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Abstract
The membership problem asks to maintain a set S ⊆ [u], supporting insertions and membership
queries, i.e., testing if a given element is in the set. A data structure that computes exact answers
is called a dictionary. When a (small) false positive rate ε is allowed, the data structure is called
a filter.

The space usages of the standard dictionaries or filters usually depend on the upper bound on
the size of S, while the actual set can be much smaller.

Pagh, Segev and Wieder [28] were the first to study filters with varying space usage based on
the current |S|. They showed in order to match the space with the current set size n = |S|, any
filter data structure must use (1 − o(1))n(log(1/ε) + (1 − O(ε)) log logn) bits, in contrast to the
well-known lower bound of N log(1/ε) bits, where N is an upper bound on |S|. They also presented
a data structure with almost optimal space of (1 + o(1))n(log(1/ε) +O(log logn)) bits provided that
n > u0.001, with expected amortized constant insertion time and worst-case constant lookup time.

In this work, we present a filter data structure with improvements in two aspects:

it has constant worst-case time for all insertions and lookups with high probability;

it uses space (1 + o(1))n(log(1/ε) + log logn) bits when n > u0.001, achieving optimal leading
constant for all ε = o(1).

We also present a dictionary that uses (1 + o(1))n log(u/n) bits of space, matching the optimal space
in terms of the current size, and performs all operations in constant time with high probability.
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1 Introduction

Membership data structures are fundamental subroutines in many applications, including
databases [9], content delivery network for web caching [24], image processing [17], scanning
for viruses [14], etc. The data structure maintains a set of keys from a key space [u],1
supporting the following two basic operations:

insert(x): insert x into the set;
lookup(x): return YES if x is in the set, and NO otherwise.

When false positive errors are allowed, such a data structure usually is referred as a filter.
That is, a filter with false positive rate ε may answer YES with probability ε when x is not in
the set (but it still needs to always answer YES when x is in the set).

In the standard implementations, a initialization procedure receives the key space size u
and a capacity N , i.e., an upper bound on the number of keys that can simultaneously exist
in the database. Then it allocates sufficient space for the data structure, e.g., a hash table
consisting of Θ(N) buckets. Thereafter, the memory usage is always staying at the maximum,
as much space as N keys would take. It introduces inefficiency in the space, when only few
keys have been inserted so far. On the other hand, it could also happen that only a rough
estimation of the maximum size is known (e.g. [16, 1, 22]). Therefore, to avoid overflowing,
one has to set the capacity conservatively. The capacity parameter given to the initialization
procedure may be much more than the actual need. To avoid such space losses, a viable
approach is to dynamically allocate space such that at any time, the data structure occupies
space depending only on the current database size (rather than the maximum possible).

For exact membership data structures, it turns out that such promise is not too hard to
obtain if one is willing to sacrifice an extra constant factor in space and accept amortization:
When the current database has n keys, we set the capacity to 2n; after n more keys are
inserted, we construct a new data structure with capacity equal to 4n and transfer the whole
database over. The amortized cost to transfer the database is O(1) per insertion. Raman
and Rao [29] showed that the extra constant factor in space is avoidable, they designed a
succinct2 membership data structure using space (1 + o(1)) log

(
u
n

)
,3 where n is the current

database size, supporting insertions in expected amortized constant time, and lookup queries
in worst-case constant time.

For filters, the situation is more complicated. The optimal space to store at most N
keys while supporting approximate membership queries with false positive rate ε is N log 1/ε
[8, 23] (Pagh, Pagh and Rao [27] achieved (1 + o(1))N log 1/ε bits). However, the above trick
to reduce the space may not work in general. This is because the filter data structures do
not store perfect information about the database, and therefore, it is non-trivial to transfer
to the new data structure with capacity 4n, as one might not be able to recover the whole
database from the previous data structure. In fact, Pagh, Segev and Wieder [28] showed an
information theoretical space lower bound of (1− o(1))n(log 1/ε+ (1−O(ε)) log logn) bits,
regardless of the insertion and query times. That is, one has to pay extra ≈ log logn bits
per key in order to match the space with the current database size. They also proposed a
data structure with a nearly matching space of (1 + o(1))n log 1/ε+O(n log logn) bits when
n > u0.001, while supporting insertions in expected amortized constant time and lookup

1 Throughout the paper, [u] stands for the set {0, . . . , u− 1}.
2 A succinct data structure uses space equal to the information theoretical minimum plus an asymptotically

smaller term called redundancy.
3 All logarithms are base 2.
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queries in worst-case constant time. When ε is at least 1/poly logn, the extra log logn bits
per key is dominating. It was proposed as an open problem in [28] whether one can make
the log logn term succinct as well, i.e., to pin down its leading constant.

On the other hand, an amortized performance guarantee is highly undesirable in many
applications. For instances, IP address lookups in the context of router hardware [7, 19], and
timing attacks in cryptography [21, 20, 26, 25]. When the database size is always close to
the capacity (or when the space is not a concern), it was known how to support all operations
in worst-case constant time [13, 3] with high probability. That is, except for a probability
of 1/polyn, the data structure handles every operation in a sequence of length polyn in
constant time.4 However, it was not known how to obtain such a guarantee when the space
is succinct with respect to the current database size, i.e., (1 + o(1)) log

(
u
n

)
. For filters, Pagh

et al. [28] showed it is possible to get worst-case constant time with high probability, at the
price of a constant factor more space O(n log 1/ε+ n log logn). They asked if there is a data
structure which enjoys the succinct space usage and the worst-case constant time with high
probability simultaneously.

1.1 Main Results
In this paper, we design a new dynamic filter data structure that answers both questions.
Our data structure has both worst-case constant time with high probability and is succinct
in space in terms of the current database size.

I Theorem 1 (Dynamic filter – informal). There is a data structure for approximate mem-
bership with false positive rate ε that uses space (1 + o(1))n(log(1/ε) + log logn) bits, where
n > u0.001 is the current number of keys in the database, such that every insertion and lookup
takes constant time in the worst case with high probability.

We also present a dictionary data structure with the space depending on the current n. A
dictionary is a generalization of membership data structures, it maintains a set of key-value
pairs, supporting

insert(x, y): insert a key-value pair (x, y) for x ∈ [u] and v-bit y ;
lookup(x): if ∃(x, y) in the database, output y; otherwise output NO.

By setting v = 0, the lookup query simply tests if x is in the database.

I Theorem 2 (Dynamic dictionary – informal). There is a dictionary data structure that uses
space (1 + o(1))n(log(u/n) + v+O(log log log u)) bits, where n > u0.001 is the current number
of key-value pairs in the database, such that every insertion and lookup takes constant time
in the worst case with high probability.

1.2 Related Work
Membership with Constant Time Worst-Case Guarantee. The FKS perfect hashing [15]
stores a set of n fixed (i.e., static) keys using O(n) space, supporting membership queries in
worst-case constant time. Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert
and Tarjan [12] introduced an extension of the FKS hashing, which is the first dynamic
membership data structure with worst-case constant query time and the expected amortized
constant insertion time. Later, Dietzfelbinger and Meyer auf der Heide [13] improved

4 This is stronger guarantee than expected constant time, since when the unlikely event happened, one
could simply rebuild the data structure in linear time. The expected time is still a constant.
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the insertion time to worst-case constant, with an overall failure probability of 1/polyn.
Demaine, Meyer auf der Heide, Pagh and Pǎtraşcu [11] improved the space to O(n log(u/n))
bits of space. Arbitman, Naor and Segev [2] proved that a de-amortized version of cuckoo
hashing [19] has constant operation time in the worst case with high probability.

On the other hand, filters can be reduced to dictionaries with a hash function h : [u]→
[n/ε], and thus, all the dictionaries imply similar upper bounds for filters [8].

Succinct Membership. Raman and Rao [29] presented the first succinct dictionary with
constant time operations, while the insertion time is amortized. Arbitman, Naor and Segev [3]
refined the schema of [2], suggested a succinct dictionary with worst case operation time
with high probability.

By using the reduction from [8] and the succinct dictionary from [29], Pagh, Pagh and
Rao [27] provided a succinct filter with constant time, while the insertion time is amortized
due to [29]. Bender, Farach-Colton, Goswami, Johnson, McCauley and Singh [5] suggested a
succinct adaptive filter5 with constant time operation in the worst case with high probability.

Membership for Sets of Unknown Sizes. The data structure of Raman and Rao [29] can
be implemented such that the size of the data structure always depends on the “current n”.
Pagh, Segev and Wieder [28] were the first to study dynamic filters in this setting from a
foundational perspective. As we mentioned above, they proved an information-theoretical
space lower bound of (1− o(1))n(log(1/ε) + (1−O(ε)) log logn) bits for filter, and presented
a filter data structure using n(log(1/ε) +O(log logn)) bits of space with constant operation
time when n > u0.001. Indeed, the insertion time is expected amortized, since the succinct
dictionary of Raman and Rao is applied as a black box (it was not clear if any succinct
dictionary with worst-case operational time can be generalized to this setting).

Very recently, Bercea and Even [6] proposed a succinct membership data structure for
maintaining dictionaries and random multisets with constant operation time. While their
data structure is originally designed for the case where an upper bound N on the keys is
given (and the space usage is allowed to depend on N), we note that it is possible to extend
their solution and reduce the space to depend only on the current n. However, their data
structure assumes free randomness, and straightforward extension results in an additive
Ω(n log log u) term in space. The redundancy makes their data structure space-inefficient for
filters, since the space lower bound is (1− o(1))n(log(1/ε) + (1−O(ε)) log logn).

1.3 Previous Construction
As we mentioned earlier, for dynamic membership data structures, if we are willing to pay
an extra constant factor in space, one way to match the space with the “current” n is to
set the capacity to be 2n. When the data structure is full after another n insertions, we
double the capacity, and transfer the database to the new data structure. However, the
standard way to construct an efficient filter is to hash [u] to [n/ε] (where ε is the false
positive rate) and store all n hash values in a membership data structure, which takes
O(n log 1/ε) bits of space. As we insert more keys and increase the capacity to 4n, the range
of the hash value needs to increase as well. Unfortunately, it cannot be done, because the
original keys are not stored, and we have lost the information in order to save space (this
is exactly the point of a filter). On the other hand, we could choose to keep the previous

5 In an adaptive filter, for a negative query x, the false positive event is independent of previous queries.
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data structure(s), and only insert the future keys to the new data structure. For each query,
if it appears in any of the (at most logn) data structures, we output YES. By setting the
false positive rate for the data structure with capacity 2i to O(ε/i2), the overall false positive
rate is at most ε ·

∑
iO(1/i2) ≤ ε by union bound. The total space usage becomes roughly

n log(log2 n/ε) = n(log 1/ε+O(log logn)).
To avoid querying all logn filters for each query, the previous solution by Pagh et

al. [28] uses a single global hash function h that maps [u] to log(u/ε)-bit strings for all logn
filters. For a key x in the i-th data structure (with capacity 2i), one simply takes the first
i+ log 1/ε+ 2 log i bits of h(x) as its hash value. Then querying the i-th data structure on y
is to check whether the (i+ log 1/ε+ 2 log i)-bit prefix of h(y) exists. Since all filters use the
same hash function, the overall task is to check whether some prefix of h(y) appears in the
database, which now consists of strings of various lengths. Note that there are very few short
strings in the database, the previous solution extends all short strings to length log(n/ε) by
duplicating the string and appending all possible suffixes, e.g., a string of length log(n/ε)− c
is duplicated into 2c strings by appending all possible c-bit suffixes. Then all strings are
stored in one single dictionary (longer strings are stored according to their first log(n/ε)
bits), and the query becomes to check if the log(n/ε)-bit prefix of h(y) is in the dictionary,
which is solved by invoking Raman and Rao [29]. One may verify that duplicating the short
strings does not significantly increase the total space, and comparing only the log(n/ε)-bit
prefix of a longer string does not increase the false positive rate by much.

1.4 Our Techniques
Our new construction follows a similar strategy, but the “prefix matching” problem is solved
differently. Given a collection of 2i−1 < n ≤ 2i strings of various lengths, we would like to
construct a data structure such that given any query h(y), we will be able to quickly decide
if any prefix of h(y) appears in the database. The first observation is that the short strings
in the database can be easily handled. In fact, all strings shorter than i bits can be stored
in a “truth table” of size 2i = O(n). That is, we simply store for all i-bit strings, whether
any of its prefix appears in the database. For a query h(y), by checking the corresponding
entry of its i-bit prefix, one immediately resolves all short strings. On the other hand, for
strings longer than logm bits, we propose a new (exact) membership data structure, and
show that it in fact, automatically solves prefix matching when all strings are long. Before
describing its high-level construction in Section 1.4.1, let us first see what it can do and how
it is applied to our filter construction.

When the capacity is set to m, the membership data structure stores n ≤ m keys
from [u] using space n(log(u/m) + O(log log log u)) + O(m) bits, supporting insertion and
membership query in worst-case constant time with high probability. When applying
to prefix matching, it stores n strings of length at most ` (and more than logm) using
n(log(2`/m) +O(log log `)) +O(m) bits. Using this data structure with the capacity set to
m = 2i, we are able to store the database succinctly when m/2 < n ≤ m. As we insert more
keys to the database, the capacity needs to increase. Another advantage of our membership
data structure is that the data can be transferred from the old data structure with capacity
m to a new one with capacity 2m in O(m) time. More importantly, the transfer algorithm
runs almost “in-place”, and the data structure remains “queryable” in the middle of the
execution. That is, one does not need to keep both data structures in full, at any time the
total memory usage is still n(log(2`/n) +O(log log `)) +O(m), and the data structure can
be queried. Therefore, as n is increasing from m/2 to m, we gradually build a new data
structure with capacity 2m. Every time a key is inserted, the background data-transfer
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algorithm is run for constant steps. By the time n reaches m, we will have already transferred
everything to the new data structure, and will be ready to build the next one with capacity
4m. Overall, the data structure is going to have logn stages, the i-th stage handles the
(2i−1 + 1)-th to the 2i-th insertion. In each stage, the database size is doubled, and the data
structure also gradually doubles its capacity. This guarantees that the total space is succinct
with respect to the current database size, and every operation is handled in constant time
with high probability.

Finally, to pin down the leading constant in the extra O(log logn) bits, we show that
for the n-th inserted key x for 2i−1 < n ≤ 2i, storing the (i + log(i/ε) + log log log u)-bit
prefix of h(x) balances the false positive rate and the space. Since our new membership data
structure only introduces an extra ≈ log log i ≈ log log logn bits of space per key, it is not
hard to verify that the total space of our construction is (1 + o(1))n(log(1/ε) + log logn).

1.4.1 Membership Data Structure

In the following, let us briefly describe how our new membership data structure works. The
data structure works in the extendable array model, as the previous solution by Raman and
Rao. See Section 2.2.2 or [29] for more details.

Our main technique contribution is the idea of data block. Without the data blocks, our
data structure degenerates into a variant of the one proposed in [6]. Instead of a redundancy
of O(n log log log u) bits, the degeneration contributes a redundancy of O(n log log u) bits,
which makes the data structure space-inefficienct for filters as we discussed early.

For simplicity, let us for now assume that we have free randomness, and the first step is
to randomly permute the universe. Thus, we may assume that at any time, the database is a
uniformly random set (of certain size). We divide the universe into m/ log u buckets, e.g.,
according to the top log(m/ log u) bits of the key. Then with high probability, every bucket
will have O(log u) keys. We will then dynamic allocate space for each bucket. Note that
given that a key is a bucket b, we automatically know that its top log(m/ log u) bits is “b”.
Therefore, within each bucket, we may view the keys have lengths only log u− log(m/ log u) =
log((u log u)/m), or equivalently, the universe size being (u log u)/m (recall that the goal is
to store each key using ≈ log(u/m) bits on average).

To store the keys in a bucket, we further divide it into data blocks consisting of
O(log u/ log log u) keys each, based on the time of insertion. That is, the first O(log u/ log log u)
keys inserted to this bucket will form the first data block, the next O(log u/ log log u) keys
will be the second data block, etc. Since each data block has few enough keys, they can
be stored using a static constructions (supporting only queries) using nearly optimal space
of ≈ log

( (u logu)/m
O(logu/ log logu)

)
, which is log((u log log u)/m) = log(u/m) + log log log u bits per

key, or a dynamic constructions use log(u/m) + O(log log u) bits per key. The latest data
block, which we always insert the new key into, is maintained using the dynamic construc-
tion. When it becomes full, we allocate a new data block, and at the same time, we run a
in-place reorganization algorithm in the background. The reorganization algorithm runs in
O(log u/ log log u) time, and convert the dynamic construction into the static construction,
which uses less space. For each insertion in the future, the reorganization algorithm is run
for constant steps, thus, it finishes before the next data block becomes full. Finally, for each
bucket, we maintain an adaptive prefixes structure [4, 5] to navigate the query to the relevant
data block. Roughly speaking, when all O(log u) keys in the bucket are random, most keys
will have a unique prefix of length log log u. In fact, Bender et al. [4, 5] showed that for every
keys, the shortest prefix that is unique in the bucket can be implicitly maintained in constant
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time, and the total space for all O(log u) keys is O(log u) bits with high probability.6 We
further store for each such unique prefix, which data block contains the corresponding key.
It costs O(log log log u) bits per key. Given a query, the adaptive prefix structure is able
to locate the prefix that matches the query in constant time, which navigates the query
algorithm to the (only) relevant data block. We present the details in Section 4.

2 Preliminaries

2.1 String Notations
Let {0, 1}≤` ,

⋃
0≤i≤`{0, 1}i and {0, 1}∗ ,

⋃
i≥0{0, 1}i. Given a string x ∈ {0, 1}`, we use

|x| = ` to denote its length. We denote by a◦ b the concatenation of two strings a, b ∈ {0, 1}∗.
We denote the concatenation of k ones or zeros by 1k or 0k, respectively.

For x, y ∈ {0, 1}∗, we use x v y (or y w x) to denote that y is a prefix of x, formally:

x v y ⇐⇒ x = y ◦ a for some a ∈ {0, 1}∗. (1)

Note that our notation is unconventional: we use x v y for y prefixing x, to reflect that the
Hamming cube identified by x is contained by the Hamming cube for its prefix y.

For two strings x, y such that |x| ≤ |y|, to compare x and y in lexicographical order, we
compare x◦ ⊥|y|−|x| and y in lexicographical order, where ⊥ is a special symbol which is
smaller than any other symbol.

Recall that an injection (code) on strings is a prefix-free code if no codeword is a prefix of
another codeword.

B Claim 3. There is a prefix-free code PFC : {0, 1}≤` → {0, 1}`+1 for strings of length ≤ `.

Proof. Given any x ∈ {0, 1}≤`, the codeword PFC(x) is 1`−|x| ◦ 0 ◦ x. C

2.2 Computational Models
2.2.1 Random Access Machine
Throughout the paper, we use w to denote the word size: each memory word is a Boolean
string of w bits. We assume that the total number of memory words is at most 2w, and
each memory word has an unique address from [2w], so that any pointer fits in one memory
word. We also assume CPU has constant number of registers of size w, and any datapoint
fits in constant number of words (i.e. w = Ω(v + log u)). During each CPU clock tick, CPU
may load one memory word to one of its register, write the content of some register to
some memory word, or execute the basic operations on the registers. Specifically, the basic
operations include four arithmetic operations (addition, subtraction, multiplication, and
division), bitwise operations (AND, OR, NOT, XOR, shifting), and comparison.

2.2.2 Memory Models
We use a memory access model known as the extendable arrays [29] to model the dynamic
space usage.

The extendable array is one of the most fundamental data structures in practice. It is
implemented by the standard libraries of most popular programming languages, such as
std::vector in C++, ArrayList in java and list in python.

6 The O(log u)-bit representation is implicit.
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I Definition 4 (Extendable arrays). An extendable array of length n maintains a sequence
of n fixed-sized elements, each assigned a unique address from [n], such that the following
operations are supported:

access(i): access the element with address i;
grow: increment the length n, creating an arbitrary element with address n+ 1;
shrink: decrement the length n, remove the element with address n.

A collection of extendable arrays supports
create(r): create an empty extendable array with element of size r and return its name;
destroy(A): destroy the empty extendable array A;
access(A, i), grow(A), shrink(A): apply the corresponding operations on array A.

Each of above operations takes constant time. The space overhead of an extendable array
is O(w) + nr, where w, n, r are the word size, the length of the array, and the element size
respectively. Indeed, the space overhead of a collection of extendable arrays is O(|A|w) +∑

A∈A nArA, where A, nA and rA are the set of extendable arrays, the length of array A,
and the element size of array A respectively.

We also consider the following allocate-free model.

I Definition 5 (Allocate and free). In the allocate-free model, there are two built-in procedures:
allocate(b): return a pointer to a block of b consecutive memory words which is unini-
tialized;
free(p): free the block of consecutive memory words which is pointed by p and have been
initialized to 0s.

Each of above operations takes constant time. The total space overhead is O(|A|w) +∑
A∈A nAw, where A is set of all memory blocks and nA is the length of memory block A.

We discuss the space usages of our data structures in allocate-free model in Section 7.
To avoid the pointer being too expensive in the dynamic memory models, we assume

w = Θ(log u).

2.3 Random Functions
I Definition 6 (k-wise independent random function). A random function h : [u] → [r] is
called k-wise independent if for any distinct x1, · · · , xk ∈ [u], and any y1, · · · , yk ∈ [r],

Pr
h

∧
i≤k

h(xi) = yi

 = 1/rk.

I Theorem 7 ([31, 10]). Let [u] be a universe, w = Ω(log u), c1 > 0, r = poly(u), and
k = uo(1). There exists a data structure for a random function h : [u]→ [r] such that

with probability ≥ 1− 1/u, the data structure is constructed successfully;
upon successful construction of the data structure, h is k-wise independent;
the data structure uses space uc1 bits;
for each x ∈ [u], h(x) is evaluated in Õ(1/c1) time in the worst case in the RAM model.

I Theorem 8 (Chernoff bound with limited independence [30]). Let X1, · · · , Xn be arbitrary
k-wise independent boolean random variables with Pr[Xi = 1] = p for any i ∈ [n]. Let
X ,

∑
iXi, µ , E[X] = np, then for any δ > 0, it holds that

Pr [X ≥ (1 + δ)µ ] ≤ exp(−µδ2/2),

as long as k ≥ d µδ1−pe.
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2.4 Adaptive Prefixes
Given a sequence S = (x1, x2, . . .) of strings, let αm(S) = {αm(x1), αm(x2), . . .} be a
collection of prefixes, such that for every xi ∈ S, the αm(xi) is the shortest prefix, of length
at least m, of the binary representation of xi, such that αm(xi) prefixes no other xj ∈ S.
Note that for any string y, there is at most one x ∈ S such that αm(x) w y as long as αm(S)
exists. In particular, αm(S) does not exist if there are i 6= j such that xi = xj .

The prefixes are stored in lexicographical order, thus we refer k-th prefix as the prefix
with rank k in lexicographical order.

I Theorem 9 (Refined from [4, 5]). Let c0, c1 > 1 be two constants where c0 > c1. For
a random sequence S = (x1, · · · ) of strings drawn from ({0, 1}c0 logu)≤c3 logu uniformly at
random with replacement, with probability at least 1− u−c1 , the prefix collection αlog logu(S)
exists and can be represented with at most c2 log u bits, where c2 > 0 is determined by c1, c3.
Furthermore, the following operations are supported in constant time:

insert(y): update the representation by inserting a new string y ∈ {0, 1}c0 logu to S, when
there is at most one x ∈ S such that αlog logu(x) w y;
lookup(y): given any query y ∈ {0, 1}c0 logu, return the rank of the only z ∈ αlog logu(S)
that prefixes y, and return NO if there does not exist such a z;
lowerbound(y): given any query y ∈ {0, 1}log logu, return the lowest rank of all z ∈
αlog logu(S) that z v y, and return 0 if there is no z v y in the collection;

For completeness, a proof is provided in the full version of this paper.

3 Data Structures for Sets of Unknown Sizes

In this section, we present our filter and dictionary data structures for sets of unknown sizes.

3.1 The Succinct Dynamic Filters
The following theorem is a formal restatement of Theorem 1.

I Theorem 10 (Dynamic filter – formal). Let 0 < ε < 1, [u] the data universe, and δ = u−C ,
where C > 1 is an arbitrary constant. Assume the word size w = Θ(log u). There exists a
data structure for approximate membership for subsets of unknown sizes of [u], such that
1. for any n = ω(log u) and n < u, the data structure uses n(log(1/ε) + log logn +

O(log log log u)) bits of space after insertions of any n key, and extra uc precomputed bits
that are independent of the input, where 0 < c < 1 is an arbitrary small constant;

2. each insertion and membership query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure with some probability,

and for any sequence of insertions, the probability that a failure is ever reported is at
most δ, where the probability is taken over the precomputed random bits;

4. conditioned on no failure, each membership query is answered with false positive rate at
most ε.

As we mentioned in the introduction, our data structure has logn stages when handling
n insertions. The i-th stage is from the insertion of the (2i−1 + 1)-th key to the 2i-th key –
the database size doubles after each stage.

The main strategy is to reduce the problem of (approximate) membership to (exact)
prefix matching. More formally, in the prefix matching problem, we would like to maintain a
set of binary strings {s1, s2, . . .} of possibly different lengths, supporting

insert(s): add string s to the set;
query(y): decide of any string s in the set is a prefix of y.
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To this end, our filter first applies a global hash function h such that h : [u] → [uc2 ] is
(c1 log u)-wise independent according to Theorem 7, where c1 > 0 is a constant to be fixed
later, and c2 is a sufficiently large constant (which in fact, is the c0 in Theorem 9). To insert
a key x in stage i, we calculate its hash value h(x), and then insert the `i-bit prefix of h(x),
for some parameter `i. To answer a membership query y, we simply calculate h(y) and
search if any prefix of h(y) is in the database. If no prefix of h(y) is in the database, we
output NO; otherwise, we output YES. It is easy to see that this strategy will never output
any false negatives. On the other hand, by union bound, if the query y is not in the set, the
probability that the query algorithm outputs YES is at most

logu∑
i=1

2i · 2−`i ,

since h is (c1 log u)-wise independent (in particular, it is pairwise independent), then the
probability that the `i-bit prefix of h(y) matches with the prefix of the hash value h(x) of
key x is 2−`i . Hence, by setting

`i , i+ log(1/ε) + log i+ log log log u+ 2, (2)

the false positive rate is at most

logu∑
i=1

2i · 2−i−log(1/ε)−log i−log log logu−2 = ε ·
logu∑
i=1

1
4i log log u < ε.

We use Dc1 logu to denote the distribution of the random insertion sequence y1, y2, . . . , yn
for prefix matching constructed above. Formally, Dc1 logu is the distribution of a se-
quence of random strings y1, y2, . . . , yn obtained from (c1 log u)-wise independent sequence
z1, z2, . . . , zn ∈ [uc2 ] by truncating: ∀1 ≤ j ≤ n, yj = (zj)≤`i

, where i = dlog je.

I Lemma 11 (Prefix matching). Let δ = u−C , where C > 1 is an arbitrary constant. There
exist a constant c1 and a deterministic data structure for prefix matching such that
1. for any n = ω(log u) and n < u, the data structure uses n(`dlogne− logn+O(log log log u))

bits of space after n insertions, and extra uc precomputed bits, where 0 < c < 1 is an
arbitrary small constant;

2. each insertion and query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure, and for a random

sequence of insertions drawn from Dc1 logu, the probability that a failure is ever reported
is at most δ, where the probability is taken over Dc1 logu;

4. every query is answered correctly if no “fail” is reported.

We present the construction in Section 4. Using this prefix matching data structure, the
space usage of the filter is

n(`dlogne − logn+O(log log log u)) = n(log(1/ε) + log logn+O(log log log u)) bits,
and uc bits for storing h by Theorem 7 and for the precomputed lookup tables described
in the appendix of the full version of this paper, both independent of the operation
sequence.

Each insertion and query can be handled in constant time given the data structure does not
fail. This proves Theorem 10.
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3.2 The Succinct Dynamic Dictionaries
The data structure for prefix matching also works well as a dictionary data structure for the
insertions with keys are sampled uniformly at random. A worst-case instance can be converted
into a random instance by a random permutation π : [u] → [u]. Assuming an idealized
(c1 log u)-wise independent random permutation whose representation and evaluation are
efficient, the data structure for prefix matching in Lemma 11 can be immediately turned to
a dictionary. However, the construction of k-wise independent random permutation with low
space and time costs is a longstanding open problem [18].

We show that our data structure can solve the dictionary problem in the worst case
unconditionally, at the expense of extra uc bits of space for storing random bits which are
independent of the input.

I Theorem 12 (Dynamic dictionary – formal). Let [u] × {0, 1}v be the data universe, and
δ = u−C , where C > 1 is an arbitrary constant. Assume the word size w = Θ(v + log u).
There exists a data structure for dictionary for sets of unknown sizes of key-value pairs from
[u]× {0, 1}v, such that
1. for any n = ω(log u) and n < u, the data structure uses n(log(u/n) + v+O(log log log u))

bits of space after insertions of any n key-value pairs, and extra uc precomputed bits that
are independent of the input, where 0 < c < 1 is an arbitrary small constant;

2. each insertion and query takes O(1) time in the worst case;
3. after each insertion, a failure may be reported by the data structure with some probability,

and for any sequence of insertions, the probability that a failure is ever reported is at
most δ, where the probability is taken over the precomputed random bits;

4. conditioned on no failure, each query is answered correctly.

The details of the data structure are postponed to Secion 6.

4 Prefix Matching Upper Bound

In this section, we prove Lemma 11.
Recall the distribution Dc1 logu of random insertion sequence y1, y2, . . . , yn assumed in

Lemma 11. Given an insertion sequence ȳ = (y1, y2, . . . , yn) ∼ Dc1 logu, we define the core
set B(ȳ) , {x ∈ ȳ : ∀x′ ∈ ȳ, x = x′ ∨ x′ 6w x}, and its subset B(a,b] , {x ∈ B : |x| ∈ (a, b]}
for any a < b. Let D(a,b]

c1 logu denote the distribution of B(a,b]. We say that a random sequence
Y of strings is drawn from D(a,b]

c1 logu if it can be obtained by permuting the random core set
B(a,b].

We show that Lemma 11 is true as long as there exist a family of deterministic data
structures for prefix matching with known capacity m. An instance of the data structure
D = D(m, `) is parameterized by capacity m < u, and string length upper bound ` ≥ logm.
The data structure uses uc bits extra space whose contents are precomputed lookup tables,
and supports following functionalities with good guarantees:

initialize(D) and destroy(D): subroutines for initializing and destroying D respectively.
The data structure is successfully initialized (or destroyed) after invoking initialize(D)
(destroy(D)) consecutively for O(m) times. When successfully initialized, D uses space
O(m) bits. The initialize(D)’s are invoked before all other subroutines and destroy(D)’s
are invoked after all other subroutines.
insert(D,x): insert string x to D, where logm < |x| ≤ `. After n insertions, D uses at
most n(`− logm+ 2 log log log u) + O(m) bits. Each insertion may cause D to fail. A
failure ever occurs for a random insertion sequence Y with probability at most u−2C , as
long as Y is drawn from D(logm,`]

c1 logu , where c1 is suitably determined by constant C.
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query(D,x): return one bit to indicate whether there exists a prefix of x in D. The
correct answer is always returned as long as D has not failed.
decrement(D): try to delete an arbitrary string y in D and return the y if y is deleted.
An invoking may delete nothing and hence nothing is returned, but it guarantees that the
total number of such empty invoking is at most m. Each invoking that successfully deletes
a string frees space `− logm bits. The decrement(D)’s are invoked after all insertions.

B Claim 13. Given the deterministic data structures supporting above functionalities in
constant time in the worst case, Lemma 11 is true.

Proof. We use an auxiliary structure called truth table to deal with short strings. A truth
table Ti is a bitmap (i.e. array of bits) of length 2i and supports the required functionalities
in the worst cases:

Ti is initialized to the all-0 string 02i , where each invoking of initialize(Ti) extends Ti by
one 0 until Ti is of length 2i, and each invoking of destroy(Ti) shrinks Ti by one bit until
Ti is fully destroyed;
to insert x where |x| = i, we set Ti[x+ 1]← 1;7

to query x where |x| = i, we return YES if Ti[x+ 1] = 1 and return NO if otherwise;
to decrement Ti, we maintain a j that traverses from 1 to 2i, and at each time set
Ti[j]← 0, return j − 1 if Ti[j] = 1, and increment j by 1.

Initially, the prefix matching data structure required by Lemma 11 consists of T0, T1
and D0 = D(1, `0), D1 = D(2, `1) respectively with capacities 1, 2, and string lengths `0, `1,
where `i is defined in Eq(2).

To insert x, which is the n-th insertion, we set i← dlogne, invoke insert(Di, x) if there is
no prefix of x has been inserted. Then we execute the following procedure for 10 times to
maintain our data structure:
1. If Ti−1 is non-empty, we decrement it by invoking decrement(Ti−1). If a y is returned, we

insert it into Ti by invoking insert(Ti, y ◦ 0) and insert(Ti, y ◦ 1).
2. If Di−1 is non-empty, we invoke decrement(Di−1). If a y is returned, we insert it into

Di by invoking insert(Di, y) when |y| > i and insert y into Ti by invoking insert(Ti, y)
otherwise.

3. If Ti−1 (orDi−1) is empty but not destroyed yet, we invoke destroy(Ti−1) (or destroy(Di−1)).
4. If Ti−1 (or Di−1) has been destroyed, we invoke initialize(Ti+1) (or initialize(Di+1) for

Di+1 = D(2i+1, `i+1) with capacity 2i+1 and string length upper bound `i+1), where `i
is defined in Eq(2).

A failure is reported whenever a failure is reported during insertion to Di.
Clearly, for any integer n ∈ [2i, 2i+1), after n insertions, all inserted strings are stored in

either Di−1, Ti−1 or Di, Ti. By the time n reaches 2i+1, Di+1, Ti+1 have been initialized, all
inserted strings are stored in Di, Ti, and Di−1, Ti−1 have been destroyed.

Consider the insertion sequence for a fixed Di. Observe that the strings inserted into Di

must be in the core set B(i,`i](ȳ). Therefore the insertion sequence is drawn from D(i,`i]
c1 logu,

which means that insertions to each Di ever failed with probability at most δ. By union
bound, a failure is ever reported with probability at most

∑logu
i=1 u−2C ≤ u−C = δ.

Overall, the data structure uses at most n(`dlogne− logn+O(log log log u)) ≤ n(log(1/ε)+
log logn+O(log log log u)) bits after n insertions, besides the uc precomputed bits.

7 For A, a list or array of items, we let A[i] denote the i-th item of A.
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Suppose n strings has been inserted, let i← dlogne. To query x, we invoke query(Di−1, x),
query(Di, x), query(Ti−1, x≤i−1), query(Ti, x≤i) simultaneously, and return YES if any one of
the invokings returns YES.

Obviously each insertion and query takes constant time in the worst case, and it is easy
to check that every query is correctly answered as long as no failure is reported. C

5 Succinct Prefix Matching with Known Capacity

We now describe the data structures required by Claim 13. The pseudocodes are given in
the appendix of the full version of this paper.

The data structure consists of a main table and m/ log u subtables.
We partition each binary string x into four consecutive parts: st(x), hd(x), hs(x), rt(x)

of lengths log(m/ log u), log(log u/ log log u), log log log u, |x| − logm respectively. Roughly
speaking, a datapoint x will be distributed into a subtable according to st(x), then be put
into a data block of size log u/ log log u according to the order it is inserted, therefore we can
save |st(x)|+ |hd(x)| −O(1) bits for each datapoint by properly encoding.

Main Table. The main table consists of m/ log u entries, each of which contains a pointer
to a subtable. Each insertion/query x is distributed into an entry of the main table addressed
by st(x). Recall the word size w = Θ(log u). The main table uses mw/ log u = O(m) bits.

Recall that ȳ = (y1, y2, . . . , yn) ∼ Dc1 logu is transformed from a (c1 log u)-wise indepen-
dent sequence Z = (z1, z2, · · · , zn) by truncating. The insertion sequence Y is drawn from
D(logm,`]
c1 logu by permuting B(logm,`], the restriction of the core set B(ȳ) to the strings whose

lengths ranges within (logm, `].
Let Yi, Zi denote the subsequences of Y,Z which contain all the strings that have prefix i,

respectively. By definitions, |Yi| ≤ |Zi|. Recall that Z are (c1 log u)-wise independent. Due
to Theorem 8, the load of entry i exceeds c3 log u with probability

Pr [ |Yi| ≥ c3 log u ] ≤ Pr [ |Zi| ≥ c3 log u ] ≤ exp(−(c3 − 1)2 log u/2), (3)

as long as c1 ≥ d2(c3 − 1)2e. Therefore the max-load of entries of the main table is upper
bounded by c3 log u with probability at least 1− (m/ log u) exp(−(c3−1)2 log u/2). The data
structure reports failure if any entry of the main table overflows. In the rest of the proof, we
fairly assume |Yi| ≤ |Zi| ≤ c3 log u for all i.

Observe that a datapoint x can be identified with hd(x)◦hs(x)◦rt(x) if the entry i = st(x)
it is distributed into is fixed. Therefore we let Y ′i , Z ′i denote the subsequences generated from
Yi, Zi by discarding the left-most log(m/ log u) bits.

Subtable. Each subtable i consists of the following parts to be specified later:
a collection of fingerprints αlog logu(Y ′i ) and its indicator list Ii;
an (extendable) array of navigators Ni;
an (extendable) array of data blocks Ai;
two buffers, Bi,u, Bi,r;
constant many other local variables.

All the datapoints are stored in array Ai. Given a datapoint x, it is easy to see that the
addresses of the entries which contains the information of x is high correlated with the order
it is inserted, since any insertion takes constant time in the worst case. Hence we take the
fingerprints αlog logu(Y ′i ), indicators Ii, navigators Ni, and a tricky way to encode a data
block as clues to locate the entries which maintain x. Recall that new insertions is put into
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the latest data block using a dynamic construction, and we reorganize the full dynamic data
block into a static construction. We use buffer Bi,u to maintain the dynamic block, and use
buffer Bi,r to “de-amortize” the reorganization.

At first consider a static version of our data structure. In the static version, the buffers
and the indicator list are unnecessary. Let ni , |Yi|.

Fingerprints. The collection of fingerprints αlog logu(Y ′i ) is obtained by applying Theorem 9
on Y ′i with guarantee c1 ≥ c3. Note that Z ′i are mutually independent as long as c1 ≥ c3. Due
to Theorem 9, there exists a constant c′′ > 0 such that a fingerprint collection αlog logu(Z ′i)
for Z ′i can be represented in c′′ log u bits with probability 1− u−c5 .

We show that there exists a injective function P : [|Y ′i |] → [|Z ′i|] such that ∀j ∈
[|Y ′i |], Y ′i [j] w Z ′i[P (j)]. Due to the injective function P and the guarantee that Y is
prefix-free, the fingerprint collection of Y ′i can be represented with the same space and
probability guarantees as above.

We define P : [|Yi|]→ [|Zi|] by P (j) , min{k ∈ [|Zi|] : Yi[j] w Zi[k]}. By the definition,
for any y ∈ Yi, there is z ∈ Z such that y w z. Recall that all the strings in Yi has prefix
i. Hence for any y ∈ Yi, z ∈ Z such that y w z, it holds that i w z, i.e. z ∈ Zi. Thus for
any j ∈ [|Yi|], {k ∈ [n] : Yi[j] w Zi[k]} 6= ∅. Therefore P is well-defined. On the other hand,
for distinct j, l ∈ [|Yi|], {k ∈ [n] : Yi[j] w Zi[k]} and {k ∈ [n] : Yi[l] w Zi[k]} are disjoint,
since Yi is prefix-free and there is no such z that x, y prefix z simultaneously for distinct
x, y ∈ Yi. Therefore P is injective. Recall that Y ′i , Z ′i are generated by removing the prefix i
from the strings in Yi, Zi: ∀j, Yi[j] = i ◦ Y ′i [j], Zi[j] = i ◦ Z ′i[j]. Therefore P works for Y ′i , Z ′i
too, i.e. ∀j ∈ [|Y ′i |], Y ′i [j] w Z ′i[P (j)].

A failure is reported if any fingerprint collection can not be represented within c′′ log u
bits, which occurs with probability at most u−c5 .

The fingerprints are sorted lexicographically, so that by the j-th fingerprint we mean the
j-th in lexicographical order. For simplicity, we write αi , αlog logu(Y ′i ).

A failure is reported if there are more than c4 log u/ log log u datapoints share identical
hd(x) and hs(x), which occurs with probability at most(

c3 log u
c4 log u/ log log u

)
( 1
log u )c4 logu/ log logu < u−(c4−0.01). (4)

The fingerprints cost O(log u) bits per subtable if no failures.

Navigators. Ni is an array of pointers. For any datapoint, the rank of its fingerprint is
synchronized with the index of its navigator. In particular, for the k-th fingerprint in αi,
Ni[k] is the address of the data block which maintains the datapoint with the fingerprint.
A data block maintains up to log u/ log log u datapoints, thus there are at most c3 log log u
data blocks. The navigators cost at most ni log log log u+O(ni) bits of space.

Data Blocks. Ai is interpreted as an array of data blocks, with each data block holding up
to log u/ log log u datapoints.

Consider the following succinct binary representation (called pocket dictionary in [6]) of a
collection of datapoints F ∈

({0,1}`

m

)
: The representation consists of two parts header(F ) and

body(F ). Let header(x), body(x) denote the left-most logm bits and the right-most `− logm
bits of x. Let n′i , |{x ∈ F |header(x) = i}|, and F = (x1, · · · , xm) sorted lexicographically.
Then header(F ) , 0◦1n′0◦0◦1n′1◦0 · · · 1n

′
m−1 and body(F ) , body(x1)◦body(x2) · · ·◦body(xm).

It is easy to see that this representation uses 2m+m(`− logm) bits of space.
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Our static data block is a variant of this representation. Let (x1, · · · , xlogu/ log logu) be
the sorted list of datapoints maintained by data block j. Data block j consists of a list
of headers (hd(x1), · · · , hd(xlogu/ log logu)), a list of identities (hs(x1), · · · , hs(xlogu/ log logu))
and an array of the rest part of datapoints (rt(x1), · · · , rt(xlogu/ log logu)). The header
list are represented in the same way as in the pocket dictionary, the identity list is the
concatenation hs(x1)◦hs(x2) · · ·◦hs(xx/ log logu), and the rest part array is the concatenation
PFC(rt(x1)) ◦ PFC(rt(x2)) · · · ◦ PFC(rt(xx/ log logu)), where PFC(·) is the prefix-free code in
Claim 3.

Recall that |hd(x)| = log(log u/ log log u), |hs(x)| = log log log u. Therefore the data
blocks for the subtable cost at most O(ni) + ni(`− logm+ log log log u) bits of space.

Query in a Static Data Block. Recall that the fingerprints are sorted in lexicographical
order, and the indices of the navigators are synchronized with the ranks of corresponding
fingerprints. Also note that a navigator costs log log log u + O(1) bits, there are at most
c4 log u/ log log u datapoints share hd(x) ◦ hs(x) with any query x. By putting everything
together, we can retrieve all the navigators of the datapoints which have the same hd(x)◦hs(x)
with query x, and learn a k′ such that the unique suspected datapoint is the k′-th datapoint
among the datapoints which share the hd(x) ◦ hs(x) in its data block. On the other hand,
we can retrieve the header list and identity list with constant number of memory accesses.
Consequently, we can retrieve the rest part of the suspected datapoint efficiently. See the
pseudocode in the appendix of the full version of this paper for more details.

The space usage is upper bounded by m+ (m/ log u) ·O(log u) + n log log log u+O(n) +
n(`− logm+ log log log u) ≤ n(`− logm+ 2 log log log u) +O(m) bits. And the query time
is clearly constant.

Insertion. The new insertions will be put into a data block under construction temporarily,
and the data block will be reorganized to the static version as long as the data block is
full (which means, there are log u/ log log u datapoints stored in it). A data block under
construction consists of two incomplete lists for headers and identities, and an (extendable)
array of the rest parts of datapoints. Note that the space usages of incomplete lists are
identical with the ones of the complete lists, it wastes at most O(log u) bits per dynamic
data block.

Reorganizing a data block (i.e. sorting a data block) can be expensive, therefore we
finish this work during the procedure that a new data block under construction is being
filled. Hence there are two dynamic data blocks, one under construction and one under
reorganization, besides the static ones.

Note that the collection of fingerprints αi can be updated dynamically with small costs.
To retrieve the datapoint y with fingerprint α(y), the only things we need are the address of
the data block which maintains y and the in-block index of y. (recall that hd(y) and hs(y)
are known due to the fingerprint collection.) It is easy to learn the address as long as we
know that y is in a dynamic data block, since there are at most two dynamic blocks. We use
the buffers to record the in-block index, and use the indicators to inform whether y is in a
dynamic data block.

The list of indicators is a string from {1, 2, 3}ni . The value of i-th indicator implies
which kind of data block the datapoint corresponding to i-th fingerprint is stored in. For a
static data block, the query algorithm works in previous way. For a dynamic data block, the
address of the data block can be easily learnt with the counter ni.
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The two buffers are arrays of pointers from [log u/ log log u]logu/ log logu, so they fit in
constant number of memory cells. In particular, for a indicator Ii[j] which is the k-th
indicator has value 2 (or 3), Bi,u[k] (or Bi,r[k]) is the in-block index of the rest part which
corresponds to j-th fingerprint.

The new insertion is not a prefix of some preceded insertion due to our guarantees.
Therefore, to insert x, we simply append hs(x), rt(x) to the identity list and rest part array,
update the header list, fingerprint collection, and indicator list, and insert a proper pointer
into Bi,u, which overall takes constant time. And to query x in a dynamic data block, where
x corresponds to a datapoint y stored in the data block, we need to retrieve the address of
the data block with counter ni and the in-block index of y with the buffers, then retrieve
rt(y). See the pseudocodes in the appendix of the full version of this paper for more details.

Reorganizing a Data Block. The reorganization procedure starts as long as the data block
under construction is full. Informally, the reorganization procedure works as follows:
1. Update the list of indicators and copy Bi,r ← Bi,u. (We guarantee that the preceded

reorganization process has been finished before the buffer Bi,u is full)
2. Insert the address of the data block in proper positions of the navigator list.
3. Sort the array of rest parts and the list of identities according to the pointers in the

buffer Bi,r while keep the buffer updated. Note that the sorting can be done within time
cost O(log u/ log log u): we enumerate j ∈ [log u/ log log u], find j′ such that Bi,r[j′] = j,
swap hsj , rtj , Bi,r[j] with hsBi,r[j], rtBi,r[j], Bi,r[j′] one by one, where hsj , rtj is the j-th
item of the corresponding list and array.

4. Update indicator list.
The total time cost is O(log u/ log log u), which can be simulated by log u/ log log u operations,
each costing O(1) time, within a data block. See the appendix of the full version of this
paper for more details.

The two dynamic data blocks waste at most O(log u) bits on the two incomplete lists for
headers and identities, therefore we uses at most extra O(m) bits of space.

Setting the Constant Parameters. Our data structure may fail at the load balancing on
subtables, constructing the fingerprint collections for subtables, and the load balancing on
headers of fingerprint collections. By the union bound, the failure probability is at most

m

log u
(

exp(−(c3 − 1)2 log u/2) + u−c5
)

+m2−(c4−0.01) logu, (5)

when c1 ≥ max{d2(c3 − 1)2e, c3}. Since m < u ,the failure probability can be as small as
δ = u−2C if we set the constants c1, c3, c4, c5 to be sufficiently large.

The initialize, decrement, and destroy subroutines are easy to implement, which are
postponed to the appendix of the full version of this paper

6 Unconditional Succinct Dictionary

We show that our data structure can solve the dictionary in the worst case unconditionally.
In our data structure for prefix matching, the randomness is used only for:
1. load balancing on the subtables;
2. the representation of the adaptive prefixes;
3. load balancing on the hd(x) ◦ hs(x)’s.
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Note that we should decode st(x) from subtable index i, decode hd(x) ◦ hs(x) from bucket
index in adaptive prefixes, and decode hd(x) from bucket index in data block. To achieve
the identical guarantees with prefix matching, we apply a weaker but strong enough random
permutation.

I Definition 14 (Feistel permutation). Given any x ∈ [u], let xL, xR respectively denote
the logm left-most bits and the log(u/m) right-most bits of the binary representation of x,
so that x = xL ◦ xR. Given any f : {0, 1}log(u/m) → {0, 1}logm, the Feistel permutation
πf : [u]→ [u] is defined as

πf (x) = (xL ⊕ f(xR)) ◦ xR.

It is easy to verify that πf is indeed a permutation. In fact, πf (πf (x)) = x for any x and f .
Our dictionary data structure works with three (c1 log u)-wise independent hash functions

f : [u logu
m ]→ [m/ log u], g : [u/m]→ [log u], and h : [u/m]→ [uc2 ]. Given a key x ∈ [u], we

let st′(x) = πf (x), hd′(x) ◦ hs′(x) = πg(hd(x) ◦ hs(x) ◦ rt(x)) and hss(x) = h(rt(x)). Then
we distribute x into subtable st′(x), insert/query hd′(x) ◦ hs′(x) ◦ hss(x) to the fingerprint
collection, and encode hd′(x) ◦ hs′(x) ◦ rt(x), instead of hd(x) ◦ hs(x) ◦ rt(x), in its data
block.

Consider two datapoints x, x′. If hd(x) ◦ hs(x) ◦ rt(x) 6= hd(x′) ◦ hs(x′) ◦ rt(x′), then
st′(x) and st′(x′) are independent; otherwise st′(x) 6= st′(x′). Therefore for any i, c,

Pr [ |{x ∈ Y : st′(x) = i}| ≥ c ] ≤ Pr [ |{x ∈ Y ′ : st(x) = i}| ≥ c ] , (6)

where Y are the insertion sequence, Y ′ are (c1 log u)-wise independent random insertion
sequence. Hence the load balancing is not worse than the one in the prefix matching case.

Due to Theorem 9 and Eq(6), the fingerprint collection works with the same guarantees.
Clearly hd(x) ◦ hs(x) = (hd′(x) ◦ hs′(x))⊕ g(rt(x)), st(x) = st′(x)⊕ f(hd(x) ◦ hs(x) ◦ rt(x)),
thus the keys can be retrieved precisely. For the values, we store rt(x) and its value together
as a tuple in the data block.

7 Upper Bounds in Allocate-Free Model

We mimic the extendable arrays in the allocate-free model. For simplicity, we modify the
navigator list from extendable array to an array of length c3 log u.

Suppose we are dealing with Di. The main table can be implemented easily since it
has fixed length. Let s = c3(log u)(log(1/ε) + log i + O(log log log u)) be the space usage
upper bound of any single subtable. For a subtable i, we maintain a pointers array of length
d
√
s/we to mimic the extendable array. Every pointer in the array points to a memory block

of d
√
swe bits. Therefore we waste at most

(2i/ log u) ·O(w ·
√
s/w +

√
sw) = O(2i

√
log(1/ε) + log i+ log log log u)

bits of space. In conclusion, after n insertions our data structure for filters uses at most

n(log(1/ε) + log logn+O(log log log u)) +O(n
√

log(1/ε) + log logn+ log log log u)

bits of space in the allocate-free model.
Similarly, our data structure for dictionaries uses at most

n(log(u/n) + v +O(log log log u)) +O(n
√

log(u/n) + v + log log log u)

bits of space after n insertions in the allocate-free model.
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dictionariis dynamicis pauco spatio utentibus. In Latin American Symposium on Theoretical
Informatics, pages 349–361. Springer, 2006.

12 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. In
29th Annual Symposium on Foundations of Computer Science, pages 524–531. IEEE, 1988.

13 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In International Colloquium on Automata,
Languages, and Programming, pages 6–19. Springer, 1990.

14 O. Erdogan and Pei Cao. Hash-av: fast virus signature scanning by cache-resident filters. In
GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., volume 3, pages 6
pp.–, November 2005. doi:10.1109/GLOCOM.2005.1577953.

15 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

16 Deke Guo, Jie Wu, Honghui Chen, and Xueshan Luo. Theory and network applications of
dynamic bloom filters. In Proceedings IEEE INFOCOM, pages 1–12. IEEE, 2006.

17 Mai Jiang, Chunsheng Zhao, Zaifeng Mo, and Jing Wen. An improved algorithm based on
bloom filter and its application in bar code recognition and processing. EURASIP Journal on
Image and Video Processing, 2018(1):139, December 2018. doi:10.1186/s13640-018-0375-6.

18 Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113–133, 2009.

19 Adam Kirsch and Michael Mitzenmacher. Using a queue to de-amortize cuckoo hashing in
hardware. In Proceedings of the Forty-Fifth Annual Allerton Conference on Communication,
Control, and Computing, volume 75, 2007.

http://arxiv.org/abs/1711.01616
http://arxiv.org/abs/1911.05060
https://doi.org/10.1109/GLOCOM.2005.1577953
https://doi.org/10.1186/s13640-018-0375-6


M. Liu, Y. Yin, and H. Yu 79:19

20 Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

21 Richard J Lipton and Jeffrey F Naughton. Clocked adversaries for hashing. Algorithmica,
9(3):239–252, 1993.

22 Yi Liu, Xiongzi Ge, David Hung-Chang Du, and Xiaoxia Huang. Par-bf: A parallel partitioned
bloom filter for dynamic data sets. The International Journal of High Performance Computing
Applications, 30(3):259–275, 2016. doi:10.1177/1094342015618452.

23 Shachar Lovett and Ely Porat. A lower bound for dynamic approximate membership data
structures. In IEEE 51st Annual Symposium on Foundations of Computer Science, pages
797–804, 2010.

24 Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. SIG-
COMM Comput. Commun. Rev., 45(3):52–66, July 2015. doi:10.1145/2805789.2805800.

25 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Transactions
on Algorithms (TALG), 15(3):1–30, 2019.

26 Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of aes. In Cryptographers’ track at the RSA conference, pages 1–20. Springer, 2006.

27 Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. An optimal bloom filter replacement. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
823–829, 2005.

28 Rasmus Pagh, Gil Segev, and Udi Wieder. How to approximate a set without knowing its
size in advance. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 80–89. IEEE, 2013.

29 Rajeev Raman and Satti Srinivasa Rao. Succinct dynamic dictionaries and trees. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 357–368. Springer,
2003.

30 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

31 Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high independence.
In 54th Annual Symposium on Foundations of Computer Science, pages 90–99. IEEE, 2013.

ICALP 2020

https://doi.org/10.1177/1094342015618452
https://doi.org/10.1145/2805789.2805800

	Introduction
	Main Results
	Related Work
	Previous Construction
	Our Techniques
	Membership Data Structure


	Preliminaries
	String Notations
	Computational Models
	Random Access Machine
	Memory Models

	Random Functions
	Adaptive Prefixes

	Data Structures for Sets of Unknown Sizes
	The Succinct Dynamic Filters
	The Succinct Dynamic Dictionaries

	Prefix Matching Upper Bound
	Succinct Prefix Matching with Known Capacity
	Unconditional Succinct Dictionary
	Upper Bounds in Allocate-Free Model

