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Abstract
Boneh, Bonneau, Bünz, and Fisch (CRYPTO 2018) recently introduced the notion of a verifiable
delay function (VDF). VDFs are functions that take a long sequential time T to compute, but
whose outputs y := Eval(x) can be efficiently verified (possibly given a proof π) in time t� T (e.g.,
t = poly(λ, log T ) where λ is the security parameter). The first security requirement on a VDF,
called uniqueness, is that no polynomial-time algorithm can find a convincing proof π′ that verifies
for an input x and a different output y′ 6= y. The second security requirement, called sequentiality, is
that no polynomial-time algorithm running in time σ < T for some parameter σ (e.g., σ = T 1/10) can
compute y, even with poly(T, λ) many parallel processors. Starting from the work of Boneh et al.,
there are now multiple constructions of VDFs from various algebraic assumptions.

In this work, we study whether VDFs can be constructed from ideal hash functions in a black-box
way, as modeled in the random oracle model (ROM). In the ROM, we measure the running time by
the number of oracle queries and the sequentiality by the number of rounds of oracle queries. We
rule out two classes of constructions of VDFs in the ROM:

We show that VDFs satisfying perfect uniqueness (i.e., VDFs where no different convincing
solution y′ 6= y exists) cannot be constructed in the ROM. More formally, we give an attacker
that finds the solution y in ≈ t rounds of queries, asking only poly(T ) queries in total.

We also rule out tight verifiable delay functions in the ROM. Tight verifiable delay functions,
recently studied by Döttling, Garg, Malavolta, and Vasudevan (ePrint Report 2019), require
sequentiality for σ ≈ T − T ρ for some constant 0 < ρ < 1. More generally, our lower bound also
applies to proofs of sequential work (i.e., VDFs without the uniqueness property), even in the
private verification setting, and sequentiality σ > T − T/2t for a concrete verification time t.
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1 Introduction

A verifiable delay function (VDF) [5] with domain X and range Y is a function that takes
long sequential time T to compute, but whose output can be efficiently verified in time t� T

(e.g., t = poly(λ, log T ) where λ is a security parameter). More precisely, there exists an
evaluation algorithm Eval that on input x ∈ X computes a value y ∈ Y and a proof π in time
T . In addition, there is a verification algorithm Verify that takes as input a domain element
x ∈ X , a value y ∈ Y , and a proof π and either accepts or rejects in time t. In some cases, a
VDF might also have a setup algorithm Setup which generates a set of public parameters pp
that is provided as input to Eval and Verify.1 Typically, we require that the setup is also fast:
namely, Setup runs in time s = poly(λ, log T ) as well. The two main security requirements
for a VDF are (1) uniqueness which says that for all inputs x ∈ X , no adversary running in
time poly(λ, T ) can find y′ 6= Eval(x) and a proof π′ such that Verify(x, y′, π′) = 1; and (2)
sequentiality with some parameter σ < T , which says that no adversary running in sequential
time σ can compute y = Eval(x). The sequential time σ allows the adversary to have up to
poly(λ, T ) parallel processors.

Verifiable delay functions have recently received extensive study, and have found numer-
ous applications to building randomness beacons [5, 13] and cryptographic timestamping
schemes [19]. Driven by these exciting applications, a sequence of recent works have developed
constructions of verifiable delay functions from various algebraic assumptions [14,24,28,29].
However, existing constructions still leave much to be desired in terms of concrete efficiency,
and today, there are significant community-driven initiatives to construct, implement, and
optimize more concretely-efficient VDFs [16]. One of the bottlenecks in existing constructions
of VDFs is their reliance on structured algebraic assumptions (e.g., groups of unknown
order [4, 26] or isogenies over pairing groups [14]).

A natural question to ask is whether we can construct VDFs generically from unstructured
primitives, such as one-way functions, collision-resistant hash functions, or stronger forms of
hash functions. In this work, we study whether black-box constructions of VDFs are possible
starting from hash functions or other symmetric primitives. Specifically, we consider black-
box constructions of VDFs from ideal hash functions (modeled as a random oracle). Similar
to previous work (cf. [2, 21]) in the parallel random oracle model (ROM), we measure the
running time of the adversary by the number of oracle queries it makes and the sequentiality
of the adversary by the number of rounds of oracle queries it makes. However, we simply
refer to the parallel ROM as the ROM.

1.1 Our Results
In this work, we rule out the existence of VDFs with perfect uniqueness (i.e., VDFs where for
any x ∈ X , there does not exist any (y′, π) such that Verify(x, y′, π) = 1 and y′ 6= Eval(x))
in the random oracle model. Specifically, we construct an adversary that asks O(t) rounds
of queries and a total number of poly(T ) queries and breaks the uniqueness of VDFs with
respect to some oracle.

A natural class of VDFs with perfect uniqueness is the class of permutation VDFs where
the function Eval(·) implements a permutation on the domain (specifically, X = Y), and
verification consists of inverting y and checking if it is x or not. Recently, Abusalah et al. [1]

1 Ideally, the public parameters can be sampled by a public-coin process [5, 24, 29]. Otherwise, we require
a trusted setup to generate the public parameters [14,28].
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constructed permutation VDFs in the ROM, but they additionally relied on the assumptions
used in the sloth functions of Lenstra and Wesolowski [20]. Our work shows that relying on
some kind of structured assumption is necessary to achieve permutation VDFs.

We next show that in the “tight” regime of sequentiality, as recently studied in the
concurrent work of Döttling et al. [10] (i.e., when the sequentiality parameter σ is quite close
to T ), even proofs of sequential work (PoSW) [7,12,22,25] cannot be based on random oracles.
In particular, our result essentially applies to settings where σ � T · (1− 1/t) where t is the
verification time. A proof of sequential work is a relaxation of a VDF without the uniqueness
or the public-verifiability properties. Thus, our lower bound for ruling out tight PoSW also
rules out tight VDFs in the ROM. We note, however, that since (even publicly-verifiable)
PoSW satisfying weaker notions of sequentiality (e.g., σ = T/2) are known to exist in the
ROM [22], it is not clear whether this lower bound for PoSW can be extended to rule out
(non-tight) VDFs, and we leave this as an intriguing open question.

We note that both of our lower bounds are proven in settings that have already been
studied in previous (or concurrent) work. Namely, by ruling out permutation VFDs in the
ROM, our first main result complements the previous work on permutation VDFs [1] by
showing that the random oracle alone is not sufficient to realize such strong VDFs. Moreover,
our second result shows that when it comes to the tight regime of sequentiality (studied in
the concurrent work of [10]), VDFs as well as more relaxed notions like proofs of sequential
work cannot be based on symmetric primitives in a black-box way.

1.1.1 Our Techniques
At a technical level, the proofs of our lower bounds start from the techniques of Mahmoody,
Moran, and Vadhan [21] for ruling out time-lock puzzles in the random oracle model. In
fact, for a special case of perfectly-unique VDFs where the VDF is a permutation on its
domain X = Y, which we refer to as a “permutation VDF” (cf., [1, 18,20]), we can use the
impossibility result of [21] as a black-box by reducing the task of constructing time-lock
puzzles in the ROM to constructing permutation-VDFs in the ROM.

For the more general case of perfectly-unique VDFs (that are not necessarily permutations)
we cannot use the result of [21] as a black-box, but we can still adapt the ideas from their
work that are reminiscent of similar techniques also used in [6, 23, 27]. Namely, our attacker
will sample full executions of the evaluation function Eval in its head, while respecting answers
to queries that it has already learned from the real oracle. At the end of each simulated
execution, it will ask all previously-unasked queries in a single round to the oracle (and use
those values in subsequent simulated executions). We show that using just O(t) rounds of
this form, we can argue that in most of these rounds, the adversary does not hit any “new
query” in the verification process. Consequently, in most of the executions it is consistent
with the verification procedure with respect to some oracle O′, and thus by the perfect
uniqueness property, the answer in those executions should be the correct one. Finally, by
taking a majority vote over the executions, we obtain the correct answer with high probability.
Observe that this argument critically relies on perfect uniqueness. The main open question
remaining is whether a similar lower bound for computational uniqueness holds for VDF in
the ROM or not. In this setting, the security requirement is that no efficient adversary can
find a different value y′ 6= Eval(x) with a proof π′ that passes verification. (See Section 3.1.)

We then adapt this technique to additionally rule out tight proofs of sequential work in
the ROM. Roughly, a scheme satisfies tight sequentiality if no adversary running in sequential
time σ = T − T ρ for constant ρ < 1 can compute (y, π) such that Verify(x, y, π) = 1. More
generally, we consider a setting of parameters where σ > T · (1 − 1/2t), where t denotes
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the number of queries made by Verify. In this setting, we can construct an algorithm that
simulates the answers to some but not all of the oracle queries made by the evaluation
algorithm. The algorithm answers the remaining queries based on the real oracle evaluations.
To simplify the description, in the following, assume that the setup algorithm is essentially
nonexistent, and that the public parameter is fixed and publicly known ahead of time. Since
the scheme is assumed to be tightly sequential, as long as the algorithm simulates sufficiently-
many queries (e.g., T/2t queries), it is possible to reduce the number of rounds of queries
made to the real oracle (i.e., from T to T − T/2t). Moreover, if the number of “simulated
responses” is small enough and if the set of queries for which the algorithm simulates is
chosen at random, then there is a good chance that none of the simulated queries are asked
during verification. If both of these properties hold simultaneously, then the algorithm
successfully computes a response that verifies, thus breaking tight sequentiality. We provide
the formal analysis in Section 3.2. However, the formal version of this argument needs to
also incorporate the query complexity of the setup algorithm as well, leading to a weaker
attack that only applies when σ > T · (1− 1/2(s+t)). However, in Section 4, we describe how
to extend our lower bounds on tight proofs of sequential work (and correspondingly, tight
VDFs) to additionally rule out tight proofs of sequential work with an expensive setup phase
as well as tight proofs of sequential work in the random permutation model. In particular, we
show how to leverage preprocessing to essentially eliminate the dependency of the attack’s
online phase on the query complexity of the setup.

1.2 Related Work
Verifiable delay functions are closely related to the notion of (publicly-verifiable) proofs of
sequential work (PoSW) [1, 8, 11, 22]. The main difference between VDFs and PoSWs is
uniqueness. More specifically, a VDF ensures that for every input x, an adversary running in
time poly(λ, T ) can only find at most one output y (accompanied with a possibly non-unique
proof π) that the verifier would accept (and if it does, the verifier is also convinced that the
prover performed T sequential work). In contrast, a PoSW does not provide any guarantees
on uniqueness. In particular, for every input x, there might be many possible pairs (y, π)
that the verifier would accept, and as a result, in this setting there is no longer a need to
distinguish between the output y and the proof π. Even more generally, proofs of work need
not be publicly-verifiable [12], and one could only require sequentiality against adversaries
who do not know a secret verification key generated during the setup. We emphasize that
the uniqueness property in VDFs is important both for applications as well as constructions.
Indeed, publicly-verifiable proofs of sequential work can be constructed in the random oracle
model [8, 11,22], while our work rules out a broad class of VDFs in the same model.

Time-lock puzzles. Time-lock puzzle [25] are closely related to VDFs as they are also based
on the notion of sequentiality. In a time-lock puzzle, a puzzle generator can generate a puzzle
x together with a solution y in time t� T , but computing y from x still requires sequential
time T . The main difference between VDFs and time-lock puzzles is that time-lock puzzles
might require knowledge of a secret key for efficient verification (in time t). In contrast,
VDFs are publicly-verifiable (in time t). However, similar to VDFs, the output of a time-lock
puzzle is unique. Mahmoody et al. [21] leverage this very uniqueness property and the fact
that the solution is known ahead of the time to the verifier (because it is sampled during the
puzzle generation) to show an impossibility result for time-lock puzzles in the random oracle
model. While VDFs also require unique solutions, these solutions might not be known when
we directly sample an input.
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Concurrent work. In an independent and concurrent work, Döttling et al. [10] introduce
and provide an in-depth study of tight verifiable delay functions. Their work both provides a
positive construction of tight VDFs (from algebraic assumptions) as well as a negative result
on the existence of tight VDFs in the random oracle model. In this work, we show that the
lower bound on tight VDFs also extends to (even privately-verifiable) proofs of sequential
work. At the same time, we note that (even publicly-verifiable) proofs of sequential work
do exist in the non-tight regime (e.g., σ = T/2) in the ROM [22]. Thus, whether or not
this lower bound in the random oracle model on tight VDFs can be extended to arbitrary
(non-tight) VDFs or not still remains an intriguing open question.

2 Preliminaries

Throughout this work, we use λ to denote the security parameter. For an integer n ∈ N,
we write [n] to denote the set {1, 2, . . . , n}. We write poly(λ) to denote a quantity that is
bounded by a fixed polynomial in λ and negl(λ) to denote a function that is λ−ω(1). For
a distribution D, we write x ← D to denote that x is drawn from D. For a randomized
algorithm Alg, we write y ← Alg(x) to denote the process of computing y by running Alg
on input x with (implicitly-defined) randomness r of the appropriate length (based on the
length of x). For a finite set S, we write x $←S to denote that x is sampled uniformly at
random from S. We say that an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We now review the definition of a verifiable delay function.

I Definition 1 (Verifiable Delay Function [5]). A verifiable delay function is a tuple of
algorithms ΠVDF = (Setup,Eval,Verify) with the following properties:

Setup(1λ, T ) → pp: On input the the security parameter λ and the time bound T , the
setup algorithm outputs the public parameters pp. The public parameter determines a
(uniformly) samplable input space Xpp and an output space Ypp. When the context is
clear, we simply denote them as X and Y.
Eval(pp, x) → (y, π): On input the public parameters pp and an element x ∈ X , the
evaluation algorithm outputs a value y ∈ Y and a (possibly empty) proof π. Moreover,
in case Eval is randomized, the first output y should be determined by x and pp (and be
independent of the randomness used). We will typically refer to y as the “output” of the
VDF on x, and since y is unique, when the context is clear, we simply write y = Eval(pp, x)
to denote the output of the VDF on x.
Verify(pp, x, y, π) → {0, 1}: On input the public parameters pp, an element x ∈ X , a
value y ∈ Y, and a proof string π ∈ {0, 1}∗, the verification algorithm outputs a bit (1
means accept and 0 means reject).

Moreover, the algorithms must satisfy the following efficiency requirements:
The setup algorithm Setup runs in time poly(λ, log T ).
The evaluation algorithm Eval runs in time T .
The verification algorithm Verify runs in time poly(λ, log T ).

For simplicity of notation, in the following sections, we sometimes write s (resp., t) to
denote the running time of Setup (resp., Verify). This additionally allow us to state our
results more generally while also explicitly stating how our results depend on the precise
bounds on the running time of Setup and Verify.

ICALP 2020
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Completeness. We now define the completeness requirement on VDFs.

I Definition 2 (Completeness of VDF). A VDF ΠVDF = (Setup,Eval,Verify) has completeness
error γ if for all λ ∈ N and T ∈ N,

Pr
[

Verify(pp, x, y, π) = 1 : pp← Setup(1λ, T ), x $←Xpp
(y, π)← Eval(pp, x)

]
≥ 1− γ.

Unless stated otherwise, we assume γ = 0. For our first lower bound, we need perfect
completeness γ = 0, but our second lower bound in the tight regime directly extends to more
generalized settings where the completeness error γ is negl(λ) (or even a small constant).

Security. The two main security requirements we require on a VDF are uniqueness and
sequentiality. We define these below.

I Definition 3 (Uniqueness of VDF). A VDF ΠVDF = (Setup,Eval,Verify) satisfies uniqueness
for a class A of adversaries with error ε(λ), if for all adversaries Adv ∈ A, we have that

Pr
[
y 6= Eval(pp, x) ∧ Verify(pp, x, y, π) : pp← Setup(1λ, T )

(x, y, π)← Adv(1λ, 1T , pp) = 1
]
≤ ε(λ).

We say that ΠVDF satisfies statistical uniqueness if A is the set of all (computationally
unbounded) adversaries and ε(λ) is negligible. We say ΠVDF satisfies perfect uniqueness if
we further require ε(λ) = 0. We say that ΠVDF is computationally unique if A is the class of
poly(λ, T )-time adversaries and ε(λ) is negligible.

I Definition 4 (Sequentiality of VDF). A VDF ΠVDF = (Setup,Eval,Verify) is σ-sequential
(where σ may be a function of λ, T and t) if for all adversaries Adv = (Adv0,Adv1), where
Adv0,Adv1 both run in total time poly(λ, T ) and Adv1 runs in parallel time at most σ, we
have that

Pr

y = Eval(pp, x) :
pp← Setup(1λ, T )

stAdv ← Adv0(1λ, 1T , pp)
x

$←X , y ← Adv1(stAdv, x)

 = negl(λ).

We can view Adv0 as a “preprocessing” algorithm that precomputes some initial state stAdv
based on the public parameters and Adv1 as the “online” adversarial evaluation algorithm.

I Definition 5 (Decodable VDF [5]). Let t be a function of λ and T . A VDF ΠVDF =
(Setup,Eval,Verify) is t-decodable if there is no extra proof (i.e., π = ⊥) and there is a
decoder Dec with the following properties:

Dec runs in time t.
For all x ∈ X , if y = Eval(pp, x), then Dec(pp, y) = x.

We say that ΠVDF is strongly decodable, if for all y′ 6= y = Eval(pp, x), it holds that
Dec(pp, y) 6= x. Finally, we say a VDF is efficiently (strongly) decodable if it is (strongly)
t-decodable for t = poly(λ, log T ).

I Remark 6 (Strongly Decodable VDFs and Perfect Uniqueness). Strong decodability (Defini-
tion 5) implies perfect uniqueness (Definition 3). However, the reverse is not true in general.
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I Definition 7 (Random Oracle Model (ROM)). A random oracle O implements a truly
random function from {0, 1}∗ to range R.2 Equivalently, one can use “lazy evaluation” to
simulate the behavior of a random oracle as follows:

If the oracle has not been queried on x ∈ {0, 1}∗, sample y $←R. The oracle returns y
and remembers the mapping (x, y).
If the oracle was previously queried on x ∈ {0, 1}∗, return the previously-chosen value of
y ∈ R associated with x.

I Remark 8 (Hardness in the Random Oracle Model). Note that constructions with uncondi-
tional security in the ROM use the oracle as the only source of hardness. In particular, as
stated above, the number of rounds of queries to the oracle model the cost of the parallel
computation. If one allows other sources of computational hardness, existing constructions
of VDFs trivially also exist relative to the ROM (by ignoring the random oracle).

I Definition 9 (VDFs in the ROM). We define uniqueness and sequentiality of a VDF in the
ROM by allowing the components Setup,Eval,Verify of a VDF to be oracle-aided algorithms
in the ROM and adjusting their notion of time and parallel time (in Definitions 3 and 4
according to Definition 7 and Remark 8). In particular, for sequentiality, we measure the
running time of the adversary by the number of rounds of oracle queries the adversary makes
(this is to model the capabilities of a parallel adversary). Furthermore, for the uniqueness
property, we require that the probability of the adversary succeeding is taken over the random
coins of Setup and of the adversary, but not over the choice of oracle.

3 Lower Bounds for VDFs in the Random Oracle Model

In this section, we first show that perfectly unique VDFs (Definition 3) are impossible in the
random oracle model. Then, as a corollary, we obtain barriers for strongly decodable VDFs
as well. In particular, if a VDF in the ROM is perfectly unique, it means that for every
sampled random oracle O ← O, perfect uniqueness holds. Moreover, our result shows that a
recent construction of [1] for reversible VDFs that is of the form of a permutation function
and uses the sloth functions from [20] cannot be modified to only rely on a random oracle.

We then turn our attention to the case of tight VDFs (and more generally, tight proofs of
sequential work) and show that they cannot be constructed in the ROM as well.

3.1 Case of Perfectly Unique VDFs
In this section, we give a lower bound for perfectly unique VDFs in the random oracle model.
Specifically, we prove the following theorem:

I Theorem 10 (Lower Bounds for Perfectly Unique VDFs in the ROM). Suppose ΠVDF =
(Setup,Eval,Verify) is a VDF in the ROM with perfect uniqueness and perfect completeness
in which (for a concrete choice of λ), Setup runs in time s, Eval runs in time T , and Verify
runs in time t. Then, there is an adversary Adv that breaks sequentiality (Definition 4) by
asking a total of 2T · (s+ t) queries in 2(s+ t) rounds of queries.

2 There are multiple possible ways to model a random oracle in the literature. We describe three
possibilities here. Sometimes, the range R is {0, 1}λ where λ is a security parameter; other times, it is
simply {0, 1}, and sometimes it is a “length preserving” mapping that maps each input x to a string of
the same length.

ICALP 2020



83:8 Can Verifiable Delay Functions Be Based on Random Oracles?

Before proving Theorem 10, we observe that this result already rules out the possibility of
constructing strongly decodable VDFs (which are forced to be perfectly unique; see Remark 6)
in the ROM. In fact, a special case of this theorem for the class of “permutation VDFs” can
be derived from the impossibility result of [21] for time-lock puzzles [25].3 We first define
this class of special VDFs below and prove their impossibility in the ROM as a warm up.

3.1.1 Warm Up: The Special Case of Permutation VDFs
Permutation VDFs. As a special case of strongly decodable VDFs, one can further restrict
the mapping from X to Y to be a permutation (instead of just being an injective function).
Indeed, the recent construction of [1] has this exact property as they construct decodable/re-
versible VDFs where the evaluation function is a permutation on its domain. Indeed, [1] uses
random oracles together with the sloth function from [20] to construct their permutation
VDF, and thus it was left open whether random oracle would suffice for permutation VDFs.
Our result rules this possibility out.

I Proposition 11. Let ΠVDF be a permutation VDF in the ROM with a decoder Dec that
runs in time t, and a setup algorithm Setup that runs in time s. Then, there is an adversary
that breaks sequentiality (Definition 4) in O(s+ t) rounds of queries and O(T · (s+ t)) queries.

Proof. Previously, Mahmoody et al. [21] showed an impossibility result for time-lock puzzles
in the ROM. To prove the claim, we show how to construct a time-lock puzzle from a
permutation VDF. The result then follows from the lower bound of [21]. The construction is
as follows. The puzzle-generator would first run the setup algorithm Setup of the VDF to
get the public parameter pp. Then, it samples y $←X = Y (here, we use the fact that X is
efficiently-samplable, and that X = Y) and sets x← Dec(pp, y). It outputs x as the puzzle
(and keeps y as the solution). Since Setup and Dec for a VDF are both efficient (i.e., run in
time poly(λ, t)), the puzzle-generator is also efficient.

We can now use the result of [21] which shows that any time-lock puzzle in the ROM
where the puzzle-generation algorithm makes k queries and the puzzle-solving algorithm
makes T queries can be broken by an adversary making O(k) rounds of queries and a total of
O(k · T ) queries. For the time-lock puzzle based on the permutation VDF, k = s+ t, where
s is the number of queries made by the Setup algorithm and t is the number of queries made
by the Dec algorithm. J

3.1.2 Proof of Theorem 10 in the General (Perfectly Unique) Case
We now give the proof of Theorem 10. It follows the ideas from [21] for ruling out time-lock
puzzles in the ROM, but this time, we cannot simply reduce the problem to the setting of
time-lock puzzles, and we need to go into the proof and extend it to our setting. We begin
with an informal overview of the proof before providing the formal analysis.

Proof overview. We begin with an informal description of the main ideas behind the lower
bound. Our goal is to construct an adversary that can efficiently find an output that passes
verification, while asking fewer than T rounds of queries to the random oracle. To do so,
we consider an algorithm that implements the honest evaluation algorithm, but instead of

3 In a time-lock puzzle, there is a puzzle-generation algorithm that runs in time t and samples a puzzle x
together with a solution y, and an evaluation algorithm that runs in sequential time T that takes an
input x and outputs the solution y.
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Algorithm 1 The adversary Adv that breaks sequentiality of the VDF.

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x ∈ X from the sequentiality challenger.

2. Initialize a query set QAdv ← ∅ and a set of query-answer pairs PAdv ← ∅.
3. Let d = 2(s+ t) + 1.
4. For i ∈ [d], do the following:

a. Initialize P (i)
Adv ← ∅ and Q(i)

Adv ← ∅.
b. Execute (yi, πi) ← Eval(pp, x) where the random oracle queries (made by Eval) are

answered using the following procedure. On every oracle query q:
If q ∈ QAdv, then reply with the value r where (q, r) ∈ PAdv.
Otherwise, choose a uniformly random value r $←R (where R is the range of the
random oracle O) and add (q, r) to P (i)

Adv and add q to Q(i)
Adv.

c. If i < d, then in one round, for all (q, ?) ∈ P (i)
Adv, query the real oracle O to get r ← O(q)

as the answer; and then add (q, r) to PAdv and add q to QAdv.
5. Output Maj(y1, ..., yd) where Maj denotes the majority operation (which outputs ⊥ if no

majority exists).

issuing queries to the actual random oracle, the algorithm will instead sometimes simulate
the outputs from those queries itself (i.e., by sampling from the output distribution of the
random oracle). Of course, if one of these “faked” or “simulated” queries was asked to the
oracle by another algorithm in the system (e.g., by Setup or Verify), then our algorithm will
almost certainly fail. On the other hand, if none of the simulated queries were asked to the
oracle, then our attacker wins (because the set of “faked” queries and real queries together
form an oracle that is consistent). This means that as long as the number of queries Setup
and Verify make are much smaller than T and our algorithm is able to “identify” or “learn”
those queries with fewer than T rounds of queries to the random oracle, then the algorithm
succeeds in breaking sequentiality of the VDF.

Proof of Theorem 10. Without loss of generality, assume that Eval asks no repeated queries
in a single execution. We construct an attacker Adv that breaks sequentiality of the VDF as
follows. Our adversary is entirely online (i.e., there is no separate preprocessing step).

We now show that Adv in Algorithm 1 satisfies the properties needed in Theorem 10. Let
QS be the queries made by the setup algorithm Setup(1λ, T ) to sample pp and QV be the
queries made by Verify(pp, x, y) where y = Eval(pp, x) is the true solution.

For i ∈ [d], we define Hi to be the event where there is a query q ∈ Q(i)
Adv ∩ (QS ∪QV )

during the ith round of emulation that was not previously asked by the adversary: q 6∈ QAdv
at that moment. Equivalently, when q is asked, it holds that q ∈ (Q(i)

Adv ∩ (QS ∪QV )) \QAdv.
The following claim shows that Hi cannot happen for too many rounds i.

B Claim 12. If I = {i : Hi holds}, then |I| ≤ s+ t.

Proof. If event Hi occurs as a result of some query q, then at the end of round i, Adv queries
the oracle O on the input q. By construction, since q ∈ (Q(i)

Adv ∩ (QS ∪QV )) \QAdv, it must
be the case that Adv makes a new query on an input that was previously queried by either
the Setup or Verify algorithms (but not queried in any of the previous rounds). However,
since Setup and Verify together ask a combined total of (at most) s+ t queries, this event
cannot happen more than s+ t times. C

ICALP 2020



83:10 Can Verifiable Delay Functions Be Based on Random Oracles?

B Claim 13. If Hi does not happen, then yi = y.

Proof. Let yi 6= y for a round i in which Hi has not happened. This means that the
set of oracle query-answer pairs used during Setup, and the ith emulation of Eval by Adv
are consistent. Namely, there is an oracle O′, relative to which, we have pp ← SetupO

′
,

(y′, π′)← EvalO
′
(pp, x), and VerifyO

′
(pp, x, y, π) = 1. However, this shows that the perfect

uniqueness property is violated relative to O′, because for input x, there is a “wrong” solution
y (i.e., y 6= y′ = EvalO

′
(pp, x)) together with some proof π for y such that the verification

passes VerifyO
′
(pp, x, y, π) = 1. C

By the above two claims, it holds that yi = y for at least s+t+1 values of i ∈ [2(s+t)+1],
and thus the majority gives the right answer y for Adv. J

3.2 Lower Bound for Tight Proofs of Sequential Work
We can apply similar techniques to rule out tight proofs of sequential work [22] in the random
oracle model. At a high level, a (publicly-verifiable) proof of sequential work is a VDF without
uniqueness. Namely, for an input x, there can be many pairs (y, π) that passes verification.
In this setting, there is no need to distinguish y and π. While we have constructions of
(publicly-verifiable) proofs of sequential work in the ROM, our results show that tight proofs
of sequential work (see [10] for more discussion on this tightness notion) are impossible in
this setting. In particular, the following barrier applies to settings where the sequentiality
parameter σ is very close to T (e.g., this does not apply to σ = T/2). The following definition
derives publicly-verifiable proofs of sequential work [7, 12,22,25] as a relaxation of VDFs.4

I Definition 14 (Publicly-Verifiable Proofs of Sequential Work). A publicly-verifiable proof of
sequential work is a relaxation of a VDF where the uniqueness property is not needed. Hence,
there is no need to distinguish between an output y and a proof π. In particular, y = π can
be the only (not-necessarily-unique) output of Eval that is still sequentially hard to compute.

Proofs of sequential work in the ROM. While Definition 9 defines the notion of a VDF
in the ROM, the same definition extends to the setting of (publicly-verifiable) proofs of
sequential work in the ROM as well. Namely, we measure the running time in terms of the
total number of oracle queries and the parallel time by the the number of rounds of oracle
queries. We now show how to adapt our techniques for ruling our perfectly-unique VDFs in
the ROM to also rule out tight proofs of sequential work.

I Theorem 15 (Attacking Proofs of Sequential Work in the ROM). Suppose ΠPSW =
(Setup,Eval,Verify) is a publicly-verifiable proof of sequential work in the ROM in which
(for a concrete choice of λ), Setup runs in time s, Eval runs in time T , and Verify runs in
time t. Then, for any 1 < G < T there is an adversary Adv that asks a total of at most T −G
queries and breaks sequentiality (Definition 4) with probability at least 1− (s+ t) ·G/T .

I Corollary 16 (Ruling Out Tight Proofs of Sequential Work in the ROM). Let λ be a security
parameter and T be the time bound parameter. For any choice of s, t = poly(λ, log T ), there
does not exist a proof of sequential work in the ROM with sequentiality σ = T · (1− 1/2(s+t)).
More generally, for any constant 0 < ρ < 1, there does not exist a proof of sequential work in
the ROM with sequentiality σ = T − T ρ.

4 Definition 14 is even more general as it allows a setup phase.
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Proof. The first statement follows by instantiating Theorem 15 with G = T/2(s+t). For
this setting of parameters, Theorem 15 implies an adversary that breaks sequentiality with
probability at least 1/2 and making only T −G = T · (1− 1/2(s+t)) queries. For the more
general statement, we take T to be a sufficiently large polynomial in the security parameter
λ such that s, t < T 1−ρ/4. Note that this is always possible since s, t = poly(λ, log T ); that
is, both s, t are poly-logarithmic in T and 0 < ρ < 1 is constant. Then, we can again set
G = T − σ = T ρ and appeal to Theorem 15 to obtain an adversary that makes T −G = σ

queries and breaks sequentiality with probability at least 1/2. J

I Remark 17 (Secretly-Verifiable Tight Proofs of Sequential Work). We note that Theorem 15
also holds for secretly-verifiable proofs of sequential work as well. The proof for the secretly-
verifiable setting is identical to that for the publicly-verifiable setting. For simplicity of
notation we write the proof for the publicly-verifiable version (Definition 4) which uses pp as
both the evaluation and the verification key.
I Remark 18 (Other Extensions). The extension from Remark 17 on ruling out secretly-
verifiable tight proofs of sequential work relies on the same proof as that of Theorem 15. In
Section 4, we show two extensions of this result by adapting the proof of Theorem 15. These
include extending the lower bound to: (1) the setting where the Setup algorithm is “slow”
(i.e., runs in time proportional to T ); and (2) the random permutation model (rather than
the random oracle model). We refer to Section 4 for the details on those extensions.

Proof of Theorem 15. Again, without loss of generality, we assume that Eval asks no
repeated queries in a single execution. The attacker’s algorithm Adv is defined as follows:

Algorithm 2 The adversary Adv that breaks sequentiality for the proof of sequential work.

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x ∈ X from the sequentiality challenger.

2. Pick a random set S ⊆ [T ] of size T −G.
3. Execute (y, π)← Eval(pp, x) where the ith oracle query qi is answered as follows:

If i ∈ S, compute the response ri ← O(qi) from the true oracle O.
Otherwise sample a uniformly random ri ← R as the response for the query qi.

4. Output (y, π).

To analyze Algorithm 2, we compare the output of the attacker’s experiment (Real) with
the output in an “ideal” experiment (Ideal) where all of the oracle queries are answered using
the real oracle. We define these two experiments below:

1. Sample pp← Setup(1λ, T ).
2. Sample x $←X .
3. In Experiment Real, run Algorithm 2 to obtain a pair (y, π). In Experiment Ideal,

run Algorithm 2, except use the real oracle O to answer all of the oracle queries
made by Eval (in Step 3 of Algorithm 2).

4. The output of the experiment is 1 if Verify(pp, x, y, π) = 1 and 0 otherwise.

Figure 1 The Real and Ideal experiments.

In the following, we write Prreal[·] (resp., Prideal[·]) to denote the probability of an event E in
the Real (resp., Ideal) experiment.
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Events. Let QV be the set of oracle queries made by Verify and QS be the set of oracle
queries made by Setup. Let QAdv be the set of oracle queries qi that appears in Step 3 of
Algorithm 2 where i /∈ S. Namely, these are the set of oracle queries qi that Adv answers
with uniformly random values in Real. We now define the following two events:

Let W be the event that Verify(pp, x, y, π) = 1 when (y, π) is the output of the adversary
(i.e., W is the event that the adversary wins and the experiment outputs 1).
Let B be the “bad” event where (QV ∪QS) ∩QAdv 6= ∅. Namely, this is the event that
adversary makes up an answer to a query that is asked either by the setup algorithm or
the verification algorithm.

With these definitions, the following claim trivially holds in the ideal experiment (by perfect
completeness of the underlying proof of sequential work5), as all of the oracle queries qi are
computed using the real oracle O(qi).

B Claim 19. Prideal[W ] = 1.

The following lemma states that until event B happens, the two experiments are identical.

I Lemma 20. Prreal[B] = Prideal[B]. Moreover, conditioned on the event B not happening,
the two experiments are identically distributed. In particular, for any event like W , it hold
that Prreal[W ∨B] = Prideal[W ∨B].

Proof. Here, we make a crucial use of the fact that the oracle O is random. To prove
the lemma, we run the two games in parallel using the same randomness for any query
that is asked by any party, step by step. Namely, we start by executing the evaluation
algorithm identically as much as possible until event B happens. More formally, we run
both experiments by using fresh randomness to answer any new query asked during the
execution, and we will stop the execution as soon as event B happens. Since until the event
B happens both games proceed identically (in a perfect sense) and consistently according to
their own distribution, it means that until event B happens, the two games have the same
exact distributions. J

We now observe that the probability of the event B is small in the ideal game, and
conclude that it is indeed small in both games.

B Claim 21. Prideal[B] ≤ (s+ t) · GT .

Proof. In this game, the set S is independent of all other components in the experiment, so
we can choose S at the end of the experiment (after QS and QV have been determined). By
definition of QAdv, we have that |QAdv| ≤ G. This means that for any query q ∈ QS ∪QV
that is also queried by Eval(pp, x), the probability that q ∈ QAdv is at most G/T . The claim
now follows by a union bound. C

The above claims complete the proof of Theorem 15, as we now can conclude that the
probability of W in both experiments is “close”:∣∣Pr

real
[W ]− Pr

ideal
[W ]

∣∣ ≤ Pr
ideal

[B].

We already know that Prideal[W ] = 1, therefore, we conclude that

Pr
real

[W ] ≥ Pr
ideal

[W ]− Pr
ideal

[B] ≥ 1− (s+ t) · G
T
. J

5 Note that this argument extends also to the setting where we have completeness error γ (i.e., completeness
holds with probability 1− γ over the choice of the public parameters). This modification introduces a γ
loss in the adversary’s advantage in the real game.
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4 Extensions to the Lower Bounds

In this section, we briefly discuss several extensions of our lower bounds on perfectly unique
VDFs and tight proofs of sequential work by extending the proofs of Theorems 10 and 15.

4.1 Handling Expensive Setup Phase
Our lower bounds in Theorems 10 and 15 construct an adversary whose running time depends
on both t (the verification time) as well as s (the setup time). When these bounds t, s are
only poly(λ, log T ), the running time of our attacker is much smaller compared to T , and
thus, breaks the sequentiality of the scheme. However, one might argue that since the setup
is executed only once, it is reasonable to consider a scenario where s is potentially as large
as T . In this case, both of our lower bounds in Theorems 10 and 15 become meaningless.

Case of expensive public setup. If the setup algorithm is public coin (i.e, the randomness
to Setup is publicly known), then both Theorems 10 and 15 directly extend to the setting
where s = poly(λ, T ). Specifically, in this setting, the setup queries can be discovered publicly
(i.e., by emulating an execution of Setup). Thus, the adversary can learn the oracle’s values
on the set of queries QS made by Setup. In the online phase, the adversary carries out its
attack by incorporating the knowledge of QS when answering oracle queries. In other words,
if during the emulation of the Eval algorithm, the adversary encounters a query q ∈ QS , it
will use the known answer (saved as part of the state stAdv) instead of asking it from the
oracle or guessing its answer.

Case of expensive private setup for Theorem 15. When the setup algorithm uses private
randomness, the above argument for extending Theorems 10 and 15 no longer applies.
Nonetheless, we can still show how the proof of Theorem 15 (for ruling our tight proofs of
sequential work) can be extended to this setting as well.

I Theorem 22 (Attacking Tight Proofs of Sequential Work with Expensive Setup in the ROM).
Suppose ΠPSW = (Setup,Eval,Verify) is a publicly-verifiable proof of sequential work in the
ROM in which (for a concrete choice of λ, T ), Setup runs in time s, Eval runs in time T ,
Verify runs in time t, and completeness error is at most γ (see Definition 2). Then, for any
ε < 1 and 1 < G < T , there is an adversary Adv = (Adv0,Adv1) where Adv0 runs in time
poly(s, T, t, 1/ε) and Adv1 makes at most T −G queries (and run in total time poly(T )) and
breaks sequentiality (Definition 4) with probability at least 1− ε− t ·G/T − γ.

Before proving Theorem 22, we first derive a corollary, formally stating the range of tight
sequentiality for which we rule out PoSWs in the ROM.

I Corollary 23 (Ruling Out Tight Proofs of Sequential Work with Expensive Setup in the
ROM). Let λ be a security parameter and T be the time bound parameter. For any choice of
s = poly(λ, T ), t = poly(λ, log T ), and completeness error γ = negl(λ), there does not exist a
proof of sequential work in the ROM with sequentiality σ = T · (1− 1/2t) and completeness
error γ. In particular, for any constant 0 < ρ < 1, there does not exist a proof of sequential
work in the ROM with sequentiality σ = T − T ρ and completeness error γ.

Proof. The proof is identical to that of Corollary 16, except here, we use the attack algorithm
from Theorem 22 that relies on a preprocessing step with time complexity poly(λ, T ). The
only difference is that we now also need to make sure ε+ γ < 1/2, which is easily satisfied
whenever γ = negl(λ). For example, take ε = 1/3. J
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Algorithm 3 The adversary Adv0 that precomputes the ε-heavy queries of the Setup algorithm.

1. Initialize a set Q← ∅.
2. Repeat the following procedure k = s/ε = poly(λ, T ) times:

a. Sample x $←X .
b. Compute (y, π)← Eval(pp, x). Whenever Eval makes a query q to the oracle O, add

the pair (q,O(q)) to Q.
3. Output stAdv = Q.

We now give the proof of Theorem 22.

Proof of Theorem 22. Here, Adv0 will perform a precomputation and compute the so-called
“ε-heavy” queries [3,17] of the setup algorithm. More precisely, we aim to find queries that are
asked by the setup and have noticeable chance of being queried again during the evaluation.
In particular, Algorithm Adv0 outputs a set Q consisting of input-output pairs of the oracle
O. The online algorithm Adv1 then follows Algorithm 2 from the proof of Theorem 15, except
whenever Eval makes a query q where q ∈ Q, Adv1 replies with the precomputed value of
O(q) in Q. We now describe Adv0:

We define Adv1 as in Algorithm 2, except in Step 3, if the query qi is contained in
stAdv = Q, then the adversary always replies with the precomputed value of O(qi) in Q.
Otherwise, it uses the same procedure as in Algorithm 3. The rest of the analysis proceeds
similar to that in the proof of Theorem 15. Namely, let QS denote the set of oracle queries
made by Setup and QV be the set of queries made by Verify in the real/ideal experiments.
We define the events W and B exactly as in the proof of Theorem 15. We now show an
analog of Claim 21:

B Claim 24. Prideal[B] ≤ ε+ t · GT .

Proof. Recall that the event B occurs if (QV ∪QS) ∩QAdv 6= ∅. We consider the following
two setting. (All probabilities are stated in the ideal experiment.)

Consider the probability that QV ∩ QAdv 6= ∅. By the same argument as in the proof
of Claim 21, this event occurs with probability at most |QV | ·G/T ≤ t ·G/T over the
randomness of S.
Consider the probability that QS ∩QAdv 6= ∅. Take any query q ∈ QS and consider the
event Hq that q ∈ QAdv and q /∈ stAdv. By construction of Algorithm 3, for Hq to happen,
the first k iterations of Adv0 should not query q during Eval, and yet q is queried in
the next (actual) execution of Eval. However, it is easy to show that for any Bernoulli
variable (of arbitrary probability α) the probability of missing it k times and hitting it
on the (k + 1)st iteration is at most 1/k. Since Setup makes at most s queries, |QS | ≤ s,
so by a union bound,

Pr[QS ∩QAdv 6= ∅] ≤ s

k
= ε.

The claim now follows by a union bound. C

The rest of the proof of Theorem 22 proceeds identically to the proof of Theorem 15 and
noting that the probability of W in the ideal game is 1− γ. J



M. Mahmoody, C. Smith, and D. J. Wu 83:15

4.2 Extending to the Random Permutation Oracle Model
Random oracles can be used to instantiate all symmetric primitives (including the ideal
cipher model [9,15]) with one exception: the random permutation oracle R that implements a
random permutation on {0, 1}n for all n ∈ N. Indeed there are impossibility results showing
that such a construction does not exist [23,27]. We can extend the proof of Theorem 15 to
rule out constructions of tight proofs of sequential work in the random permutation oracle
as well by developing a preprocessing attack and then using standard techniques based on
the fact that a random permutation oracle and a random oracle over a large domain is
statistically indistinguishable to any query-bounded algorithm [17].

Case of large input domains. More formally, let n be such that (T + s + t)2/2n ≤ ε.
Then, first suppose the only domain used by the three algorithms (Setup,Eval,Verify) is
{0, 1}n. In this case, the probability that a random oracle used by these three algorithms
Setup,Eval,Verify has any collision during the course of their execution is at most (T +
s + t)2/2n ≤ ε. However, whenever there are no collisions, there is no way to distinguish
between random permutations or random oracles. Therefore, our attack in Theorem 15 would
automatically work (as is) up to a loss of ε in the success probability. This argument also
works if the three algorithms (Setup,Eval,Verify) ask their queries from input domains with
different size as long as for any domain {0, 1}n that they query, n satisfies (T +s+ t)2/2n ≤ ε.

General case. The above argument fails when any of the algorithms (Setup,Eval,Verify)
ask their queries from any domain {0, 1}n where n is small (and as such, (T + s+ t)2/2n > ε).
However, the total number of queries over all such domains is at most

τ = |{0, 1}1|+ |{0, 1}2|+ · · ·+ |{0, 1}n|,

where (T + s+ t)2/2n = ε, which means

τ = 2 + 4 + · · ·+ (T + s+ t)2

ε
<

2(T + s+ t)2

ε
= poly(λ, T ).

Therefore, a preprocessing adversary Adv0 can ask all of these τ = poly(λ, T ) queries from
the real oracle O and send them together with their answers to the online adversary Adv1
who will then use the answers to these queries whenever needed without asking them from
O or guessing their answers. In this case, the analysis of our attack is identical to the
aforementioned case with inputs drawn from a large domain.

5 Conclusion and Open Questions

In this work, we initiated a formal study of the assumptions behind VDFs and provided new
lower bounds on basing VDFs with perfect uniqueness in the random oracle model as well as
stronger lower bounds in the tight security regime in which the sequentiality guarantees a
very close running time to the honest execution. The second lower bound applies not only to
VDFs but also to relaxations of it such as sequential proofs of work. While our first lower
bound captures existing notions [1], they do not extend to the full range of VDF notions.

The main open question remaining is whether we can extend our first lower bound to
rule out VDFs satisfying computational uniqueness in the ROM, and ideally do so allowing
negligible completeness error as well. Alternatively, the fact that our current lower bound
critically relies on the perfect uniqueness property may suggest new approaches to basing
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VDFs on weaker assumptions. Namely, any such approach must either rely on non-black-box
techniques or leverage imperfect soundness in a critical manner. Both of these possibilities
represent intriguing avenues for further research.
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