r for right).
Notice that we leave s and t as they are. To ease notations, whenever we write vl0 or vr0 we
actually mean v0 (= s). Similarly whenever we write vlk or vrk we actually mean vk (= t).

2. For every i ∈ [k − 1], x ∈ {l, r}, add an edge
(
vxi+1, v

x
i

)
with weight wr(vi+1, vi).

3. Let v ∈ {v1, v2, ..., vk−1}, and let e be an edge incident with v in Gr such that e /∈ E (P r).
If e is to the left of P r at v, we modify e by substitute v with vl . Otherwise, we modify e
by substitute v with vr.

I Definition 22 (See Figure 4 for illustration). We define a new graph, denoted as H2,
obtained from H1, with the following modifications;

For every i ∈ [k − 1], x ∈ {l, r}, remove the edge
(
vxi+1, v

x
i

)
and add an edge (t, vxi ) with

weight dr (t, vi).

Figure 4 An example of transformation of a planar graph G into Gr,H1 and H2.

I Remark 23. H1 and H2 are planar graphs of size O (n). Moreover, all nodes in the set{
vl0, .., v

l
k, v

r
0, .., v

r
k

}
share the same face in H1.

Let us use the following notation; For every i ∈ [k − 1], x, y ∈ {l, r}, ρxyi = dH1

(
vxi , v

y
i+1

)
.

I Lemma 24. For every i ∈ [k − 1] we have dr(vi, vi+1) = min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
.

Proof. Let Q be a path in H1. We can simulate the path Q in the graph Gr, by replacing
every instance of vli and vri with vi. The resulting path has the same length of Q. In
particular this holds for a path from vxi to vyi+1 for any choice of x, y ∈ {l, r}. Therefore
dr (vi, vi+1) ≤ min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. Let Pi be a shortest path from vi to vi+1 in Gr.

By Lemma 12 we can assume Pi is of the form P r[vi, ..., u] · Duv · P r[v, ..., vi+1], where

ICALP 2020



29:10 Replacement Paths in Weighted Directed Graphs

u ∈ P r is to the left of vi, v ∈ P r is to the right of vi+1, and Duv is a detour from u

to v skipping the edge (vi, vi+1). The first and last edges of Duv can either be to the
left or to the right of P r. Therefore there are four possible cases for the departure and
entrance orientation of Duv with respect to P r. Let x ∈ {l, r} be the orientation of the
first edge of Duv, and y ∈ {l, r} be the orientation of the last edge of Duv. We can
simulate Pi in the graph H1 by replacing all nodes vj ∈ P r[vi, ..., u] with vxj , and all nodes
vj ∈ P r[v, ..., vi+1] with vyj . The resulting path is a path from vxi to vyi+1, and has the
same length of Pi. Therefore dr (vi, vi+1) ≥ ρxyi ≥ min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. It follows that

dr(vi, vi+1) = min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. J

Our current goal is to compute a shortest path tree rooted at t in the graph H1 in O (n)
time.

I Lemma 25. For all v ∈ V (H1) (= V (H2)), dH1 (t, v) = dH2 (t, v).

Proof. For the first direction, let us prove dH1 (t, v) ≤ dH2 (t, v). Let Q2 be a shortest path
from t to v in H2. We can simulate the path Q2 in the graph H1 as follows; If the first edge
of the path Q2 is of the form (t, vxi ), then replace that edge with a path from t to vxi of
length dr (t, vxi ). The rest of the simulated path is identical to Q2. The resulting path has
the same length as Q2. Therefore dH1 (t, v) ≤ w (Q2) = dH2 (t, v). For the second direction,
let us prove that dH2 (t, v) ≤ dH1 (t, v). Let Q1 be a shortest path from t to v in H1. The
path 〈t = vxk , ..., v

x
1 , v

x
0 = s〉 is a shortest path in H1 for x ∈ {l, r}. Let vxi be the last node

in Q1 that belongs to the set
{
vlk, ..., v

l
1, v

l
0, v

r
k, ..., v

r
1, v

r
0
}
. We can simulate the path Q1 in

the graph H2 as follows; Replace the path Q1 [t, ..., vxi ] with a direct edge (t, vxi ), and the
rest of the simulated path is identical to Q1. The resulting path is of the same length as Q1.
Therefore dH2 (t, v) ≤ w (Q1) = dH1 (t, v). It follows that dH1 (t, v) = dH2 (t, v). J

I Theorem 26 (Henzinger, Klein, Rao and Subramanian [6]). Let G be a directed planar graph
with non negative weights, and let s ∈ V (G). One can compute a shortest path tree rooted at
s in O (n) time.

Notice that the only edges with negative weights in H2 are incident with t. Let c0 =
min {dr (t, vi) | i ∈ [k − 1]}. We modify H2 by increasing the weights of all edges going out
from t by −c0. The modified graph is a planar graph with non negative weights. Therefore
by Theorem 26, we can compute a shortest path tree rooted at t, denoted as T2, in the
modified graph in O (n) time. T2 is a shortest path tree for the graph H2.

Next we show how to modify T2 to a shortest path tree in the graph H1.

I Definition 27. Let A =
{(
vxi+1, v

x
i

)
| i ∈ [k − 1] , x ∈ {l, r}

}
. We define a new tree, denoted

as T1, obtained from T2, with the following modifications;
For every edge e = (u, v) ∈ A, remove the edge (p (v) , v) from T2, and insert the edge

(u, v) with weight dr (u, v) to T2, where p (v) is the parent of v in T2.

Note that for every node vxi for x ∈ {l, r}, the shortest path from t to vxi in T1 is of the same
length as in T2. By Lemma 25, we conclude that T1 is a shortest path tree in H1.

I Corollary 28. One can compute a shortest path tree T1 rooted at t in H1 in O (n) time.

I Theorem 29. Let G be a directed planar graph with non negative weights. Let A be an
algorithm that solves the MSSP problem on a graph with n nodes, and a list of k pairs, in
time TA (n, k). Then, there is an algorithm that solves the replacement paths problem on G,
that runs in O (TA (2n, 4n)) time.
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Proof. By Corollary 28, we can compute H1 and T1 in O (n) time.
Let L1 =

〈(
vxi , v

y
i+1

)
|i ∈ [k − 1], x ∈ {l, r}

〉
be a list of 4k pairs. By invoking A with

(H1, T1, L1) as an input, we have computed ρxyi = dH1

(
vxi , v

y
i+1

)
for all i ∈ [k− 1], x ∈ {l, r},

in TA (2n, 4n) time. Let e = (vi, vi+1) ∈ P . By Theorem 15, de (s, t) = w (P ) − w (e) +
dr (vi, vi+1). By Lemma 24, dr (vi, vi+1) = min

{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. Thus for every edge e =

(vi, vi+1) ∈ P , we store de (s, t)← w (P )− w (e) + min
{
ρlli , ρ

lr
i , ρ

rl
i , ρ

rr
i

}
. The total running

time to solve the replacement paths problem is O (n) + TA (2n, 4n) = O (TA (2n, 4n)). J

I Theorem 30. Let G be a directed planar graph with non negative weights. Then, there is
an algorithm for the replacement paths problem over G that runs in O (n logn) time.

Proof. We denote by A the algorithm of Klein for the MSSP problem [11]. By Theorem 19,
TA (n, n) = O (n logn). Hence by Theorem 29, we can solve the replacement paths problem
in O (2n log (4n)) = O (n logn) time. J
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