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—— Abstract

We study locality-sensitive hash methods for the nearest neighbor problem for the angular distance,
focusing on the approach of first projecting down onto a random low-dimensional subspace, and then
partitioning the projected vectors according to the Voronoi cells induced by a well-chosen spherical
code. This approach generalizes and interpolates between the fast but asymptotically suboptimal
hyperplane hashing of Charikar [STOC 2002], and asymptotically optimal but practically often
slower hash families of e.g. Andoni-Indyk [FOCS 2006], Andoni-Indyk-Nguyen—Razenshteyn [SODA
2014] and Andoni-Indyk-Laarhoven-Razenshteyn—Schmidt [NIPS 2015]. We set up a framework for
analyzing the performance of any spherical code in this context, and we provide results for various
codes appearing in the literature, such as those related to regular polytopes and root lattices. Similar
to hyperplane hashing, and unlike e.g. cross-polytope hashing, our analysis of collision probabilities
and query exponents is ezact and does not hide any order terms which vanish only for large d, thus
facilitating an easier parameter selection in practical applications.

For the two-dimensional case, we analytically derive closed-form expressions for arbitrary spherical
codes, and we show that the equilateral triangle is optimal, achieving a better performance than the
two-dimensional analogues of hyperplane and cross-polytope hashing. In three and four dimensions,
we numerically find that the tetrahedron and 5-cell (the 3-simplex and 4-simplex) and the 16-cell (the
4-orthoplex) achieve the best query exponents, while in five or more dimensions orthoplices appear
to outperform regular simplices, as well as the root lattice families Ax and Dy in terms of minimizing
the query exponent. We provide lower bounds based on spherical caps, and we predict that in
higher dimensions, larger spherical codes exist which outperform orthoplices in terms of the query
exponent, and we argue why using the Dy root lattices will likely lead to better results in practice
as well (compared to using cross-polytopes), due to a better trade-off between the asymptotic query
exponent and the concrete costs of hashing.
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1 Introduction

Given a large database of high-dimensional vectors, together with a target data point which
does not lie in this database, a natural question to ask is: which item in the database is the
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most similar to the query? And can we somehow preprocess and store the database in a
data structure that allows such queries to be answered faster? These and related questions
have long been studied in various contexts, such as machine learning, coding theory, pattern
recognition, and cryptography [14, 19,20, 25,30, 32], under the headers of similarity search
and nearest neighbor searching. Observe that a naive solution might consist of simply storing
the data set in a big list, and to search this list in linear time to find the nearest neighbor to
a query point. This solution requires an amount of time and space scaling linearly in the size
of the data set, and solutions we are interested in commonly require more preprocessed space
(and time), but achieve a sublinear query time complexity to find the nearest neighbor.

Depending on the context of the problem, different solutions for these problems have
been proposed and studied. For the case where the dimensionality of the original problem is
constant, efficient solutions are known to exist [8]. Throughout the remainder of the paper,
we will therefore assume that the dimensionality of the data set is superconstant. In the late
1990s, Indyk—Motwani [22] proposed the locality-sensitive hashing framework, and until today
this method remains one of the most prominent and popular methods for nearest neighbor
searching in high-dimensional vector spaces, both due to its asymptotic performance when
using theoretically optimal hash families [4,5], and due to its practical performance when
instantiated with truly efficient locality-sensitive hash functions [1,13,16]. And whereas many
other methods scale poorly as the dimensionality of the problem increases, locality-sensitive
hashing remains competitive even in high-dimensional settings.

Although solutions for both asymptotic and concrete settings have been studied over the
years, there is often a separation between both worlds: some methods work well in practice
but do not scale optimally when the parameters increase (e.g. Charikar’s hash family [16]);
while some other methods are known to achieve a superior performance for sufficiently large
parameter sizes, but may not be quite as practical in some applications due to large hidden
order terms in the asymptotic analysis (e.g. hash families studied in [3-5] and filter families
from [6,11,17]). Moreover, the latter methods are often not as easy to deploy in practice due
to these unspecified hidden order terms, making it hard to choose the scheme parameters that
optimize the performance. A key problem in this area thus remains to close the gap between
theory and practice, and to offer solutions that interpolate between quick—and—dirty simple
approaches that might not scale well with the problem size, and more sophisticated methods
that only start outperforming these simpler methods as the parameters are sufficiently large.

1.1 Related work

In this paper we will focus on methods for solving the nearest neighbor problem for the
angular distance, which is closely related to the nearest neighbor problem in various £,-norms:
as shown by Andoni and Razenshteyn [7], a solution for the nearest neighbor problem for
the angular distance (or the Euclidean distance on the sphere) can be optimally extended to
a solution for the ¢5-norm for all of R%. Solutions for the fo-norm can further be translated
to e.g. solutions for the ¢;-norm via appropriate embeddings.

For the angular distance, perhaps the most well-known and widely deployed approach for
finding similar items in a large database is to use the hyperplane hash family of Charikar [16].
For spherically-symmetric, random data sets on the sphere of size n, it can find a nearest
neighbor at angle at most e.g. # = % in sublinear time O(n*) and space O(n't?), with
p ~ 0.5850. Various improvements later showed that smaller query exponents p can be
achieved in sufficiently high dimensions [3, 5], the most practical of which is based on cross-
polytopes or orthoplices [4,24,35]: for large d and for the same target angle § = %, the query
time complexity scales as n?t°(1) with p = 1/3. Note that the convergence to the limit is
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rather slow [4, Theorem 1] and depends on both d and n being sufficiently large — for fixed
d and large n, the exponent is still larger than 1/3. In certain practical applications with
moderate-sized data sets, hyperplane hashing still appears to outperform cross-polytope
hashing and other advanced hashing and filtering schemes [2,11,12,28,29] due to its low cost
for hashing, and the absence of lower order terms in the exponent.

Related to the topic of this paper, various other works have further observed the relation
between finding good locality-sensitive hash families for the angular distance and finding “nice’
spherical codes that partition the sphere well, and allow for efficient decoding [3,4,11,15,35,36].

?

The requirements on a spherical code to be a good spherical code are somewhat intricate
to state, and to date it is an open problem to exactly quantify which spherical codes are
the most suited for nearest neighbor searching. It may well be possible to improve upon the
state-of-the-art orthoplex (cross-polytope) locality-sensitive hash family [4,31] in practice
with a method achieving the same asymptotic scaling, but with a faster convergence to the
limit, and thus potentially a better performance in practice for large problem instances.

1.2 A framework for evaluating spherical codes

As a first contribution of this paper, we provide a framework for analyzing the performance of
arbitrary spherical codes in the context of locality-sensitive hashing for the angular distance,
where we focus on the approach of (1) projecting down onto a random low-dimensional
subspace, and (2) partitioning the resulting subspace according to the Voronoi cells induced
by a spherical code. More specifically, we relate the collision probabilities appearing in the
analysis of these hash functions to so-called orthant probabilities of multivariate normal
distributions with non-trivial correlation matrices. Below we informally state this relation for
general spherical codes, which provides us a recipe for computing the collision probabilities
(and the query exponent) as a function of the set of vertices C of the corresponding spherical
code. Here a hash family being (6, p1, p2)-sensitive means that uniformly random vectors on
the sphere collide with probability at most ps, and target nearest neighbors at angle at most
f from a random query vector collide in a random hash function with probability at least p;.
Further details and a more formal statement can be found in the full version.

» Theorem 1 (Spherical code locality-sensitive hashing). Let C C S*=1 be a k-dimensional
spherical code, and consider a hash family where:
We first project onto a k-dimensional subspace using a random matriz A ~ N'(0,1)k*4;
We then assign hash values based on which ¢ € C is nearest to the projected vector.
Then for any 0 € (0, 5), this family is (0, p1, p2)-sensitive, where py can be expressed in terms
of the relative volumes of the Voronoi cells induced by C, and p1 can be expressed as a sum

of orthant probabilities Pr, xr(0,x,) (2 > 0), where each 3; has size (2k) x (2k).

The locality-sensitive hashing exponent p = log p1/logps describes the distinguishing power
of a hash family, as for large n this tells us that we can solve the (average-case) nearest
neighbor problem with target angle 6 in query time O(n?) with space O(n'**). The theorem
above essentially provides us a recipe which, given any spherical code C and target angle 6
as input, tells us how to compute these probabilities p; and ps (and thus p) exactly.

While the above theorem is somewhat abstract, we show how to explicitly construct
the correlation matrices X; appearing in the theorem, allowing us to always at least obtain
numerical estimates on the performance of different spherical codes in the context of nearest
neighbor searching. We further study how to reduce the dimensionality of the problem (and
in particular, the sizes of the matrices 33;) when the spherical code exhibits many symmetries,
such as being isogonal, and we show how using only the relevant vectors of each code word
can further simplify the computations. In most cases the resulting orthant probabilities will
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still remain too complex to evaluate analytically, but in some cases we can obtain exact
expressions this way.

1.3 A survey of known spherical codes

One and two dimensions. Using this new framework, in the full version we then apply it
to various spherical codes, starting in very low dimensions. For the one-dimensional case we
rederive the celebrated result of Charikar [16] for one-dimensional spherical codes, noting that
the collision probability analysis in fact dates back to an old result from the late 1800s [33].
Applying the same framework to two-dimensional codes, among others we establish a general
formula for collision probabilities and query exponents for arbitrary polygons, as well as a
more compact description of the collision probabilities for regular polygons.

» Theorem 2 (Collision probabilities for regular polygons). Let C C S consist of the vertices of
the regular c-gon, for ¢ > 2, and let § € (0, 5). Then the corresponding project-and-partition
hash family H is (0, p1, p2)-sensitive, with:

1 r—0\" arccos(— cos 6 cos 27) ?
I - < =1/c. 1
pr=>7¢ < 2m > ¢ < 2m ) ’ b2 /e S

As a direct corollary of the above theorem, we establish that triangular locality-sensitive
hashing achieves a superior asymptotic performance to hyperplane hashing, and achieves the
lowest query exponents p among all regular polygons.

» Corollary 3 (Triangular locality-sensitive hashing). Consider the hash family where we first
project onto a random plane using a random projection matriz A ~ N(0,1)2*?, and then
decode to the nearest corner of a fized equilateral triangle centered at (0,0). Then, for target
angles 0 € (0, 3), this hash family achieves query exponents p of the form:

Lo () o (ethesny] ] .

Among all such project—and—partition hash families based on reqular k-gons, this family
achieves the lowest values p for any target angle 0 € (0, %).

p=1In

Note again that the above statement of p is exact, and does not hide any order terms in
d or n — in fact, the collision probabilities do not depend on d at all, due to our choice
of A being Gaussian. Further note that the 2-gon in the plane corresponds to the one-
dimensional antipodal code of Charikar, and triangular hashing therefore strictly improves
upon hyperplane hashing for any 6 in terms of the query exponent p. For instance, we
can find neighbors at angle at most % in time O(n®) with p ~ 0.56996, offering a concrete
but minor improvement over the hyperplane hashing approach of Charikar [16] with query
exponent p = 0.5850. This is the best we can do with any two-dimensional isogonal spherical
code, and we numerically predict that this code achieves the lowest values p among all (not
necessarily isogonal) two-dimensional spherical codes as well.

Three and four dimensions. For three-dimensional codes, through numerical integration of
the resulting orthant probabilities we conclude that the tetrahedron appears to minimize the
query exponent p out of all three-dimensional codes, beating the three-dimensional analogues
of e.g. the cross-polytope and hypercube, as well as various sphere packings and other regular
polytopes appearing in the literature, such as the Platonic and Archimedean solids. In four
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dimensions an interesting phenomenon occurs: the so-called 5-cell (4-simplex) and 16-cell
(4-orthoplex) are optimal in different regimes, with the 5-cell inducing a more coarse-grained
partition of the space and achieving a better performance when the nearest neighbor lies
relatively far away from the data set, and the 16-cell inducing a more fine-grained partition,
and working better when the nearest neighbor lies relatively close to the target vector. This
crossover effect is also visualized in Figure 1, and it strengthens our intuition that as the
dimensionality goes up, or as the nearest neighbor lies closer to the query, more fine-grained
partitions are necessary to obtain the best performance. An overview of some of the exponents
p for various low-dimensional spherical codes, for different target angles 6 € {5{1,2,3,4,5},
is given in Table 1. The best exponents p are highlighted in bold.

Five and more dimensions. For higher-dimensional spherical codes, we obtain further
improvements in the query exponents p through the use of suitable spherical codes, as shown
in Table 1 and Figures 1-4. For dimensions 5 and 6, the corresponding orthoplices achieve a
better performance than the simplices, and the exotic polytopes 15; and 251, related to the
root lattice Eg, seem useful in the context of nearest neighbor searching as well.

In the full version we further study the performance of the following five non-trivial
infinite families of spherical codes. Color codes below correspond to the same colors used in
Table 1 and Figures 1-4 to differentiate these families of codes.

The simplices S;. on k + 1 vertices;

The orthoplices Oy on 2k vertices (also known as cross-polytopes [4,36]);

The hypercubes C}, on 2* vertices (as studied in [27]);

The expanded simplices A, on k(k + 1) vertices;

The rectified orthoplices D), on 2k(k — 1) vertices.

The latter two families are connected to the root lattices Ay and Dy, while the first three are
related to the lattice Z*. We conjecture that, should other nice families of dense lattices be
found (e.g. the recent [37]), these may give rise to suitable spherical codes in nearest neighbor
applications as well. For each of the above five families we give closed-form expressions on
the correlation matrices ¥, but the resulting orthant probabilities that need to be evaluated
for computing p do not appear to admit simple closed-form expressions. Apart from the
family of hypercubes, these are all asymptotically optimal (with p — (1 — cos#)/(1 + cos9)
as k — 00), although the convergence to the limit may differ for each family.

1.4 Lower bounds via spherical caps

Although this work tries to be exhaustive in covering as many (families of) spherical codes as
possible, better spherical codes may exist, achieving even lower query exponents p. As these
codes may be hard to find, and as it may be difficult to rule out the existence of other, better
spherical codes, the next best thing one might hope for is a somewhat tight lower bound
on the performance of any k-dimensional spherical code in our framework, which hopefully
comes close to the performance of the spherical codes we have considered in this survey.

As has been established in several previous works on nearest neighbor searching on the
sphere [3,5,6,11,17,26], ideally we would like the hash regions induced by the partitions to
take the shape of a spherical cap. Such a shape minimizes the angular radius, given that the
region has a fixed volume, and in a sense it is the most natural and smoothest shape that a
region on a sphere can take. So in a utopian world, one might hope that a spherical code
partitions the sphere into ¢ regions, and each region corresponds exactly to a spherical cap of
volume Vol(S¥~1)/e. Clearly such spherical codes do not exist for k > 2 and ¢ > 2, but such
an extremal example does give us an indication on the limits of what might be achievable in
dimension k, and how the optimal p decreases with k. Note that random spherical codes
might approach this utopian setting in high dimensions.
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Following the above reasoning, and using a classic result of Baernstein—Taylor [10], we
state a formal lower bound on the performance parameter p of any k-dimensional spherical
code of size ¢, and by minimizing over ¢ for given k, one obtains a lower bound for any
spherical code living in & dimensions. Here I, (a,b) denotes the regularized incomplete beta
function, which comes from computing the volume of a sphere in &k dimensions, while || - ||
denotes the Euclidean norm.

» Theorem 4 (Spherical cap lower bounds). Let C C S*~! be a spherical code, and let H
be the associated project—-and—partition hash family. Then the parameter p for C, for target
angle 6 € (0, %), must satisfy:

where, with ay,(c) denoting the solution o to 1 - I _q2 (551, 3)

T x1cos0 + y1 sin 6 1
0) =1 P — > > 1 — .
pi(c.) Og{mwﬁw <||w|| 2 () [ cos 0 1 ysin ] = ‘“k(c))}/ °g (

The above minimization over ¢ > 2 concerns the possible code sizes, and pg(c, ) describes

= %, pr(c,0) is given by:

the parameter p one would obtain when indeed, the code consisted of ¢ equivalent regions of
equal volume, and each region was shaped like a spherical cap. Equivalently, one could state
that any spherical code of size exactly ¢ must satisty p(6) > pi(c, 0).

Numerical evaluation of these expressions pg(c, ), and the resulting minimization over
¢, leads to the values in Table 1 in the rows indicated by spherical caps. The superscripts
denote the values ¢ that numerically solve the minimization problems. These results in low
dimensions suggest that, especially for small angles, the optimal code size should increase
superlinearly with the dimension. This inspires the following conjecture, stating that the use
of orthoplices is likely not optimal in higher dimensions.

» Conjecture 5 (Orthoplices are suboptimal for large k). For arbitrary 6 € (0,%), there
exists a dimension kg € N such that, for all dimensions k > kg, there exist spherical codes
C C S¥=1 whose query exponents p in the project-and-partition framework are smaller than

the exponents p of the k-orthoplex.

Actually finding such spherical codes, or finding families of spherical codes that outperform
orthoplices may again be closely related to the problem of finding nice families of dense
lattices with efficient decoding algorithms. We informally conjecture that in high dimensions,
and for sufficiently large code sizes ¢, random spherical codes may be close to optimal. If we
care only about minimizing p, then a further study might focus on (1) getting a better grip
of the optimal scaling of ¢ = ¢(k) with k, and (2) estimating the asymptotic performance of
using random spherical codes of size ¢(k), for large k. We predict this will lead to better
values p than those obtained with cross-polytope hashing.

1.5 Selecting spherical codes in practice

Although the exponent p, and therefore the probabilities p; and po, directly imply the main
performance parameters to assess the asymptotic performance of a locality-sensitive hash
family, in practice we are always dealing with concrete, non-asymptotic values n, d, and 6
— if the convergence to the optimal asymptotic scaling is slow, or if the hash functions are
too expensive to evaluate in practice, then hash families with lower query exponents p may
actually be less practical for small, concrete values of n and d than fast hash families with
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larger p. For example, the hash family from [3] may be “optimal”, but appears to be only of
theoretical interest. In practice one needs to find a balance between decreasing p and using
hash functions which are fast to evaluate.

As a more concrete example, consider how hyperplane hashing [16] allows us to partition
a sphere in 2¥ regions with a single random projection matrix A € R¥*? (or equivalently k
matrices A, ..., Ay € R merged into one large matrix). For cross-polytope hashing [4]

a k-dimensional projection would only divide the k-dimensional sphere into 2k regions.

As the total required number of hash buckets in the data structure is often roughly the
same, regardless of the chosen hash family,! this means that if we wish to divide the
sphere into 2* hash regions with cross-polytope hashing, we would need m = k/ log,(2k)
independent random projection matrices A, ..., A,, € R¥*? to hash a vector to one of 2F
buckets. So even though the resulting partitions for cross-polytope hashing generate smaller
exponents p, in practice this improvement may not offset the additional costs of computing
the projections/rotations, which is almost a linear factor O(d) more than for hyperplane
hashing. So especially for data sets of small/moderate sizes, hyperplane hashing may be
more practical than cross-polytope hashing, as also observed in e.g. [12,25, 28, 29].

We explicitly quantify the trade-off between the complexity of the hash functions and the
asymptotic query exponents p in Figure 3, where on the vertical axis we plotted the query
exponents p as computed in this paper, and on the horizontal axis we plotted the number of
bits extracted per row of a projection matrix; for hyperplane hashing we extract 1 bit per
projection, while e.g. for cross-polytope hashing in dimension k we only extract log(2k)/k
bits per projection. Depending on the application, it may be desirable to choose hash families
with slightly larger values p, if this means the cost of the hashing becomes less. Figure 3
makes a case for using hashes induced by the root lattices Dy, as well as those induced by
exotic polytopes such as the 251-polytope; compared to e.g. the 5-orthoplex, the Dy lattice
achieves lower values p and extracts more bits per projection, while the 29;-polytope further
improves upon Dy by extracting more hash bits per projection.

To further illustrate how these trade-offs might look in a real-world setting, Figure 4
describes a case study for average-case nearest neighbor searching with different sizes n for
the data sets. For small data sets, hyperplane hashing is quite competitive, and the best
other spherical codes are those induced by the Dy, lattices (for small k), and spherical codes
generated by the polytopes 121,131 and 25;. This case study matches the recommendations
from Figure 3. For large n, the role of p becomes more prominent, and higher-dimensional
orthoplices and Dy, lattices attain the best performance. In the full version we further
describe how one might choose the best codes in practice.

1.6 Summary and open problems

With the project—and—partition framework outlined in this paper, we can now easily formalize
and analyze the performance of any spherical code in this framework, and analyze the
collision probabilities and query exponents either analytically (by attempting to simplify
the corresponding multivariate orthant probabilities) or numerically (by evaluating these
multivariate integrals with mathematical software, such as the mvtnorm package [21]). We
observed that already in two dimensions, it is possible to improve upon hyperplane hashing
with a smaller exponent p by using triangular partitions, and we described closed-form

! While a hash family with lower query exponents p does require a smaller number of hash buckets per
hash table, this effect is marginal compared to the increase in the number of projections/rotations
required by e.g. cross-polytope hashing compared to hyperplane hashing.
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formulas for the resulting parameters p. In three and four dimensions the improvements in
the exponent p become more significant, with e.g. the tetrahedron, the 5-cell, and the 16-cell
achieving the best exponents p in these dimensions. For higher dimensions the simplices and
orthoplices seem to achieve the best performance in theory, thus making a strong case for
the use of these partitions as advertised in [4,24,35,36], and as observed in nearest neighbor
benchmarks [9,13,31]. The family of Dy, lattices and the generalized m-max hash functions
however seem to offer better practical trade-offs between the asymptotic performance in
terms of p and the costs of computing hashes, as discussed in the full version.

Finding better spherical codes. An important open problem, both for our project—and—
partition framework and for arbitrary hash families for the angular distance, is to find (if
they exist) other nice families of spherical codes which achieve an even better performance
than the family of orthoplices. Numerics in the full version suggest that as k increases,
the optimal code size ¢ should increase faster than the linear scaling of ¢ = 2k offered by
orthoplices. Finding the optimal scaling of ¢ as a function of k, and finding nicer spherical
codes closely matching this appropriate scaling of ¢ is left for future work.

Faster pseudorandom projections. To make e.g. hyperplane and cross-polytope hashing
more practical, various ideas were proposed in e.g. [1,4] to work with sparse projections and
pseudorandom rotation matrices. Similar ideas can be used for any hash family, to reduce the
cost of multiplication by a random Gaussian matrix A. Concretely, one can often replace it
with a sparse, “sufficiently random” pseudorandom matrix A while still achieving good query
exponents p in practice. Depending on how these pseudorandom projections are instantiated,
this may lead to a different practical evaluation than what we described in our practical case
analyses. In particular, as this reduces the relative cost of the hashing, this will further favor
schemes which reduce p at the cost of increasing the (naive) complexity of hashing.

Using orthogonal projection matrices. In our framework, we focused on projecting down
onto a low-dimensional subspace using Gaussian matrices A ~ N(0,1)**9. For k < d, using
Gaussian matrices or orthogonal matrices (i.e. AA” = I},) is essentially equivalent [18,23],
but for large k it may be beneficial to use proper rotations induced by orthogonal matrices.
For instance, recent work [27] showed that for hypercube hashing in the ambient space,
there is a clear gap between using random or orthogonal matrices; using orthogonal matrices
generally works better than using random Gaussian projection matrices.

The main issue when analyzing the same framework with orthogonal matrices is that the
dependence on d then does not disappear; the distribution of Ax then relies on both k£ and
d, rather than only on k. Our framework is in a sense dimensionless, as the performance can
be computed without knowledge of d, and for £ = 2 this even allowed us to obtain explicit
analytic expressions for the collision probabilities for arbitrary k-gons. Using orthogonal
matrices, the collision probabilities will likely become complicated functions of d, and
comparing different spherical codes may then become a more difficult task. We leave it as an
open problem to adjust the above framework to the setting where A is orthogonal, and to

see how much can be gained by using orthogonal rather than Gaussian matrices?.

The remainder of the paper can be found in the full version at [arXiv:1907.04628].

2 Note that one obtains different asymptotics when analyzing the hypercube for Gaussian [16] and
orthogonal projection/rotation matrices [27]. For constant k = O(1) and large d both approaches are
asymptotically equivalent, but for large k = O(d) we expect orthogonal matrices to give better results.
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Table 1 Parameters p for various spherical codes. Sphere packings are from [34]. Rows labeled
“spherical caps” are lower bounds (Theorem 4). Superscripts refer to the number of caps minimizing
po. Bold values indicate the best values p encountered up to this dimension. Results for k£ = 1,2,d,
were obtained analytically; for k£ = 3,4, 5,6 most results were obtained through numerical integration
and Monte Carlo simulation.

k  spherical code c p(75) p(F) p(§) p(3) p(33)

1 spherical caps 0.12552  0.2630® 0.4150®  0.5850®  0.7776
hyperplane 2 0.1255 0.2630 0.4150 0.5850 0.7776

2 spherical caps 0.1194  0.2518%)  0.40053  0.5700°  0.7666

triangle (S2) 3 0.1194 0.2518 0.4005 0.5700 0.7666
square (O2, C2, D2) 4 0.1255 0.2630 0.4150 0.5850 0.7776
pentagon 5 0.1343 0.2788 0.4346 0.6040 0.7905
hexagon (/>) 6 0.1438 0.2954 0.4544 0.6222 0.8022

3 spherical caps 0.1117%  0.23899  0.3846D  0.5548  0.7561
tetrahedron (S3) 4 0.1155 0.2445 0.3910 0.5600  0.7592
sphere packing 5 0.1170  0.2481  0.3965  0.5664  0.7644
octahedron (Os3) 6 0.1159  0.2465  0.3952  0.5661  0.7649

sphere packing 7 0.1207  0.2554  0.4065  0.5772  0.7725

8
9

cube (C3) 0.1255  0.2630  0.4150  0.5850  0.7776
sphere packing 0.1217 0.2591 0.4129 0.5850 0.7786
icosahedron 12 0.1255  0.2678  0.4255  0.5983  0.7883
cuboctahedron (A3, D3) 12 0.1294 02728  0.4301 0.6017  0.7900
dodecahedron 20 0.1509  0.3077  0.4692  0.6360  0.8112
4 spherical caps 0.1050"  0.2285©)  0.3730©  0.5435)  0.7466
5-cell (S4) 5 0.1126  0.2392  0.3840  0.5527  0.7537
sphere packing 6 0.1128 0.2401 0.3861 0.5555 0.7564
sphere packing 7 0.1120  0.2392  0.3852  0.5553  0.7567
16-cell (Oy) 8 0.1107 0.2368 0.3822  0.5528  0.7553
sphere packing 10 0.1136  0.2426  0.3909  0.5623  0.7622
sphere packing 13 0.1133 0.2439 0.3939 0.5666 0.7663
tesseract (Cy) 16 0.1255  0.2630  0.4150  0.5850  0.7776
runcinated 5-cell (A.) 20 0.1216  0.2586  0.4128  0.5855  0.7795
octacube (Da) 24 0.1202  0.2577  0.4140  0.5877  0.7823
5  spherical caps 0.09973) 0.22059 0.3650®  0.5342"  0.7415©
5-simplex (S5) 6 0.1105  0.2354  0.3785  0.5469  0.7493
5-orthoplex (Os) 10 0.1076 0.2299 0.3733 0.5433  0.7483
121-polytope 16 0.1080  0.2330  0.3794  0.5516  0.7554
expanded 5-simplex (45) 30 0.1167  0.2494  0.4007  0.5735  0.7713
5-hypercube (Cs) 32 0.1255  0.2630  0.4150  0.5850  0.7776
rectified 5-orthoplex (Ds) 40 0.1139  0.2471 0.4009  0.5757  0.7739
6  spherical caps 0.09551%) 0.2185(19) 0.355201) 0.52639)  0.7357®)
6-simplex (5) 7 0.1089  0.2319  0.3742  0.5422  0.7458
6-orthoplex (Og) 12 0.1065  0.2260  0.3670 0.5361  0.7431
251-polytope 27 0.1038  0.2258 0.3712  0.5442  0.7510
131-polytope 32 0.1062  0.2314  0.3788  0.5520  0.7564
expanded 6-simplex (/5) 42 0.1133  0.2427  0.3917  0.5642  0.7647
rectified 6-orthoplex (D) 60 0.1107  0.2404  0.3915  0.5661 0.7673
hypercube (Cs) 64 0.1255  0.2630  0.4150  0.5850  0.7776
d  lower bound 0.0173  0.0718  0.1716  0.3333  0.5888
simplex (S,) d+1 0.0173 0.0718 0.1716 0.3333  0.5888
orthoplex (Og) 2d 0.0173 0.0718 0.1716 0.3333  0.5888
expanded simplex (A,) d(d+1) 0.0173 0.0718 0.1716 0.3333  0.5888
rectified orthoplex (D) 2d(d—1) 0.0173 0.0718 0.1716 0.3333  0.5888
hypercube (Cg4; A orth.) 24 0.0799  0.1800  0.3151 0.5201 0.7686
hypercube (Cy4; A Gaussian) — 2¢ 0.1255 0.2630 0.4150 0.5850 0.7776
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Figure 1 Comparison of the improvements in the query exponent p over hyperplane hashing [16]
with query exponents pnyp. The horizontal blue line denotes the baseline hyperplane hashing
approach, with p — pnyp = 0. Lower curves denote improvements to pnyp using various spherical
codes. The measurements at the five vertical gridlines correspond to the values in Table 1. For
instance, at # = 7/6 the triangle has query exponent approximately 0.011 lower than hyperplane
hashing (which has exponent 0.2630), leading to p & 0.2520; from Table 1 we get the more precise
estimate p ~ 0.2518; while the theory in the full version allows us to compute p exactly through a
closed-form expression. The polytopes in this figure are those achieving the lowest exponents p in
their respective dimensions at one of these grid lines, as highlighted in boldface in Table 1.

0.60 . :
0.42F hypercubes
3 3 0.58; T
50'40 5056— Or laty;
§ 0.8l § : ) Alticeg
é ’ é 0'54,
§ 0.36 aif
<] 3 0.52¢ Orthopliceg
0.34
: : : 0.50 : : ! !
0 4 6 8 10 0 2 4 6 8 10
Spherical code dimension (k) Spherical code dimension (k)

Figure 2 Query exponents p for project—and—partition hash families based on the spherical codes
listed in Table 1. Lower query exponents p are generally better, and for these hash families the best
exponents p are achieved by the simplex for £ < 3 and by the orthoplex for k£ > 5. For k = 4 the
simplex and orthoplex are close, and which of the two achieves a better performance depends on the
target nearest neighbor angle 6.
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Figure 3 A comparison between different spherical codes in terms of the query exponent p (vertical
axis) and the bits of information extracted from each row of the projection matrix A (horizontal

axis). The top figure corresponds to target angle § = T (or approximation factor ¢ = /2 + \/5), the
bottom figure to target angle 6 = % (or ¢ = v/2). Codes further down generate hash functions with
a more discriminative power (a lower value p), while codes further to the right extract more bits per
projection, therefore requiring fewer inner product computations to compute hash values. So for our
purposes, the best codes would be as far to the right and as far down as possible. Hypercubes Cj,

Bits per projection (logz(c) / k)

all achieve the same value p and the same value log,(c)/k = 1.
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Figure 4 Comparison of the query cost estimates ¢-£-k for different parameters n € {10°,107,10'°}

and 6 € {7, 5}, when using t = n” hash tables and a hash length ¢ = log(n)/log(1/p2). The curves
correspond to the regular convex polytope families and the root lattice families Ay and Dy, while
single black points for £ < 6 correspond to spherical codes described in Table 1. As n increases,
the role of a smaller p becomes bigger, and so larger spherical codes with smaller values p become
more suitable choices than those with bigger values p but with lower hash costs. The cost of the
projections increases linearly with k, while p decreases rather slowly with k, suggesting that for each
n and 6 there is an optimal spherical code dimension k£ < d to project down to, and an optimal
spherical code in this dimension to use. Note that other spherical codes than those from the five
families of codes sometimes achieve better query cost estimates; in particular, the 22;-polytope
(which is connected to the Eg lattice) might be useful in practice as well, and we cannot rule out the
existence of other exotic spherical codes with good properties for nearest neighbor searching.
One of the conclusions one might draw from these figures is that indeed orthoplices (cross-polytopes)
perform very well [4], but depending on the parameters it may be better to use the Dy lattices
instead — the trends suggest that as k increases further, the query costs of using the Dy lattices will
be smaller than those of the orthoplices.
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