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Abstract
We consider the extension of FO2 with quantifiers that state that the number of elements where a
formula holds should belong to a given ultimately periodic set. We show that both satisfiability and
finite satisfiability of the logic are decidable. We also show that the spectrum of any sentence is
definable in Presburger arithmetic. In the process we present several refinements to the “biregular
graph method”. In this method, decidability issues concerning two-variable logics are reduced to
questions about Presburger definability of integer vectors associated with partitioned graphs, where
nodes in a partition satisfy certain constraints on their in- and out-degrees.
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1 Introduction

In the search for expressive logics with decidable satisfiability problem, two-variable logic,
denoted here as FO2, is one yardstick. This logic is expressive enough to subsume basic
modal logic and many description logics, while satisfiability and finite satisfiability coincide,
and both are decidable [23, 15, 9]. However, FO2 lacks the ability to count. Two-variable
logic with counting, C2, is a decidable extension of FO2 that adds counting quantifiers. In C2

one can express, for example, ∃5x P (x) and ∀x∃>5y E(x, y) which, respectively, mean that
there are exactly 5 elements in unary relation P , and that every element in a graph has at
least 5 adjacent edges. Satisfiability and finite satisfiability do not coincide for C2, but both
are decidable [10, 16]. In [16] the problems were shown to be NEXPTIME-complete under a
unary encoding of numbers, and this was extended to binary encoding in [18]. However, the
numerical capabilities of C2 are quite limited. For example, one can not express that the
number of outgoing edges of each element in the graph is even.
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A natural extension is to combine FO2 with Presburger arithmetic where one is allowed to
define collections of tuples of integers from addition and equality using boolean operators and
quantifiers. The collections of k-tuples that one can define in this way are the semi-linear sets,
and the collections of integers (when k = 1) definable are the ultimately periodic sets. Prior
work has considered the addition of Presburger quantification to fragments of two-variable
logic. For every definable set φ(x, y) and every ultimately periodic set S, one has a formula
∃Sy φ(x, y) that holds at x when the number of y such that φ(x, y) is in S. We let FO2

Pres
denote the logic that adds this construct to FO2.

On the one hand, the corresponding quantification over general k-tuples (allowing semi-
linear rather than ultimately periodic sets) easily leads to undecidability [11, 3]. On the
other hand, adding this quantification to modal logic has been shown to preserve decidability
[1, 7]. Related one-variable fragments in which we have only a unary relational vocabulary
and the main quantification is ∃Sx φ(x) are known to be decidable (see, e.g. [2]), and their
decidability is the basis for a number of software tools focusing on integration of relational
languages with Presburger arithmetic [14]. The decidability of full FO2

Pres is, to the best
of our knowledge, still open [4]. There are a number of other extensions of C2 that have
been shown decidable; for example it has been shown that one can allow a distinguished
equivalence relation [22] or a forest-structured relation [6, 5]. FO2

Pres is easily seen to be
orthogonal to these other extensions.

In this paper we show that both satisfiability and finite satisfiability of FO2
Pres are

decidable. Our result makes use of the biregular graph method introduced for analyzing C2

in [13]. The method focuses on the problem of existence of graphs equipped with a partition
of vertices based on constraints on the out- and in-degree. Such a partitioned graph can be
characterized by the cardinalities of each partition component, and the key step in showing
these decidability results is to prove that the set of tuples of integers representing valid
sizes of partition components is definable by a formula in Presburger arithmetic. From this
“graph constraint Presburger definability” result one can reduce satisfiability in the logic to
satisfiability of a Presburger formula, and from there infer decidability using known results
on Presburger arithmetic.

The approach is closely-related to the machinery developed by Pratt-Hartmann (the “star
types” of [21]) for analyzing the decidability and complexity of C2, its fragments [19], and its
extensions [22, 5]. An advantage of the biregular graph approach is that it is transparent
how to extract more information about the shape of witness structures. In particular we
can infer that the spectrum of any formula is Presburger definable, where the spectrum of a
formula φ is the set of cardinalities of finite models of φ. It is also interesting to note that a
more restricted version of our biregular graph method is used to prove the decidability of
FO2 extended with two equivalence relations [12].

Characterising the spectrum for general first order formulas is quite a difficult problem,
with ties to major open questions in complexity theory [8]. This work can be seen as a
demonstration of the power of the biregular graph method to get new decidability results.
We make heavy use of both techniques and results in [13], adapting them to the richer logic.
We also require additional inductive arguments to handle the interaction of ordinary counting
quantifiers and modulo counting quantification.

2 Preliminaries

Let N = {0, 1, 2, . . .} and let N∞ = N ∪ {∞}.
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Linear and ultimately periodic sets. A set of the form {a+ ip | i ∈ N}, for some a, p ∈ N
is a linear set. We will denote such a set by a+p, where a and p are called the offset and
period of the set, respectively. Note that, by definition, a+0 = {a}, which is a linear set. For
convenience, we define ∅ and {∞} (which may be written as ∞+p) to also be linear sets.

An ultimately periodic set (u.p.s.) S is a finite union of linear sets. Usually we write a
u.p.s. {c1} ∪ · · · ∪ {cm} ∪ a+p1

1 ∪ · · · ∪ a+pn
n as just {c1, . . . , cm, a+p1

1 , . . . , a+pn
n }, and abusing

notation, we write a+p ∈ S for a u.p.s. S if a+ ip ∈ S for every i ∈ N.

Two-variable logic with ultimately periodic counting quantifiers. An atomic formula is
either an atom R(~u), where R is a predicate, and ~u is a tuple of variables of appropriate size,
or an equality u = u′, with u and u′ variables, or one of the formulas > and ⊥ denoting the
True and False values. The logic FO2

Pres is a class of first-order formulas using only variables
x and y, built up from atomic formulas and equalities using the usual boolean connectives
and also ultimately periodic counting quantification, which is of the form ∃Sx φ where S is a
u.p.s. One special case is where S is a singleton {a} with a ∈ N∞, which we write ∃ax φ; in
case of a ∈ N, these are counting quantifiers. The semantics of FO2

Pres is defined as usual
except that, for every a ∈ N, ∃ax φ holds when there are exactly a number of x’s such that
φ holds, ∃∞ φ holds when there are infinitely many x’s such that φ holds, and ∃Sx φ holds
when there is some a ∈ S such that ∃ax φ holds.

Note that when S is {∞} ∪ 0+1 = N∞, ∃Sx φ is equivalent to >. When S is 0+1, ∃Sx φ
semantically means that there are finitely many x such that φ holds. We define ∃∅x φ to
be ⊥ for any formula φ. We also note that ∃0x φ is equivalent to ∀x ¬φ, and ¬∃Sx φ is
equivalent to ∃N∞−Sx φ.

For example, we can state in FO2
Pres that every node in a graph has even degree (i.e., the

graph is Eulerian). Clearly FO2
Pres extends C2, the fragment of the logic where only counting

quantifiers are used, and FO2, the fragment where only the classical quantifier ∃x is allowed.

Presburger arithmetic. An existential Presburger formula is a formula of the form
∃x1 . . . xk φ, where φ is a quantifier-free formula over the signature including constants 0, 1, a
binary function symbol +, and a binary relation 6. Such a formula is a sentence if it has no
free variables. The notion of a sentence holding in a structure interpreting the function, rela-
tions, and constants is defined in the usual way. The structure N = (N,+,6, 0, 1), is defined
by interpreting +,6, 0, 1 in the standard way, while the structure N∞ = (N∞,+,6, 0, 1) is
the same except that a+∞ =∞ and a 6∞ for each a ∈ N∞.

It is known that the satisfiability of existential Presburger sentences over N is decidable
and belongs to NP [17]. Further, the satisfiability problem for N∞ can easily be reduced to
that for N . Indeed, we can first guess which variables are mapped to ∞ and then which
atoms should be true, then check whether each guessed atomic truth value is consistent with
other guesses and determine additional variables which must be infinite based on this choice,
and finally restrict to atoms that do not involve variables guessed to be infinite, and check
that the conjunction is satisfiable by standard integers.

I Theorem 1. The satisfiability problem for existential Presburger sentences over both N
and N∞ are both in NP.

3 Main result

In this section we prove the decidability of FO2
Pres satisfiability. Our decision procedure is

based on the key notion of regular graphs. Note that whenever we talk about graphs or
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digraphs (i.e., directed graphs), by default we allow both finite and infinite sets of vertices
and edges.

3.1 Regular graphs
In the following we fix an integer p > 0. Let N∞,+p denote the set whose elements are either
a or a+p, where a ∈ N∞. For integers t,m > 1, let Nt×m∞,+p denote the set of matrices with t
rows and m columns where each entry is an element from N∞,+p.

A t-color bipartite (undirected) graph is G = (U, V,E1, . . . , Et), where U and V are sets
of vertices and E1, . . . , Et are pairwise disjoint sets of edges between U and V . Edges in
Ei are called Ei-edges. We will write an edge in a bipartite graph as (u, v) ∈ U × V . For a
vertex u ∈ U ∪ V , the Ei-degree of u is the number of Ei-edges adjacent to u. The degree of
u is the sum of the Ei-degrees for i = 1 . . . t. We say that G is complete, if U × V =

⋃t
i=1Ei.

For two matrices A ∈ Nt×m∞,+p and B ∈ Nt×n∞,+p, the graph G is a A|B-biregular graph, if
there exist partitions U1, . . . , Um of U and V1, . . . , Vn of V such that for every 1 6 i 6 t,
for every 1 6 k 6 m, for every 1 6 l 6 n, the Ei-degree of every vertex in Uk is Ai,k and
the Ei degree of every vertex in Vl is Bi,l.1 For each such partition, we say that G has size
M̄ |N̄ , where M̄ = (|U1|, . . . , |Um|) and N̄ = (|V1|, . . . , |Vn|). The partition U1, . . . , Um and
V1, . . . , Vn is called a witness partition. We should remark that some Ui and Vi are allowed
to be empty.

The above definition can be easily adapted for the case of directed graphs that are not
necessarily bipartite. A t-color directed graph (or digraph) is G = (V,E1, . . . , Et), where
E1, . . . , Et are pairwise disjoint set of directed edges on a set of vertices V . As before, edges
in Ei are called Ei-edges. The Ei-indegree and -outdegree of a vertex u, is defined as the
number of incoming and outgoing Ei-edges incident to u.

In a t-color digraph G we will assume that (i) there are no self-loops – that is, (v, v) is
not an Ei-edge, for every vertex v ∈ V and every Ei, and (ii) if (u, v) is an Ei-edge, then its
inverse (v, u) is not an Ej-edge for any Ej . This will suffice for the digraphs that arise in
our decision procedure. We say that a digraph G is complete, if for every u, v ∈ V and u 6= v,
either (u, v) or (v, u) is an Ei-edge, for some Ei.

We say that G is a A|B-regular digraph, where A,B ∈ Nt×m∞,+p, if there exists a partition
V1, . . . , Vm of V such that for every 1 6 i 6 t, for every 1 6 k 6 m, the Ei-indegree and
-outdegree of every vertex in Vk is Ai,k and Bi,k, respectively. We say that G has size
(|V1|, . . . , |Vm|), and call V1, . . . , Vm a witness partition.

Lemma 2 below will be the main technical tool for our decidability result. Let x̄ and ȳ
be vectors of variables of length m and n, respectively.

I Lemma 2. For every A ∈ Nt×m∞,+p and B ∈ Nt×n∞,+p, there exists (effectively computable)
existential Presburger formula c-biregA|B(x̄, ȳ) such that for every (M̄, N̄) ∈ Nm∞ × Nn∞,
the following holds: there is complete A|B-biregular graph with size M̄ |N̄ if and only if
c-biregA|B(M̄, N̄) holds in N∞.

Lemma 3 below is the analog for digraphs.

I Lemma 3. For every A ∈ Nt×m∞,+p and B ∈ Nt×m∞,+p, there exists (effectively computable)
existential Presburger formula c-regA|B(x̄) such that for every M̄ ∈ Nm∞, the following holds.
There is complete A|B-regular digraph with size M̄ if and only if c-regA|B(M̄) holds in N∞.

1 By abuse of notation, when we say that an integer z equals a+p, we mean that z ∈ a+p. Thus, when
writing Ai,k = a+p, we mean that the degree of the vertex is an element in a+p.
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Lemmas 2 and 3 can be easily readjusted when we are interested only in finite sizes, i.e.,
M̄ ∈ Nm and N̄ ∈ Nn, by requiring the formulas to hold in N , instead of N∞. Alternatively,
we can also state inside the formulas that none of the variables in x̄ and ȳ are equal to ∞.

The proofs of these two lemmas are discussed in Section 4.

3.2 Decision procedure

Theorem 4 below is the main result in this paper.

I Theorem 4. For every FO2
Pres sentence φ, there is an (effectively computable) existential

Presburger formula PRESφ such that (i) φ has a model iff PRESφ holds in N∞ and (ii) φ
has a finite model iff PRESφ holds in N .

From the decision procedure for existential Presburger formulas (Theorem 1) mentioned
in Section 2, we immediately will obtain the following corollary.

I Corollary 5. Both satisfiability and finite satisfiability for FO2
Pres are decidable.

We will sketch how Theorem 4 is proven, making use of Lemmas 2 and 3. We start by
observing that satisfiability (and spectrum analysis) for an FO2

Pres sentence can be converted
effectively into the same questions for a sentence in a variant of Scott normal form:

φ := ∀x∀y α(x, y) ∧
k∧
i=1
∀x∃Siy βi(x, y) ∧ x 6= y, (1)

where α(x, y) is a quantifier free formula, each βi(x, y) is an atomic formula and each Si is
an u.p.s. The proof, which is fairly standard, will appear in the full version of this paper. By
taking the least common multiple, we may assume that all the (non-zero) periods in all Si
are the same.

We recall some standard terminology. A 1-type is a maximally consistent set of atomic
and negated atomic unary formulas using only variable x. A 1-type can be identified with
the quantifier-free formula that is the conjunction of its constituent formulas. Thus, we say
that an element a in a structure A has 1-type π, if π holds on the element a. We denote
by Aπ the set of elements in A with 1-type π. Clearly the domain A of a structure A is
partitioned into the sets Aπ. Similarly, a 2-type is a maximally consistent set of atomic and
negated atomic binary formulas using only variables x, y, containing the predicate x 6= y.
The notion of a pair of elements (a, b) in a structure A having 2-type E is defined as with
1-types. We denote by Π = {π1, π2, . . . , πn} and E = {E1, . . . , Et,

←−
E1, . . . ,

←−
Et} the sets of all

1-types and 2-types, respectively, where ←−Ei(x, y) = Ei(y, x) for each 1 6 i 6 t – that is, each
←−
Ei is the reversal of Ei.

Let g : E × Π → N∞,+p be a function. We will use such a function g to describe the
“behavior” of the elements in the following sense. Let A be a structure. We say that an
element a ∈ A behaves according to g, if for every E ∈ E and for every π ∈ Π, the number of
elements b ∈ Aπ such that the 2-type of (a, b) is E belongs to g(E, π). We denote by Aπ,g
the set of all elements in Aπ that behave according to g. The restriction of g on 1-type π is
the function gπ : E → N∞,+p, where gπ(E) = g(E, π). We call the function gπ the behavior
(function) towards 1-type π.

We are, of course, only interested in functions g that are consistent with the sentence φ
in (1), and we formalize this as follows:

A 1-type π ∈ Π and a function g : E ×Π→ N∞,+p are incompatible (w.r.t. ∀x∀y α(x, y)),
if there is E ∈ E and π′ ∈ Π such that π(x)∧E(x, y)∧π′(y) |= ¬α(x, y) and g(E, π′) 6= 0.

ICALP 2020
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A function g : E ×Π→ N∞,+p is a good function (w.r.t.
∧k
i=1 ∀x∃Siy βi(x, y) ∧ x 6= y), if

for every π ∈ Π and for every i the following holds:2∑
E|=βi(x,y)

∑
π∈Π

g(E, π) = a for some a ∈ Si.

If A |= φ then A(π,g) = ∅, whenever π and g are incompatible, and in addition every element
in A behaves only according to some good function.

The main idea is to construct the sentence PRESφ that “counts” the cardinality |A(π,g)| in
every structure A |= φ, for every π and g. Toward this end, let G = {g1, g2, . . . , gm} enumerate
all good functions. Note that G can be computed effectively from the sentence φ, since it
suffices to consider functions g : E ×Π→ N∞,+p with codomain {0, . . . , a, 0+p, . . . , a+p,∞},
where a is the maximal offset of the (non-∞) elements in

⋃k
i=1 Si.

The sentence PRESφ will be of the form

PRESφ := ∃X̄ consistent1(X̄) ∧ consistent2(X̄) (2)

where X̄ is a vector of variables (X(π1,g1), X(π1,g2), . . . , X(πn,gm)). Intuitively, each X(πi,gj)
represents |Aπi,gj |. By the formulas consistent1(X̄) and consistent2(X̄), we capture the
consistency of the integers X̄ with the formulas ∀x∀y α(x, y) and

∧k
i=1 ∀x∃Siy βi(x, y)∧x 6= y,

respectively.
We start by defining the formula consistent1(X̄). Letting H be the set of all pairs (π, g)

where π and g are incompatible, the formula consistent1(X̄) can be defined as

consistent1(X̄) :=
∧

(π,g)∈H

X(π,g) = 0 (3)

Towards defining the formula consistent2(X̄), we introduce some notations. For π ∈ Π,
define the matrices Mπ,

←−
Mπ ∈ Nt×m∞,+p as follows:

Mπ :=

g1(E1, π) · · · gm(E1, π)
...

. . .
...

g1(Et, π) · · · gm(Et, π)

 and ←−
Mπ :=


g1(←−E1, π) · · · gm(←−E1, π)

...
. . .

...
g1(←−Et, π) · · · gm(←−Et, π)


The idea is that Mπ captures all possible behavior towards 1-type π, where each column
j represents the behavior of gj towards π. Note that for a structure A and 1-type π, the
restriction of A on the set Aπ can be viewed as a t-color digraph G = (V,E1, . . . , Et). It is
sufficient to consider only the 2-types E1, . . . , Et, because each Ei determines its reversal ←−Ei.
Moreover, an element a has an incoming Ei-edge if and only if it has an outgoing ←−Ei-edge.
Thus, if A |= φ, the graph G is a complete Mπ|

←−
Mπ-regular digraph.

Now, we explain how to capture the behavior between elements with distinct 1-types.
Define matrices Lπ,

←−
L π ∈ N2t×m

∞,+p as follows:

Lπ :=
(
Mπ←−
Mπ

)
and ←−

L π :=
(←−
Mπ

Mπ

)

That is, in Lπ the first t rows come from Mπ with the next t rows from ←−Mπ. On the other
hand, in ←−L π the first t rows come from ←−Mπ, followed by the t rows from Mπ.

2 Here the operation + on N∞,+p is defined to be commutative operation where a + ∞ = a+p + ∞ = ∞
and a+p + b = a+p + b+p = (a + b)+p. On integers from N, it is the standard addition operation.
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The idea is that for a structure A, the 2-types that are realized between Aπ and Aπ′

can be viewed as a 2t-color bipartite graph G = (Aπ, Aπ′ , E1, . . . , Et,
←−
E1, . . . ,

←−
Et), where the

direction of the edges are ignored. Moreover, a pair (a, b) has 2-type E if and only if (b, a)
has 2-type ←−E , Thus, if A |= φ, the graph G is a complete Lπ′ |

←−
L π-biregular graph.

Now we are ready to define the formula consistent2(X̄). We enumerate all the 1-types
π1, . . . , πn and define consistent2 as follows:

consistent2(X̄) :=
∧

16i6n
c-reg

Mπi
|
←−
Mπi

(X̄πi) ∧
∧

16i<j6n
c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ). (4)

The formula consistent1(X̄) is Presburger definable by inspection, while consistent2(X̄)
is Presburger definable using Lemmas 2 and 3. The correctness comes directly from the
following lemma.

I Lemma 6. For every structure A |= φ, consistent1(N̄) ∧ consistent2(N̄) holds, where N̄ =
(|Aπ1,g1 |, . . . , |Aπn,gm |). Conversely, for every N̄ such that consistent1(N̄) ∧ consistent2(N̄)
holds, there is A |= φ such that N̄ = (|Aπ1,g1 |, . . . , |Aπn,gm |).

Proof. Let φ be in Scott normal form as in (1). As before, Π = {π1, π2, . . . , πn} denote the set
of all 1-types and E = {E1, . . . , Et,

←−
E1, . . . ,

←−
Et} the set of all 2-types, where←−Ei(x, y) = Ei(y, x)

for each 1 6 i 6 t. Recall that each 2-type E contains the predicate x 6= y and that
G = {g1, . . . , gm} is the set of all good functions.

Note that for π, π′ ∈ Π and E ∈ E , the conjunction π(x) ∧ E(x, y) ∧ π′(y) corresponds
to a boolean assignment of the atomic predicates in α(x, y). Thus, either π(x) ∧ E(x, y) ∧
π′(y) |= α(x, y) or π(x) ∧ E(x, y) ∧ π′(y) |= ¬α(x, y). Similarly, π(x) ∧ x = y |= α(x, y) or
π(x) ∧ x = y |= ¬α(x, y).

We first prove the first statement in the lemma. Let A |= φ. Partition A into Aπ,g’s. We
will show that consistent1(X̄) ∧ consistent2(X̄) holds when each Xπ,g is assigned with the
value |Aπ,g|.

Since A |= ∀x∀y α(x, y), by definition Aπ,g = ∅, whenever π and g are incompatible.
Thus, consistent1(X̄) holds.

Next, we will show that consistent2(X̄) holds. Let π ∈ Π. By definition of Aπ, Aπ is a
complete Mπ|

←−
Mπ-regular digraph G = (V,E1, . . . , Et), with size (|Aπ,g1 |, . . . , |Aπ,gm |). Thus,

by Lemma 3, c-reg
Mπ|
←−
Mπ

(X̄π) holds.
For πi, πj ∈ Π, where i < j, the structure A restricted to Aπi and Aπj can be viewed as

a complete Lπj |
←−
L πi-biregular graph G = (U, V,E1, . . . , Et,

←−
E1, . . . ,

←−
Et), where U = Aπi and

V = Aπj , and for each 1 6 i 6 t, we have the interpretation denoted (by a slight abuse of
notation) as Ei consist of all pairs (a, b) ∈ Aπi ×Aπj whose 2-type is Ei, and similarly for
←−
Ei. By Lemma 2, c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ) holds.
Now we prove the second statement. Suppose PRESφ holds. By definition, there exists an

assignment to the variables in X̄ such that consistent1(X̄) ∧ consistent2(X̄) holds. Abusing
notation as we often do in this work, we denote the value assigned to each Xπ,g by the
variable Xπ,g itself.

For each (π, g), we have a set Vπ,g with cardinality Xπ,g. We denote by Vπ =
⋃
g Vπ,g.

We construct a structure A that satisfies φ as follows.
The domain is A =

⋃
π,g Vπ,g.

For each π ∈ Π, for each a ∈ Vπ, the unary atomic formulas on a are defined such that
the 1-type of a becomes π.
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For each π ∈ Π, the binary predicates on (u, v) ∈ Vπ × Vπ are defined as follows. Since
c-reg

Mπ|
←−
Mπ

(X̄π) holds, there is a complete Mπ|
←−
Mπ-regular digraph G = (Vπ, E1, . . . , Et)

with size X̄π. The edges E1, . . . , Et define precisely the 2-types among elements in Vπ.
For each πi, πj , where i < j, the binary predicates on (u, v) ∈ Vπi × Vπj are defined
as follows. Since c-bireg

Lπj |
←−
Lπi

(X̄πi , X̄πj ) holds, there is a Lπ′ |
←−
L π-biregular graph

G = (Vπi , Vπj , E1, . . . , Et,
←−
E1, . . . ,

←−
Et) with size X̄π|X̄π′ . The edges E1, . . . , Et,

←−
E1, . . . ,

←−
Et

define precisely the 2-types on (u, v) ∈ Vπi × Vπj .

We first show that A |= ∀x∀y α(x, y). Indeed, suppose there exist u, v ∈ A such that
π(u)∧E(u, v)∧π′(v) 6|= α(u, v). By definition, there is g such that u ∈ Vπ,g and g(E, π′) 6= 0.
Thus, Vπ,g 6= ∅. This also means that π is incompatible with g, which implies that Xπ,g = 0
by consistent1(X̄), thus, contradicts the assumption that Vπ,g 6= ∅.

Next, we show thatA |=
∧k
i=1 ∀x∃Siy βi(x, y)∧x 6= y. Note that G = {g1, . . . , gm} consists

of only good functions. Thus, for every g ∈ G, for every βi, the sum
∑
π

∑
βi(x,y)∈E g(E, π)

is an element in Si. J

4 Proof ideas for Lemmas 2 and 3

We now discuss the proof of the main biregular graph lemmas. Due to space constraints, we
deal only with the 1-color case, which gives the flavor of the arguments. The general case,
which is much more involved, is deferred to the full version of this paper.

This section is organized as follows. In Subsection 4.1 we will focus on a relaxation of
Lemma 2 where the requirement being complete is dropped. This will then be used to prove
the complete case in Subsection 4.2. Finally, in Subsection 4.3 we present a brief explanation
on how to modify the proof for the biregular graphs to the one for regular digraphs.

4.1 The case of incomplete 1-color biregular graphs
This subsection is devoted to the proof of the following lemma.

I Lemma 7. For every A ∈ N1×m
∞,+p and B ∈ N1×n

∞,+p, there exists (effectively computable)
existential Presburger formula biregA|B(x̄, ȳ) such that for every (M̄, N̄) ∈ Nm∞ × Nn∞ the
following holds: there is an A|B-biregular graph with size M̄ |N̄ if and only if biregA|B(M̄, N̄)
holds in N∞.

The desired formula c-biregA|B(x̄, ȳ) for complete biregular graphs will be defined using
the formula biregA|B(x̄, ȳ).

We will use the following notations. The term vectors always refers to row vectors, and
we usually use ā, b̄, . . . (possibly indexed) to denote them. We write (ā, b̄) to denote the
vector ā concatenated with b̄. Obviously 1-row matrices can be viewed as row vectors. For
ā = (a1, . . . , ak) ∈ Nk∞, we write ā+p to denote the vector (a+p

1 , . . . , a+p
k ).

Matrix entries of the form a+p are called periodic entries. Otherwise, they are called fixed
entries. By grouping the entries according to whether they are fixed/periodic, we write a
1-row matrix M as (ā, b̄+p), where ā and b̄+p correspond to the fixed and periodic entries in
M . Matrices that contain only fixed (or, periodic) entries are written as ā (or, ā+p).

To specify A|B-biregular graphs, we write (ā, b̄+p)|(c̄, d̄+p)-biregular graphs, where
A = (ā, b̄+p) and B = (c̄, d̄+p). Similarly, when, say, A contains only fixed entries, it
is written as ā|(c̄, d̄+p)-biregular. The size of (ā, b̄+p)|(c̄, d̄+p)-biregular graph is written as
(M̄0, M̄1)|(N̄0, N̄1), where the lengths of M̄0, M̄1, N̄0, N̄1 are the same as ā, b̄, c̄, d̄, respectively.
The other cases, when some of ā, b̄+p, c̄, d̄+p are omitted, are treated in similar manner.
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As before, we will write x̄, ȳ (possibly indexed) to denote a vector of variables. We write
1̄ to denote the vector with all components being 1. We use · to denote the standard dot
product between two vectors. To avoid being repetitive, when dot products are performed,
it is implicit that the vector lengths are the same. In particular, x̄ · 1̄ is the sum of all the
components in x̄.

We now outline the proof of Lemma 7, focusing only on the case where there is no ∞
degree in the matrices. The case where such a degree exists is similar but simpler. Without
loss of generality, we can also assume that none of the fixed entries are zero. For vectors
M̄0, M̄1, N̄0, N̄1 with the same length as ā, b̄, c̄, d̄, respectively, we say that (M̄0, M̄1)|(N̄0, N̄1)
is big enough for (ā, b̄+p)|(c̄, d̄+p), if the following holds:
(a) M̄0 · 1̄ + M̄1 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2

max + 3,
(b) M̄1 · 1̄ > δ2

max + 1,
(c) N̄1 · 1̄ > δ2

max + 1.
Here δmax is max(p, ā, b̄, c̄, d̄) – that is, the maximal element among p and the components
in ā, b̄, c̄, d̄. When b̄+p or d̄+p are missing, the same notion can be defined by dropping
condition (b) or (c), respectively. For example, we say that M̄ |N̄ is big enough for ā|b̄, if
M̄ · 1̄ + N̄ · 1̄ > 2δ2

max + 3, where δmax = max(ā, b̄). Similarly, (M̄0, M̄1)|N̄ is big enough for
(ā, b̄+p)|c̄, if M̄0·1̄+M̄1·1̄+N̄ ·1̄ > 2δ2

max+3, and M̄1·1̄ > δ2
max+1, where δmax = max(p, ā, b̄, c̄).

The proof idea is as follows. We first construct a formula that deals with big enough
sizes. Then, we construct a formula for each of the cases when one of the conditions (a), (b)
or (c) is violated. The interesting case will be when condition (b) is violated. This means
that the number of vertices with degrees from b̄+p is fixed, and they can be “encoded” inside
the Presburger formula.

We start with the big enough case. When there are only fixed entries, we will use the
following lemma.

I Lemma 8. For M̄ |N̄ big enough for ā|b̄, there is a ā|b̄-biregular graph with size M̄ |N̄ if
and only if M̄ · ā = N̄ · b̄.

Proof. Note that if we have a biregular graph with the desired outdegrees on the left, then
the total number of edges must be M̄ · ā, and similarly the total number of edges considering
the requirement for vertices on the right, we see that the total number of edges must be N̄ · b̄.
Thus this condition is always a necessary one, regardless of whether M̄ |N̄ is big enough.

When both M̄ and N̄ do not contain ∞, [13, Lemma 7.2] shows that when M̄ |N̄ is big
enough for ā|b̄, the converse holds: M̄ · ā = N̄ · b̄ implies that there is a ā|b̄-biregular graph
with size M̄ |N̄ . We briefly mention the proof idea there, which we will also see later (e.g., in
the proof of Lemma 9). There is a preliminary construction that handles the requirement
on vertices on one side in isolation, leaving the vertices on the right with outdegree 1. A
follow-up construction merges vertices on the right in order to ensure the necessary number
of incoming edges on the right. In doing so we exploit the “big enough” property in order to
avoid merging two nodes on the right with a common adjacent edge on the left.

We will now prove that the condition is also sufficient when either M̄ or N̄ contains ∞.
So assume M̄ · ā = N̄ · b̄, and thus both M̄, N̄ contain ∞.

We construct an ā|b̄-biregular graph G = (U, V,E) with size M̄ |N̄ as follows. Let
ā = (a1, . . . , am) and b̄ = (b1, . . . , bn). Let M̄ = (M1, . . . ,Mm) and N̄ = (N1, . . . , Nn). We
pick pairwise disjoint sets U1, . . . , Um, where each |Ui| = Mi and V1, . . . , Vn, where |Vi| = Ni.
We set U =

⋃
i Ui and V =

⋃
i Vi.

The edges are constructed as follows. For each i 6 i 6 m, when |Ui| is finite, we make
each vertex u ∈ Ui have degree ai, as follows. For each 1 6 j 6 t, we pick ai “new” vertices
from some infinite set Vl – that is, vertices that are not adjacent to any edge, and connect
them to u. Likewise, for each vertex v ∈ Vi when |Vi| is finite. After performing this, every
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vertex in finite Ui and Vi has degree ai and bi, respectively, and every vertex in infinite sets
Ui and Vi has degree at most 1.

Finally, we iterate the following process. For every infinite Ui, if u ∈ Ui has degree other
than ai, we change the degree to ai by picking “new” vertices from some infinite set Vl, and
connect them to u by an appropriate number of edges. Likewise, we can make each vertex
v in infinite Vi to have degree bi. Note that in any iteration, for every infinite set Ui, the
degree of a vertex u ∈ Ui is either ai, 1, or 0. Likewise, in any iteration, for every infinite
set Vi, the degree of a vertex v ∈ Vi is either bi, 1, or 0. Since there is an infinite supply of
vertices, there are always new vertices that can be picked in any iteration. J

Now we move to the case where the entries are still big enough, but some of the entries
are periodic on one side. Then we consider the following formula Ψ(ā,b̄+p)|c̄(x̄0, x̄1, ȳ):

∃z (z 6=∞) ∧
(
ā · x̄0 + b̄ · x̄1 + pz = c̄ · ȳ

)
. (5)

Note that if G = (U, V,E) is a (ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ , then the
number of edges |E| should equal the sum of the degrees of the vertices in U , which is
ā · M̄0 + b̄ · M̄1 + zp, for some integer z > 0. Since this quantity must equal the sum of the
degrees of the vertices in V , which is c̄ · N̄ , we again conclude that this formula is a necessary
condition – regardless of whether the entries are big enough. We again show the converse.

I Lemma 9. For (M̄0, M̄1)|N̄ big enough for (ā, b̄+p)|c̄ the following holds. There is a
(ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ if and only if Ψ(ā,b̄+p)|c̄(M̄0, M̄1, N̄) holds.

Proof. Assume that Ψ(ā,b̄+p)|c̄(M̄0, M̄1, N̄) holds. As before, abusing notation, we denote
the value assigned to variable z by z itself. Suppose ā · M̄0 + b̄ · M̄1 + pz = N̄ · c̄. Since
(M̄0, M̄1)|N̄ is big enough for (ā, b̄+p)|c̄, it follows immediately that (M̄0, M̄1, z)|N̄ is big
enough for (ā, b̄, p)|c̄. Applying Lemma 8, there is a (ā, b̄, p)|c̄-biregular graph with size
(M̄0, M̄1, z)|N̄ . That is, we have a graph that satisfies our requirements, but there is an
additional partition class Z on the left of size z where the number of adjacent vertices
is p, rather than being b̄+p as we require. Let G = (U, V,E) be such a graph, and let
U = U0 ∪ U1 ∪ Z, where U0, U1, and Z are the sets of vertices whose degrees are from ā, b̄,
and from p. Note that |U0| = M̄0 · 1̄, |U1| = M̄1 · 1̄ and |Z| = z.

We will construct a (ā, b̄+p)|c̄-biregular graph with size (M̄0, M̄1)|N̄ . The idea is to merge
the vertices in Z with vertices in U1. Let z0 ∈ Z. The number of vertices in U1 reachable
from z0 in distance 2 is at most δ2

max. Since (M̄0, M̄1)|N̄ is big enough for (ā, b̄+p)|c̄, we
have |U1| = M̄1 · 1̄ > δ2

max + 1. Thus, there is a vertex u ∈ U1 not reachable in distance 2.
We merge z0 and u into one vertex. Since the degree of z0 is p, such merging increases the
degree of u by p, which does not break our requirement. We perform such merging for every
vertex in Z. J

Finally, we turn to the big enough case where there are periodic entries on both sides.
There we will deal with the following formula Ψ(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1):

∃z1∃z2 (z1 6=∞) ∧ (z2 6=∞) ∧
(
ā · x̄0 + b̄ · x̄1 + pz1 = c̄ · ȳ0 + d̄ · ȳ1 + pz2

)
. (6)

I Lemma 10. For (M̄0, M̄1)|(N̄0, N̄1) big enough for (ā, b̄+p)|(c̄, d̄+p) the following holds:
there exists a (ā, b̄+p)|(c̄, d̄+p)-biregular graph with size (M̄0, M̄1)|(N̄0, N̄1) if and only if
Ψ(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds.
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Proof. As before, the “only if” part is straightforward, so we focus on the “if” part. Suppose
Ψ(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds. Thus, ā · M̄0 + b̄ · M̄1 + pz1 = c̄ · N̄0 + d̄ · N̄1 + pz2. If
z1 > z2, then the equation can be rewritten as ā · M̄0 + b̄ · M̄1 + p(z1 − z2) = c̄ · N̄0 + d̄ · N̄1.
By Lemma 9, there is a (ā, b̄+p)|(c̄, d̄)-biregular graph with size (M̄0, M̄1)|(N̄0, N̄1), which of
course, is also (ā, b̄+p)|(c̄, d̄+p)-biregular. The case when z2 > z1 is symmetric. J

The previous lemmas give formulas that capture the existence of 1-color biregular graphs
for big enough sizes. We now turn to sizes that are not big enough – that is, when one of the
conditions (a), (b) or (c) is violated. When condition (a) is violated, we have restricted the
total size of the graph, and thus we can write a formula that simply enumerate all possible
valid sizes. We will consider the case when condition (b) is violated, with the case where
condition (c) is violated being symmetric.

If (b) is violated we can fix the value of M̄1 · 1̄ as some r, and it suffices to find a formula
that works for this r. The idea is that a fixed number of vertices in a graph can be “encoded”
as formulas. For ā = (a1, . . . , ak), b̄ = (b1, . . . , bl), c̄ = (c1, . . . , cm) and d̄ = (d1, . . . , dn), and
for integer r > 0, define the formula Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) as follows:
1. when r = 0, let

Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) := x̄1 · 1̄ = 0 ∧ Ψā|(c̄,d̄+p)(x̄0, ȳ0, ȳ1),

where Ψā|(c̄,d̄+p)(x̄0, ȳ0, ȳ1) is as defined in equation (5);
2. when r > 1, let x̄1 = (x1,1, . . . , x1,l) and

Φr(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) :=

∃s∃z̄0∃z̄1∃z̄2∃z̄3

l∨
i=1

 (x1,i 6= 0) ∧ (bi + ps = z̄1 · 1̄ + z̄3 · 1̄) ∧ (s 6=∞)
∧ (z̄0 + z̄1 = ȳ0) ∧ (z̄2 + z̄3 = ȳ1)
∧ Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(x̄0, x̄1 − ei, z̄0, z̄1, z̄2, z̄3)

 ,

where ei denotes the unit vector (with length k) where the i-th component is 1, and the
lengths of z̄0 and z̄1 are the same as ȳ0, and the lengths of z̄2 and z̄3 are the same as ȳ1.

The motivation for these formulas will be explained in the proof of the following lemma.

I Lemma 11. For every ā, b̄, c̄, d̄, every integer r > 0 and every M̄0, M̄1, N̄0, N̄1 such that
1. M̄0 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2

max + 3,
2. N̄1 · 1̄ > δ2

max + 1,
3. M̄1 · 1̄ = r,
where δmax = max(p, ā, c̄, d̄), the following holds: there is a (ā, b̄+p)|(c̄, d̄+p)-biregular graph
with size (M̄0, M̄1)|(N̄0, N̄1) if and only if Φr(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds.

Proof. The proof is by induction on r. The base case r = 0 follows from Lemma 9, so we
focus on the induction step.

We begin with the “only if” direction, which provides the intuition for these formulas.
Suppose G = (U, V,E) is a (ā, b̄+p)|(c̄, d̄+p)-biregular with size (M̄0, M̄1)|(N̄0, N̄1). We
let U = U0,1 ∪ · · · ∪ U0,k ∪ U1,1 ∪ · · · ∪ U1,l, where M̄0 = (|U0,1|, . . . , |U0,k|) and M̄1 =
(|U1,1|, . . . , |U1,l|). Likewise, we let V = V0,1 ∪ · · · ∪ V0,m ∪ V1,1 ∪ · · · ∪ V1,n, where N̄0 =
(|V0,1|, . . . , |V0,m|) and N̄1 = (|V1,1|, . . . , |V1,n|).

Since we are not in the base case, we can assume M̄1 · 1̄ =
∑l
i=1 |U1,i| = r 6= 0. Thus we

can fix some i with 1 6 i 6 l such that U1,i 6= ∅, and fix also some u ∈ U1,i. Based on this u,
we define, for each 1 6 j 6 m, Z0,j to be the set of vertices in V0,j adjacent to u. For each
1 6 j 6 n we let Z1,j be the set of vertices in V1,j adjacent to u. Figure 1 illustrates the
situation.

If we omit the vertex u and all its adjacent edges, we have the following:
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U0,1

ppp
U0,k

U1,1

ppp
U1,i ruppp
U1,l

V0,1
Z0,1

ppp
V0,m

Z0,m

V1,1
Z1,1

ppp
V1,n

Z1,n

Figure 1 Inductive construction for the “not big enough” case.

1. for every 1 6 j 6 m, every vertex in Z0,j has degree cj − 1,
2. for every 1 6 j 6 n, every vertex in Z1,j has degree (dj − 1)+p.
Thus, we have a (ā, b̄+p)|(c̄, c̄ − 1̄, d̄+p, (d̄ − 1̄)+p)-biregular graph with size (M̄0, M̄1 −
ei)|(K̄0,0, K̄0,1, K̄1,0, K̄1,1), where

K̄0 = (|V0,1| − |Z0,1|, . . . , |V0,m| − |Z0,m|), K̄1 = (|Z0,1|, . . . , |Z0,m|),
K̄2 = (|V1,1| − |Z1,1|, . . . , |V1,n| − |Z1,n|), K̄3 = (|Z1,1|, . . . , |Z1,n|).

We can check that the sizes allow us to apply the induction hypothesis to this graph,
keeping in mind that the sizes on the left have now decreased by one. We conclude
that Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(M̄0, M̄1 − ei)|(K̄0,0, K̄0,1, K̄1,0, K̄1,1) holds. Moreover, since
u ∈ U1,i, and hence the degree of u is b+pi , we have K̄1·1̄+K̄3·1̄ = bi+ps, for some integer s > 0.
Note also that K̄0 + K̄1 = N̄0 and K̄2 + K̄3 = N̄1. Thus, Φr

(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1)|(N̄0, N̄1)
holds where the variables z̄0, z̄1, z̄2, z̄3 are assigned with K̄0, K̄1, K̄2, K̄3, respectively.

For the “if” direction, suppose Φr
(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, N̄0, N̄1) holds. Then we can fix

some s, z̄0, z̄1, z̄2, z̄3, and i such that (a) x1,i 6= 0, (b) bi + ps = z̄1 · 1̄ + z̄3 · 1̄, (c) z̄0 + z̄1 = N̄0,
(d) z̄2 + z̄3 = N̄1, and (e) Φr−1

(ā,b̄+p)|(c̄,c̄−1̄,d̄+p,(d̄−1̄)+p)(M̄0, M̄1 − ei, z̄0, z̄1, z̄2, z̄3) holds.
We prove from this that a biregular graph of the appropriate size exists. Note that the

hypothesis requires that M̄0 · 1̄ + N̄0 · 1̄ + N̄1 · 1̄ > 2δ2
max + 3, where δmax is as defined in the

statement of the lemma. Since max(p, ā, b̄, c̄, c̄− 1̄, d̄, d̄− 1̄) = δmax, the equalities in (c) and
(d) imply that M̄0 · 1̄ + z̄0 · 1̄ + z̄1 · 1̄ + z̄2 · 1̄ + z̄3 · 1̄ is bigger than 2δ2

max + 3.
Note that (M̄1 − ei) · 1̄ = r − 1. Thus we can apply the induction hypothesis and

obtain a (ā, b̄+p)|(c̄, c̄− 1̄, d̄+p, (d̄− 1̄)+p)-biregular graph G = (U, V,E) with size (M̄0, M̄1 −
ei)|(z̄0, z̄1, z̄2, z̄3). Let V = V0 ∪ V1 ∪ V2 ∪ V3 be the partition of V , where

V0 = V0,1 ∪ · · · ∪ V0,m, V1 = V1,1 ∪ · · · ∪ V1,m,

V2 = V2,1 ∪ · · · ∪ V2,n, V3 = V3,1 ∪ · · · ∪ V3,n,

and such that
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1. for every 1 6 i 6 m, the degree of vertices in V0,j and V1,j are cj and cj − 1, respectively;
2. for every 1 6 i 6 n, the degree of vertices in V2,j and V3,j are d+p

j and (dj − 1)+p,
respectively.

Note also that z̄0 = (|V0,1|, . . . , |V0,m|), z̄1 = (|V1,1|, . . . , |V1,m|), z̄2 = (|V2,1|, . . . , |V2,m|), and
z̄3 = (|V3,1|, . . . , |V3,m|).

Let u be a fresh vertex. We can construct a (ā, b̄+p)|(c̄, d̄+p)-biregular graph G′ =
(U ∪ {u}, V, E′), by connecting the vertex u with every vertex in V1 ∪ V3. Note that the
formula states that z̄1 · 1̄ + z̄3 · 1̄ = bi + ps, which equals to |V1| + |V3|, thus, the degree
of u is bi + ps, which satisfies our requirement for a vertex to be in Ui. Since prior to the
connection, the degrees of V1,j and V3,j are cj − 1 and (dj − 1)+p, after connecting u with
each vertex in V1 ∪ V3, their degrees become cj and d+p

j . That is, the right side vertices now
have the desired degrees, i.e., G′ is (ā, b̄+p)|(c̄, d̄+p)-biregular. Moreover, z̄0 + z̄1 = N̄0 and
z̄2 + z̄3 = N̄1. Thus, the resulting graph G′ has size (M̄0, M̄1)|(N̄0, N̄1). J

The formula bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) characterizing the sizes of (ā, b̄+p)|(c̄, d̄+p)-
biregular graphs can be defined by combining all the cases described above.

4.2 Proof of Lemma 2 for 1-color graphs (the complete case)

We now turn to bootstrapping the biregular case to add the completeness requirement imposed
in Lemma 2. Let ā = (a1, . . . , ak), b̄ = (b1, . . . , bl), c̄ = (c1, . . . , cm) and d̄ = (d1, . . . , dn). Let
x̄0 = (x0,1, . . . , x0,k), x̄1 = (x1,1, . . . , x1,l), ȳ0 = (y0,1, . . . , y0,m), and ȳ1 = (y1,1, . . . , y1,n).

The formula c-bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) for the sizes of complete (ā, b̄+p)|(c̄, d̄+p)-
biregular graphs is the conjunction of bireg(ā,b̄+p)|(c̄,d̄+p)(x̄0, x̄1, ȳ0, ȳ1) such that
1. for every 1 6 i 6 k, if x0,i 6= 0, then ȳ0 · 1̄ + ȳ1 · 1̄ = ai;
2. for every 1 6 i 6 l, if x1,i 6= 0, then ȳ0 · 1̄ + ȳ1 · 1̄ = bi + pzi, for some zi;
3. for every 1 6 i 6 m, if y0,i 6= 0, then x̄0 · 1̄ + x̄1 · 1̄ = ci;
4. for every 1 6 i 6 n, if y1,i 6= 0, then x̄0 · 1̄ + x̄1 · 1̄ = di + pzi, for some zi.

To understand these additional conditions, consider a complete biregular graph meeting
the cardinality specification. The completeness criterion for 1-color graphs implies that
each element on the left is connected to every element on the right. Thus if the size of a
partition required to have fixed outdegree ai is non-empty, we must have that ai is exactly
the cardinality of the number of elements on the right. This is what is captured in the first
item. If we have non-empty size for a partition whose outdegree is constrained to be bi plus
a multiple of p, then the total number of elements on the right must be bi plus a multiple of
p. This is what the second item specifies. Considering elements on the left motivates the
third and fourth item. Thus we see that these conditions are necessary.

Suppose c-bireg(ā,b̄+p)|(c̄,d̄+p)(M̄0, M̄1, M̄0, M̄1) holds. Then, there is a (ā, b̄+p)|(c̄, d̄+p)-
biregular graphG = (U, V,E) with size (M̄0, M̄1)|(N̄0, N̄1), which are not necessarily complete.
Note that N̄0 · 1̄ + N̄1 · 1̄ is precisely the number of vertices in V . The first item states that
the existence of a vertex u with degree ai implies u is adjacent to every vertex in V . Now,
suppose there is a vertex u ∈ U with degree b+pi . If u is not adjacent to every vertex in V ,
then we can add additional edges so that u is adjacent to every vertex in V . The second
item states that |V | = b+pi . Thus, adding such edges is legal, since the degree of u stays b+pi .
We can make vertices in V adjacent to every vertex in U using the same argument.
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4.3 The proof for regular digraphs
Recall that in the prior argument we consider only digraphs without any self-loop. Thus,
a digraph can be viewed as a bipartite graph by splitting every vertex u into two vertices,
where one is adjacent to all the incoming edges, and the other to all the outgoing edges.
Thus, A|B-regular digraphs with size M̄ can be characterized as A|B-biregular graphs with
size M̄ |M̄ . For more details, see [13, Section 8].

5 Extensions and applications

A type/behavior profile for a modelM is the vector of cardinalities of the sets Aπ,g computed in
M , where π ranges of 1-types and g over behavior functions (for a fixed φ). Recall that in the
proof Theorem 4 we actually showed, in Lemma 6, that we can obtain existential Presburger
formulas which define exactly the vectors of integers that arise as the type/behavior profiles
of models of φ. The domain of the model can be broken up as a disjoint union of sets Aπ,g,
and thus its cardinality is a sum of numbers in this vector. We can thus add one additional
integer variable xtotal in PRESφ, which will be free, with an additional equation stating that
xtotal is the sum of all Xπ,g’s. This allows us to conclude definability of the spectrum.

I Theorem 12. From an FO2
Pres sentence φ, we can effectively construct a Presburger

formula ψ(n) such that N |= ψ(n) exactly when n is the size of a finite structure that satisfies
φ, and similarly a formulas ψ∞(n) such that N∞ |= ψ∞(n) exactly when n is the size of a
finite or countably infinite model of φ.

We say that φ has NP data complexity of (finite) satisfiability if there is a non-deterministic
algorithm that takes as input a set of ground atoms A and determines whether φ ∧

∧
A

is satisfiable, running in time polynomial in the size of A. Pratt-Hartmann [20] showed
that C2 formulas have NP data complexity of both satisfiability and finite satisfiability.
Following the general approach to data complexity from [20], while plugging in our Presburger
characterization of FO2

Pres, we can show that the same data complexity bound holds for
FO2

Pres.

I Theorem 13. FO2
Pres formulas have NP data complexity of satisfiability and finite satis-

fiability.

Proof. We give only the proof for finite satisfiability. We will follow closely the approach
used for C2 in Section 4 of [20], and the terminology we use below comes from that work.

Given a set of facts D, our algorithm guesses a set of facts (including equalities) on
elements of D, giving us a finite set of facts D+ extending D, but with the same domain as
D. We check that our guess is consistent with the universal part α and such that equality
satisfies the usual transitivity and congruence rules.

Now consider 1-types and 2-types with an additional predicate Observable. Based on this
extended language, we consider good functions as before, and define the formulas consistent1
and consistent2 based on them. 1-types with that contain the predicate Observable will be
referred to as observable 1-types. The restriction of a behavior function to observable 1-types
will be called an observable behavior. Given a structure M , an observable one-type π, and
an observable behavior function g0, we let Mπ,g0 be the elements of M having 1-type π and
observable behavior g0, and we analogously let Dπ,g0 be the elements of D whose 1-type and
behavior in D+ match π and g0.
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We declare that all elements in A are in the predicate Observable. Add to the formulas
consistent1 and consistent2 additional conjuncts stating that for each observable 1-type π
and for each observable behavior function g0, the total sum of the number of elements with
1-type π and a behavior function g extending g0 (i.e., the cardinality of Mπ,g0) is the same
as |Dπ,g0 |. with the cardinality being counted modulo equalities of D+.

At this point our algorithm returns true exactly when the sentence obtained by existentially
quantifying this extended set of conjuncts is satisfiable in the integers. The solving procedure
is certainly in NP. In fact, since the number of variables is fixed, with only the constants
varying, it is in PTIME [17].

We argue for correctness, focusing on the proof that when the algorithm returns true we
have the desired model. Assuming the constraints above are satisfied, we get a graph, and
from the graph we get a model M . M will clearly satisfy φ, but its domain does not contain
the domain of D. Letting O be the elements of M satisfying Observable, we know, from
the additional constraints imposed, that the cardinality of O matches the cardinality of the
domain of D modulo the equalities in D+, and for each observable 1-type πo and observable
behavior g0, |Mπ,g0 | = |Dπ,g0 .

Fix an isomorphism λ taking each Mπ,g0 to (equality classes of) Dπ,g0 . Create M ′ by
redefining M on O by connecting pairs (o1, o2) via E exactly when λ(o1), λ(o2) ise connected
via E in D+. We can thus identify O with D+ modulo equalities in M ′.

ClearlyM ′ now satisfies D. To see thatM ′ satisfies φ, we simply note that since all of the
observable behaviors are unchanged in moving from an element e in M to the corresponding
element λ(e) in M ′, and every such e modified has an observable type, it follows that the
behavior of every element in M is unchanged in moving from M to M ′. Since the 1-types
are also unchanged, M ′ satisfies φ. J

Note that the data complexity result here is best possible, since even for FO2 the data
complexity can be NP-hard [20].

6 Conclusion

We have shown that we can extend the powerful language two-variable logic with counting to
include ultimately periodic counting quantifiers without sacrificing decidability, and without
losing the effective definability of the spectrum of formulas within Presburger arithmetic.
We believe that by refining our proof we can obtain a 2NEXPTIME bound on complexity.
However the only lower bound we know of is NEXPTIME, inherited from FO2. We leave the
analysis of the exact complexity for future work.
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