
Roundtrip Spanners with (2k − 1) Stretch
Ruoxu Cen
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
cenbo@aliyun.com

Ran Duan
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
duanran@mail.tsinghua.edu.cn

Yong Gu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
guyong12@mails.tsinghua.edu.cn

Abstract
A roundtrip spanner of a directed graph G is a subgraph of G preserving roundtrip distances
approximately for all pairs of vertices. Despite extensive research, there is still a small stretch gap
between roundtrip spanners in directed graphs and undirected graphs. For a directed graph with real
edge weights in [1,W], we first propose a new deterministic algorithm that constructs a roundtrip
spanner with (2k − 1) stretch and O(kn1+1/k log(nW)) edges for every integer k > 1, then remove
the dependence of size on W to give a roundtrip spanner with (2k− 1) stretch and O(kn1+1/k logn)
edges. While keeping the edge size small, our result improves the previous 2k + ε stretch roundtrip
spanners in directed graphs [Roditty, Thorup, Zwick’02; Zhu, Lam’18], and almost matches the
undirected (2k − 1)-spanner with O(n1+1/k) edges [Althöfer et al. ’93] when k is a constant, which
is optimal under Erdös conjecture.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph theory, Deterministic algorithm, Roundtrip spanners

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.24

Category Track A: Algorithms, Complexity and Games

1 Introduction

A t-spanner of a graph G is a subgraph of G in which the distance between every pair of
vertices is at most t times their distance in G, where t is called the stretch of the spanner.
Sparse spanner is an important choice to implicitly representing all-pair distances [19], and
spanners also have application backgrounds in distributed systems (see [14]). For undirected
graphs, (2k − 1)-spanner with O(n1+1/k) edges is proposed and conjectured to be optimal
[2, 17]. However, directed graphs may not have sparse spanners with respect to the normal
distance measure. For instance, in a bipartite graph with two sides U and V , if there is a
directed edge from every vertex in U to every vertex in V , then removing any edge (u, v)
in this graph will destroy the reachability from u to v, so its only spanner is itself, which
has O(n2) edges. To circumvent this obstacle, one can approximate the optimal spanner in
terms of edge size (e.g. in [9, 3]), or one can define directed spanners on different distance
measures. This paper will study directed sparse spanners on roundtrip distances.

Roundtrip distance is a natural metric with good property. Cowen and Wagner [7, 8]
first introduce it into directed spanners. Formally, roundtrip distance between vertices u, v
in G is defined as dG(u� v) = dG(u→ v) + dG(v → u), where dG(u→ v) is the length of
shortest path from u to v in G. For a directed graph G = (V,E), a subgraph G′ = (V,E′)
(E′ ⊆ E) is called a t-roundtrip spanner of G if for all u, v ∈ G, dG′(u� v) ≤ t · dG(u� v),
where t is called the stretch of the roundtrip spanner.

EA
T

C
S

© Ruoxu Cen, Ran Duan, and Yong Gu;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 24; pp. 24:1–24:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cenbo@aliyun.com
mailto:duanran@mail.tsinghua.edu.cn
mailto:guyong12@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2020.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Roundtrip Spanners with (2k − 1) Stretch

In a directed graphG = (V,E) (n = |V |,m = |E|) with real edge weights in [1,W], Roditty
et al. [16] give a (2k+ε)-spanner of O(min{(k2/ε)n1+1/k log(nW), (k/ε)2n1+1/k(logn)2−1/k})
edges. Recently, Zhu and Lam [18] derandomize it and improve the size of the spanner to
O((k/ε)n1+1/k log(nW)) edges, while the stretch is also 2k+ ε. We make a step further based
on these works and reduce the stretch to 2k − 1. Formally, we state our main results in the
following theorems.

I Theorem 1. For any directed graph G with real edge weights in [1,W] and integer k ≥ 1,
there exists a (2k − 1)-roundtrip spanner of G with O(kn1+1/k log(nW)) edges, which can be
constructed in Õ(kmn logW) time1.

By a similar scaling method in [16], we can make the size of the spanner independent of
the maximum edge weight W to obtain a (2k − 1)-spanner with strongly subquadratic space.

I Theorem 2. For any directed graph G with real edge weights in [1,W] and integer k ≥ 1,
there exists a (2k − 1)-roundtrip spanner of G with O(kn1+1/k logn) edges, which can be
constructed in Õ(kmn logW) time.

Actually, our result almost matches the lower bound following girth conjecture. The girth
conjecture, implicitly mentioned by Erdös [11], says that for any k, there exists a graph
with n vertices and Ω(n1+1/k) edges whose girth (minimum cycle) is at least 2k + 2. This
conjecture implies that no algorithm can construct a spanner of O(n1+1/k) size and less than
2k − 1 stretch for all undirected graph with n vertices [17]. This lower bound also holds for
roundtrip spanners on directed graphs.

Our approach is based on the scaling constructions of the (2k + ε)-stretch roundtrip
spanners in [16, 18]. To reduce the stretch, we construct inward and outward shortest path
trees from vertices in a hitting set [1, 10] of size O(n1/k), and carefully choose the order to
process vertices in order to make the stretch exactly 2k − 1. To further make the size of the
spanner strongly subquatratic, we use a similar approach as in [16] to contract small edges
in every scale, and treat vertices with different radii of balls of size n1−1/k differently.

1.1 Related Works
The construction time in this paper is Õ(kmn logW). However, there exist roundtrip
spanners with o(mn) construction time but larger stretches. Pachoci et al. [13] proposes an
algorithm which can construct O(k logn)-roundtrip spanner with O(n1+1/k log2 n) edges. Its
construction time is O(mn1/k log5 n), which breaks the cubic time barrier. Very recently,
Chechik et al. [6] give an algorithm which constructs O(k log logn)-roundtrip spanners with
Õ(n1+1/k) edges in Õ(m1+1/k) time.

For spanners defined with respect to normal directed distance, researchers aim to ap-
proximate the k-spanner with minimum number of edges. Dinitz and Krauthgamer [9]
achieve Õ(n2/3) approximation in terms of edge size, and Bermen et al. [3] improves the
approximation ratio to Õ(n1/2).

Another type of directed spanners is transitive-closure spanner, introduced by Bhat-
tacharyya et al. [5]. In this setting the answer may not be a subgraph of G, but a subgraph
of the transitive closure of G. In other words, selecting edges outside the graph is permitted.
The tradeoff is between diameter (maximum distance) and edge size. One of Bhattacharyya
et al.’s results is spanners with diameter k and O((n logn)1−1/k) approximation of optimal
edge size [5], using a combination of linear programming rounding and sampling. Berman et
al. [4] improves the approximation ratio to O(n1−1/[k/2] logn). We refer to Raskhodnikova
[15] as a review of transitive-closure spanners.

1 Õ(·) hides logn factors.

R. Cen, R. Duan, and Y. Gu 24:3

1.2 Organization
In Section 2, the notations and basic concepts used in this paper will be discussed. In Section 3
we describe the construction of the (2k − 1)-roundtrip spanner with O(kn1+1/k log(nW))
edges, thus proving Theorem 1. Then in Section 4 we improve the size of the spanner
to O(kn1+1/k logn) and still keep the stretch to (2k − 1), thus proving Theorem 2. The
conclusion and further direction are discussed in Section 5.

2 Preliminaries

In this paper we consider a directed graph G = (V,E) with non-negative real edge weights
w where w(e) ∈ [1,W] for all e ∈ E. Denote G[U] to be the subgraph of G induced by
U ⊆ V , i.e. G[U] = (U,E ∩ (U × U)). A roundtrip path between nodes u and v is a cycle
(not necessarily simple) passing through u and v. The roundtrip distance between u and v
is the minimum length of roundtrip paths between u and v. Denote dU (u � v) to be the
roundtrip distance between u and v in G[U]. (Sometimes we may also use dU (u � v) to
denote a roundtrip shortest path between u, v in G[U].) It satisfies:

For u, v ∈ U , dU (u� u) = 0 and dU (u� v) = dU (v � u).
For u, v ∈ U , dU (u� v) = dU (u→ v) + dU (v → u).
For u, v, w ∈ U , dU (u� v) ≤ dU (u� w) + dU (w � v).

Here dU (u → v) is the one-way distance from u to v in G[U]. We use d(u � v) to denote
the roundtrip distance between u and v in the original graph G = (V,E).

In G, a t-roundtrip spanner of G is a subgraph H of G on the same vertex set V such
that the roundtrip distance between any pair of u, v ∈ V in H is at most t · d(u� v). t is
called the stretch of the spanner.

For a subset of vertices U ⊆ V , given a center u ∈ U and a radius R, define roundtrip
ball BallU (u,R) to be the set of vertices whose roundtrip distance on G[U] to center u is
strictly smaller than the radius R. Formally, BallU (u,R) = {v ∈ U : dU (u� v) < R}. Then
the size of the ball, denoted by |BallU (u,R)|, is the number of vertices in it. Similarly we
define BallU (u,R) = {v ∈ U : dU (u� v) ≤ R}. Subroutine InOutTrees(U, u,R) calculates
the edge set of an inward and an outward shortest path tree centered at u spanning vertices
in BallU (u,R) on G[U]. (That is, the shortest path tree from u to all vertices in BallU (u,R)
and the shortest path tree from all vertices in BallU (u,R) to u.) It is easy to see that the
shortest path trees will not contain vertices outside BallU (u,R):

I Lemma 3. The inward and outward shortest path trees returned by InOutTrees(U, u,R)
only contain vertices in BallU (u,R).

Proof. For any v ∈ BallU (u,R), let C be a cycle containing u and v such that the length
of C is less than R. Then for any vertex w ∈ C, dU (u� w) < R, so w must be also in the
trees returned by InOutTrees(U, u,R). J

For all notations above, we can omit the subscript V when the roundtrip distance is
considered in the original graph G = (V,E). Our algorithm relies on the following well-known
theorem to calculate hitting sets deterministically.

I Theorem 4 (Cf. Aingworth et al. [1], Dor et al. [10]). For universe V and its subsets
S1, S2, . . . , Sn, if |V | = n and the size of each Si is greater than p, then there exists a hitting
set H ⊆ V intersecting all Si, whose size |H| ≤ (n lnn)/p, and such a set H can be found in
O(np) time deterministically.

ICALP 2020

24:4 Roundtrip Spanners with (2k − 1) Stretch

3 A (2k − 1)-Roundtrip Spanner Algorithm

In this section we introduce our main algorithm constructing a (2k − 1)-roundtrip spanner
with O(kn1+1/k log(nW)) edges for any G. We may assume k ≥ 2 in the following analysis,
since the result is trivial for k = 1.

Our approach combines the ideas of [16] and [18]. In [18], given a length L, we pick
an arbitrary vertex u and find the smallest integer h such that |Ball(u, (h + 1)L)| <
n1/k|Ball(u, h · L)|, then we include the inward and outward shortest path tree centered at
u spanning Ball(u, (h+ 1)L) and remove vertices in Ball(u, h · L) from V . We can see that
h ≤ k, so the stretch is 2k for u, v with roundtrip distance L, and by a scaling approach the
final stretch is 2k + ε. We observe that if h = k − 1, |Ball(u, (k − 1)L)| ≥ n(k−1)/k, so by
Theorem 4 we can preprocess the graph by choosing a hitting set H with size O(n1/k logn)
and construct inward and outward shortest path trees centered at all vertices in H, then we
do not need to include the shortest path trees spanning Ball(u, k · L). The stretch can then
be decreased to 2k − 1 + ε. To make the stretch equal 2k − 1, instead of arbitrarily selecting
u each time, we carefully define the order to select u.

3.1 Preprocessing
We first define a radius R(u) for each vertex u. It is crucial for the processing order of
vertices.

I Definition 5. For all u ∈ V , we define R(u) to be the maximum length R such that
|Ball(u,R)| < n1−1/k, that is, if we sort the vertices by their roundtrip distance to u in G
by increasing order, R(u) is the roundtrip distance from u to the dn1−1/ke-th vertex.

For any u ∈ V , |Ball(u,R(u))| ≥ n1−1/k. By Theorem 4, we can find a hitting set H
intersecting all sets in {Ball(u,R(u)) : u ∈ V }, such that |H| = O(n1/k logn). For all t ∈ H,
we build an inward and an outward shortest path tree of G centered at t, and denote the
set of edges of these trees by E0 and include them in the final spanner. This step generates
O(n1+1/k logn) edges in total, and it is easy to obtain the following statement:

I Lemma 6. For u, v ∈ V such that d(u� v) ≥ R(u)/(k−1), the roundtrip distance between
u and v in the graph (V,E0) is at most (2k − 1)d(u� v).

Proof. Find the vertex t ∈ H such that t ∈ Ball(u,R(u)), that is, d(u� t) ≤ R(u). Then
the inward and outward shortest path trees from t will include d(u� t) and d(t� v). By
R(u) ≤ (k − 1)d(u � v), we have d(u � t) ≤ (k − 1)d(u � v) and d(t � v) ≤ d(t �
u) + d(u � v) ≤ k · d(u � v). So the roundtrip distance of u and v in E0 is at most
d(u� t) + d(t� v) ≤ (2k − 1)d(u� v). J

3.2 Approximating a Length Interval
Instead of approximating all roundtrip distances at once, we start with an easier subproblem
of approximating all pairs of vertices whose roundtrip distances are within an interval
[L/(1+ε), L). Parameter ε is a real number in (0, 1/(2k−2)]. The procedure Cover(G, k, L, ε)
described in Algorithm 1 will return a set of edges which gives a (2k−2)(1+ε)-approximation
of roundtrip distance d(u� v) if R(u)/(k − 1) > d(u� v), for d(u� v) ∈ [L/(1 + ε), L).

Note that in Algorithm 1, initially U = V and the balls are considered in G[U] = G. In
the end of every iteration we remove a ball from U , and the following balls are based on the
roundtrip distances in G[U]. However, R(u) does not need to change during the algorithm
and can still be based on roundtrip distances in the original graph G. The analysis for the
size of the returned set Ê and the stretch are as follows.

R. Cen, R. Duan, and Y. Gu 24:5

Algorithm 1 Cover(G(V,E), k, L, ε).

1: U ← V, Ê = ∅
2: while U 6= ∅ do
3: u← arg maxu∈U R(u)
4: step← min{R(u)/(k − 1), L}
5: h← minimum positive integer satisfying |BallU (u, h · step)| < nh/k

6: Add InOutTrees(U, u, h · step) to Ê
7: Remove BallU (u, (h− 1)step) from U

8: end while
9: return Ê

I Lemma 7. The returned edge set of Cover(G, k, L, ε) has O(n1+1/k) size.

Proof. When processing a vertex u, by the selection of h in line 5, |BallU (u, h · step)| < nh/k

and |BallU (u, (h − 1)step)| ≥ n(h−1)/k. When h ≥ 2 it is because of h’s minimality, and
when h = 1 it is because u ∈ BallU (u, 0). So each time InOutTrees is called, the size of ball
to build shortest path trees is no more than n1/k times the size of ball to remove. During
an execution of Cover(G, k, L, ε), each vertex is removed once from U . Therefore the total
number of edges added in Ê is O(n1+1/k). J

We can also see that if the procedure Cover(G[U], k, L, ε) is run on a subgraph G[U]
induced on a subset U ⊆ V , then the size of Ê is bounded by O(|U |n1/k). It is also easy to
see that h is at most k − 1:

I Lemma 8. The h selected at line 5 in Cover(G, k, L, ε) satisfies h ≤ k − 1.

Proof. In G[U], the ball BallU (u, (k − 1)step) must have size no greater than Ball(u, (k −
1)step) since the distances in G[U] cannot decrease while some vertices are removed. Since
|Ball(u,R(u))| < n1−1/k and step ≤ R(u)/(k − 1), we get |BallU (u, (k − 1)step)| ≤
|Ball(u, (k − 1)step)| < n1−1/k, thus h ≤ k − 1. J

Next we analyze the roundtrip distance stretch in Ê. Note that in order to make the
final stretch 2k − 1, for the roundtrip distance approximated by edges in Ê we can make the
stretch (2k − 2)(1 + ε), but for the roundtrip distance approximated by E0 we need to make
the stretch at most 2k − 1 as E0 stays the same.

I Lemma 9. For any pair of vertices u, v such that d(u � v) ∈ [L/(1 + ε), L), either
Cover(G, k, L, ε)’s returned edge set Ê can form a cycle passing through u, v with length at
most (2k − 2)(1 + ε)d(u � v), or R(u) ≤ (k − 1)d(u � v), in which case the E0 built in
Section 3.1 can form a detour cycle with length at most (2k − 1)d(u� v) by Lemma 6.

Proof. Consider any pair of vertices u, v with roundtrip distance d = d(u � v) ∈ [L/(1 +
ε), L), and a shortest cycle P going through u, v with length d.

During Cover(G, k, L, ε), consider the vertices on P that are first removed from U . Suppose
w is one of the first removed vertices, and w is removed as a member of BallUc

(c, (hc−1)stepc)
centered at c. This is to say dUc

(c� w) ≤ (hc − 1)stepc.
Case 1: stepc > d. Then

dUc(c� u) ≤ dUc(c� w) + dUc(w � u) ≤ (hc − 1)stepc + d < hcstepc,

and u ∈ BallUc(c, hcstepc). The second inequality holds because Uc is the remaining vertex
set before removing w, so by definition of w, all vertices on P are in Uc. Symmetrically

ICALP 2020

24:6 Roundtrip Spanners with (2k − 1) Stretch

v ∈ BallUc(c, hcstepc). InOutTrees(Uc, c, hcstepc) builds a detour cycle passing through
u, v with length < 2hcstepc. By Lemma 8, we have hc ≤ k − 1. Also stepc ≤ L ≤ (1 + ε)d,
therefore we build a detour of length < 2(k − 1)stepc ≤ (2k − 2)(1 + ε)d in Ê.

Case 2: stepc ≤ d. Because d < L, this case can only occur when stepc = R(c)/(k − 1).
Because c is chosen before u, R(u) ≤ R(c) = (k − 1)stepc ≤ (k − 1)d. By Lemma 6, E0 can
give a (2k − 1)-approximation of d. J

3.3 Main Construction

Now we can proceed to prove the main theorem based on a scaling on lengths of the cycles
from 1 to 2nW .

I Theorem 10. For any directed graph G with real edge weights in [1,W], there exists a
polynomial time constructible (2k − 1)-roundtrip spanner of G with O(kn1+1/k log(nW))
edges.

Proof. Note that the roundtrip distance between any pair of vertices must be in the range
[1, 2(n− 1)W]. First do the preprocessing in Section 3.1. Then divide the range of roundtrip
distance [1, 2nW) into intervals [(1+ε)p−1, (1+ε)p), where ε = 1/(2k−2). Call Cover(G, k, (1+
ε)p, ε) for p = 0, · · · , blog1+ε(2nW)c + 1, and merge all returned edges with E0 to form a
spanner.

First we prove that the edge size is O(kn1+1/k log(nW)). Preprocessing adds O(n1+1/k ·
logn) edges. Cover(G, k, (1 + ε)p, ε) is called for log1+1/(2k−2)(2nW) = O(k log(nW)) times.
By Lemma 7, each call generates O(n1+1/k) edges. So the total number of edges in the
roundtrip spanner is O(kn1+1/k log(nW)).

Next we prove the stretch is 2k − 1. For any pair of vertices u, v with roundtrip distance
d, let p = blog1+ε dc+ 1, then d ∈ [(1 + ε)p−1, (1 + ε)p). By Lemma 9, either the returned
edge set of Cover(G, k, (1 + ε)p, ε) can form a detour cycle passing through u, v of length
at most (2k − 2)(1 + ε)d = (2k − 1)d, or the edges in E0 can form a detour cycle passing
through u, v of length at most (2k − 1)d.

In conclusion this algorithm can construct a (2k− 1)-roundtrip spanner with O(kn1+1/k ·
log(nW)) edges. J

3.4 Construction Time

The running time of the algorithm in the proof of Theorem 10 is O(kn(m+n logn) log(nW)).
It is also easy to see that the algorithm is deterministic. Next we analyze construction time
in detail.

In preprocessing, for any u ∈ V , R(u) can be calculated by running Dijkstra searches with
Fibonacci heap [12] starting at u, so calculating R(·) takes O(n(m+ n logn)) time. Finding
H takes O(n2−1/k) time by Theorem 4. Building E0 takes O(n1/k logn · (m+ n logn)) time.

A Cover call’s while loop runs at most n times since each time at least one node is removed.
In a loop, u can be found in O(n) time, and all other operations regarding roundtrip balls
can be done in O(m+ n logn) time by Dijkstra searches starting at u on G[U]. Therefore a
Cover call takes O(n(m+ n logn)) time.

Cover is called O(k log(nW)) times. Combined with the preprocessing time, the total
construction time is O(kn(m+ n logn) log(nW)).

R. Cen, R. Duan, and Y. Gu 24:7

4 Removing the Dependence on W

In this section we prove Theorem 2. The size of the roundtrip spanner in Section 3 is
dependent on the maximum edge weight W . In this section we remove the dependence by
designing the scaling approach more carefully. Our idea is similar to that in [16]. When we
consider the roundtrip distances in the range [L/(1 + ε), L), all cycles with length ≤ L/n3

have little effect so we can contract them into one node, and all edges with length > (2k−1)L
cannot be in any (2k − 1)L detour cycles, so they can be deleted. Thus, an edge with length
l can only be in O(log1+ε n) iterations for L between l/(2k− 1) and l ·n3 (based on the girth
of this edge). However, the stretch will be a little longer if we directly apply the algorithm
in Section 3 on the contracted graph.

To overcome this obstacle, we only apply the vertex contraction when R(u) is large
(larger than 2(k − 1)L). By making the “step” a little larger than L and ε smaller, when
d < L < step, the stretch is still bounded by (2k−1). When R(u) ≤ 2(k−1)L, we first delete
all node v with R(v) < L/8, then simply apply the algorithm in Section 3 in the original
graph. Since every node u can only be in the second part when R(u)/2(k − 1) ≤ L ≤ 8R(u),
the number of edges added in the second part is also strongly polynomial.

First we define the girth of an edge:

I Definition 11. We define the girth of an edge e in G to be the length of shortest directed
cycle containing e, and denote it by g(e).

It is easy to see that for e = (u, v), d(u� v) ≤ g(e). In O(n(m+ n logn)) time we can
compute g(e) for all edges e in G [12].

Algorithm 2 approximates roundtrip distance d(u � v) ∈ [L/(1 + ε), L). In the p-th
iteration of the algorithm, Gp[Up] is always the subgraph contracted from the subgraph G[U].
Given vp ∈ Up, let C(vp) be the set of vertices in U that are contracted into vp. We can see
the second part of this algorithm (after line 12) is the same as Algorithm 1 in Section 3.

For the contracted subgraph Gp[Up], we give new definitions for balls and InOutTrees.
Given two vertices up, vp ∈ Up, define

d̂Up(up, vp) = min
u∈C(up),v∈C(vp)

dU (u, v)

Balls in Gp[Up] are defined as follows.

BallUp
(up, r) = {vp ∈ Up : d̂Up

(up, vp) < r}

BallUp
(up, r) = {vp ∈ Up : d̂Up

(up, vp) ≤ r}

In Line 9, NewInOutTrees(Up, up, h · step) is formed by only keeping the edges between
different contracted vertices in InOutTrees(U, u, h · step) from u (see Line 6). In the inward
tree or outward tree of InOutTrees(U, u, h ·step), if after contraction there are multiple edges
from or to a contracted vertex, respectively, only keep one of them. We can see the number of
edges added to Ê is bounded by O(|BallUp

(up, h · step)|). Also in Up, the roundtrip distance
from up to vertices in BallUp

(up, h · step) by edges in NewInOutTrees(Up, up, h · step) is at
most h · step.

In line 3, we can delete long edges since obviously they cannot be included in Ê.
The main algorithm is shown in Algorithm 3.

I Lemma 12. For k ≤ n and n ≥ 12, Algorithm Spanner(G, k) constructs a (2k−1)-roundtrip
spanner of G.

ICALP 2020

24:8 Roundtrip Spanners with (2k − 1) Stretch

Algorithm 2 Cover2(G, k, p, ε).

1: L← (1 + ε)p
2: Contract all edges e with g(e) ≤ L/n3 in G to form a graph Gp, let its vertex set be Vp
3: (Delete edges e with g(e) > 2(k − 1)L from Gp)
4: U ← V,Up ← Vp, Ê ← ∅
5: while U 6= ∅ and maxu∈U R(u) ≥ 2(k − 1)L do
6: u← arg maxu∈U R(u), let up be the corresponding vertex in Up
7: step← (1 + 1/n2)L
8: h← minimum positive integer satisfying |BallUp

(up, h · step)| < nh/k

9: Add NewInOutTrees(Up, up, h · step) to Ê
10: Remove BallUp(up, (h− 1)step) from Up, remove corresponding vertices from U

11: end while
12: Remove all vertices u from U with R(u) < L/8
13: while U 6= ∅ do
14: u← arg maxu∈U R(u)
15: step← min{R(u)/(k − 1), L}
16: h← minimum positive integer satisfying |BallU (u, h · step)| < nh/k

17: Add InOutTrees(U, u, h · step) to Ê
18: Remove BallU (u, (h− 1)step) from U

19: end while
20: return Ê

Algorithm 3 Spanner(G(V,E), k).

1: Do the preprocessing in Section 3.1. Let E0 be the added edges
2: ε← 1

4(k−1) .
3: Ê ← E0
4: for p← 0 to blog1+ε(2nW)c+ 1 do
5: Ê ← Ê∪ Cover2(G, k, p, ε)
6: end for
7: return H(V, Ê)

Proof. For any pair of vertices u, v with roundtrip distance d = d(u � v) on G, there
exists a p, such that d ∈ [(1 + ε)p−1, (1 + ε)p). Let L = (1 + ε)p. If R(u) ≤ (k − 1)d
or R(v) ≤ (k − 1)d, by Lemma 6, E0 contains a roundtrip cycle between u and v with
length at most (2k − 1)d. So we assume R(u) > (k − 1)d and R(v) > (k − 1)d. Also, if
there is a vertex w on the shortest cycle containing u and v with R(w) < L/8, then there
will be a vertex t ∈ H so that d(w � t) < L/8, so the roundtrip distance in E0 will be
d(u� t) + d(t� v) < L/4 + 2d ≤ (1 + ε)d/4 + 2d < (2k − 1)d for k ≥ 2, so Line 12 cannot
impact the correctness.

Consider the iteration p of Algorithm 2, let up, vp be the contracted vertices of u, v
respectively. Let P be a shortest cycle going through u, v in G and P ′ be the contracted
cycle going through up, vp in Gp. It is easy to see that each vertex on P corresponds to some
vertex on P ′. Similar as Lemma 8, in Line 8 and Line 16, we have (k − 1) · step ≤ R(u). It
is easy to see that |BallUp(up, (k − 1) · step)| ≤ |BallU (u, (k − 1) · step)| < n1−1/k, which
implies h ≤ k − 1.

R. Cen, R. Duan, and Y. Gu 24:9

We prove it by the induction on p. When p is small, there is no contracted vertex in
Gp. By the same argument as in Lemma 9, either Cover2(G, k, L, ε)’s returned edge set Ê
contains a roundtrip cycle between u and v with length at most

2hc · stepc ≤ 2(k − 1)(1 + 1/n2)(1 + ε)d = (2k − 3/2)(1 + 1/n2)d ≤ (2k − 1)d

(k ≥ 2, k ≤ n and n ≥ 12) since stepc ≤ (1 + 1/n2)L in Line 7 and Line 15 and hc ≤ k − 1,
or E0 contains a cycle between u and v with length at most (2k − 1)d. Next we assume that
vertices of G contracted in the same vertex in Gp are already connected in Ê, and has the
(2k − 1)-stretch.

During Cover2(G, k, p, ε), if some vertices in P ′ are removed from Up in Line 10, like
Lemma 9, suppose wp ∈ Up is one of the first removed vertices, and wp is removed as a member
of BallUc

(c, (hc − 1)stepc) centered at c. Let w′ ∈ C(wp) be one vertex on P , since there are
at most n original vertices contracted and stepc = (1+1/n2)L, we have dU (c� u) ≤ dUp

(c�
wp)+dU (w′ � u)+n ·L/n3 ≤ (hc−1)stepc+dU (u� v)+L/n2 < (hc−1)stepc+L+L/n2 =
hcstepc, and symmetrically dU (c� v) < hcstepc. Thus NewInOutTrees(Uc, c, hcstepc) builds
a roundtrip cycle passing through up, vp of length < 2hcstepc in current contracted graph.
It follows that dGp[Ê](up, vp) < 2hcstepc ≤ 2(k − 1)(1 + 1/n2)L. Since there are at most
n contracted vertices in the roundtrip cycle between up and vp, and w(e) ≤ g(e) for every
contracted edge e, we have

dG[Ê](u, v) ≤ 2(k− 1)(1 + 1/n2)L+n · (2k− 1)L/n3 ≤ (2k− 3/2)(1 + 3/n2)d ≤ (2k− 1)d.

(k ≥ 2, k ≤ n and n ≥ 12.)
If there is no vertex in P ′ removed from Up in Line 10 and Line 12, then all vertices w in

P have L/8 ≤ R(w) < 2(k − 1)L. By the same argument as in Lemma 9, the second part of
Algorithm 2 also ensures that Ê ∪ E0 contains a roundtrip cycle passing through u, v with
length at most (2k − 1)d. J

I Lemma 13. The subgraph returned by algorithm Spanner(G, k) has O(kn1+1/k logn) edges.

Proof. Preprocessing adds O(n1+1/k logn) edges as in Section 3.1. The edges added in Line 17
is bounded as follows. Consider Algorithm 2, after Line 12, the subgraph only consists of
vertices with R(u) ∈ [L/8, 2(k − 1)L], so each vertex belongs to at most log1+ε 16k such
iterations. Thus the total number of edges added after Line 12 is at most n1+1/k log1+ε 16k =
O(kn1+1/k log k) edges. Next we count the edges added in Line 9.

We remove the directions of all edges in G to get an undirected graph G′, and remove
the directions of all edges in every Gp to get an undirected graph G′p, but define the weight
of an edge e in G′ and every G′p to be the girth g(e) in G. Let F be a minimum spanning
forest of G′ w.r.t. the girth g(e). We can see that in iteration p, if we remove edges in F
with g(e) > 2(k − 1)(1 + ε)p and contract edges e with g(e) ≤ (1 + ε)p/n3 in F , then the
connected components in F will just be the connected components in G′p, which are the
strongly connected components in Gp. This is because of the cycle property of MST: If an
edge e = (u, v) in G′p has g(e) ≤ (1 + ε)p/n3, then in F all edges f on the path connecting
u, v have g(f) ≤ (1 + ε)p/n3, thus u, v are already contracted in F ; If an edge e = (u, v)
in G′p has g(e) ≤ 2(k − 1)(1 + ε)p, then in F all edges f on the path connecting u, v have
g(f) ≤ 2(k − 1)(1 + ε)p, so u, v are in the same component in F .

So the total size of connected components {C : |C| ≥ 2} in G′p is at most 2 times the
number of edges e in F with (1 + ε)p/n3 < g(e) ≤ 2(k − 1)(1 + ε)p, and every edge in F can
be in at most log1+ε 2(k − 1)n3 = O(k logn) number of different G′p. Thus, the total size of
connected components with size at least 2 in all G′p is bounded by O(kn logn). By a similar

ICALP 2020

24:10 Roundtrip Spanners with (2k − 1) Stretch

argument of Lemma 7, in each call of Cover2(G, k, p, ε), line 9 will add |C|n1/k new edges to
Ê, for every connected component C with |C| ≥ 2 in G′p. Thus the total number of edges in
the subgraph returned by Spanner(G, k) is bounded by O(kn1+1/k logn). J

Construction Time

The analysis of Spanner’s running time is similar to Section 3.4. Compared with Cover,
Cover2 adds operations of building Gp. We also need to calculate g(·) in preprocessing,
which can done by n Dijkstra searches. Gp can be built in O(m) time. Cover2 is called
log1+ε′(2nW) = O(k log(nW)) times. Therefore the total construction time is still O(kn(m+
n logn) log(nW)).

5 Conclusion

In this paper we discuss the construction of (2k−1)-roundtrip spanners with O(kn1+1/k logn)
edges. An important and interesting further direction is whether we can find truly subcubic
algorithm constructing such spanners.

References
1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of

diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

2 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, January 1993.
doi:10.1007/BF02189308.

3 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Improved approximation for the directed spanner problem. In Interna-
tional Colloquium on Automata, Languages, and Programming, pages 1–12, Berlin, Heidelberg,
2011. Springer.

4 Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser directed spanners. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 424–435, Dagstuhl, 2010. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSTTCS.2010.424.

5 A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. Woodruff. Transitive-
closure spanners. SIAM Journal on Computing, 41(6):1380–1425, 2012. doi:10.1137/
110826655.

6 Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford. Improved Girth Approximation
and Roundtrip Spanners. arXiv e-prints, page arXiv:1907.10779, July 2019. arXiv:1907.10779.

7 Lenore J Cowen and Christopher G Wagner. Compact roundtrip routing for digraphs. In
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 885–886,
Philadelphia, 1999. SIAM.

8 Lenore J Cowen and Christopher G Wagner. Compact roundtrip routing in directed networks.
In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing,
pages 51–59, New York, 2000. ACM.

9 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pages 323–332,
New York, 2011. ACM. doi:10.1145/1993636.1993680.

10 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

https://doi.org/10.1007/BF02189308
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.424
https://doi.org/10.1137/110826655
https://doi.org/10.1137/110826655
http://arxiv.org/abs/1907.10779
https://doi.org/10.1145/1993636.1993680

R. Cen, R. Duan, and Y. Gu 24:11

11 Paul Erdös. Extremal problems in graph theory. In Theory of Graphs and Its Applications
(Proc. Sympos. Smolenice, 1963), pages 29–36, Prague, 1964. Publ. House Czechoslovak Acad.
Sci.

12 Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

13 Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.
Approximating cycles in directed graphs: Fast algorithms for girth and roundtrip spanners.
In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1374–1392, Philadelphia, 2018. SIAM.

14 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, USA, 2000.

15 Sofya Raskhodnikova. Transitive-closure spanners: A survey. In Property Testing, pages
167–196. Springer, Berlin, Heidelberg, 2010.

16 Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip routing in
directed graphs. ACM Trans. Algorithms, 4(3):29:1–29:17, July 2008. doi:10.1145/1367064.
1367069.

17 Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, pages 183–192, New York, 2001. ACM.

18 Chun Jiang Zhu and Kam-Yiu Lam. Deterministic improved round-trip spanners. Information
Processing Letters, 129:57–60, 2018.

19 Uri Zwick. Exact and approximate distances in graphs: a survey. In European Symposium on
Algorithms, pages 33–48, Berlin, Heidelberg, 2001. Springer.

ICALP 2020

https://doi.org/10.1145/1367064.1367069
https://doi.org/10.1145/1367064.1367069

	Introduction
	Related Works
	Organization

	Preliminaries
	A (2k-1)-Roundtrip Spanner Algorithm
	Preprocessing
	Approximating a Length Interval
	Main Construction
	Construction Time

	Removing the Dependence on W
	Conclusion

