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—— Abstract

Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated

tree packing theorem of Tutte and Nash-Williams from 1961 states that every k-edge connected graph
G contains a collection T of |k/2] edge-disjoint spanning trees, that we refer to as a tree packing;
the diameter of the tree packing 7T is the largest diameter of any tree in 7. A desirable property
of a tree packing for leveraging the high connectivity of a graph in distributed communication
networks, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear
how to compute a tree packing of a low-diameter graph G, whose diameter is sublinear in |V (G)],
or, alternatively, how to show that such a packing does not exist.

In this paper, we provide first non-trivial upper and lower bounds on the diameter of tree packing.
We start by showing that, for every k-edge connected n-vertex graph G of diameter D, there is a
tree packing 7 containing Q(k) trees, of diameter O((101klogn)®”), with edge-congestion at most 2.

Karger’s edge sampling technique demonstrates that, if G is a k-edge connected graph, and G[p] is
a subgraph of G obtained by sampling each edge of G independently with probability p = ©(logn/k),
then with high probability G[p] is connected. We extend this result to show that the diameter of
GJ[p] is bounded by O(kPP*+1/2) with high probability. This immediately gives a tree packing of
Q(k/logn) edge-disjoint trees of diameter at most O(kPPTY/2), We also show that these two
results are nearly tight for graphs with a small diameter: we show that there are k-edge connected
graphs of diameter 2D, such that any packing of k/« trees with edge-congestion 7 contains at least
one tree of diameter 2 ((k/ (2anD))P ), for any k,« and n. Additionally, we show that if, for every
pair u, v of vertices of a given graph G, there is a collection of k£ edge-disjoint paths connecting u
to v, of length at most D each, then we can efficiently compute a tree packing of size k, diameter
O(Dlogn), and edge-congestion O(logn). Finally, we provide several applications of low-diameter
tree packing in the distributed settings of network optimization and secure computation.
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On Packing Low-Diameter Spanning Trees

1 Introduction

Edge connectivity of a graph is one of the most basic graph theoretic parameters, with various
applications to network reliability and information dissemination. A key tool for leveraging
high edge connectivity of a given graph is tree packing: a large collection of spanning trees
that are (nearly) edge-disjoint. A celebrated result of Tutte [24] and Nash-Williams [19]
shows that for every k-edge connected graph, there is a tree packing 7 containing |k/2]
edge-disjoint trees. This beautiful theorem has numerous algorithmic applications, but
unfortunately it provides no guarantee on the diameter of the individual trees in 7. In the
worst case, trees in 7 may have diameter that is as large as Q(|V(T)|), even if the diameter
of the original graph is very small. Given a graph G and a collection T of trees in G, we say
that the trees in T are edge-disjoint iff every edge of G lies in at most one tree of 7, and we
say that they cause edge-congestion n iff every edge of G lies in at most 7 trees of 7. The
diameter of a tree-packing T is the maximum diameter of any tree in 7.

The diameter of a graph is a central graph measure that determines the round complexity
of distributed algorithms for various central graph problems, including minimum spanning
tree, global minimum cut, shortest s-t path, and so on. All these problems admit a trivial
lower bound of Q(D) for the round complexity (where D is the diameter of the graph), and in
fact a stronger lower bound of Q(D + /n), which is almost tight for general n-vertex graphs,
that was shown by Das-Sarma et al. [23]. Despite attracting a significant amount of attention
over the last decade (see e.g., [22, 10, 18, 2, 3, 16, 6, 1, 5, 4]), algorithms that exploit large
edge connectivity of the input graph in the distributed setting are quite rare. The only
examples that we are aware of are recent algorithms for minimum cut by Daga et al. [4] and
by Ghaffari et al. [11].

Censor-Hillel et al. [2] presented several distributed algorithms, that, given a k-edge
connected n-vertex graph of diameter D, computes a fractional tree packing of Q(k/logn)
trees that are fractionally edge-disjoint! in 6(D ++/n) rounds. These trees have been used to
parallelize the flow of information, obtaining nearly optimal throughput for store-and-forward
algorithms?. However, as these trees might have diameter as large as Q(n) in the worst case,
it is not clear how to use them in order to improve the round complexity of the problem at
hand, as opposed to improving the throughput. In particular, in terms of optimizing the
number of communication rounds, it may still be preferable to send the entire information
over a single BFS tree rather than spreading it over many trees of potentially large diameter.

The problem of computing a low-diameter tree packing was studied later by Ghaffari [6]
from the perspective of optimization. Specifically, he studied the multi-message broadcast
problem, where a designated source vertex is required to send k£ messages to all other nodes
in the network. Denoting by OPT(G) the minimum number of rounds required for the
broadcast on an input graph G, he constructed a tree packing of size k, where both the
diameter and the congestion are bounded by 6(OPT(G)). While this approach provides a
nearly optimal broadcast scheme, it does not provide absolute upper bounds on the diameter

of the tree packing, and moreover, the congestion caused by the tree packing can be large.

L In the fractional setting, each tree T in the packing has a weight w(T) and for each edge e, the sum of
weights of all trees that contain e is at most 1.

2 In this class of algorithms, the nodes can only forward the messages they receive (e.g., network coding
is not allowed).



J. Chuzhoy, M. Parter, and Z. Tan

A recent work of Ghaffari and Kuhn [10] provides the following negative result for packing
low-diameter trees into a graph: they show that for any large enough n and any k& > 1, there
is a k-edge-connected n-vertex graph of diameter ©(logn), such that, in any partitioning of
the graph into spanning subgraphs, all but O(logn) of the subgraphs have diameter Q(n/k).
In light of this result, it is natural to consider the following key question:

(1) Is it possible to compute a tree packing whose diameter is strongly sublinear in
|[V(G)|, provided that the diameter of the input graph G is sublogarithmic in
V(G)|?

Our second key question aims at crystallizing the main challenge to computing low-diameter
tree packing. So far, we have compared the diameter of the tree packing to the diameter of
the original graph. However, as observed above, the results of [10] indicate that there may be
a large gap between these two measures, even for graphs whose diameter is logarithmic in n.
A more natural reference point is the following. We say that a graph G is (k, D)-connected, iff
for every pair u,v € V(G) of distinct vertices, there are k edge-disjoint paths connecting u to
v in G, such that the length of each path is bounded by D. Clearly, if there is a tree packing
of edge-disjoint trees of diameter at most D into G, then G must be (k, D)-connected. The
question is whether the reverse is also true, if we allow a small congestion and a small slack
in the diameter of the trees. The celebrated result of Tutte and Nash-Williams shows that, if
every pair of vertices in G has k edge-disjoint paths connecting them, then there are |k/2]
edge-disjoint spanning trees in G. However, this result is not length-preserving, in the sense
that the tree paths may be much longer than the original paths connecting pairs of vertices.
Our goal is then to provide such a length-preserving transformation from collections of short
edge-disjoint paths connecting pairs of nodes in G to a low-diameter tree packing.

(2) Given a (k, D)-connected graph G, can one obtain a tree packing of Q(k) trees of
diameter O(D) into G, with small edge-congestion?

In this paper, we address both questions. For the first question, we show two efficient
algorithms, that, given a k-edge connected n-vertex graph G of diameter at most D, construct
a low-diameter tree packing. We complement this result by an almost matching lower bound.
We address the second question by providing an efficient algorithm, that, given a (k, D)-
connected graph G, computes a collection of k spanning trees of diameter at most O(D logn)
each, that cause edge-congestion of O(logn).

Our Results

Our graph-theoretic results consider two main settings: in the first setting, the input graph
is k-edge connected, and has diameter at most D; in the second setting, the input graph
is (k, D)-connected. We only consider unweighted graphs, that is, all edge lengths are unit.
Graphs are allowed to have parallel edges, unless we explicitly state that the graph is simple.
Throughout the paper, we use the term efficient algorithm to refer to a sequential algorithm
whose running time is polynomial in its input size.

Packing Trees into Low-Diameter Graphs. We prove the following two theorems that
allow us to pack low-diameter trees into low-diameter graphs.

» Theorem 1. There is an efficient randomized algorithm, that, given any positive integers
D.n,k, and an n-vertex k-edge-connected graph G of diameter at most D, computes a
collection T' = {T7y,... 7T{k/2j} of |k/2] spanning trees of G, such that each edge of G
appears in at most two of the trees in T', and, with high probability, each tree T! € T’ has
diameter O((101kInn)P).
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As we show later, the diameter bound of Theorem 1 is close to the best possible.
Unfortunately, the trees in the packing provided by Theorem 1 may share edges. Next, we
generalize the classical result of Karger [14] to obtain a packing of completely edge-disjoint
trees of small diameter, in the following theorem.

» Theorem 2. There is an efficient randomized algorithm that, given an n-vertex k-edge-
connected graph G of diameter at most D, such that k > 10001nn, computes a collection
{T1,..., T} of r = Q(k/Inn) edge-disjoint spanning trees of G, such that with probability
1 —1/poly(n), each resulting tree T; has diameter O(kKPP+1)/2),

We note that while the diameter bound in Theorem 2 is slightly weaker than that obtained
in Theorem 1, and the number of the spanning trees is somewhat lower, its advantage is that
the resulting trees are guaranteed to be edge-disjoint. Moreover, the algorithm in Theorem 2
is very simple: we construct r graphs Gy, ..., G, with V(G;) = V(G) for all 4, by sampling
every edge of G into one of these graphs independently. We then compute a spanning tree
T; in each such graph G;, and show that its diameter is suitably bounded. As such, this
algorithm is easy to use in the distributed setting.

Lastly, we show that our upper bounds are close to the best possible if £ > D, by proving
the following lower bound.

» Theorem 3. For all positive integers n, k, D,n, « such that k/(4Dan) is an integer and

D
n > 3k - (2Dkan> , there exists a k-edge connected simple graph G on n vertices of diameter

at most 2D + 2, such that, for any collection T = {Ty,..., Ty} of k/a spanning trees of G

D
that causes edge-congestion at most 1, some tree T; € T has diameter at least i . <2Dkom> .

Note that, in particular, any collection T of (k) trees that are either edge-disjoint,

. . . D
or cause a constant edge-congestion, must contain a tree of diameter 2 ((%) ) for some

constant ¢. Even if we are willing to allow a polylogarithmic edge-congestion, and to settle
D
for ©(k/polylogn) trees, at least one of the trees must have diameter 2 <(Dpol)lflogn)

Moreover, we show that the lower bound from Theorem 3 continues to hold even for the
weaker notion of edge-independent trees®, introduced in [12].

Packing Trees into (k, D)-connected Graphs. We next consider (k, D)-connected graphs
and show an algorithm that computes a tree packing, that is near-optimal in both the number
of trees and in the diameter.

» Theorem 4. There is an efficient randomized algorithm, that, given any positive integers
D,k,n with k < n, and a (k, D)-connected n-vertex graph G, computes a collection T =
{T1,...,Ti} of k spanning trees of G, such that, for each 1 < ¢ < k, tree Ty has diameter
at most O(Dlogn), and with probability at least 1 — 1/poly(n), each edge of G appears in
O(logn) trees of T.

Improved Distributed Algorithms for Highly Connected Graphs. We present several ap-
plications of low-diameter tree packing in the standard CONGEST model of distributed
computation [21]. By the proof of Theorem 2 and the O(logn)-approximation algorithm for
edge connectivity by [10], we obtain the following result.

3 A collection T of spanning trees is edge-independent, iff all trees in T are rooted at the same vertex v*,
and for every vertex v € V(G), if we denote by P(v) the collection of paths that contains, for each tree
T € T, the unique path connecting v to v* in T, then all paths in P(v) are edge-disjoint.
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» Theorem 5. There is a randomized distributed algorithm, that, given an n-vertex graph G
of constant diameter D = O(1) and an integer X\, with high probability solves the problem of
O(log n)-approzimate verification of A-edge connectivity in G in poly(X -logn) rounds.

This improves upon the state of the art bound of O(y/n) for graphs with constant diameter
D > 3, and A < nf for some positive constant ¢ < 1/(2D?). From now on, we restrict
our attention to k-edge connected graphs with a constant diameter D = O(1). We employ
the modular approach for distributed optimization introduced by Ghaffari and Haeupler
in [8] which is based on the notion of low-congestion shortcuts. Roughly speaking, these
shortcuts augment vertex-disjoint connected subgraphs by adding nearly-edge disjoint subsets
of “shortcut” edges (that is, edges that reduce the diameter of each subgraph). Using our
tree packing construction, we provide improved shortcuts for highly connected graphs of
small diameter. This immediately leads to o(y/n)-round algorithms for several classical graph
problems. For example, we prove the following:

» Theorem 6. There is a randomized distributed algorithm, that, given a k-edge connected
weighted n-vertex graph G of diameter D, such that the nodes know an O(logn) approzimation
of k, computes an MST of G in O(min{\/n/k+nP/CP+D) n/k}) rounds with high probability.

If the nodes do not know an O(logn)-approximation of the value of k, then such an approxi-
mation can be computed in poly(klogn) rounds for D = O(1) using Theorem 5, w.h.p. For
general graphs (of an arbitrary connectivity) with diameter D = 3,4, Kitamura et al. [15]
showed nearly optimal constructions of MST’s (based on shortcuts) with round complexities
of 6(n1/4) and 6(n1/3) respectively. Turning to lower bounds, we slightly modify the con-
struction of Lotker et al. [17] to obtain a lower bound of Q((n/k)'/3) rounds for computing
an MST in k-edge connected graphs of diameter 4, assuming that k = O(n'/4).

Finally, we consider the basic task of information dissemination, where a given source
vertex s is required to send N bits of information to the designated target vertex ¢ in a
k-edge connected n-vertex graph. This problem was first addressed in [10], who showed a
lower bound of Q(min{N/log?n,n/k}) rounds, provided that the diameter of the graph is
O(logn). Using our low-diameter tree packing we obtain the first improved upper bounds
for sublogarithmic diameter. We also show a new lower bound for simple store-and-forward
algorithms, for the regime where D = o(logn).

» Theorem 7. There is a randomized distributed algorithm, that, given any k-edge connected
n-vertex graph G of diameter D with a source vertex s and a destination vertex t, sends an
input sequence of N bits from s tot. The number of rounds is bounded by 6(N1_1/(D+1)+N/k)
with high probability.

In addition, for all integers n, N, D and k < n, there exists a k-edge connected n-vertex
graph G = (V, E) of diameter 2D, and a pair s,t of its vertices, such that sending N bits from
s to t in a store-and-forward manner requires at least Q(min{(N/(Dlogn))*=/ P+ n/k} +
N/k+ D) rounds.

Applications to Secure Distributed Computation. Recently, Parter and Yogev [20] pre-
sented a general simulation result that converts any non-secure distributed algorithm to an
equivalent secure algorithm, while paying a small overhead in the number of rounds. This
transformation is based on the combinatorial graph structure of low-congestion cycle cover,
namely, a collection of nearly edge-disjoint short cycles that cover all edges in the graph.
The security provided by [20] was limited to adversaries who can manipulate at most one
edge of the graph in a given round; in fact if the graph is only 2-edge connected, no stronger
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security guarantees, in terms of the number of edges that an adversary is allowed to corrupt
is possible. In this paper we provide technical tools for handling stronger adversaries, who
collude with f(k) edges in a k-edge connected graph in each given round. In order to do so,
we define a stronger variant of cycle cover that is adapted to the highly connected setting.
This generalization is formalized by the notion of k-connected cycle cover, in which each edge
in the graph is covered by k almost-disjoint cycles. Our key contribution is an algorithm
that transforms any tree packing with k trees of diameter D into a (k — 1)-connected cycle
cover with cycle length O(Dlogn) and congestion 5(klog n). This yields a simple secure
simulation of distributed algorithms in the presence of an adversary who colludes with
O(k/logn) edges of the graph in each round?. Finally, we also use low-diameter tree packing
to provide a simple store-and-forward algorithm for the problem of secure broadcast.

Organization. We provide the proof of Theorem 1 in Section 2, the proof of Theorem 2 in
Section 3, the proof of Theorem 3 in Section 4, and the proof of Theorem 4 in Section 5. We
discuss applications of our graph theoretic results to distributed computation in Section 6.
Lastly, we discuss open problems in Section 7. Due to lack of space, some of the proofs are
only sketched; the full formal proofs are deferred to the full version of the paper.

2 Low-Diameter Tree Packing with Small Edge-Congestion: Proof of
Theorem 1

We start by showing that, if we are given a graph G, and a collection {71,...,T;} of edge-
disjoint spanning trees of G, such that the diameter of the tree T} is at most 2D (but other
trees may have arbitrary diameters), then we can efficiently compute another collection
{T1{,...,T;_,} of edge-disjoint spanning trees of G, such that the diameter of each resulting
tree T/ is bounded by O((101kInn)?) with high probability.

» Theorem 8. There is an efficient randomized algorithm, that, given any positive integers
D, k,n, an n-vertex graph G, and a collection {T1,...,Ti} of k spanning trees of G, such
that the trees Ty, ..., Tx—1 are edge-disjoint, and the diameter of Ty, is at most 2D, computes
a collection {T7,...,T}_,} of edge-disjoint spanning trees of G, such that, with probability
at least 1 — 1/poly(n), for each 1 < i < k — 1, the diameter of tree T] is bounded by
O((101kInn)P).

Theorem 1 easily follows by combining Theorem 8 with the results of Kaiser [13], who gave
a short elementary proof of the tree-packing theorem of Tutte [24] and Nash-Williams [19].
His proof directly translates into an efficient algorithm, that, given a k-edge connected graph
G, computes a collection of |k/2] edge-disjoint spanning trees of G. In order to complete the
proof of Theorem 1, we use the algorithm of Kaiser [13] to compute an arbitrary collection
T ={T1,...,Tx/2)} of edge-disjoint spanning trees of GG, and compute another arbitrary
BFS tree T of G. Since the diameter of G is at most D, the diameter of T* is at most
2D. We then apply Theorem 8 to the collection {71, ...,T|s/2),T*} of spanning trees, to
obtain another collection 77 = {T7, ... ,T{k /2 J} of spanning trees, such that each edge of G
belongs to at most 2 trees of 7', and with high probability, the diameter of each tree in T~ is
at most O((101k1Inn)P). We note that, since we allow parallel edges, the trees in the set
{Th,...,T\xs2), T*} are edge-disjoint in graph G U E(T™).

4 We note that an adversary may choose a different set of O(k/logn) edges to listen to or to corrupt in
each round.
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The main technical tool that we use in order to prove of Theorem 8 is the following
theorem, that allows one to “fix” a diameter of a connected graph using a low-diameter tree.

» Theorem 9. Let H be a connected graph with |V (H)| < n, and let T be a rooted tree of
depth D, such that V(T) =V (H). For a real number 0 < p < 1, let R be a random subset
of the edges of T, where each edge e € E(T) is added to R independently with probability p.
Then with probability at least 1 — %, the diameter of the graph H U R is at most (%)D.

Theorem 8 easily follows from Theorem 9: For each 1 < i < k, we construct a graph G; as
follows. Start with G; = T; for all 1 < i < k. Compute a random partition E1,..., Ex_1 of
the edges of E(T}), by adding each edge e € E(T}) to a set E; chosen uniformly at random
from {Fi,..., Ex_1} independently from other edges. Using Theorem 9 with p =1/(k — 1),
it is immediate to see that with high probability, the diameter of each resulting graph G;
is bounded by O((101kInn)?). We then let T/ be a BFS tree of graph G;, rooted at an
arbitrary vertex. In order to complete the proof of Theorem 1, it is now enough to prove
Theorem 9.

Proof of Theorem 9. Recall that we are given a connected graph H with |V (H)| < n, and a
rooted tree T of depth D, such that V(T') = V(H), together with a parameter 0 < p < 1. We
let R be a random subset of E(T'), where each edge e € E(T) is added to R independently
with probgbility p. Our goal is to show that the diameter of the graph H U R is at most
(%) with probability at least 1— %. Denote V=V (H) =V(T). Foreach 0 < i < D,
let V; be the set of nodes lying at level i of the tree T' (that is, at distance 4 from the tree
root), and denote V<; = Ui:o Vi. Let H = HUR.

We say that a node x € V' is good if either (i) x € V<p_q; or (ii) € Vp, and there is an
edge in R connecting z to a node in Vp_1. We assume that V' = {v1,..., v, }, where the
vertices are indexed in an arbitrary order. Given an ordered pair (z, ') of vertices in H,
and a path P connecting z to 2, let o(P) be a sequence of vertices that lists all the vertices
appearing on P in their natural order, starting from vertex z (so in a sense, we think of P
as a directed path). For an ordered pair (z,z’) € V of vertices, let P, . be shortest path
connecting x to ' in H, and among all such paths P, choose the one whose sequence o(P)
is smallest lexicographically. Observe that P, ./ is unique, and, moreover, if some pair u, v
of vertices lie on P, s, with u lying closer to « than «’ on P, ., then the sub-path of P, ,/
from u to u’ is precisely P, ..

Let M = 501%. For a pair z,2’ of vertices of V, we let B(xz,z’') be the bad event
that length of P, ;- is greater than M and there is no good internal node on P, .. Notice
that event B(x,z’) may only happen if every inner vertex on P, .+ lies in Vpp, and for each
such vertex, the unique edge of T' that is incident to it was not added to R. Therefore,
the probability that event B(z,z’) happens for a fixed pair x, 2’ of vertices is at most
(1—p)M = (1 —p)B0Imn)/p < =50 Let B be the bad event that B(z,z’) happens for some
pair z,z’ € V of nodes. From the union bound over all pairs of nodes in V', the probability
of B is bounded by n~*8.

Recall that H is a subgraph of H' and distg (-, ) is the shortest-path distance metric on
H. We use the following immediate observation.

» Observation 10. If the event B does not happen, then for every node x € V', there is a
good node ' € V' such that disty (z,2") < M.
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We prove Theorem 9 by induction on D. The base of the induction is when D = 1.
In this case, T is a star graph. Let ¢ denote the vertex that serves as the center of the
star. For any pair x1,29 € V of vertices, we denote by 2} the good node that is closest
to 21 in H, and we define z, similarly for z5. Notice that, from the definition of good
vertices, either 2} = ¢, or it is connected to ¢ by an edge of R, and the same holds for
ah. Therefore, disty (z},25) < 2 must hold. If the event B does not happen, then, since
H is a subgraph of H', disty(z1,z2) < disty(x1,2)) + distg: (2], %) + dist g (22, 2h) <
distg (21, 2)) +dist g (2], 25) +dist g (22, 25) < 2M+2 < w. Therefore, with probability
at least 1 —n =48 disty (21, 29) < w.

Assume now that Theorem 9 holds for every connected graph H and every tree T of
depth at most D — 1, with V(T) = V(H). Consider now some connected graph H, and a
rooted tree T of depth D, with V(T') = V(H). We partition the edges of E(T) into two
subsets: set F7 contains all edges incident to the vertices of Vp, and set F5 contains all
remaining edges. Let E{ = E1 N R, and let E} = E5 N R. Notice that the definition of good
vertices only depends on the edges of Ff, and so the event B only depends on the random
choices made in selecting the edges of F1, and is independent from the random choices made
in selecting the edges of Ej.

Let L be a subgraph of H’, obtained by starting with L = H, and then adding all edges
of E} to the graph. Finally, we define a new graph H , whose vertex set is V<p_1, and there
is an edge between a pair of nodes w,w’ in H iff the distance between w and w’ in L is at
most M + 2. We also let 7" be the tree obtained from 7', by discarding from it all vertices of
Vp and all edges incident to vertices of Vp. Observe that V(H) = V(T) = V<p_,. The idea
is to use the induction hypothesis on the graph H, together with the tree 7. In order to do
so, we need to prove that H is a connected graph, which we do next.

» Observation 11. If the event B does not happen, then graph H is connected.

Proof. Assume that the event B does not happen, and assume for contradiction that graph
H is not connected. Let C = {C1,...,C,} be the set of all connected components of graph
H. For every pair C;, C; of distinct components of C, consider the set P; ; = {Pr . |z €
V(C;),2" € V(Cj)} of paths (recall that P, ;- is the shortest path connecting = to &’ in H
with o(Py ) lexicographically smallest among all such paths). We let P; ; be a shortest path
in P; ;. Choose two distinct components Cj;, C; € C, whose path F; ; has the shortest length,
breaking ties arbitrarily. Assume that P; ; connects a vertex v € C; to a vertex u € Cj, so
P; ; = Py 4. Recall that H C L, and so the path P, ; is contained in graph L. Since we did
not add edge (u,v) to H, the length of P; ; is greater than M + 2. Since we have assumed
that event B does not happen, there is at least one good inner vertex on path P; ;. Let X
be the set of all good vertices that serve as inner vertices of F; ;.

We first show that for each 2 € X, 2 ¢ V(H) must hold. Indeed, assume for contradiction
that = € V(H), so « belongs to some connected component of V(H). Assume first that
x € V(C;). Recall that the sub-path of P, ; from x to u is precisely P, ., so this path lies in
P; ;. But its length is less than the length of P; ;, contradicting the choice of P; ;. Otherwise,
x belongs to some connected component Cy of C with ¢ # 7. The sub-path of P; ; from v to
x is precisely P, ,, so this path must lie in P; ;. Since its length is less than the length of
P; ;, this contradicts the choice of the components C;, C;. We conclude that z ¢ V(H).

Since V(ﬁ ) contains all vertices of V< p_1, and every vertex in X is a good vertex, it must
be the case that X C Vp. Consider again some vertex x € X. Since x is a good vertex and
x € Vp, there must be an edge e, = (z,2’) € Ef, connecting z to some vertex &’ € V<p_i.
In particular, ' must belong to some connected component of C, and the edge e, lies in
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graph L. Assume that X = {x1,22,...,2,}, where the vertices are indexed in the order
of their appearance on P, j, from v to u. Consider the sequence & = (v, 2}, 25, ... ,x’q,u)
of vertices. All these vertices belong to V(fI), and v € C;, while u € C;. For convenience,
denote v = acf) = x0 and u = x;H = Zg4+1. Then there must be an index 1 < a < g, such
that 2}, and z/,,; belong to distinct connected components of C. Note that the sub-path of
P; ; between z, and x441 is precisely Py, .., — the shortest path connecting z, to z41 in
H. Since no good vertices lie between x, and x,41 on this path, and since we have assumed
that event B does not happen, the length of this path is at most M. Therefore, there is a
path in graph L, connecting z7, to x/,,;, whose length is at most M + 2. This path connects
a pair of vertices that belong to different connected components of H , contradicting the
construction of H. <

Consider now the tree 7' and the graph H. Recall that T is a rooted tree of depth D — 1,
V(T) = V(H), |V(H)| < |V(H)| < n, and, assuming the event B did not happen, H is a
connected graph. Moreover, set E} of edges is a subset of E(T') = Es, obtained by adding
every edge of E(T') to E} with probability p, independently from other edges. Therefore,
assuming that event B did not happen, we can use the induction hypothesis on the graph
ﬁ, the tree T, and the set E} of edges as R. Let B’ be the bad event that the diameter of
H U E} is greater than (1011)1“") . Note that the event B’ only depends on the random
choices made in selecting the edges of Ef. From the induction hypothesis, the probability
that B’ happens is at most 2 L48 )

Lastly, we show that, if neither of the events B, B’ happens, then diam(H") < (%)D

» Observation 12. If neither of the events B, B happens, then diam(H') < (W)D.

Proof. Consider any pair z1,x2 € V of vertices. It is sufficient to show that, if events B, B’
do not happen, then distg: (x1,z2) < (%)D

Let z} be a good node in V(H) that is closest to z1, and define 2, similarly for zs.

From Observatlon 10, dist gy (z1,2)) < M. If 2] € V<p_1, then we define 2] = x], otherwise
we let x be the node of Vp_; that is connected to ) by an edge of F{, and we define
o similarly for zo. Therefore, 2,24 € Vep_y = V(H), and, assuming event B does not
happen, disty (z1,27]) < M + 1, and dist g (z2,25) < M + 1. Since we have assumed that
the bad event B’ does not happen, dist £ (aff,xh) < (M) . Recall that for every
edge e = (u,v) € HUE}, if e € E} then e € E(H'); otherwise, e € E(H), and there
is a path in graph H U E] of length at most M + 2 connecting u to v in H. Therefore,
distg (2, 25) < (M +2) - dist g (2, 25) < (M) Lo(M +2).
Altogether, since M = (501nn)/p,

distg/ (w1, 20) < disty (21, 2)) + dist g (27, 25) + dist g+ (w2, 25)

101Inn\ """
< ( p > (M +2)+ (2M +2)
( 1011n n> b
< . |
p
The probablhty that either B or B’ happen is bounded by . Therefore, with probability
at least 1 — -G, neither of the events happens, and dlam(H’) (101;“”)’3. <
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3 Low-Diameter Packing of Edge-Disjoint Trees: Proof of Theorem 2

The main tool in the proof of Theorem 2 is the following theorem.

» Theorem 13. Let k, D,n be any positive integers with k > 10001nn, let w <p<l1
be a real number, and let G be an n-vertex k-edge-connected graph of diameter D. Let G’
be a sub-graph of G with V(G') = V(G), where every edge e € E(Q) is added to G’ with
probability p independently from other edges. Then, with probability at least 1 — 1/poly(n),
G' is a connected graph, and its diameter is bounded by kP(P+1/2,

Karger [14] has shown that, if G is a k-connected graph, and G’ is obtained by sub-
sampling the edges of G with probability Q(logn/k), then G’ is a connected graph with
high probability. Theorem 13 further shows that the diameter of G’ is with high probability
bounded by kP(P+1)/2 where D is the diameter of G.

Theorem 2 easily follows from Theorem 13: Let r = |k/(7071Inn)|. We partition E(G)
into subsets E1, ..., E,. by choosing, for each edge e € E(G), an index i independently and
uniformly at random from {1,2,...,r} and then adding e to E;. For each 1 < i < r, we
define a graph G; by setting V(G;) = V(G) and E(G;) = E;. Finally, for each graph G;, we
compute an arbitrary BFS tree T;, and return the resulting collection 7 = {Ty,...,T;} of
trees. It is immediate to verify that the graphs Gy, ..., G, are edge-disjoint, and so are the
trees of T. Moreover, applying Theorem 13 to each graph G; with p = 1/r, we get that with
probability 1 — 1/poly(n), diam(T;) < 2diam(G;) < O(kPP+1)/2) Using the union bound
over all 1 < i < r completes the proof of Theorem 2. It now remains to prove Theorem 13.
We provide a proof sketch here; a formal proof appears in the full version of the paper.

Proof Sketch of Theorem 13: We use the well known result of Karger [14], that shows
that the probability that the graph G’ is not connected is at most O(1/poly(n)). It remains
to bound the diameter of G’. Throughout the proof, for a graph H, we denote by D(H, p)
be the distribution of graphs, where the vertex set of the resulting graph is V(H), and each
edge of H is included in the graph with probability p independently from other edges.

Denote G = (V, E), and let T be a BFS tree of G, rooted at an arbitrary node r of G.
Since G has diameter at most D, the depth of T is at most D. Recall that G’ ~ D(G, p).
We define a different (but equivalent) sampling algorithm for generating a random graph
G’ from D(G, p) as follows. The algorithm consists of D + 1 phases. In the Oth phase, we
sample all edges in F \ E(T) independently with probability p each. For each 1 < i < D,
in the ith phase, we sample all edges that connect a vertex at distance (D — i+ 1) from r
to a vertex at distance (D — ¢) from r in T'. Let E’ be the set of all sampled edges at the
end of this algorithm. We denote by G’ = (V, E’) the final graph that we obtain. Clearly,
G’ is generated from the distribution D(G,p). We denote by T” the subgraph of T' with
V(1) =V(T) and E(T') = E(T) N E'. Clearly, T' ~ D(T, p).

Consider a pair u,u’ € V of distinct vertices. We say that they are joined at phase i for
0<¢< D, if uand v belong to the same connected component of the graph induced by all
edges sampled in the first ¢ phases, but they lie in different connected components of the
graph induced by all edges sampled in the first (i — 1) phases. Note that, if G’ is connected,
then every pair (u,u') of distinct vertices of V' are joined at phase i for some 0 < ¢ < D. The
following lemma allows us to bound the diameter of G’.

» Lemma 14. For each 0 < i < D, with probability 1—O(1/poly(n)), for every pair x,y of ver-
tices that are joined at phase i, x and y are at distance at most 74(1011nn /p)P+P—1++(D=7)
in G'.
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Observe that, by applying the union bound over all 0 < ¢ < D, Lemma 14 implies Theorem 13,
since k > 707Inn/p. We defer the proof of Lemma 14 to the full version of the paper, and
only provide its proof sketch here. Assume for simplicity that the edges in F \ E(T) only
connect vertices that are at distance D from r in T (this also turns out to be the hardest
case). The proof is by induction on i. In the base case where i = 0, let C' be a connected
component of the graph induced by all edges sampled in phase 0. Intuitively, we can view

the algorithm as using a random subgraph of T to “fix” the diameter of C, like in Theorem 9.

Therefore, with high probability, for every pair z,y of vertices of C, the distance from x
to y in CUT’ is at most (1011nn/p)P. Similarly, let C’ be a connected component of the
the subgraph of G induced by all edges sampled in phases 0,1,...,; we call C’ a phase-i
cluster. We view C” as consisting of a number of phase-(i — 1) clusters CY', ..., C}/, connected
to each other by edges that were sampled in the ith phase. Therefore, if ¢ is a graph
obtained from C’ by contracting each cluster C7, ..., C} into a single vertex, then C'is a
connected graph. Denote by T; the subtree of T" induced by all nodes that are at distance at
most (D — i) from r in T, and denote T) = T NT;. Clearly T/ ~ D(T;,p). We can again
view our algorithm as using a random subgraph T7 of T} to “fix” the diameter of C”, like in
Theorem 9. Therefore, with high probability, for every pair x, y of vertices of ol , the distance
from z to y in ¢’ UT! is at most (1011nn/p)”~%. Note however that every vertex of C" is
in fact a contracted level-(i — 1) cluster. Moreover, from the induction hypothesis, if C" is
a level-(i — 1) cluster, and ',y is a pair of vertices in C”, then with high probability, the
distance from ' to 3’ in C”UT’ is at most 7°~1 - (101 Inn/p)P+HP—D++(D=i+1)  Therefore,
with high probability, the distance between a pair u,v € V(C’) of vertices in C' UT" is at
most 7° - (101 Inn/p)PHP-D++(D=i)

4 Lower Bound: Proof of Theorem 3

In this section we provide the proof of Theorem 3. We start by proving the following slightly
weaker theorem; we then extend it to obtain the proof of Theorem 3.

» Theorem 15. For all positive integers k, D,n, « such that k/(4Dan) is an integer, there
D
exists a k-edge connected graph G with |V (G)| = O ((wkan) ) and diameter at most 2D,

such that, for any collection T = {Th,..., Ty o} of k/a spanning trees of G that causes

D
edge-congestion at most n, some tree T; € T has diameter at least i . (QD'“O”]) .

Notice that the main difference from Theorem 3 is that the graph G is no longer required
to be simple; the number of vertices of V(G) is no longer fixed to be a prescribed value; and
the diameter of G is 2D instead of 2D + 2.

Proof. For a pair of integers w > 1, D > 1, we let Ty, p be a tree of depth D, such that every
vertex lying at levels 0,..., D — 1 of T}, p has exactly w children. In other words, T, p is
the full w-ary tree of depth D. We denote Ny p = |V(Twp)| =1+ w+w?+--- +wP <
wPT/(w — 1). We assume that for every inner vertex v € V (T, p), we have fixed an
arbitrary ordering of the children of v, denoted by a1 (v), ..., ay(v).

A traversal of a tree T is an ordering of the vertices of T. A post-order traversal on a

tree T, w(T), is defined as follows. If the tree consists of a single node v, then 7(T") = (v).

Otherwise, let 7 be the root of the tree and consider the sequence (a(r),...,a,(r)) of its
children. For each 1 < i < w, let T; be the sub-tree of T rooted at the vertex a;(r). We
then let m(7T') be the concatenation of 7(71),7(T3),...,m(Ty), with the vertex r appearing
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at the end of the sequence; see Figure 1 for an illustration. For simplicity, we assume
that V(Tw,p) = {v1,v2,...,Un, ,}, Wwhere the vertices are indexed in the order of their
appearance in (7T, p), so the traversal visits these vertices in this order.

Next, we define a graph G, p, as follows. The vertex set of G, p is the same as the
vertex set of T, p, namely V(Gy p) = V(Ty,p). The edge set of G, p consists of two
subsets: Ey = E(Ty, p), and another set Ey of edges that contains, for each 1 <i < Ny, p, k
parallel copies of the edge (v;,v;+1). We then set E(G,,p) = E1 U E,. For convenience, we
call the edges of F blue edges, and the edges of Ey red edges; see Figures 1 and 2.

21 21

%ﬂ

(/

!

EO\

] é/\v *] \JJ §./ (] (] 00 00 ———9 ——6—6 909 0606
34 789 11121314 16 1718 19 1234 6789 11121314 161718 19
Figure 1 Tree T4 with vertices indexed Figure 2 The edge set E2 in G4,2 (only a
according to post-order traversal. single copy of each edge is shown).

It is easy to verify that graph G,, p must be k-edge connected, since for any partition of
V(Gw,p), there is some index 1 <4 < N,, p with v;,v;41 separated by the partition, and so
k parallel edges connecting v; to v;4+1 must cross the partition.

We now fix an integer w = k/(2Dan) (note that w > 2), and we let T = T, p be the
corresponding tree and G = G, p the corresponding graph. For convenience, we denote

D
Ny.p by N. Recall that N < wP*/(w —1) =0 <(2ka7> > As observed before, G is

k-edge connected. Since the depth of T"is D, and T' C G, it is easy to see that the diameter
of G is at most 2D.

We now consider any collection 7 = {T1,...,Ty/q} of k/a spanning trees of G that
causes edge-congestion at most . Our goal is to show that some tree T; € T has diameter

1 k b
at least 1 (W) .

For convenience, we denote V(G) = V(T') = V. We say that a vertex € V is an ancestor
of a vertex y € V if x is an ancestor of y in the tree T, that is, x # y, and « lies on the
unique path connecting y to the root of T'.

Let L C V be the set of vertices that serve as leaves of the tree T. We denote by u = v
a vertex of L that has the lowest index, and by v’ the vertex of L with the largest index.
It is easy to see that v’ = vy_p, as every vertex whose index is greater than that of v’ is
an ancestor of u/. For each 1 < j < k/«, we denote by P; the unique path that connects u
to v’ in tree Tj. Let P = {P; |1 < j < k/a}. It is enough to show that at least one of the

D
paths P; has length at least 1 - <2Dkan> In order to do so, we show that Zk/a |E(P;)] is

sufficiently large. At a high level, we consider the red edges (v;,v;+1) (the edges of Es), and

show that many of the paths in P must contain copies of each such edge. This in turn will
imply that 3 cp [E(F;)] is large, and that some path in P is long enough.

For each vertex v; € L such that v; # u/, we let S; = {v1,...,v;}, and we let S; =
{vit1,-..,vn}. Notice that, since u € S; and v’ € S;, every path in P must contain an edge
of Eg(S;,S;). Note that the only red edges in Eg(S;,S;) are the k parallel copies of the
edge (v;,v;+1). In the next observation, we show that the number of blue edges in Eg(S;, S;)
is bounded by Dw.



J. Chuzhoy, M. Parter, and Z. Tan

» Observation 16. For each vertex v; € L such that v; # ', for every blue edge e €
Ec(S;, S;), at least one endpoint of e must be an ancestor of v;.

Proof. We consider a natural layout of the tree T, where for every inner vertex x of the tree,
its children a;(x),...,a,(x) are drawn in this left-to-right order (see Figure 3). Consider the
path @ connecting the root of T to v;, so every vertex on @ (except for v;) is an ancestor of
v;. All vertices lying to the left of @ in the layout are visited before v; by m(T"). All vertices
lying to the right of @, and on @ itself (excluding v;) are visited after v;. It is easy to see
that the vertices of @) separate the two sets in T', and so the only blue edges connecting S;
to S; are edges incident to the vertices of V(Q) \ {v;}. <

Figure 3 A layout of the tree T. Vertex v; is shown in green and path @ in red. All vertices
lying to the left of @ in this layout appear before v; in 7(7"), and all vertices lying to the right of @
or on Q (except for v;) appear after v; in w(T).

Since every vertex of the tree T has at most w children, and since the depth of the tree is
D, we obtain the following corollary of Observation 16.

» Corollary 17. For each verter v; € L such that v; # v, at most Dw blue edges lie in
Ec(S;,58:).

Since the trees in 7 cause edge-congestion 7, at most Dwn trees of 7 may contain blue
edges in Fg(S;,S;). Each of the remaining § — Dwn > % trees contains a copy of the
red edge (e, €;+1) (recall that w = k/(2Dan).) Therefore, 3 p cp |E(F;)| = L] - = > Ik

since |L| > |[N|/2. We conclude that at least one path P; € P must have length at least

D
% g > %, and so the diameter of T} is at least %. Since N > wP > (2Dkan) , the
D
diameter of T is at least % . (zfim) . h

We are now ready to complete the proof of Theorem 3. First, we show that we can turn

the graph G into a simple graph, and ensure that |V(G)| = n, if n > 3k - (ﬁ)l). Let
GQU, p be the graph obtained from G, p as follows. For each 1 < i < N, we replace the vertex
v; with a set X; = {z},22... 2} of k vertices that form a clique. For each 1 <i < N, the
k red edges connecting v; to v;11 are replaced by the perfect matching {(zﬁ,mfﬂ)}lstgk

between vertices of X; and vertices of X;y;. Each blue edge (v;,v;) is replaced by a new
D

edge (], ). Since n > 3k - (ﬁ) > kE|V(GQ)| + k, we add n — k|V(G)| > k new vertices

that form a clique, and for each newly-added vertex, we add an edge connecting it to

(recall that the vertex vy is the root of T'). We denote G’ = G, 1, for simplicity. It is not
hard to see that G’ has n vertices and it is k-edge connected. Moreover, G’ has diameter
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at most 2D + 2, since its subgraph induced by vertices of {z} }1<;<y has diameter 2D, and
every other vertex of G’ is a neighbor of one of the vertices in {z}}1<;<y. The tree 7" is
defined exactly as before, except that every original vertex v; is now replaced with its copy
mjl Let L denote the set of all leaf vertices in T".

Assume that we are given a collection 7 = {T1,...,Tj o} of k/a spanning trees of G
that causes edge-congestion at most 1. For each 1 < ¢ < k/«a, we denote by @; the unique
path that connects ] to z%,_p, in T; and denote @ = {Q; | 1 < i < k/a}. For each every leaf
vertex xj € L, we define a cut (W, W;) as follows: W; = Ui<s<; Xs and W; =V(G)\ W;.
Using reasoning similar to that in Corollary 17, it is easy to see that for every leaf vertex
le € L, the set Eg/(W;, W;) of edges contains at most Dw blue edges — the edges of the
tree T”. Since the trees in T cause edge-congestion at most 1, at most Dwn trees of T may
contain blue edges in Eg/(W;,W;). Therefore, for each of the remaining £ — Dwn > £
trees T;, path @Q; must contain a red edge from {(z%, 2%, )} 1<t<k. Therefore, the sum of
lengths of all paths of Q is at least f—f, and so at least one path Q; € Q must have length at

D
k

2Dan
Lastly, we extend our results to edge-independent trees. We use the same simple graph

least %. We conclude that some tree T; € 7 has diameter at least % .

G’ and the same tree T" as before, setting the congestion parameter n = 2. Assume that
we are given a collection 7" = {T7,..., T} /a} of k/a edge-independent spanning trees of
G’ and let z € V(G’) be their common root vertex. For each 1 < i < k/a, we denote
by Q) the unique path that connects vertex z1 to vertex z};_, in tree T}, and we denote
Q' ={Q;|1<i<k/a}. Note that, for each 1 < i < k/a, the path @} is a sub-path of
the path obtained by concatenating the path QY, connecting z1 to = in T}, with the path

"
7
{Q7 }1<i<k/a are edge-disjoint and so are the paths in {Q}"}1<i<p/o. Therefore, the paths
of @' cause edge-congestion at most 2. The remainder of the proof is the same as before and

connecting z};_p to x in T}. Since the trees in 7’ are edge-independent, the paths in

is omitted here.

5 Tree Packing for (k, D)-Connected Graphs: Proof of Theorem 4

In this section we provide a proof sketch of Theorem 4. The full proof is deferred to the
full version of the paper. The main tool that we use is the following theorem, whose proof
appears in the full version of the paper.

» Theorem 18. There is an efficient algorithm, that, given a (k, D)-connected graph G and
a subset S C V(QG) of its vertices, computes a bi-partition (S’,5") of S, and a flow f from
vertices of S” to vertices of S’, such that the following hold:

1. every vertex of S” sends at least k/2 flow units;

every flow-path has length at most 2D;

the total amount of flow through any edge is at most 3; and

s < Bl

BwN

Our algorithm consists of two phases. In the first phase, we define a partition of the
vertices of G into layers Ly, ..., Ly, where h = O(logn). Additionally, for each 1 < i < h,
we define a flow f; in graph G between vertices of L; and vertices of L; U---U L;_1. In
the second phase, we use the layers and the flows in order to construct the desired set of
spanning trees.

Phase 1: Partitioning into layers. We use a parameter h = ©(logn), whose exact value
will be set later. We now define the layers Ly, ..., L1 in this order, and the corresponding
flows fr,..., f1. In order to define the layer L, we let S = V(G), and we apply Theorem
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18 to the graph G and the set S of its vertices, to obtain a partition (S’,5”) of S, with
|S] < |S|/2+ 1, and the flow f between the vertices of S” and the vertices of S’, where
every vertex of S” sends at least k/2 units of flow, each flow-path has length at most 2D,
and the edge-congestion caused by f is at most 3. We then set L;, = S” and f, = f, and
continue to the next iteration.

Assume now that we have constructed layers Ly, ..., L;. We now show how to construct
layer L;—1. Let S = V(G)\ (L, U---UL;). We apply Theorem 18 to the graph G and
the set S of its vertices, to obtain a partition (57, 5”) of S, with |S'| <|S|/2 + 1, and the

corresponding flow f. We then set L; 1 =S, f;_1 = f, and continue to the next iteration.

If we reach an iteration where |S| < 2, we arbitrarily designate one of the two vertices as s
and the other as s’, and compute a flow of value at least k between the two vertices, such

that the edge-congestion of the flow is at most 2, and every flow-path has length at most 2D.

We add vertex s’ to the current layer, and we add vertex s to the final layer L. If we reach
an iteration where |S| = 1, then we add the vertex of S to the final layer L; and terminate
the algorithm. The number h of layers is chosen to be exactly the number of iterations in
this algorithm. Notice that A < 2logn must hold. Also observe that, for all 1 < i < h, flow
fi originates at vertices of L;, terminates at vertices of Ly U---U L;_1, uses flow-paths of
length at most 2D, and causes edge-congestion at most 3.

Phase 2: Constructing the trees. In order to construct the spanning trees 77, ..., T, we
start by letting each tree contain all vertices of G and no edges. We then process every vertex
v € V(G) one-by-one. Assume that v € L;, for some 1 < i < h. Consider the following
experiment. Let Q(v) be the set of all flow-paths that carry non-zero flow in f;, and connect
v to vertices of Ly U---U L;_;. Let F(v) be the total amount of flow that f; sends on all
paths P € Q(v); recall that F(v) > k/2 must hold. We choose a path P € Q(v) at random,
where the probability to choose a path P is precisely f;(P)/F(v). We repeat this experiment
k times, obtaining paths P;(v),. .., Py(v). For each 1 < j < k, we add all edges of P;(v) to
T;. Consider the graphs T1,...,T} at the end of this process. Notice that each such graph
T; may not be a tree. We fist show that the diameter of each such tree is O(Dlogn).

> Claim 19. For all 1 < j < k, diam(7};) < O(Dlogn).

Proof. Fix an index 1 < j < k. Let r be the unique vertex lying in L;. We prove that for
all 1 <4 < h, for every vertex v € L;, there is a path connecting v to r in 7}, of length at
most 2D(i — 1), by induction on i. The base of the induction is when ¢ = 1 and the claim
is trivially true. Assume now that the claim holds for layers Lq,...,L;_1. Let v be any
vertex at layer L;. Consider the path P;(v) that we have selected. Recall that this path has
length at most 2D, and it connect v to some vertex u € L1 U---U L;_1. By the induction
hypothesis, there is a path P in T} of length at most 2D(i — 2), that connects u to r. Since
all edges of P;(v) are added to T}, the path P;(v) is contained in 7. By concatenating path
P;(v) with path P, we obtain a path connecting v to r, of length at most 2D (i — 1). <

Lastly, using standard analysis of the Randomized Rounding technique, we show that,
with probability at least (1 — 1/poly(n)), every edge of G lies in at most O(logn) graphs
Ty,...,Tx. For each 1 < j < k, we can now let T]'- be a BFS tree of the graph 7}, rooted
at the vertex r. We conclude that each tree 7} has diameter at most O(Dlogn), and the
resulting set {77,...,T}} of trees cause edge-congestion O(logn) with high probability.
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6 Overview of the Applications to Distributed Computation

Our improved distributed algorithms in highly-connected graphs are based on the following
basic tool, which follows by combining Karger’s edge sampling and the diameter-fixing
Theorem 9.

> Claim 20 (Basic Distributed Tool). There is a randomized algorithm that, given a k-edge
connected n-vertex graph @ and a congestion bound 1 € [1, k], computes, in O((101k Inn/n)P)
rounds, a collection of k spanning trees that cause total edge-congestion at most O(n - logn),
and have diameter at most O((101k1Inn/n)P) each. Moreover, the algorithm can compute k
spanning subgraphs with similar congestion and diameter bounds in O(D + nlogn) rounds.
The round complexity, the diameter, and the congestion bounds hold with high probability.

Approximation of Minimum-Cut. Ghaffari and Kuhn [10, 7] gave a very simple approach
for finding an O(logn)-approximation for the minimum cut problem that is based on Karger’s
edge sampling technique. The round complexity of their algorithm is O(y/n) for constant
diameter graphs. Combining Theorem 13 with Ghaffari and Kuhn’s algorithm immediately
leads to an 5()\) algorithm for graphs with constant diameter, where A is the size of the
minimum-cut.

To provide a more general approach for improved algorithms in highly-connected graphs,
we next describe the notion of low-congestion shortcuts.

Low-Congestion Shortcuts. This notion, introduced by Ghaffari and Haeupler [9], provides
a modular framework for solving global graph problems in the distributed setting.

» Definition 21 (Low-Congestion Shortcuts, [9]). Given a graph G = (V, E), and a partition
S1,..., SN of V into disjoint subsets, such that for all 1 <i < N, graph G[S;] is connected,
an (o, B)-shortcut is a collection {Hy, ..., Hn} of subgraphs of G, that satisfy the following:
(1) for each edge e € E, there are at most a subgraphs G[S;] U H; containing e; and

(2) the diameter of each subgraph G[S;] U H; is at most .

Ghaffari and Haeupler [9] showed that the quality of algorithms for several basic problems
depend on the sum of « (i.e., congestion) and 3 (i.e., the dilation). The quantity of a +
is usually referred to as the quality of the shortcuts. As observed by [9] for every n-vertex
graph G and any collection of vertex-disjoint subsets Si,..., Sy, there exist («, 3) shortcuts
for with o + 8 = O(D + y/n). Our key result is in providing a nearly optimal construction
for low-congestion shortcuts in highly connected graphs of constant diameter.

» Theorem 22. [Improved Shortcuts in Highly Connected Graphs] There is a randomized
algorithm that, for a sufficiently large n, given any k-connected n-vertex graph G of diameter
D = O(logn/loglogn), together with a partition {Si,...,Sn} of V(G), such that for all
1<i <N, G[Vi] is a connected graph, w.h.p. computes («, ) shortcuts, with

o+ 8 = O(min{\/n/k +nP/CP+D} n/k),
in O(a + B) rounds.

The construction of the shortcuts from Theorem 22 serves the basis for the proof of
Theorem 6. In the full version of the paper we describe further algorithmic applications of
our results for additional graph problems. The proof of Theorem 7 is based on a careful
implementation of Claim 20.
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7 Open Problems

For brevity, let us say that a collection T of spanning trees of a (k, D)-connected graph
G is an (o, D')-packing iff |T| > k/a and the diameter of every tree in 7 is at most D’.
A major remaining open question is: for which values of o and D’ can we guarantee the
existence of an («, D')-packing T of edge-disjoint spanning tree in every (k, D)-connected
graph. In particular, is the following statement true: every (k, D)-connected graph G contains
a collection of Q(k/polylogn) edge-disjoint trees of diameter O(D - polylogn) each. The
only upper bounds that we have are the ones guaranteed by Theorem 2, and we do not have
any lower bounds. We also do not have any upper bounds, except for those guaranteed
by Theorem 1, if we allow a constant, or more generally any sub-logarithmic congestion.
Additionally, obtaining an analogue of the algorithm from Theorem 4 in the distributed
setting remains a very interesting open question.

Finally, most of our results are mainly meaningful for the setting where k = Q(logn). It
will be very interesting to consider the case of small connectivity k = O(1). One can show
that any k-edge connected graph with & = O(1) of diameter D is a (k, poly(D))-connected
graph. Is it possible to show that any k-edge-connected graph of diameter D, for some
constant k& > 3, has at least two edge-disjoint trees of depth at most poly(D)?
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