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Abstract
Polynomial representations of Boolean functions over various rings such as Z and Zm have been
studied since Minsky and Papert (1969). From then on, they have been employed in a large variety
of areas including communication complexity, circuit complexity, learning theory, coding theory
and so on. For any integer m ≥ 2, each Boolean function has a unique multilinear polynomial
representation over ring Zm. The degree of such polynomial is called modulo-m degree, denoted as
degm(·).

In this paper, we investigate the lower bound of modulo-m degree of Boolean functions. When
m = pk (k ≥ 1) for some prime p, we give a tight lower bound degm(f) ≥ k(p − 1) for any non-
degenerate function f : {0, 1}n → {0, 1}, provided that n is sufficient large. When m contains two
different prime factors p and q, we give a nearly optimal lower bound for any symmetric function
f : {0, 1}n → {0, 1} that degm(f) ≥ n

2+ 1
p−1 + 1

q−1
.
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1 Introduction

Given a Boolean function f : {0, 1}n → {0, 1}, the degree (resp., modulo-m degree), denoted
as deg(f) (resp., degm(f)), is the degree of the unique1 multilinear polynomial representation
of f over R (resp., Zm). These complexity measures and related notions have been studied
extensively since the work of Minsky and Papert [23]. The polynomial representation of a
Boolean function has found numerous applications in the study of query complexity (see
e.g. [5]), communication complexity [4, 28, 31, 30, 29, 24, 10], learning theory [17, 20, 16, 25],
explicit combinatorial constructions [13, 14, 11, 7], circuit lower bounds [33, 27, 1, 12] and
coding theory [36, 37, 15, 21], etc.

In this paper, we focus on modulo-m degree of Boolean functions. Throughout, all
Boolean functions are assumed to be non-degenerate2, if not specifically mentioned. One
of the complexity theoretic motivations of studying degm(f) is to understand the power of
modular counting. For example, the famous Razborov–Smolensky polynomial method [27, 33]
reduces the task of proving size lower bounds for AC0[p] circuits to proving a lower bound
of approximate modulo-p degree of the target Boolean function. However, this approach
mainly works when p is a prime.3 Another example, in which m can be composite, is that a
(1/2 + o(1))-inapproximability of a Boolean function f by degree-O(1) polynomials over Zm
implies that f cannot be computed by MAJO(1) ◦MODm ◦ ANDO(1) circuits [1]. In general,
it has been proved important to understand the computational power of polynomials over
Zm for general m.

Towards the complexity measure degm(f) itself, the case when m is a prime has been
studied a lot in previous works. For example, one natural question is whether degm(f) is
polynomially related to deg(f) for general m, as other complexity measures like decision
tree complexity D(f) do? The answer is NO according to the parity function PARITY(x) :=⊕n

i=1 xi. That is, deg2(PARITY) = 1 but deg(PARITY) = n. Though this function works
as a counterexample for the relationship between deg2(f) and deg(f), it is still inspiring
because its modulo-3 degree is large. By writing PARITY as 1

2 −
1
2
∏n
i=1(1− 2xi) and taking

modulo 3, one can get deg3(PARITY) = n. Actually, Gopalan et al. [12] give the following
relationship between the polynomial degrees modulo two different primes p and q:

degq(f) ≥ n

dlog2 pe degp(f)p2 degp(f) .

Daunting at the first glance, the inequality implies an essential fact that, as long as degp(f) =
o(logn), a lower bound of Ω(n1−o(1)) for degq(f) follows. Moreover, if m has at least two
different prime factors p and q, then degm(f) ≥ max

{
degp(f),degq(f)

}
= Ω(logn).

Having negated the possibility for the case of prime m, it is natural to study the case
of composite number. The systematic study of this case was initiated by Barrington et al.
[3]. Alas, whether degm(f) is polynomially related to deg(f) is still a widely open problem.
Though the case m being a prime power is proved to be not true in Gopalan’s thesis [10], we
are unable to find better separation between degm(f) and deg(f), for m = pq with p and q
being two distinct primes, than the quadratic one given by Li and Sun [19]. This leads to
the following conjecture:

1 The existence and uniqueness are guaranteed by the Möbius inversion, see e.g. [12].
2 A Boolean function is called non-degenerate if it depends on all its n variables.
3 It is a folklore that AC0[m] = AC0[rad(m)], where rad(m) is the square-free part of m. Therefore in

fact we are able to handle AC0[q] circuits for any prime power q.
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I Conjecture 1.1. Let f be a Boolean function. If m has at least two distinct prime factors,
then

deg(f) = O(poly(degm(f))).

Towards this conjecture, the first step is to deal with symmetric Boolean functions. Lee
et al. [18] proves that 2 degp(f) degq(f) > n for any distinct primes p, q and non-trivial
symmetric Boolean function f : {0, 1}n → {0, 1}, implying the correctness of Conjecture 1.1
in symmetric cases. Li and Sun [19] improved their bound to pdegp(f) + q degq(f) > n,
which implies degpq(f) > n

p+q . This is far from being tight; actually, as we will present later,
the denominator p+ q can be reduced to 3.5.

On the tight lower bound of deg(f), Nisan and Szegedy [26] give the bound deg(f) ≥
log2 n−O(log logn) as long as f is non-degenerate. Very recently, this bound is improved
to deg(f) ≥ log2 n − O(1) by [6, 35], which is tight up to the additive O(1)-term by the
address function. Gathen and Roche [34] show that deg(f) ≥ degp(n)(f) ≥ p(n)− 1 for any
non-trivial symmetric Boolean function, where p(n) is the largest prime below n+ 2. (Notice
that the module degree gives a lower bound on the degree.) Using the currently best result
on prime gaps [2], this gives an n−O(n0.525) lower bound. On the other side, Gathen and
Roche give a polynomial family with deg(f) = n− 3, and they propose Conjecture 1.2 below
with a probabilistic heuristic argument:

I Conjecture 1.2. For any non-trivial symmetric Boolean function f : {0, 1}n → {0, 1},

deg(f) ≥ n−O(1).

Our Results. In this work, we prove the following four theorems, giving better lower bounds
for degm(f). As we have already mentioned, the gap between deg(f) and degpk (f) can be
arbitrarily large. Nevertheless, we claim that degpk (f) cannot be too small either. This
begins with symmetric functions:

I Theorem 1.3. For any prime p, positive integer k, and non-trivial symmetric function
f : {0, 1}n → {0, 1},

degpk (f) ≥ (p− 1) · k

when n ≥ (k − 1)ϕ(pµ) + pµ − 1 ∈ O(p2k2) where µ = dlogp((p − 1)k − 1)e. The bound
(p− 1) · k is tight.

The proof of Theorem 1.3 is centered around Mahler expansion [22], which has been
deemed useful in several fields of study, from analytic functions to combinatorics. Wilson [36]
studied Mahler coefficients and related degree to period of symmetric functions. However, by
introducing some more insights, we are able to give a stronger analysis to settle this case
once for all. To be a bit more concrete, our argument (i) introduces the base-p period to
replace normal period, and then (ii) spans every symmetric functions into two fashions, by
MODs or binomials, and then (iii) introduces Mahler coefficient matrix and determines its
kernel.

In addition, Theorem 1.3 can be extended to non-degenerate Boolean functions. We
achieve this by showing that one can embed an ω(1)-size non-trivial symmetric Boolean
function into any non-degenerate functions by applying Erdős–Rado Theorem from Ramsey
theory.4 This leads to the same tight bound, provided that the input size is sufficiently large.

4 We note that a similar embedding argument has appeared before in [1].

ICALP 2020
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I Theorem 1.4. For any prime p, positive integer k, and non-degenerate function f :
{0, 1}n → {0, 1} with sufficiently large n,

degpk (f) ≥ (p− 1) · k.

The bound (p− 1) · k is tight.

Now turn to the case of non-prime-power composite m. The following theorem provides
a lower bound on degm(f).

I Theorem 1.5. For any composite number m with at least two different prime factors p, q
and any non-trivial symmetric Boolean function f : {0, 1}n → {0, 1},

degm(f) ≥ 1
2 + 1

p−1 + 1
q−1
· n.

Note that this bound approaches n/2 when p and q become larger and larger. It improves
the n/(p+q) bound in [19]. To prove this theorem, we show a stronger version of Theorem 1.3
for k = 1, which requires a more elaborate analysis. Then we utilizes Periodicity Lemma [9]
to obtain the desired lower bound.

On the other hand, the next theorem shows that the bound in Theorem 1.5 cannot be
larger than (1 + o(1))n/2:

I Theorem 1.6. Let m be a square-free composite number. There exists a symmetric Boolean
function f : {0, 1}n → {0, 1} with arbitrarily large n, such that degm(f) ≤ n/2 + om(n).5

Organization. In Section 2, we give necessary definitions and concepts. Then we give the
proofs of Theorem 1.3 and Theorem 1.4 respectively in Section 3.1 and Section 3.2. In
Section 4.2 we prove Theorem 1.5, and in Section 4.3 we prove Theorem 1.6. Finally, we
conclude the paper in Section 5.

2 Preliminaries

We denote {1, 2, . . . , n} as [n] throughout this paper. ϕ(·) denotes Euler’s totient function.
Notation log◦k(n) is defined as log log · · · log︸ ︷︷ ︸

k

n, and log∗(n) is for the iterated logarithm, that

is, min{k : log◦k(n) ≤ 1}.

2.1 Basics of Boolean Functions

An n-bit Boolean function f(x) is a mapping from {0, 1}n to {0, 1}. Sometimes we write x
to indicate the n-dimensional 0-1 vector corresponding to string x ∈ {0, 1}n. The following
operation will be frequently used: Suppose x ∈ {0, 1}n is a (input) string, and S ⊆ [n] is a
set of indices. Denote the string obtained by flipping all bits in x whose indices are in S as
x⊕S . As a common practice, x⊕{i} is abbreviated as x⊕i.

5 The subscript “m” in the o(·) notation means that the hidden factor depends on m.
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Here we list some subclasses of Boolean functions, which we will frequently deal with
later:

A Boolean function is called non-trivial if it is not a constant.
A Boolean function is called non-degenerate if its value depends on all input bits. In other
words, there does not exist such t that, for every x ∈ {0, 1}n the equality f(x) = f(x⊕t)
holds. Such bit, if exists, is also known as dumb bit.
A Boolean function is called symmetric, if f(x) = f(y) for any x, y satisfying |x| = |y|.
Here |x| denotes the Hamming weight of x, i.e., number of 1’s.

There exists a unique polynomial representing f over Zm or Z. More formally:

I Fact 2.1. For any Boolean function f : {0, 1}n→{0, 1}, the unique polynomial

∑
a∈{0,1}n

f(a)
n∏
i=1

((2ai − 1)xi + 1− ai) =:
∑
S⊆[n]

cS
∏
i∈S

xi

represents f over Z. On top of this, the polynomial
∑
S⊆[n](cS mod m)

∏
i∈S xi represents f

over Zm.

I Definition 2.2. The degree (resp., modulo-m degree) of a Boolean function f , denoted by
deg(f) (resp., degm(f)), is the degree of the polynomial representing f over Z (resp., Zm).

This measure has some simple but useful properties. The following fact is a consequence
of the Chinese Remainder Theorem; see [19, Fact 5].

I Fact 2.3. Suppose f : {0, 1}n → {0, 1} is a Boolean function, and m,m′ are coprime.
Then degm′m(f) = max{degm(f),degm′(f)}.

With some input bits fixed, the degree of a Boolean function may decrease. This can be
easily derived by substituting those variables with their values. More formally, we define the
restriction of Boolean functions and restate this fact below.

I Definition 2.4 (Restriction). Suppose f : {0, 1}n → {0, 1} is a Boolean function, S ⊆ [n]
is a set of indices, and there is a mapping σ : [n]\S → {0, 1}. For every i /∈ S, fix the i-th
bit in the input of f to be σ(i) to obtain a new Boolean function with input size |S|. We call
it the restriction of f over σ, denoted as f |σ.

I Fact 2.5. Suppose f : {0, 1}n → {0, 1} is a Boolean function. For any integer m ≥ 2 and
restriction f |σ, we have degm(f) ≥ degm (f |σ).

A common complexity measure, the sensitivity, will be used in Section 3.2. Simon gave a
lower bound on this measure [32].

I Definition 2.6 (Sensitivity). Given a Boolean function f : {0, 1}n → {0, 1} and an input
x, we say bit i is sensitive if f(x) 6= f(x⊕i). The sensitivity of f on input x is s(f, x) := |{i :
i ∈ [n], f(x) 6= f(x⊕i)}|. The sensitivity of f is then defined as s(f) := maxx s(f, x).

I Theorem 2.7 ([32]). For any non-degenerate Boolean function f : {0, 1}n → {0, 1}, we
have

s(f) ≥ 1
2 logn− 1

2 log logn+ 1
2 .

ICALP 2020
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2.2 Periodicity and Mahler Expansion
We consider symmetric Boolean functions in this section. For a symmetric function f :
{0, 1}n → {0, 1}, clearly there exists a unique F : {0, . . . , n} → {0, 1}, called the univariate
version of f , such that f(x) = F (|x|) for every x. We call f (and F ) `-periodic, if F (a) = F (b)
for any 0 ≤ a, b ≤ n satisfying ` | a− b. For example, f is trivially `-periodic for any ` > n.
We are also interested in integer power period length. Hence we introduce the following
definition.

I Definition 2.8 (Base-m period). Assume f : {0, 1}n → {0, 1} is a symmetric Boolean
function. The base-m period is the minimum ` such that ` is a power of m, and f is `-periodic.
Denote it as πm(f).

Here are some concrete examples for a clearer illustration.

The not-all-equal NAE function is defined as NAEn(x1, . . . , xn) := I[∃i, j s.t. xi 6= xj ].
Then π3 (NAE3) = 3 while π3 (NAE4) = 9. That is, πm(f) may be larger than n.
If f is a trivial function, then π3(f) = 1.

One may write F as a univariate polynomial over Q, but it will not always induce a
polynomial when we move to work on Zm, like what f does. Fortunately, the following
representation, also known as Mahler expansion [36], serves the purpose similar to polynomial
representation.

I Theorem 2.9 (Mahler expansion). Assume that f : {0, 1}n → {0, 1} is a symmetric Boolean
function, and F is the corresponding univariate version. Let d := max{n,m − 1}. Then
there exists a unique sequence α0, α1, · · · , αd ∈ Zm such that

d∑
j=0

αj

(
t

j

)
=
{
F (t), 0 ≤ t ≤ n;

0, n < m− 1 and n < t < m.

We call
∑d
j=0 αj

(
t
j

)
the Mahler expansion of F over Zm, and αj the j-th Mahler coefficient.

There are some connections between polynomial degree and Mahler expansion. Over ring
Zm, let d∗ := max{` : α` 6≡ 0 (mod m), ` ≤ n}. If we only take 0-th to d∗-th terms in the
Mahler expansion to get F̂ (t) =

∑d∗

j=0 αj
(
t
j

)
, then F̂ (|x|) = F (|x|) for all x ∈ {0, 1}n, which

implies

I Fact 2.10. degm(f) = max{` : α` 6≡ 0 (mod m), ` ≤ n}.

I Remark. The fact above does not hold if we take away the condition ` ≤ n. The next
example shows that on Zm, the existence of high-order non-zero Mahler coefficient does not
imply high degree, if the input length is too short.

I Example 2.11. Let n = 2 and f(x) = −x0x1 + x0 + x1 = x0 ∨ x1. On Z5, one can verify
its Mahler expansion is

f(x) =
(
|x|
1

)
+ 4
(
|x|
2

)
+ 2
(
|x|
4

)
.

But deg5(f) = 2.

This phenomenon does not come from nowhere; intuitively speaking, in the Mahler
expansion over Zm, one may need to imitate Lagrange-style interpolation for |x| > n , and
hence introduce some high-order terms. (Although |x| can never be above n, we need to
utilize MOD functions later in this paper, which requires F (t) to be zero for n < t < m.)



X. Sun, Y. Sun, J. Wang, K. Wu, Z. Xia, and Y. Zheng 100:7

Wilson [36] showed the following result about the degree and Mahler expansion of
symmetric Boolean functions, given the base-p period.

I Theorem 2.12 ([36, Lemma 1]). Let p be a prime, and t, k be positive integers. Assume
f : {0, 1}n → {0, 1} is a symmetric Boolean function, and {α`} are its Mahler coefficients
over Zpk . If f is pt-periodic, then

degpk (f) ≤ (k − 1) · ϕ(pt) + pt − 1.

In addition, for any positive integer j and ` ≥ j · ϕ(pt) + pt, we have α` ≡ 0 (mod pj).

2.3 MOD and Its Mahler Expansion over Zpk

We first look into the Mahler expansion of weight modular functions. This special case is
illuminating in our later proofs. The MOD function is defined as

MODc,mn (x) := I
[
|x| ≡ c (mod m)

]
∈ {0, 1},

where n ≥ m − 1 denotes the length of input x, and I[·] is the indicator function. The
following theorem gives the degree of MOD0,pt

n .

I Theorem 2.13 ([36, Theorem 10]). Let p be a prime, and t, k be positive integers. Denote
d := (k − 1) · ϕ(pt) + pt − 1. Then for any n ≥ d, we have

degpk (MOD0,pt

n ) = d.

In fact, we can achieve a more general result by further analysis. Fix n, p, t and k. Notate
the Mahler coefficient of MODa,p

t

n over Zpk as α(a,pt)
` i.e., MODa,p

t

n (x) =
∑d
j=0 α

(a,pt)
j

(|x|
j

)
.

Moreover, MODa,p
t

n can also be represented with α(0,pt)
` as

MODa,p
t

n (x) =
d∑
j=0

α
(0,pt)
j

(
|x| − a
j

)
.

Then expand each
(|x|−a

j

)
by Vandermonde convolution to get

α
(a,pt)
` =

d−∑̀
i=0

(
−a
i

)
α

(0,pt)
i+` . (1)

Specially, by setting ` = d, we get α(a,pt)
d = α

(0,pt)
d . This equation generalizes the theorem to

all remainders.

I Corollary 2.14. Let p be a prime, and t and k be positive integers. Denote d := (k − 1) ·
ϕ(pt) + pt − 1. For any n ≥ d and 0 ≤ a < pt, we have

degpk (MODa,p
t

n ) = d.

3 Lower Bound of degpk(f)

By identifying the degree of MODi,p
t

n over Zpk , we show that the degree of all pt-periodic
functions is constantly small since they can be spanned by {MODj,p

t

n }
pt−1
j=0 . In Section 3.1,

we prove that the degree of any pt-periodic (but not pt−1-periodic) function will not decrease
too much from (k − 1) · ϕ(pt) + pt − 1 during the spanning, despite the cancellation of the
high-order coefficients. By a Ramsey-type argument in Section 3.2, we further extend our
lower bound to all non-degenerate Boolean function with sufficiently many input bits.

ICALP 2020
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3.1 Symmetric Functions – Proof of Theorem 1.3
We begin with the periodicity of symmetric Boolean functions with low degree. In our proof,
the following Lucas’s Theorem is important.

I Theorem 3.1 (Lucas). Let n,m ∈ N, and p be a prime. Assume in base p, n and m can
be represented as n = (nvnv−1 · · ·n0)p and m = (mvmv−1 · · ·m0)p (the number with fewer
digits are padded with 0). Then(

n

m

)
≡
(
nv
mv

)(
nv−1

mv−1

)
· · ·
(
n0

m0

)
(mod p).

The next lemma indicates the periodicity of symmetric Boolean functions with low degree.

I Lemma 3.2. Let f : {0, 1}n → {0, 1} be a symmetric Boolean function. For prime p and
positive integers t and k, if degpk (f) ≤ pt − 1, then f is pt-periodic.

Proof. Denote d := degpk (f), and suppose α` are the Mahler coefficients of f over ring Zpk ,
i.e., f(x) =

∑d
j=0 αj

(|x|
j

)
mod pk. According to Lucas’s Theorem, if a ≡ b (mod pt), then

for any 0 ≤ j ≤ pt − 1, we have
(
a
j

)
≡
(
av

jv

)
· · ·
(
at

jt

)(
at−1
jt−1

)
· · ·
(
a0
j0

)
(mod p). Here, ai (resp.

bi and ji) is the representation of a (resp. b and j) in the base p. Note that ji = 0 for
any i ≥ t. Hence

(
a
j

)
≡
(
at−1
jt−1

)
· · ·
(
a0
j0

)
(mod p). For the same reason,

(
b
j

)
≡
(
bt−1
jt−1

)
· · ·
(
b0
j0

)
(mod p). In addition, a and b’s last t digits are the same as a ≡ b (mod pt). Thus∑d

j=0 αj
(
a
j

)
mod p =

∑d
j=0 αj

(
b
j

)
mod p. By the definition that f(x) ∈ {0, 1}, we get∑d

j=0 αj
(
a
j

)
mod pk =

∑d
j=0 αj

(
b
j

)
mod pk. J

Next, provided πp(f), we give some lower bounds on the degree by the following two lem-
mas, conditioned on that n is large enough. Together with the lemma above we lead to a con-
tradiction, and our theorem follows eventually. Before continuing, notice again that the value
f(x) is related only to the Hamming weight of x, and thus f(x) =

∑
0≤i≤n:F (i)=1 MODi,n+1

n (x).
Specially, if f(x) is t-periodic, then we can write f(x) as f(x) =

∑
0≤i≤t−1:F (i)=1 MODi,tn (x)

and apply Corollary 2.14.

I Lemma 3.3. Assume p is a prime, and f : {0, 1}n → {0, 1} is a symmetric Boolean
function of period p. If for some positive integer k, it holds that n ≥ (p− 1) · k, then

degpk (f) = (p− 1) · k.

Proof. Expand f(x) to get
∑

0≤i≤p−1:F (i)=1 MODi,pn (x). According to Corollary 2.14, the
degree of each term in the summation is degpk

(
MODi,pn

)
= (p − 1) · k =: d. On the other

hand, Section 2.3 says the coefficient of degree d term is identical in the polynomial of every
MOD. As f(x) is non-trivial, the number of terms in the summation, denoted as N , is
neither 0 nor p. Therefore, the degree d term in f(x) has coefficient N · α(0,p)

d 6≡ 0 (mod p),
implying degpk (f) = d as desired. J

I Lemma 3.4. Assume p is a prime, and f : {0, 1}n → {0, 1} is a symmetric Boolean
function with πp(f) = pt. Here t ≥ 1 and n ≥ (k − 1) · ϕ(pt) + pt − 1. Then

degpk (f) ≥ (k − 2) · ϕ(pt) + pt.

Proof. Consider over the ring Zpk . Let d := (k − 1) · ϕ(pt) + pt − 1. Provided pt, we
abbreviate α(j,pt)

` , the `-th Mahler coefficients of MODj,p
t

n , as α(j)
` for convenience. According

to Corollary 2.14, we have degpk

(
MODj,p

t

n

)
= d.
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For all 0 ≤ i ≤ pt − 1, Theorem 2.12 implies the fact that α(i)
` can be divided by pk−2

when ` ≥ (k − 2) · ϕ(pt) + pt = d − ϕ(pt) + 1. Therefore, we divide every such coefficient
by pk−2, and then take the remainder modulo p to get α̃(i)

` :=
(
α

(i)
` /pk−2

)
mod p, where

d− ϕ(pt) + 1 ≤ ` ≤ d. All these α̃(i)
` forms the matrix

S :=


α̃

(0)
d · · · α̃

(pt−1)
d

...
. . .

...
α̃

(0)
d−ϕ(pt)+1 · · · α̃

(pt−1)
d−ϕ(pt)+1

 ∈ Fϕ(pt)·pt

p .

Take its first ϕ(pt) columns to get a square matrix

S′ :=


α̃

(0)
d · · · α̃

(ϕ(pt)−1)
d

...
. . .

...

α̃
(0)
d−ϕ(pt)+1 · · · α̃

(ϕ(pt)−1)
d−ϕ(pt)+1

 .
When d−ϕ(pt)+1 ≤ ` ≤ d, divide both sides of Equation (1) by pk−2 and take the remainder
modulo p to get

α̃
(a)
` =

d−∑̀
j=0

(
−a
j

)
α̃

(0)
j+`,

which leads to the following decomposition of matrix S′:

S′ =


α̃

(0)
d
...

. . .
α̃

(0)
d−ϕ(pt)+1 · · · α̃

(0)
d

 ·


(0
0
)

· · ·
(1−ϕ(pt)

0
)

...
. . .

...( 0
ϕ(pt)−1

)
· · ·

(1−ϕ(pt)
ϕ(pt)−1

)
 =: T ·C.

As α̃(0)
d 6= 0, the first matrix has determinant det(T ) 6= 0. The latter one, consisting of

binomial coefficients, is also invertible. We will prove this fact later. Eventually, rank(S′) =
ϕ(pt), so the kernel of S has dimension dim kerS = (pt)− ϕ(pt) = pt−1.

On one hand, because f(x) is pt-periodic, we can expand it by {MODj,p
t

n }
pt−1
j=0 with

coefficients wj .

f(x) =
pt−1∑
j=0

wjMODj,p
t

n (x) =
pt−1∑
j=0

(
wj

d∑
`=0

α
(j)
`

(
|x|
`

))
=

d∑
`=0

pt−1∑
j=0

wjα
(j)
`

(|x|
`

) . (2)

On the other hand, MODi,p
t−1

n can also be spanned by {MODj,p
t

n }. In other words, assume
w

(i)
j := I[i ≡ j (mod pt−1)], then

MODi,p
t−1

n =
pt−1∑
j=0

w
(i)
j MODj,p

t

n =
d∑
`=0

pt−1∑
j=0

w
(i)
j α

(j)
`

(|x|
`

) . (3)

We claim degpk (MODi,p
t−1

n ) ≤ d− ϕ(pt), and because n ≥ d, the coefficients of highest ϕ(pt)
terms in its Mahler expansion (i.e., from degree d− ϕ(pt) + 1 to degree d) are all zero. This
is due to Corollary 2.14, where we have
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degpk (MODi,p
t−1

n ) = (k − 1)ϕ(pt−1) + pt−1 − 1
= pt−2 ((k − 1)(p− 1) + p)− 1
≤ pt−2 ((k − 1)(p2 − p) + p

)
− 1

= d− ϕ(pt).

Further, if we set column vector w(i) =
(
w

(i)
0 , ..., w

(i)
pt−1

)>
where 0 ≤ i ≤ pt−1 − 1, then the

above fact, together with Equation (3), indicates the following equation:

Sw(i) =

pt−1∑
j=0

w
(i)
j α̃

(j)
d ,

pt−1∑
j=0

w
(i)
j α̃

(j)
d−1, · · · ,

pt−1∑
j=0

w
(i)
j α̃

(j)
d−ϕ(pt)+1

> = 0.

One can verify that
{
w(0), · · · ,w(pt−1−1)

}
is linear independent, and therefore they form a

base of the kernel of S i.e., kerS = span
{
w(0), · · · ,w(pt−1−1)

}
.

However, f(x) is not pt−1-periodic because πp(f) = pt. This means f(x) cannot be written
as the sum of some MODi,p

t−1

n . Thusw := (w0, ..., wpt−1)> /∈ span
{
w(0), · · · ,w(pt−1−1)

}
i.e.,

Sw 6= 0. This leads to the existence of D ∈ [d− ϕ(pt) + 1, d] such that
∑pt−1
j=0 w

(i)
j α̃

(j)
D 6= 0.

Namely, the degree D term in Equation (2) exists as desired. J

To finish the proof of this lemma, we show that the matrix C is invertible, due to the
following proposition.

I Proposition 3.5. det(C) = ±1.

Proof. In fact,

C = diag{1,−1, 1,−1, ...(−1)m−1} ·


1 1

(1
1
)
· · ·

(
m−2
m−2

)
0

(1
0
) (2

1
)
· · ·

(
m−1
m−2

)
0

(2
0
) (3

1
)
· · ·

(
m
m−2

)
...

...
...

. . .
...

0
(
m−1

0
) (

m
1
)
· · ·

(2m−3
m−2

)


where m := ϕ(pt). Denote the second matrix as C ′. Take Row m of C ′ and subtract Row
m− 1 from it. Then take Row m− 1 and subtract Row m− 2 from it. · · · Take Row 3 and
subtract Row 2 from it. Then C ′ has been transformed to

1 1
(1

1
)

· · ·
(
m−2
m−2

)
0
(1

0
) (2

1
)

· · ·
(
m−1
m−2

)
0 0

(2
0
)

· · ·
(
m−1
m−3

)
...

...
...

. . .
...

0 0
(
m−1

0
)
· · ·

(2m−4
m−3

)

 .

Keep repeating this step, and C ′ will be transformed into an upper triangular matrix, whose
diagonal elements are all 1. J

Now we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Note that Lemma 3.3 provides tight instances, so below we are going
to prove the inequality.

Assume towards contradiction that there exists f : {0, 1}n → {0, 1} satisfying degpk (f) <
(p− 1) · k, and n ≥ (k − 1) · ϕ(pµ) + pµ − 1 where µ = dlogp((p− 1)k − 1)e. Lemma 3.2 tells
us that f is pµ-periodic. The non-triviality of f indicates that there exists 1 ≤ t ≤ µ such
that πp(f) = pt.

If t = 1, then according to Lemma 3.3 we have degpk (f) = (p − 1) · k. If t ≥ 2, then
Lemma 3.4 indicates

degpk (f) ≥ (k − 2) · ϕ(pt) + pt

≥ (k − 2) · ϕ(p2) + p2

= k · (p− 1)2 + 2p− p2 + (p− 1) · k
≥ (p− 1)2 + 2p− p2 + (p− 1) · k
> (p− 1) · k.

Both cases lead to contradiction. J

3.2 Non-degenerate Functions – Proof of Theorem 1.4
For the general non-degenerate case, our key idea is to embed a symmetric Boolean function
into it, and then apply Theorem 1.3. The following lemma is crucial.

I Lemma 3.6. There exists a monotone increasing function r(n) = ω(1) such that the
following holds. Let f : {0, 1}n → {0, 1} be a non-degenerate Boolean function. Then there
exists a set of indices S ⊆ [n] with |S| ≥ r(n), and a mapping σ : [n]\S → {0, 1} such that
f |σ is a non-trivial symmetric Boolean function.

Generally speaking, with this lemma in hand, every h(n) lower bound on complexity
measure of symmetric functions that is monotone decreasing w.r.t. restriction (e.g., Fact 2.5)
can yield an h(r(n)) lower bound on that of all non-degenerate functions. In the setting
of modulo-pk degree, the bound h(n) is a constant function (when n is large than some
threshold), so we can get the same bound, except that the threshold for n blows up. However,
as indicated by our proof, the function r(n) grows extraordinary slow (approximately the
square root of iterated logarithm of n).

First, let us see how to utilize this lemma in proving Theorem 1.4.

Proof of Theorem 1.4. As long as Lemma 3.6 holds, by Fact 2.5 and Theorem 1.3, if
n ≥ r−1((k − 1) · ϕ(pµ) + pµ − 1), then degpk (f) ≥ (p − 1) · k, deriving the desired lower
bound. In addition, any symmetric function with period p (and input long enough) still
serves as an instance with degpk (f) = (p− 1) · k. J

In the rest part of this section we prove Lemma 3.6.
For convenience, we introduce the following notation. If xi = 1 for every i ∈ S ⊆ [n],

then define DOWN(S, x, k) :=
{
x⊕T | T ⊆ S, |T | = k

}
. Intuitively speaking, it is the set of

strings obtained by flipping k bits, whose indices are in S, of x from 1 to 0.
According to Theorem 2.7, there exists x̃ such that s(f, x̃) = Ω(logn). Without loss of

generality we assume the set {i ∈ [n] : x̃i = 1, f(x̃) 6= f(x̃⊕i)}, defined as S0, is of cardinality
Ω(logn). Recursively define St to be the largest set satisfying the following two conditions:

St ⊆ St−1.
The value f(y) are identical for any y ∈ DOWN(St, x̃, t).
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We then make the following claim, and prove it.

B Claim 3.7.

|St| = Ω
(

log◦(t−1)(|St−1|)
)
.

Our proof relies on Erdős–Rado Theorem [8] from Ramsey theory on hypergraphs.

I Definition 3.8 (k-Uniform Hypergraph Ramsey Number). Suppose V is a set of vertices,
and all size-k subsets of V forms Fk(V ). If E ⊆ Fk(V ), then we call (V,E) as a k-uniform
hypergraph of order |V |. Naturally, we call (V,Fk(V )) a complete k-uniform hypergraph.

If the following property holds for complete k-uniform hypergraph of order M but not
M − 1, then rk(s, t) := M is called the k-uniform hypergraph Ramsey number: color every
k-hyperedge red or blue arbitrarily, then there must exist a complete red hyper-subgraph of
order s, or a complete blue hyper-subgraph of order t.

I Theorem 3.9 ([8]). r2(s, t) ≤
(
s+t−2
t−1

)
and

rk(s, t) ≤ 2(rk−1(s−1,t−1)
k−1 ), (k > 2).

This theorem implies the following fact: if we color k-uniform hypergraph of order n with
two colors, then there exists a monochromatic clique of size Ω(log◦k(n)).

Proof of Claim 3.7. Construct the following complete t-uniform hypergraph. The vertex set
is St−1. For any x ∈ DOWN(St−1, x̃, t), we color the hyperedge {i : xi 6= x̃i} with red if
f(x) = 1, or blue otherwise. Take the largest monochromatic clique and suppose its vertex
set is S. According to Theorem 3.9, |S| = Ω(log◦k(n)). Furthermore, the monochromaticity
implies the value f(z) is identical for any z ∈ DOWN(S, x̃, t). Hence S satisfies the desired
conditions where our claim follows immediately. C

With the help of the claim and notations above, we can complete our proof of Lemma 3.6.

Proof of Lemma 3.6. By invoking Claim 3.7 iteratively,

|St| ≥ Z · log◦((t−1)t/2+1)(n),

where Z is a positive constant irrelevant to n. Take t′ = t′(n) := b
√

log∗(n)− 2c. Then
(t′ − 1)t′/2 + 1 < log∗(n) and |St′ | = ω(1). In addition, define

r = r(n) := min
{
Z · log◦(t

′(t′−1)/2+1)(n), t′(n)
}

= ω(1).

Then we have r(n) ≤ |Sr(n)|. This is because
if t′(n) ≤ Z · log◦(t

′(t′−1)/2+1)(n), then we have r(n) = t′(n) ≤ Z · log◦(r(r−1)/2+1)(n) ≤
|Sr(n)|;
if t′(n) > Z · log◦(t

′(t′−1)/2+1)(n), then t′(n) > r(n), so r(n) = Z · log◦(t
′(t′−1)/2+1)(n) ≤

Z · log◦(r(r−1)/2+1)(n) ≤ |Sr(n)|.

Now take a size r(n) subset T of Sr(n) arbitrarily. Define the mapping σ : [n]\T → {0, 1}
such that σ(i) = x̃i. Restrict f over σ to obtain a new function g := f |σ. We will prove g is
symmetric and non-trivial, and then the lemma follows immediately.
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Symmetric. Assume x, y ∈ {0, 1}r(n) such that |x| = |y|. Define x′ (resp. y′) to be the
string of size n obtained from x (resp. y) and σ. Recall the definition of Sr(n). That is, for
any i ∈ Sr(n), it holds that x̃i = 1. Therefore,

x′, y′ ∈ DOWN(Sr(n), x̃, |x|) ⊆ DOWN(S|x|, x̃, |x|).

By definition of DOWN, we have f(x′) = f(y′) i.e., g(x) = g(y).

Non-trivial. Assume z, w ∈ {0, 1}r(n) such that |z| = 0 and |w| = 1. We define z′ and
w′ similarly to x′ and y′. Suppose z′ = w′ ⊕ ei. As i ∈ T ⊆ S0, the i-th bit is sensitive.
Therefore, f(z′) 6= f(w′) i.e., g(z) 6= g(w). J

4 Lower Bounds of degpq(f) for Symmetric Functions

We first go further with the analysis of Mahler coefficients of MOD functions, then prove
Theorem 1.5 in Section 4.2, and give an instance in Section 4.3, showing one can never
improve the constant factor 1/2.

4.1 More Analyses of MOD and Its Mahler Coefficients
Let p be a prime and t be a positive integer. Consider over the ring Zp. Recall the notation
α

(a,pt)
` : it is the `-th Mahler coefficient of MODa,p

t

n . Since degp(MODa,p
t

n ) = pt − 1, the
following pt × pt matrix collects all the coefficients of MODa,p

t

n :

Apt :=


α

(0,pt)
0 · · · α

(pt−1,pt)
0

...
. . .

...
α

(0,pt)
pt−1 · · · α

(pt−1,pt)
pt−1

 .
In fact,

(Apt)i,j = α
(j,pt)
i =

(
pt − 1− j
pt − 1− i

)
.

This is because

pt−1∑
i=0

(
pt − 1− j
pt − 1− i

)(
|x|
i

)
=
(
pt − 1− j + |x|

pt − 1

)
=
{

1 if |x| ≡ j (mod pt),
0 otherwise, (4)

by Vandermonde’s convolution.
The matrix Apt has many elegant properties. For example, the following one shows the

relationship between Apt and Ap. We use ⊗ to denote matrix tensor product.

I Proposition 4.1. On the ring Zp,

Apt = A⊗tp := Ap ⊗Ap ⊗ · · · ⊗Ap︸ ︷︷ ︸
t

.

Proof. Let i` and j` be the representation of i and j in base p. Then by Lucas’s Theorem,(
pt − 1− j
pt − 1− i

)
≡
(∑t−1

`=0(p− 1− j`) · p`∑t−1
`=0(p− 1− i`) · p`

)
≡

t−1∏
`=0

(
p− 1− j`
p− 1− i`

)
≡

t−1∏
`=0

(Ap)i`,j`
(mod p).J
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Below we give another observation, which assists with our proof of Theorem 1.5.

I Lemma 4.2. Suppose p is a prime, and n < p − 1 is a positive integer. Then for any
v ∈ {0, 1}p satisfying vi 6= vj for some 0 ≤ i < j ≤ n, there exists bn/2c+ 1 ≤ ` ≤ n such
that (Apv)` 6= 0.

Our proof of Lemma 4.2 utilizes the following proposition on another binomial coefficient
matrix.

I Proposition 4.3. For any prime p, integers j, k with j+k < p and distinct a0, . . . , ak ∈ Fp
satisfying a0, . . . , ak ≥ j, the matrix

(
a0
j

) (
a1
j

)
· · ·

(
ak

j

)(
a0
j+1
) (

a1
j+1
)
· · ·

(
ak

j+1
)

...
...

. . .
...(

a0
j+k
) (

a1
j+k
)
· · ·

(
ak

j+k
)


is invertible over Fp.

Proof. One can verify that

diag
{

(j + 0)0(
a0
j

) , . . . ,
(j + k)k(

ak

j

) }
· S ·


(
a0
j

)
· · ·

(
ak

j

)
...

. . .
...(

a0
j+k
)
· · ·

(
ak

j+k
)
 =

(a0 − j)0 · · · (ak − j)0

...
. . .

...
(a0 − j)k · · · (ak − j)k

 ,
where S is the second Stirling number matrix, i.e., Sij =

{
i
j

}
, and the notation xy stands for

the falling factorial power x(x− 1) · · · (x− y + 1). The Vandermonde matrix on the R.H.S.
is also invertible because a0, . . . , ak are distinct. J

Proof of Lemma 4.2. Assume towards contradiction that there exists some v satisfying the
condition, but (Apv)` = 0 for all bn/2c+ 1 ≤ ` ≤ n. In other words, if we take row bn/2c+ 1
to n and column 0 to n from Ap to get another dn/2e × (n+ 1) matrix B i.e.,

B :=


(

p−1−0
p−1−(bn/2c+1)

) (
p−1−1

p−1−(bn/2c+1)
)

. . .
(

p−1−n
p−1−(bn/2c+1)

)
...

...
. . .

...(
p−1−0
p−1−n

) (
p−1−1
p−1−n

)
. . .

(
p−1−n
p−1−n

)
 ,

then Bv′ = 0 where v′ = {v0, ..., vn}T . (This is because (Ap)i,j =
(
p−1−j
p−1−i

)
= 0 for all

bn/2c+ 1 ≤ i ≤ n and n+ 1 ≤ j ≤ p− 1. )
Next, for any t ∈ [(bn/2c+ 1), n], the sum of row t is

(
p−1−0
p−1−t

)
+
(
p−1−1
p−1−t

)
+ · · ·+

(
p−1−n
p−1−t

)
=(

p
p−t
)
≡ 0 (mod p). Therefore B1 = 0, so we can assume the number of 1’s in v′ is no more

that dn/2e, without loss of generality. (Otherwise, subtract v′ from 1.) This means that we
can take s ≤ dn/2e column vectors of B, the summation of which is 0, and furthermore, the
last s dimensions of these vectors form a singular matrix with form B′i,j =

(
aj

p−1−n+s−1+i
)
.

However, by flipping it upside down and applying Proposition 4.3, this matrix is invertible. J

4.2 Proof of Theorem 1.5
Our proof requires the following two lemmas. The first one is often referred to as Periodicity
Lemma. It says any function with coprime periods is constant, if the domain is large enough.
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I Lemma 4.4 (Periodicity Lemma, [9]). Let g be an a-periodic and b-periodic function on
domain {0, 1, . . . , n} with gcd(a, b) = 1 and n ≥ a+ b− 2. Then g is a constant function.

The next one can be regarded as a stronger version of Theorem 1.3 with k = 1.

I Lemma 4.5. Assume p is a prime. For any non-trivial symmetric f : {0, 1}n → {0, 1},

degp(f) ≥ min
{
n

2 ,
(

1− 1
p

)
πp(f)

}
.

Note that the base-p period appear explicitly in the lower bound. This allows us to apply
Lemma 4.4. We prove Theorem 1.5 first.

Proof of Theorem 1.5. If max{degp(f),degq(f)} ≥ n
2 , the theorem then follows naturally.

Otherwise, according to Fact 2.3 and Lemma 4.5, we have

degm(f) ≥ degpq(f) = max{degp(f),degq(f)} ≥ max
{(

1− 1
p

)
πp(f),

(
1− 1

q

)
πq(f)

}
.

(5)

On the other hand, the non-triviality of f(x) implies πp(f) + πq(f) > n + 2 owing to
Lemma 4.4. The last term in Inequality (5) is > n+2

2+1/(p−1)+1/(q−1) >
n

2+1/(p−1)+1/(q−1) , and
hence the theorem is also true. J

It remains to show why Lemma 4.5 is true.

Proof of Lemma 4.5. Consider over the ring Zp. Suppose πp(f) = pt. We write f(x) as we
did in Equation (2), and let α` be the `-th Mahler coefficient of f(x). Then

∑pt−1
j=0 wjα

(j,pt)
` =

α`, or

α = Aptw (6)

if we set w := (w0, ..., wpt−1)> and α := (α0, ..., αpt−1)>.
Divide w and α into blocks of length pt−1 as w = (w〈0〉, . . . ,w〈p−1〉)> and α =

(α〈0〉, . . . ,α〈0〉)> where w〈i〉 ∈ {0, 1}pt−1
,α〈i〉 ∈ Fpt−1

p . By Proposition 4.1, we have

α〈i〉 = Apt−1

p−1∑
j=0

(
(Ap)ijw〈j〉

)
. (7)

Consider two cases. One deals with the case πp(f) = pt < n, where we show degp(f) >
p−1
p · πp(f); another deals with πp(f) ≥ n, where we can obtain degp(f) ≥ n/2.

Case I (pt < n). First, assume α〈p−1〉 = 0. Note that Apt−1 is full-rank according to
Proposition 4.3, which allows Equation (7) to be transformed into

A−1
pt−1α

〈p−1〉 =
p−1∑
j=0

(
(Ap)p−1,jw

〈j〉
)
.

Since (Ap)p−1,j = 1, we have
∑p−1
j=0 w

〈j〉 = 0. This implies w〈0〉 = · · · = w〈p−1〉 as w〈i〉 ∈
{0, 1}pt−1 , and further, f(x) becomes pt−1-periodic, conflicting with πp(f) = pt. Eventually,
we have α〈p−1〉 6= 0. Because n > pt, the highest non-zero Mahler coefficient indicates the
degree of f (see the remark below Fact 2.10), and then degp(f) > (p− 1)pt−1 = p−1

p · πp(f).
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Case II (pt ≥ n). By Equation (6),(
Ip ⊗ (Apt−1)−1)Aptw =

(
Ip ⊗ (Apt−1)−1)α. (8)

The R.H.S. of (8) is just

(
Ip ⊗ (Apt−1)−1)α =

 (Apt−1)−1α〈0〉

...
(Apt−1)−1α〈p−1〉

 =:

 β〈0〉

...
β〈p−1〉

 .
The L.H.S. of (8) can be written as(

Ip ⊗ (Apt−1)−1)Aptw =
(
Ip ⊗ (Apt−1)−1) (Ap ⊗Apt−1)w

= (IpAp)⊗ ((Apt−1)−1Apt−1)w
= (Ap ⊗ Ipt−1)w.

Therefore,

(Ap ⊗ Ipt−1)w =
(
β〈0〉, · · · ,β〈p−1〉

)>
. (9)

For 0 ≤ j < pt−1 we define

β̃〈j〉 :=
(
β
〈0〉
j , · · · ,β〈p−1〉

j

)>
and w̃〈j〉 :=

(
w
〈0〉
j , · · · ,w〈p−1〉

j

)>
,

Intuitively, vectors with tildes here contain entries taken from the original vector with stride
pt−1. Then Equation (9) implies

Apw̃
〈j〉 = β̃〈j〉.

Let n′ = b(n+ 1)/pt−1c − 1, n′′ = d(n+ 1)/pt−1e − 1, and m′ = n mod pt−1. Consider
the following two subcases:

Subcase II-1. Suppose there exists ` ≤ m′ and i, j ∈ [0, n′′] such that w̃〈`〉i 6= w̃
〈`〉
j .

According to Lemma 4.2, there exists i′ ∈ [bn′′/2c+1, n′′] satisfying 0 6=
(
Apw̃

〈j〉)
i′

= β̃
〈`〉
i′ =

β
〈i′〉
` . Because Apt−1 is invertible, we have α〈i′〉 = Apt−1β〈i

′〉 6= 0. What’s more,
if i′ < n′′ and recall Fact 2.10, we have degp(f) ≥ (bn′′/2c+ 1) · pt−1 ≥ n/2;
if i′ = n′′, we select the minimum ` such that β〈i

′〉
` 6= 0. Due to the fact (Apt−1)`,j =(

pt−1−1−j
pt−1−1−`

)
= 0 when j > `, it follows that

α
〈i′〉
` =

∑̀
j=0

(Apt−1)`,jβ〈i
′〉

j = (Apt−1)`,`β〈i
′〉

` 6= 0. (10)

Eventually degp(f) ≥ n′′ · pt−1 ≥ n/2.

Subcase II-2. Otherwise, there exists a minimum ` ∈ [m′ + 1, pt−1 − 1] and i, j ∈ [0, n′]
such that w̃〈`〉i 6= w̃

〈`〉
j as f(x) is non-trivial. The same argument shows that there exists

i′ ∈ [bn′/2c+ 1, n′] satisfying β〈i
′〉

` 6= 0. In addition, the condition w̃〈`
′〉

0 = · · · = w̃
〈`′〉
n′ for all

`′ < ` implies

β
〈i′〉
`′ = β̃

〈`′〉
i′ =

p−1∑
j=0

(Ap)i′,jw̃〈`
′〉

j = w
〈`′〉
0 ·

i′∑
j=0

(
p− 1− j
p− 1− i′

)
= w

〈`′〉
0 ·

(
p

p− i′

)
= 0.

Hence, by imitating (10) we can obtain α〈i
′〉

` 6= 0, which leads to degp(f) ≥ bn′/2c · pt−1 +
m′ + 1 ≥ n/2. J
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4.3 Proof of Theorem 1.6
We will later apply the following lemma about Diophantine approximation, which is an
immediate corollary of Kronecker’s Theorem.

I Lemma 4.6. Suppose real numbers a1, . . . , ak satisfy that 1, a1, . . . , ak are linearly inde-
pendent over Q. Then, for any ε > 0, there exist infinitely many positive integers ` such that
`ai mod 1 ∈ (1− ε, 1) for each i = 1, . . . , k.

Now we prove Theorem 1.6.

Proof of Theorem 1.6. Write m = p1p2 · · · pk for pi being primes. Choose a prime q

different from all pi. Fix an arbitrary ε > 0. Let ai = log q/ log pi for i = 1, . . . , k. Then
1, a1, . . . , ak are linearly independent over Q, otherwise a nontrivial linear relation can be
exponentiated to contradict the unique factorization theorem over Z+. Applying Lemma 4.6
we get infinitely many ` that satisfy the condition ` · log q/ log pi mod 1 ∈ (1− ε, 1), which
implies pri

i /q
` ∈ (1, pεi ) where ri = d` log q/ log pie.

Now, choose a sufficiently large `, let n = 2q` and define f : {0, 1}n → {0, 1} by
f(x) = I[|x| = q`]. Then f is pri

i -periodic since pri
i > q`. Therefore degpi

(f) ≤ pri
i − 1 by

Theorem 2.12. Thus,

degm(f) ≤ max
1≤i≤k

{pri
i } ≤

n

2 max
1≤i≤k

{pεi}.

The theorem follows by letting ε→ 0. J

5 Conclusion

In a nutshell, we explore and exploit the matrices consisting of Mahler coefficients of the
MOD function, serving as a significant extension of Wilson’s arguments. This approach fully
characterizes the modulo degree of Boolean functions when the base is prime or prime power,
and provides good lower bounds for the composite case with the help of periodicity lemma.
In addition, we also show a practical way to generalize properties of symmetric functions to
non-degenerate ones by a Ramsey-type argument.

Nevertheless, there is still ample room for further discussion. First and foremost, we
conjecture that the constant factor in Theorem 1.5 can be improved to 1/2 in correspondence
with Theorem 1.6. Moreover, an anonymous reviewer also raises a good question with regard
to Theorem 1.4: Could the extraordinary large prerequisite n ≥ tower(poly(p, k)) (which is
implicit in the proof) be improved to something like n ≥ exp(poly(p, k))? We also wonder
if it is possible to embed other kinds of functions to derive similar results. Above all, both
Conjecture 1.1 and Conjecture 1.2 remain open.
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