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Abstract

We propose a generic categorical framework for learning
unknown formal languages of various types (e.g. finite or
infinite words, weighted and nominal languages). Our ap-
proach is parametric in a monad T that represents the given
type of languages and their recognizing algebraic struc-
tures. Using the concept of an automata presentation of
T-algebras, we demonstrate that the task of learning a T-
recognizable language can be reduced to learning an ab-
stract form of algebraic automaton whose transitions are
modeled by a functor. For the important case of adjoint
automata, we devise a learning algorithm generalizing An-
gluin’s L∗. The algorithm is phrased in terms of categorically
described extension steps; we provide for a termination and
complexity analysis based on a dedicated notion of finite-
ness. Our framework applies to structures likeω-regular lan-
guages that were not within the scope of existing categori-
cal accounts of automata learning. In addition, it yields new
learning algorithms for several types of languages for which
no such algorithms were previously known at all, includ-
ing sorted languages, nominal languages with name bind-
ing, and cost functions.

Keywords Automata Learning, Monads, Algebras

1 Introduction

Active automata learning is the task of inferring a finite
representation of an unknown formal language by asking
questions to a teacher. Such learning situations naturally
arise, e.g., in software verification, where the “teacher” is
some reactive system and one aims to construct a formal
model of it by running suitable tests [61]. Starting with An-
gluin’s [8] pioneering work on learning regular languages,
active learning algorithms have been developed for count-
less types of systems and languages, including ω-regular
languages [9, 32], tree languages [30], weighted languages
[12, 63], and nominal languages [47]. Most of these exten-
sions are tailor-made modifications of Angluin’s L∗ algo-
rithm and thus bear close structural analogies. This has mo-
tivated recent work towards a uniform category theoretic
understanding of automata learning, based on modelling
state-based systems as coalgebras [14, 65]. In the present
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paper, we propose a novel algebraic approach to automata
learning.
Our contributions are two-fold. First, we study the prob-

lem of learning an abstract form of automata originally in-
troduced by Arbib and Manes [10] in the context of mini-
mization: given an endofunctor F on a category D and ob-
jects I ,O ∈ D , an F -automaton consists of an object Q of
states and morphisms δQ , iQ and fQ as shown below, repre-
senting transitions, initial states and final states (or outputs).

FQ

δQ
��

I
iQ

// Q
fQ

// O

Taking FQ = Σ ×Q on Set with I = 1 and O = {0, 1} yields
classical deterministic automata, but also several other no-
tions of automata (e.g. weighted automata, residual nonde-
terministic automata, and nominal automata) arise as in-
stances. As our first main result, we devise a generalized
L∗ algorithm for adjoint F -automata, i.e. automata whose
type functor F admits a right adjoint G , based on alternat-
ing moves along the initial chain for the functor I + F and
the final cochain for the functor O × G . Our generic algo-
rithm subsumes known L∗-type algorithms for all the above
classes of automata, and its analysis yields uniform proofs of
their correctness and termination. In addition, it also instan-
tiates to a number of new learning algorithms, e.g. for sorted
automata and for several versions of nominal automata with
name binding.
We subsequently show that learning algorithms for F -

automata (including our generalized L∗ algorithm) apply far
beyond the realm of automata: they can be used to learn
languages representable by monads [7, 59]. Given a monad
T on the category D , we model a language as a morphism
L : TI → O in D . At this level of generality, one obtains
a concept of T-recognizable language (i.e. a language recog-
nized by a finite T-algebra) that uniformly captures numer-
ous automata-theoretic classes of languages. For instance,
regular andω-regular languages (the languages accepted by
classical finite automata and Büchi automata, respectively)
correspond precisely to T-recognizable languages for the
monads representing semigroups and Wilke algebras,

TI = I+ on Set and T(I , J ) = (I+, Iup + I ∗ × J ) on Set2.

Here Iup denotes the set of ultimately periodic infinite words
over the alphabet I . For ω-regular languages, Farzan et al.
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[32] proposed an algorithm that learns a language L ⊆ Iω

of infinite words by learning the set of lassos in L, i.e. the
regular language of finite words given by

lasso(L) = {u$v : u ∈ I ∗,v ∈ I+,uvω ∈ L } ⊆ (I + {$})∗.

We show that this idea extends to general T-recognizable
languages, using the concept of an automata presenta-

tion. Such a presentation allows for the linearization of T-
recognizable languages, i.e. a reduction to “regular” lan-
guages accepted by finite F -automata for suitable F .
In combination, our results yield a generic strategy for

learning an unknown T-recognizable language L : TI → O :
(1) find an automata presentation for the free T-algebraTI ;
(2) learn the minimal automaton for the linearization of L.
This approach turns out to be applicable to a wide range of
languages. In particular, it covers several settings for which
no learning algorithms are known, e.g. cost functions [23].

Related work. A categorical interpretation of several key
concepts in Angluin’s L∗ algorithm for classical automata
was first given by Jacobs and Silva [37], and later extended
to F -automata in a category, i.e. to similar generality as in
the present paper, by van Heerdt, Sammartino, and Silva
[64]. Their main contribution is an abstract categorical
framework (CALF) for correctness proofs of learning algo-
rithms, while a concrete generic algorithm is not given. Van
Heerdt et al. [65] also study learning automata with side ef-
fects modelled via monads; this use of monads is unrelated
to the monad-based abstraction of algebraic recognition in
the present paper. Barlocco, Kupke, and Rot [14] develop
a learning algorithm for set coalgebras (with all underlying
concepts phrased categorically), parametric in a coalgebraic
logic. Its scope is quite different from our generalized L∗ al-
gorithm: via genericity over the branching type it covers,
e.g., labeled transition systems, but unlike our algorithm it
does not apply to, e.g., nominal automata. The connections
between the two approaches are further discussed in Re-
mark 4.16.
Automata learning can be seen as an interactive ver-

sion of automata minimization, which has been extensively
studied from a (co-)algebraic perspective [5, 10, 16, 24, 35,
63]. In particular, our chain-based iterative learning algo-
rithm resembles the coalgebraic approach to partition re-
finement [1].

2 Preliminaries

We proceed to recall concepts from category theory and
the theory of nominal sets that we will use throughout
the paper. Readers should be familiar with basic notions
such as functors, (co-)limits and adjunctions; see, e.g., Mac
Lane [41].

Functor (co-)algebras. Let H : D → D be an endofunctor
on a category D . An H -algebra is a pair (A,α) consisting of

an object A ∈ D and a morphism α : HA→ A. A homomor-

phismh : (A,α) → (B, β) betweenH -algebras is a morphism
h : A → B such that h · α = β · Fh. An H -algebra (A,α) is
initial if for every H -algebra (B, β) there is a unique homo-
morphism (A,α) → (B, β); we generally denote the initial
algebra of H (unique up to isomorphism if it exists) as µH .
IfD is cocomplete andH preserves filtered colimits, µH can
be constructed as the colimit of the initial ω-chain forH [6]:

µH = colim( 0
¡
−→ H0

H ¡
−−→ H 20

H 2¡
−−−→ H 30→ · · · ),

where ¡ is the unique morphism from the initial object 0
of D into H0, and Hn means H applied n times. Letting
jn : Hn0 → µH (n ∈ N) denote the colimit cocone, we ob-
tain theH -algebra structure on µH as the unique morphism
α : H (µH ) → µH satisfying

α · Hjn = jn+1 for all n ∈ N.

Dually, one has notions of a coalgebra for the endofunctor
H , a coalgebra homomorphism, and a final coalgebra. Coal-
gebras provide an abstract notion of state-based transition
system: We think of the base object A of an H -coalgebra as
an object of states, and of its structure map α : A→ HA as
assigning to each state a structured collection of successors.
Coalgebra homomorphisms are behaviour-preserving maps,
and final coalgebras have abstracted behaviours as states.

Monad algebras. A monad T = (T , µ,η) on a category D

is given by an endofunctor T : D → D and two natural
transformations η : IdD → T and µ : TT → T (the unit and
multiplication) such that the following diagrams commute:

TTT
T µ

//

µT
��

TT
µ
��

TT
µ

// T

T
Tη

//

■■
■■

■■
■

■■
■■

■■
■ TT

µ
��

T
ηT

oo

✉✉
✉✉
✉✉
✉

✉✉
✉✉
✉✉
✉

T

A T-algebra is an algebra (A,α) for the endofunctor T for
which the following diagrams commute:

TTA
µA

//

Tα
��

TA

α
��

TA
α

// A

A

■■
■■

■■
■

■■
■■

■■
■

ηA
// TA

α
��

A

A homomorphism of T-algebras is just a homomorphism of
the underlying T -algebras. For each X ∈ D , the T-algebra
TX = (TX , µX ) is called the free T-algebra on X .

Monads form a categorical abstraction of algebraic theo-
ries [43]. In fact, every algebraic theory (given by a finitary
signature Γ and a set E of equations between Γ-terms) in-
duces of monad T on Set where TX is the underlying set of
the free (Γ, E)-algebra on X (i.e. the set of all Γ-terms over
X modulo equations in E), and the maps ηX : X → TX and
µX : TTX → TX are given by inclusion of variables and
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flattening of terms, respectively. Then the categories of T-
algebras and (Γ, E)-algebras are isomorphic. Conversely, ev-
erymonadT on SetwithT preserving filtered colimits arises
from some algebraic theory (Γ, E) in this way.
Similarly, every ordered algebraic theory [17], given by

a signature Γ and a set E of inequations s ≤ t between Γ-
terms, yields amonadT on the categoryPos of posets whose
algebras are ordered Γ-algebras (i.e. Γ-algebras on a poset
with monotone operations) satisfying the inequations in E.

Free monads. Let H : D → D be an endofunctor on a
category D with coproducts, and suppose that, for each
X ∈ D , the initial algebra µ(X + H ) for the functor X +
H exists. Then H induces a monad TH , the free monad

over H [15]. It is given on objects by THX = µ(X + H ); its
action on morphisms and the unit and multiplication are
defined via initiality of the algebras µ(X +H ). Then the cat-
egories of TH -algebras and H -algebras are isomorphic: If

B+H (THB)
[iB,αB ]
−−−−−→ THB denotes the B+H -algebra structure

ofTHB = µ(B +H ), the isomorphism is given on objects by

(THB
β
−→ B) 7→ (HB

HiB
−−−→ H (THB)

αB
−−→ THB

β
−→ B)

and on morphisms by h 7→ h.

Factorization systems. A factorization system (E,M) in a
category D is given by two classes E andM of morphisms
such that (i) E and M are closed under composition and
contain all isomorphisms, (ii) every morphism f has a fac-
torization f = m · e with e ∈ E and m ∈ M, and (iii) the
diagonal fill-in property holds: given a commutative square
m · f = д · e with e ∈ E andm ∈ M, there exists a unique
morphism d with f = d · e and д = m · d . The morphisms
m and e in (i) are unique up to isomorphism and are called
the image and coimage of f . Categories of (co-)algebras typ-
ically inherit factorizations from their underlying category:
(1) If H : D → D is an endofunctor with H (E) ⊆ E, the
factorization system (E,M) forD lifts to the category ofH -
algebras, that is, every H -algebra homomorphism uniquely
factorizes into a homomorphism in E followed by a homo-
morphism inM. Dually, if H (M) ⊆ M, then the category
of H -coalgebras has a factorization system lifting (E,M).
(2) If T is a monad on D with T (E) ⊆ E, the factorization
system (E,M) for D lifts to the category of T-algebras.
A factorization system (E,M) is proper if every morphism
in E is epic and every morphism in M is monic. When-
ever a proper factorization system (E,M) is fixed, quo-
tients and subobjects in D are represented by morphisms
in E andM, respectively. In particular, in the situation of
(1) and (2) above, we represent quotient (co-)algebras and
sub(co-)algebras by homomorphisms in E and M, respec-
tively.

Closed categories. A symmetric monoidal category is a cat-
egory D equipped with a functor ⊗ : D × D → D (tensor

product), an object ID ∈ D (tensor unit), and isomorphisms

(X⊗Y )⊗Z � X⊗(Y⊗Z ), X⊗Y � Y⊗X , ID⊗X � X � X⊗ID ,

natural in X ,Y ,Z ∈ D , satisfying coherence laws [41, Chap-
ter VII].D is closed if the endofunctorX ⊗ (−) : D → D has
a right adjoint (denoted by [X ,−]) for everyX ∈ D , i.e. there
is a natural isomorphism D(X ⊗ Y ,Z ) � D(Y , [X ,Z ]).

Nominal sets. Fix a countably infinite set A of names, and
let Perm(A) be the group of all permutations π : A→ Awith
π (a) = a for all but finitely many a. A nominal set [51] is a
setX with a group action · : Perm(A)×X → X subject to the
following property: for each x ∈ X there is a finite set S ⊆ A

(a support of x ) such that every π ∈ Perm(A) that leaves all
elements of S fixed satisfies π ·x = x . This implies that x has
a least support supp(x) ⊆ A. The idea is that x is a syntactic
object with bound and free variables (e.g. a λ-term modulo
α-equivalence), and that supp(x) is its set of free variables.
A nominal set X is orbit-finite if the number of orbits (i.e.
equivalence classes of the relation x ≡ y iff x = π · y for
some π ) is finite. A map f : X → Y between nominal sets is
equivariant if f (π ·x) = π · f (x) for x ∈ X and π ∈ Perm(A).

3 Automata in a Category

We next develop the abstract categorical notion of automa-
ton that underlies our generic learning algorithm.

Notation 3.1. For the rest of this paper, let us fix
(1) a categoryD with a proper factorization system (E,M),
(2) an endofunctor F : D → D , and
(3) two objects I ,O ∈ D .

Definition 3.2 (Automaton (cf. [5, 10])). An (F -)automaton

is given by an objectQ ∈ D of states and three morphisms

δQ : FQ → Q, iQ : I → Q, fQ : Q → O,

representing transitions, initial states, and final states (or
outputs), respectively. A homomorphism between automata
(Q, δQ , iQ , fQ ) and (Q ′, δQ ′, iQ ′, fQ ′) is a morphism h : Q →
Q ′ in D such that the following diagrams commute:

FQ
δQ

//

Fh
��

Q

h
��

FQ ′
δQ′

// Q ′

I
iQ

//

iQ′ ##❋
❋❋

❋❋
❋❋ Q

h
��

fQ
// O

Q ′
fQ′

;;✇✇✇✇✇✇

Example 3.3 (Σ-automata). Suppose that (D , ⊗, ID ) is a
symmetric monoidal closed category. Choosing the data

F = Σ ⊗ (−), I = ID , and O ∈ D (arbitrary)

for a fixed input alphabet Σ ∈ D yields Goguen’s notion
of a Σ-automaton [35]. In our applications, we shall work
with the categories Set (sets and functions), Pos (posets and
monotone maps), JSL (join-semilattices with ⊥ and semilat-
tice homomorphisms preserving ⊥), K-Vec (vector spaces
over field K and linear maps) and Nom (nominal sets and
equivariant maps). The factorization systems and monoidal
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structures are given in the table below. In the fourth row,
⊗ is the usual tensor product of vector spaces representing
bilinear maps. Similarly, in the third row, ⊗ is the tensor
product of semilattices representing bimorphisms [13], i.e.
semilattice morphisms h : A ⊗ B → C correspond to maps
h′ : A × B → C preserving ∨ and ⊥ in each component.

D (E,M) ⊗ ID O

Set (surjective, injective) × 1 {0, 1}
Pos (surjective, embedding) × 1 {0 < 1}
JSL (surjective, injective) ⊗ {0 < 1} {0 < 1}
K-Vec (surjective, injective) ⊗ K K

Nom (surjective, injective) × 1 {0, 1}

Table 1. Symmetric monoidal closed categories

We choose the input alphabet Σ ∈ D to be a finite set, a dis-
crete finite poset, a free semilattice on a finite set, a finite-
dimensional vector space, and the nominal set A of atoms,
respectively, and the output object O ∈ D as shown in the
last column. Then Σ-automata are precisely classical deter-
ministic automata [53], ordered automata [50], semilattice
automata [39], linear weighted automata [31], and nominal
automata [18]. See Example 3.9 and 3.10 for further details.

Example 3.4 (Tree automata). Let Γ be a signature and
FΓQ =

∐

n∈N

∐

γ ∈Γn Q
n on Set the induced polynomial func-

tor, with Γn the set of n-ary operations in Γ. Choosing I = ∅
and O = 2, an FΓ-automaton is a (bottom-up) tree automa-
ton over Γ [25], shortly a Γ-automaton. For the analogous
functor FΓ on Pos and O = {0 < 1}, we obtain ordered Γ-

automata.

In the following, we focus on adjoint automata, i.e. au-
tomata whose transition type F is a left adjoint:

Assumptions 3.5. For the rest of this section and in Sec-
tion 4, our data is required to satisfy the following condi-
tions:
(1) D is complete and cocomplete; in particular, D has an
initial object 0 and a terminal object 1.
(2) The unique morphism ¡ : 0 → I lies in M, and the
unique morphism ! : O → 1 lies in E.
(3) The functor F : D → D has a right adjoint G : D → D .
(4) The functor F preserves quotients (F (E) ⊆ E).

Example 3.6. Every symmetric monoidal closed category
D with F = Σ ⊗ − satisfies Assumption (3): closedness as-
serts precisely that F has the right adjoint G = [Σ,−]. The
categories D of Table 1 also satisfy the remaining assump-
tions.

Remark 3.7. The key feature of our adjoint setting is that
automata can be dually viewed as algebras and coalgebras

for suitable endofunctors. In more detail:

(1) An automaton Q corresponds precisely to an algebra

( FIQ
αQ
−−→ Q ) = ( I + FQ

[iQ ,δQ ]
−−−−−−→ Q )

for the endofunctor FI = I + F equipped with an output
morphism fQ : Q → O . Since FI preserves filtered colimits
(using that the left adjoint F preserves all colimits and the
functor I+(−) preserves filtered colimits), the initial algebra
µFI for FI emerges as the colimit of the initial ω-chain:

µFI = colim( 0
¡
−→ FI0

FI ¡
−−→ F 2I 0

F 2
I
¡

−−→ F 3I 0→ · · · ).

The colimit injections and the FI -algebra structure on µFI
are denoted by

jn : F
n
I 0→ µFI (n ∈ N) and α : FI (µFI ) → µFI .

For any automaton Q (viewed as an FI -algebra), we write

eQ : µFI → Q

for the unique FI -algebra homomorphism from µFI into Q .
(2) Dually, replacing δQ : FQ → Q by its adjoint transpose
δ
@
Q
: Q → GQ , an automaton can be presented as a coalge-

bra

(Q
γQ
−−→ GOQ ) = (Q

〈fQ ,δ
@
Q
〉

−−−−−−→ O ×GQ )

for the endofunctor GO = O × G equipped with an ini-
tial state iQ : I → Q . Since GO preserves cofiltered limits,
the final coalgebra νGO arises as the limit of the final ωop-
cochain:

νGO = lim( 1
!
←− GO1

GO !
←−−− G2

O1
G2
O !
←−−− G3

O1← · · · ).

The limit projections and the GO -coalgebra structure on
νGO are denoted by

j ′k : νGO → Gk
O1 (k ∈ N) and νGO

γ
−→ GO (νGO ).

For any automatonQ (viewed as a GO -coalgebra), we write

mQ : Q → νGO

for the unique GO -coalgebra homomorphism into νGO .

Definition 3.8 (Language). (1) A language is a morphism

L : µFI → O .

(2) The language accepted by an automatonQ is defined by

LQ = ( µFI
eQ
−−→ Q

fQ
−−→ O ).

Example 3.9 (Σ-automata, continued). (1) In the setting
of Example 3.3, the initial algebra µFI and the initial chain
for the functor FI = ID + Σ ⊗ − can be described as follows
[35]. Let Σn = Σ ⊗ Σ ⊗ · · · ⊗ Σ denote the nth tensor power
of Σ (where Σ0

= ID ), and put

Σ
<n
=

∐

m<n

Σ
m (n ∈ N) and Σ

∗
=

∐

n∈N

Σ
n
.

Then µFI is carried by the object Σ∗ of words, and the initial
chain is given by the coproduct injections

Σ
<0
֌ Σ

<1
֌ Σ

<2
֌ Σ

<3
֌ · · · .
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(2) For the functorGO = O × [Σ,−] the final coalgebra νGO

is carried by the object [Σ∗,O] of languages and we have the
final cochain

[Σ<0
,O] ← [Σ<1

,O] ← [Σ<2
,O] ← [Σ<3

,O] ← · · ·

with connectingmorphisms given by restriction. To see this,
consider the contravariant functor P = [−,O] : D → Dop.
It is not difficult to verify that P is a left adjoint (with right
adjoint Pop) and that there is a natural isomorphism

PFI � G
op

O
P .

If Alg FI and CoalgGO denote the categories of FI -algebras
and GO -coalgebras, it follows [36, Theorem 2.4] that P lifts
to a left adjoint P : Alg FI → (CoalgGO )

op given by

( FIQ
αQ
−−→ Q ) 7→ ( PQ

PαQ
−−−→ PFIQ � GOPQ ).

Since left adjoints preserve initial objects, P maps the initial
algebra µFI to the final coalgebra νGO , i.e. one has νGO =

P(µFI ) with the coalgebra structure

γ = (νGO = P(µFI )
Pα
−−→ PFI (µFI ) � GOP(µFI ) = GO (νGO ) ).

Moreover, applying P to the initial chain for FI yields the
final cochain for GO :

( 1
!
←− GO1

GO !
←−−− G2

O1 · · · ) = ( P0
P ¡
←− PFI 0

PFI ¡
←−−− PF 2I 0 · · · ).

Since µFI = Σ
∗ and P = [−,O], we obtain the above descrip-

tion of νGO and of the final cochain forGO .
(3) For the categories of Table 1, the categorical notion of
(accepted) language given in Definition 3.8 thus specializes
to the familiar ones. For illustration, let us spell out the case
D = Set. A Σ-automaton in Set is precisely a classical deter-
ministic automaton: it is given by a set Q of states, a transi-
tion map δQ : Σ × Q → Q , a map iQ : 1 → Q (representing
an initial state q0 = iQ (∗)), and a map fQ : Q → 2 (rep-
resenting a set f −1Q [1] of final states). From (1) and (2) we
obtain the well-known description of the initial algebra for
FI = 1 + Σ × − as the set Σ∗ of finite words over Σ (with
algebra structure α : 1 + Σ × Σ

∗ → Σ
∗ given by ∗ 7→ ε and

(a,w) 7→ wa) and of the final coalgebra for GO = 2 × [Σ,−]
as the set [Σ∗, 2] � PΣ∗ of all languages L ⊆ Σ

∗ [55]. The
unique FI -algebra homomorphism eQ : Σ∗ → Q maps a
word w ∈ Σ

∗ to the state of Q reached on input w . Thus,
the language LQ = fQ · eQ accepted by Q is the usual con-
cept: w lies in LQ if and only if Q reaches a final state on
input w .

Example 3.10 (Nominal automata). Our notion of automa-
ton (Definition 3.2) has several natural instantiations to the
category Nom of nominal sets and equivariant maps.
(1) The simplest instance was already mentioned in Exam-
ple 3.3: a Σ-automaton in Nom corresponds precisely to
a nominal deterministic automaton [18]. For simplicity, we
choose the alphabet Σ = A. A nominal automaton is given
by a nominal set Q of states, an equivariant transition map

δQ : A × Q → Q , an equivariant map iQ : 1 → Q (repre-
senting an equivariant initial state q0 ∈ Q), and an equivari-
ant map fQ : Q → 2 (representing an equivariant subset
F ⊆ Q of final states). The initial algebra A

∗ is the nomi-
nal set of words over A with group action π · (a1 . . . an) =

(π ·a1) . . . (π ·an) for a1 . . . an ∈ A
∗ and π ∈ Perm(A). Thus,

a language L : A
∗ → 2 corresponds to an equivariant set of

words over A.
Nominal automata with orbit-finite state space are

known to be expressively equivalent to Kaminski and
Francez’ [38] deterministic finite memory automata.
(2) Now Nom carries a further symmetric monoidal closed
structure, the separated product ∗ given on objects by

X ∗ Y = { (x ,y) ∈ X × Y : x #y },

where x #y means that supp(x) ∩ supp(y) = ∅. The right
adjoint of F = A ∗ (−) is the abstraction functor G = [A](−)

[51] which maps a nominal set X to the quotient of A × X

modulo the equivalence relation ∼ defined by (a, x) ∼ (b,y)
iff (ac) · x = (bc) · y for some (equivalently, all) c ∈ A with
c #a,b, x ,y. We write 〈a〉x for the equivalence class of (a, x),
which we think of as the result of binding the name a in x .
F -automata are precisely the separated automata recently
introduced by Moerman and Rot [46].
(3) By combining the adjunctions of (1) and (2), we obtain
the adjoint pair of functors F ⊣ G with

F = A × (−) + A ∗ (−), G = [A,−] × [A](−).

The ensuing notion of automaton coincides with one used
in Kozen et al.’s [40] coalgebraic representation of nominal
Kleene algebra [33]. Such automata have two types of transi-
tions, free transitions ([A,−]) and bound transitions ([A](−)).
They accept bar languages [56]: putting Ā = A∪{〈a | a ∈ A}

(changing the original notation from |a to 〈a for compatibil-
ity with dynamic sequences as discussed next), a bar string is
just a word over Ā. We consider 〈a as binding a to the right.
This gives rise to the expected notions of free names and α-
equivalence ≡α . A bar string is clean if its bound names are
mutually distinct and distinct from all its free names. Simpli-
fying slightly, we define a bar language to be an equivariant
set of bar strings modulo α-equivalence, i.e. an equivariant
subset of Ā∗/≡α . The initial algebra µF1 is the nominal set of
clean bar strings. A language in our sense is thus an equivari-
ant set of clean bar strings; such languages are in bijective
correspondence with bar languages [56].
(4) We note next that [A](−) is itself a left adjoint, our first
example of a left adjoint that is not of the form Σ ⊗ − for a
closed structure ⊗. The right adjoint R is given on objects
by RX = { f ∈ [A,X ] : a # f (a) for all a ∈ A } [51]. We
extend the above notion of automaton with this feature, i.e.
we now work with the adjoint pair F ⊣ G given by

F = A × (−) + A ∗ (−) + [A](−), G = [A,−] × [A](−) × R.

5
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The initial algebra µF1 now consists of words built from
three types of letters; we denote the new type of letters in-
duced by the new summand [A](−) in F by a〉 (for a ∈ A).
Recalling that words grow to the right, we see that a〉 binds
to the left. We read a〉 as deallocating the name or resource a.
Languages in this model consist of dynamic sequences [34].
We associate such languages with a species of nominal au-
tomata having three types of transitions: free and bound

transitions as above, and deallocating transitions q
a 〉
−−→ q′

with a #q′. To the best of our knowledge, this notion of nom-
inal automaton has not appeared in the literature before.

Example 3.11 (Sorted Σ-automata). In our applications in
Section 5, we shall encounter a generalized version of Σ-
automata where (1) the input object I is arbitrary, not nec-
essarily equal to the tensor unit ID , and (2) the automaton
has a sorted object of states and consumes sorted words.
This reflects the fact that the algebraic structures arising
in algebraic language theory are often sorted. For brevity,
we only treat the case of sorted automata in Set. Fix a set
S of sorts and a family of sets Σ = (Σs,t )s,t ∈S ; we think
of the elements of Σs,t as letters with domain sort s and
codomain sort t . We instantiate our setting to the adjoint
pair F ⊣ G : SetS → SetS defined as follows for Q ∈ SetS

and s, t ∈ S :

(FQ)t =
∐

s ∈S Σs,t ×Qs , (GQ)s =
∏

t ∈S [Σs,t ,Qt ].

Choosing I ∈ SetS arbitrary and the output object O = 2,
the S-sorted set with two elements in each component, an
F -automaton is a sorted Σ-automaton. It is given by an S-
sorted set of states Q , transitions δQ,s,t : Σs,t × Qt → Qt

(s, t ∈ S), initial states i : I → Q and an output map
fQ : Q → 2 (representing an S-sorted set of final states). The
initial algebra µFI is the S-sorted set of all well-sorted words
over Σ with an additional first letter from I . More precisely,
(µFI )t consists of all words xa1 . . . an with x ∈

∐

s ∈S Is and
a1, . . . ,an ∈

∐

r ,s Σr ,s such that the sorts of consecutive let-
ters match, i.e. there exist sorts s = s0, s1, . . . , sn = t ∈ S

such that x ∈ Is and ai ∈ Σsi−1,si for i = 1, . . . ,n. In particu-
lar, in the single-sorted case we have µFI = I × Σ

∗. For any
well-sorted input wordw = xa1 . . . an one obtains the run

x
−→ q0

a1
−→ q1 → · · ·

an
−−→ qn

in Q where q0 = iQ,s(x) and qi = δQ,si−1,si (ai ,qi−1) for i =
1, . . . ,n, andw is accepted if and only if qn is a final state.

We conclude with a discussion of minimal automata.

Definition 3.12 (Minimal automaton). An automaton Q is
called (1) reachable if the unique FI -algebra homomorphism
eQ : µFI → Q lies in E, and (2) minimal if it is reachable
and for every reachable automatonQ ′ with LQ = LQ ′ , there
exists a unique automata homomorphism from Q ′ to Q .

Theorem 3.13. For every language L there exists a minimal

automaton Min(L) accepting L, unique up to isomorphism.

Proof sketch. We describe the construction of the minimal
automaton. By equipping µFI with the final states L : µFI →
O , we can view µFI as aGO -coalgebra. Consider the (E,M)-
factorization of the unique coalgebra homomorphismmµFI :

mµFI = ( µFI
eMin(L)

// // Min(L) //
mMin(L)

// νGO ).

The object Min(L) can be uniquely equipped with an au-
tomaton structure for which eMin(L) is an FI -algebra homo-
morphism and mMin(L) is a GO -coalgebra homomorphism.
This automaton is the minimal acceptor for L. �

The minimization theorem and its proof are closely re-
lated to the classical work of Arbib and Manes [10] on
the minimal realization of dynamorphisms, i.e. F -algebra
homomorphisms from µFI into νGO . Under different as-
sumptions on the type functor F and the base category D

(e.g. co-wellpoweredness), minimization results were also
established by Adámek and Trnková [5] and, recently, by
van Heerdt et al. [63].

4 A Categorical L∗ Algorithm

Tomotivate our learning algorithm for adjoint automata, we
recall Angluin’s classical L∗ algorithm [8] for learning an un-
known Σ-automaton Q in Set. The algorithm assumes that
the learner has access to an oracle (the teacher) that can be
asked two types of questions:
(1) Membership queries: given a wordw ∈ Σ∗, isw ∈ LQ?
(2) Equivalence queries: given an automatonH , is LH = LQ?
If the answer in (2) is “no”, the teacher discloses a counterex-
ample, i.e. a wordw ∈ LQ \ LH ∪ LH \ LQ , to the learner.
The idea of L∗ is to compute a sequence of approxima-

tions of the unknown automaton Q by considering finite
(co-)restrictions of the morphism mQ · eQ , as indicated by
the diagram below. Note that the kernel of mQ · eQ is pre-
cisely the well-known Nerode congruence of LQ .

Σ
<0 // // · · · Σ

<N // // Σ
<N+1 // // · · · Σ

∗

eQ

��
✤
✤
✤
✤
✤

S

hS,T

%%

eS,T����

OO

OO

HS,T
��
mS,T
��

Q

mQ

��
✤
✤
✤
✤
✤

[T , 2]

[Σ<0
, 2] ··oooo [Σ<K

, 2]

OOOO

[Σ<K+1
, 2]oooo ··oooo [Σ∗, 2]

(1)

In more detail, the algorithmmaintains a pair (S,T ) of finite
sets S,T ⊆ Σ

∗ (“states” and “tests”). For any such pair, the
restriction ofmQ · eQ to the domain S and codomain [T , 2],

hS,T : S → [T , 2], hS,T (s)(t) = LQ (st) for s ∈ S, t ∈ T ,

is called the observation table for (S,T ). It is usually repre-
sented as an |S |× |T |-matrix with binary entries. The learner

6
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can computehS,T via membership queries. The pair (S,T ) is
closed if for each s ∈ S and a ∈ Σ there exists s ′ ∈ S with

hS∪SΣ,T (sa) = hS,T (s
′).

It is consistent if, for all s, s ′ ∈ S ,

hS,T (s) = hS,T (s
′) implies hS,T∪ΣT (s) = hS,T∪ΣT (s

′).

Initially, one puts S = T = {ε}. If at some stage the pair
(S,T ) is not closed or not consistent, either S or T can be
extended by invoking one of the following two procedures:

Extend S

Input: A pair (S,T ) that is not closed.
(0) Choose s ∈ S and a ∈ Σ such that

hS∪SΣ,T (sa) , hS,T (s
′) for all s ′ ∈ S .

(1) Put S := S ∪ {sa}.

Extend T

Input: A pair (S,T ) that is not consistent.
(0) Choose s, s ′ ∈ S , t ∈ T and a ∈ Σ such that

hS,T (s) = hS,T (s
′) and hS,T∪ΣT (s)(at) , hS,T∪ΣT (s

′)(at).

(1) Put T := T ∪ {at}.

The two procedures are applied repeatedly until the pair
(S,T ) is closed and consistent. Then, one constructs an au-
tomaton HS,T , the hypothesis for (S,T ). Its set of states is
the image hS,T [S], the transitions δS,T : Σ × HS,T → HS,T

are given by δS,T (a,hS,T (s)) = hS∪SΣ,T (sa) for s ∈ S and
a ∈ Σ, the initial state is hS,T (ε), and a state hS,T (s) is final
if s ∈ LQ (i.e. hS,T (s)(ε) = 1). Note that the well-definedness
of δS,T is equivalent to (S,T ) being closed and consistent.
The learner now tests whether LHS,T = LQ by asking

an equivalence query. If the answer is “yes”, the algorithm
terminates successfully; otherwise, the teacher’s counterex-
ample and all its prefixes are added to S . In summary:

L∗ Algorithm

Goal: Learn an automaton equivalent to an unknown au-
tomaton Q .
(0) Initialize S = T = {ε}.
(1) While (S,T ) is not closed or not consistent:

(a) If (S,T ) is not closed: Extend S .
(b) If (S,T ) is not consistent: Extend T .

(2) Construct the hypothesis HS,T .
(a) If LHS,T = LQ : Return HS,T .
(b) If LHS,T , LQ : Put S := S ∪C , whereC is the set of

prefixes of the teacher’s counterexample.
(3) Go to (1).

The algorithm runs in polynomial time w.r.t. the size
of the minimal automaton Min(LQ ) and the length of
the longest counterexample provided by the teacher. The
learned automaton (i.e. the correct hypothesis returned
in Step (2a)) is isomorphic to Min(LQ ). Correctness and

termination rest on the invariant that S is prefix-closed
and T is suffix-closed. Note that if T ⊆ Σ

<K , then T yields
a quotient [Σ<K

, 2] ։ [T , 2] given by restriction. In the
following,T is represented via this quotient.

We shall now develop all ingredients of L∗ for adjoint F -
automata. This requires additional assumptions, which hold
for all the functors discussed in Example 3.3, 3.10 and 3.11:

Assumptions 4.1. On top of our Assumptions 3.5, we re-
quire for the rest of this section that FI = I + F preserves
subobjects (FI (M) ⊆ M) and pullbacks ofM-morphisms,
and that GO = O ×G preserves quotients (GO (E) ⊆ E).

Our categorical learning algorithm generalizes (1) to the
diagram shown below, where the upper and lower part are
given by the initial chain for FI and the final cochain forGO :

F 0
I
0 //

¡
// · · · FN

I
0

jN

))
//

F N
I
¡
// FN+1

I
0 //

F N+1
I

¡
// · · · µFI

eQ

��
✤
✤
✤
✤
✤

S

hs,t

''

es,t����

OO
s
OO

Hs,t
��
ms,t
��

Q

mQ

��
✤
✤
✤
✤
✤

T

G0
O
1 · · ·

!oooo GK
O1

t

OOOO

GK+1
O 1

GK
O !

oooo · · ·
GK+1
O !

oooo νGO

j′
K

ii

(2)

The algorithm maintains a pair (s, t) of an FI -subcoalgebra
and a GO -quotient algebra

s : (S,σ )֌ (FNI 0, FNI
¡), t : (GK

O1,G
K
O !)։ (T , τ ), (3)

with N ,K > 0. For Σ-automata in Set, this means precisely
that S is a prefix-closed subset of Σ<N , and thatT represents
a suffix-closed subset of Σ<K .
Initially, one takes N = K = 1, s = id I and t = idO , which

corresponds to Step (0) of the original L∗ algorithm.

Remark 4.2. By Assumptions 3.5(2) and 4.1, every subcoal-
gebra s : (S,σ ) ֌ (FN

I
0, FN

I
¡) induces the two subcoalge-

bras

(S,σ ) //
F N
I
¡·s

// (FN+1
I

0, FN+1
I

¡) (FIS, FIσ ).oo
FI soo

In the case of Σ-automata in Set, the construction of these
two subcoalgebras corresponds to viewing a prefix-closed
subset S ⊆ Σ

<N as a subset of Σ<N+1, and to extending S to
the prefix-closed subset SΣ∪ {ε} = S ∪ SΣ ⊆ Σ

<N+1. A dual
remark applies to quotient algebras of (GK

O1,G
K
O !).

Definition 4.3 (Observation table). Let (s, t) be a pair as
in (3), and let Q be an automaton. The observation table for

7



, , Henning Urbat and Lutz Schröder

(s, t) w.r.t. Q is the morphism

h
Q
s,t = ( S

s
−→ FNI 0

jN
−−→ µFI

eQ
−−→ Q

mQ

−−−→ νGO

j′
K
−−→ GK

O1
t
−→ T ).

Its (E,M)-factorization is denoted by

h
Q
s,t = ( S

e
Q
s,t

// // H
Q
s,t

//
m
Q
s,t

// T ).

In the following, we fix Q (the unknown automaton to be
learned) and omit the superscripts (−)Q .

Remark 4.4. In our categorical setting, membership
queries are replaced by the assumption that the learner can
compute the observation table hQs,t for each pair (s, t). Im-
portantly, this morphism depends only on the language of
Q : one can show that for every automatonQ ′with LQ = LQ ′

one hasmQ · eQ =mQ ′ · eQ ′ , whence h
Q
s,t = h

Q ′

s,t .

Definition 4.5 (Closed/Consistent pair). For any pair (s, t)
as in (3), let cls,t and css,t be the unique diagonal fill-ins
making all parts of the diagram below commute:

Hs,GO t

css,t
����
✤
✤

//
ms,GOt

// GOT

τ
��

S

es,GOt
77 77♥♥♥♥♥♥♥♥♥ es,t
// //

σ
��

Hs,t
//

ms,t
//

��
cls,t

��
✤
✤

T

FIS eFI s,t
// // HFI s,t

66 mFI s,t

66♥♥♥♥♥♥♥♥♥♥

The pair (s, t) is closed if cls,t is an isomorphism, and consis-
tent if css,t is an isomorphism.

If (s, t) is not closed or not consistent, at least one of the
two dual procedures below applies. “Extend s” replaces S ֌
FN
I
0 by a new subcoalgebra S ′ ֌ FN+1

I
0, i.e. it moves to

the right in the initial chain for FI . Analogously, “Extend t”
replaces GK

O1 ։ T by a new quotient algebra GK+1
O 1 ։ T ′,

and thus moves to the right in the final cochain forGO .

Extend s

Input: A pair (s, t) as in (3) that is not closed.
(0) Choose an object S ′ andM-morphisms s0 : S ֌ S ′ and

s1 : S ′֌ FIS such that

σ = s1 · s0 and eFI s,t · s1 ∈ E .

(1) Replace s : (S,σ )֌ (FNI 0, FNI
¡) by the subcoalgebra

FIs · s1 : (S
′
, FIs0 · s1)֌ (F

N+1
I 0, FN+1I

¡).

Remark 4.6. (1) One trivial choice in Step (0) is

S ′ = FIS s0 = σ , s1 = id.

To get an efficient implementation of the algorithm, one
aims to choose the subobject s1 : S ′ ֌ FIS as small as pos-
sible.

(2) The update of s in Step (1) is well-defined, i.e. FI s · s1
is a subcoalgebra. Indeed, the commutative diagram below
shows that FIs · s1 is a coalgebra homomorphism:

FN+1I 0
F N+1
I

¡
// FI (F

N+1
I 0)

FIS

FI s
OO

FIσ // FI FIS

FI FI s
OO

S ′
OO

s1

OO

s1
// FIS

FIσ
77♦♦♦♦♦♦♦♦

FI s0

// FIS
′

OO
FI s1

OO

Moreover, since s, s1 ∈ M and FI preservesM (see Assump-
tions 4.1), we have FIs · s1 ∈ M.
(3) In the case of Σ-automata in Set, the condition σ = s1 ·s0
states that S ⊆ S ′ ⊆ S ∪ SΣ = SΣ ∪ {ε}. The condition
eFI s,t · s1 ∈ E asserts that given s ∈ S and a ∈ Σ such
that hS∪SΣ,T (sa) , hS,T (r ) for all r ∈ S , there exists s ′ ∈ S ′

with hS∪SΣ,T (sa) = hS∪SΣ,T (s
′). Thus, “Extend s” subsumes

several executions of “Extend S” in the original L∗ algorithm.

Extend t

Input: A pair (s, t) as in (3) that is not consistent.
(0) Choose an object T ′ and E-morphisms t0 : GOT ։ T ′

and t1 : T ′ ։ T such that

τ = t1 · t0 and t0 ·ms,GO t ∈ M .

(1) Replace t : (GK
O
1,GK

O
!)։ (T , τ ) by the quotient algebra

t0 ·GOt : (G
K+1
O 1,GK+1

O !)։ (T ′, t0 ·GOt1).

Remark 4.7. (1) Dually to Remark 4.6, a trivial choice in
Step (0) is given byT ′ = GOT , t0 = id, t1 = τ , and Step (1) is
well-defined, i.e. t0 ·GOt is a quotient algebra.
(2) In the case of Σ-automata in Set, we view the quotients
T and T ′ as subsets of Σ<K and Σ

<K+1, respectively, using
the above identification between subsets and quotients. The
condition τ = t1 · t0 then states that T ⊆ T ′ ⊆ T ∪ ΣT . The
condition t0 ·ms,GO t ∈ M states that every inconsistency
admits a witness inT ′: given s, s ′ ∈ S withhS,T (s) = hS,T (s ′)
but hS,T∪ΣT (s) , hS,T∪ΣT (s

′), there exists t ′ ∈ T ′ with
hS,T ′(s)(t

′) , hS,T ′(s
′)(t ′). Thus, “Extend t” subsumes sev-

eral executions of “Extend T ” in the original L∗ algorithm.

If (s, t) is both closed and consistent, then we can define an
automaton structure on Hs,t :

Definition 4.8 (Hypothesis). Let the pair (s, t) be closed
and consistent. The hypothesis for (s, t) is the automaton

(Hs,t , δs,t , is,t , fs,t )

with states Hs,t and structure defined below. Here, inl/inr
are coproduct injections, outl/outr are product projections,
and (−)# denotes adjoint transpose along the adjunction F ⊣
G:

8
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(1) The transitions δs,t : FHs,t → Hs,t are given by the di-
agonal fill-in of the commutative square

FS

ls,t
��

Fes,t
// // FHs,t

δs,t

xxr
r

r
r #s,t
��

Hs,t
//
ms,t

// T

with the two vertical morphisms defined by

ls,t = (FS
inr
−−→ I + FS = FIS

eFI s,t
−−−−→ HFI s,t

cl−1s,t
−−−→ Hs,t ),

rs,t = (Hs,t

cs−1s,t
−−−→ Hs,GO t

ms,GOt

−−−−−−→ GOT = O ×GT
outr
−−−→ GT ).

(2) The initial states are

is,t = ( I
inl
−−→ I + FS = FIS

eFI s,t
−−−−→ HFI s,t

cl−1s,t
−−−→ Hs,t ).

(3) The final states are

fs,t = (Hs,t

cs−1s,t
−−−→ Hs,GO t

ms,GOt

−−−−−−→ GOT = O ×GT
outl
−−−→ O ).

Remark 4.9. The square defining δs,t commutes: both legs

can be shown to be equal to FS
inr
−−→ I + FS = FIS

hFI s,t
−−−−→ T .

The idea of constructing the F -algebra structure of a hypoth-
esis via diagonal fill-in originates in the abstract framework
of CALF [64]. An important difference is that in the latter
the existence of the two vertical morphisms of the corre-
sponding square is postulated, while our present setting fea-
tures a concrete description of ls,t and rs,t .

Recall that in L∗, if a hypothesis HS,T is not correct (i.e.
LHS,T , LQ ), the learner receives a counterexample w ∈ Σ∗

from the teacher and adds the set C of all its prefixes to S .
Identifying the wordw with this set, the concept of a coun-
terexample has the following categorical version:

Definition 4.10 (Counterexample). Let (s, t) be closed and
consistent. A counterexample for Hs,t is a subcoalgebra

c : (C,γ )֌ (FMI 0, FMI ¡) for someM > 0

such that Hs,t and Q do not agree on inputs from C , that is,

LHs,t · jM · c , LQ · jM · c .

Remark 4.11. (1) If LHs,t , LQ , then a counterexample al-
ways exists. Indeed, since the colimit injections jM : FM

I
0→

µFI are jointly epimorphic, one has LHs,t · jM , LQ · jM for
some M > 0 and thus (C,γ ) = (FMI 0, FMI

¡) is a counterex-
ample. To obtain an efficient algorithm, it is often assumed
that the teacher delivers a minimal counterexample, i.e. M
is minimal and no proper subcoalgebra is a counterexample.
(2) Given a counterexample c : (C,γ ) ֌ (FM

I
0, FM

I
¡), one

can add c to the subcoalgebra s : (S,σ ) ֌ (FN
I
0, FN

I
¡) as

follows: by Remark 4.2, we can assume that M = N , and
then form the supremum s ∨c : (S ∨C,σ ∨γ )֌ (FN

I
0, FN

I
¡)

of s and c in the lattice of subcoalgebras of (FN
I
0, FN

I
¡), viz.

the image of the homomorphism [s, c] : S +C → FN
I
0.

With all these ingredients at hand, we obtain the following
abstract learning algorithm for adjoint F -automata:

Generalized L∗ Algorithm

Goal: Learn an automaton equivalent to an unknown au-
tomaton Q .
(0) Initialize N = K = 1, s = idI and t = idO .
(1) While (s, t) is not closed or not consistent:

(a) If (s, t) is not closed: Extend s .
(b) If (s, t) is not consistent: Extend t .

(2) Construct the hypothesis Hs,t .
(a) If LHs,t = LQ : Return Hs,t .
(b) If LHs,t , LQ : Replace the subcoalgebra s by s ∨ c ,

where c is the teacher’s counterexample.
(3) Go to (1).

To prove the termination and correctness of Generalized L∗,
we need a finiteness assumption on the unknown automa-
ton Q . We call a D-object Q Noetherian if both its poset of
subobjects (ordered bym ≤ m′ iffm =m′ ·p for some p) and
that of its quotients (ordered by e ≤ e ′ iff e = q · e ′ for some
q) contain no infinite strictly ascending chains.

Theorem 4.12. If Q is Noetherian, then the generalized L∗

algorithm terminates and returns Min(LQ ).

Remark 4.13. Under a slightly stronger finiteness condi-
tion on Q , we obtain a complexity bound. Suppose that
Q has finite height n, that is, n is the maximum length of
any strictly ascending chain of subobjects or quotients ofQ .
Then Steps (1a), (1b) and (2b) are executed O(n) times.

Example 4.14. In D = Set, Pos, JSL, K-Vec, and Nom,
the Noetherian objects are precisely the finite sets, finite
posets, finite semilattices, finite-dimensional vector spaces
and orbit-finite nominal sets. The height ofQ is equal to the
number of elements ofQ (forD = Set, Pos) or the dimension
(forD = K-Vec). For D = Nom, the height of an orbit-finite
setQ can be shown to be polynomial in the number of orbits
of Q and max{ | supp(q)| | q ∈ Q }, using upper bounds on
the length of subgroup chains in symmetric groups [11].

Remark 4.15. In the generalized L∗ algorithm, counterex-
amples are added to S . Dually, one may opt to add them toT
instead; for Σ-automata in Set, this corresponds to a modifi-
cation of Angluin’s algorithm due to Maler and Pnueli [42]
that makes it possible to avoid inconsistent observation ta-
bles, i.e. all tables constructed in the modified algorithm are
consistent. In this dual approach, the accepted language of
an automatonQ is defined coalgebraically as the morphism

L′Q = ( I
iQ
−−→ Q

mQ

−−−→ νGO ),

and a counterexample is a quotient algebra c : (GM
O
1,GM

O
!)։

(C,γ ) for someM > 0 such that c · j ′M · L
′
Hs,t
, c · j ′M · L

′
Q . In

Step (2b), a counterexample c is added to the quotient alge-
bra t : (GK

O1,G−O
K !)։ (T , τ ) by forming the supremum of

9
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t and c . To guarantee termination, our original requirement
that FI preserves pullbacks ofM-morphisms (see Assump-
tions 4.1) needs to be replaced by the dual requirement that
GO preserves pushouts of E-morphisms.

Remark 4.16. We elaborate on the connection between
Generalized L∗ and the learning algorithm for coalgebras
due to Barlocco et al. [14]. The latter is concerned with
coalgebras whose semantics is given in terms of a coalge-

braic logic, i.e. a natural transformation δ : LopP → PB

where L : A → A and B : B → B are endofunctors and
P : B → A op is a left adjoint (see the left-hand square be-
low).

A op

δ
❑❑❑❑❑❑

!)
❑❑❑❑❑❑Lop

��

B
Poo

B
��

A op B
P

oo

(Dop)op

(G
op

O
)op

��
id
▲▲▲▲▲▲

"*
▲▲

▲
▲▲

▲

D
Idoo

GO
��

(Dop)op D
Id

oo

Here, L represents the syntax (usually modalities over a
propositional base logic embodied by A ), and B the be-
haviour (defining the branching type of coalgebras on B).
The coalgebraic semantics of F -automata corresponds to the
trivial logic shown in the right-hand square. In this sense, F -
automata are formally covered by the framework of [14].
While Generalized L∗ is based on Angluin’s L∗ algorithm,

the coalgebraic learning algorithm in op. cit. generalizes
Maler and Pnueli’s approach, and thus needs to keep obser-
vation tables consistent (Remark 4.15). To this end, tables
are required to satisfy a property called sharpness, which
entails that the existence of extensions of non-closed tables
is nontrivial and can only be guaranteed under strong as-
sumptions on epimorphisms in the base category (e.g., all
epimorphisms must split). Thus, the algorithm is effectively
limited to coalgebras in Set and does not apply, e.g., to Σ-
automata in Nom; see Appendix. In our Generalized L∗, no
such assumptions are needed since table extensions always
exist (Remark 4.6). This makes our algorithm applicable in
categories beyond Set, including the ones in Example 3.3.

Generalized L∗ provides a unifying perspective on known
learning algorithms for several notions of deterministic au-
tomata, including classical Σ-automata (D = Set [8]), lin-
ear weighted automata (D = K-Vec [12]) and nominal au-
tomata (D = Nom [21, 47]). For D = JSL, finite semilattice
automata can be interpreted as nondeterministic finite au-
tomata by means of an equivalence between the category
of finite semilattices and a suitable category of finite clo-
sure spaces and relational morphisms [3, 48]. For any reg-
ular language L, the minimal Σ-automaton Min(L) in JSL

corresponds under this equivalence to the minimal residual
finite state automaton (RFSA) [28], a canonical nondetermin-
istic acceptor for L whose states are the join-irreducible ele-
ments ofMin(L). Consequently, theNL∗ algorithm for learn-
ing RFSA due to Bollig et al. [20] is also subsumed by our

categorical setting. We note that althoughNL∗ learns a min-
imal RFSA, the intermediate hypotheses arising in the algo-
rithm are not necessarily RFSA, but general nondeterminis-
tic finite automata. Our categorical perspective provides an
explanation of this phenomenon: it shows that NL∗ implic-
itly computes deterministic finite automata over JSL, and
not every such automaton corresponds to an RFSA.
Finally, our algorithm instantiates to new learning algo-

rithms for nominal languages with name binding, includ-
ing languages of dynamic sequences (Example 3.10), and
for sorted languages (Example 3.11). A special instance of
sorted automata where all transitions are sort-preserving
(i.e. Σs,t = ∅ for s , t ) appeared in the work of Moerman
[45] on learning product automata.
In each of the above settings, in order to turn General-

ized L∗ into a concrete algorithm, one only needs to provide
a suitable data structure for representing observation tables
hs,t by finite means, and a strategy for choosing the objects
S ′ and T ′ in the procedures “Extend s” and “Extend t”. We
emphasize that these design choices can be non-trivial and
depend on the specific structure of the underlying category
D . The typical approach is to represent themaphs,t : S → T

by restricting the objects S andT to finite sets of generators.
For instance, finite-dimensional vector spaces can be repre-
sented by their bases (D = K-Vec), finite semilattices by
their join-irreducible elements (D = JSL) and orbit-finite
sets by subgroups of finite symmetric groups (D = Nom).
Our above results demonstrate, however, that the core of

our learning algorithm is independent from such implemen-
tation details; in particular, its correctness and termination,
and parts of the complexity analysis, always come for free
as instances of the general results in Theorem 4.12 and Re-
mark 4.13. In this way, the categorical approach provides
a clean separation between generic structures and design
choices tailored to a specific application. This leads to a sim-
plified derivation of learning algorithms in new settings.

5 Learning Monad-Recognizable
Languages

In this section, we investigate languages recognizable by
monad algebras and show that the task of learning them
can be reduced to learning F -automata.

Notation5.1. Fix amonadT = (T , µ,η) onD that preserves
quotients (T (E) ⊆ E). We continue to work with the fixed
objects I ,O ∈ D of inputs and outputs (with I now thought
of as an input alphabet, so not normally the monoidal unit).
Finally, we fix a full subcategory Df ⊆ D closed under sub-
objects and quotients, and call the objects of Df the finite

objects of D .

Example 5.2. Choose Setf , Posf , JSLf , K-Vecf and Nomf

to be the class of all Noetherian objects (see Example 4.14).
Our monads of interest model formal languages:

10
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D T

Set T+X = X+

Set2 T∞(X ,Y ) = (X
+
,X up

+ X ∗Y )

Set TΓX = Γ-trees over X
JSL T∗X = free idempotent semiring on X

K-Vec T∗X = free K-algebra on X

Pos TSX = free stabilization algebra on X

Nom T∗X = X ∗

In the second row, X up
= {vwω : v ∈ X ∗, w ∈ X+ }

denotes the set of ultimately periodic words over X , and in
the third row, Γ is a finitary algebraic signature. Finite alge-
bras for the above seven monads correspond to finite semi-
groups, finite Wilke algebras [66], finite Γ-algebras, finite-
dimensional K-algebras, finite stabilization algebras [26],
and orbit-finite nominal monoids [19], respectively.

In the present setting, we shall consider the following gen-
eralized concept of a language:

Definition 5.3 (Language). A language is a morphism

L : TI → O in D .

It is called recognizable if there exists a T-homomorphism
e : (TI , µI ) → (A,α) into a finite T-algebra (A,α) and a mor-
phism p : A→ O in D with L = p · e .

TI

e   
❆❆

❆❆
❆

L // O

A
p

??⑧⑧⑧⑧⑧

In this case, we say that e recognizes L (via p).

Remark 5.4. The above definition generalizes the concepts
of the previous sections. Indeed, if F is functor for which
the free monad TF (see Section 2) exists, then a language
L : TF I → O in the sense of Definition 5.3 is precisely a lan-
guage L : µFI → O in the sense of Definition 3.8. Moreover,
since the categories of F -algebras and TF -algebras are iso-
morphic, L is TF -recognizable if and only if L is regular, i.e.
accepted by some finite F -automaton.

Example 5.5. Many important automata-theoretic classes
of languages can be characterized algebraically as recogniz-
able languages for a monad. For the monads of Example 5.2
we obtain the following languages:

D T T-recognizable languages
Set T+ regular languages [50]
Set2 T∞ ω-regular languages [49]
Set TΓ tree languages over Γ [25]
JSL T∗ regular languages [52]
K-Vec T∗ recognizable weighted languages [54]
Pos TS regular cost functions [23]
Nom T∗ monoid-recognizable data languages [19]

In the following, we focus on (ω-)regular languages and cost
functions; see [58, 60] for details on the remaining examples.

(1) For the semigroup monad T+ on Set we obtain the clas-
sical concept of algebraic language recognition: a language
L ⊆ I+ is recognizable if there exists a semigroup morphism
e : I+ → S into a finite semigroup S and a subset P ⊆ S with
L = e−1[P]. Recognizable languages are exactly the (ε-free)
regular languages [50]. In fact, the expressive equivalence
between Σ-automata in Set and semigroups generalizes to
Σ-automata in symmetric monoidal closed categories [4].
(2) Languages of infinite words can be captured alge-
braically as follows. A Wilke algebra [66] is a two-sorted
set (S+, Sω) with a product · : S+ × S+ → S+, a mixed prod-
uct · : S+ × Sω → Sω and a unary operation (−)ω : S+ → Sω
subject to the laws

(st)u = s(tu), (st)z = s(tz), s(ts)ω = (st)ω , (sn)ω = sω ,

for all s, t ,u ∈ S+, z ∈ Sω and n > 0. The free Wilke al-
gebra generated by the two-sorted set (X ,Y ) is T∞(X ,Y ) =
(X+,X up

+X ∗Y ) with the two products given by concatena-
tion of words, andwω

= www . . . forw ∈ X+. In particular,
choosing the input object (I , ∅) for some set I and the out-
put object O = ({0, 1}, {0, 1}), we have T∞(I , ∅) = (I+, Iup),
and thus a language L : T∞(I , ∅) → O specifies a set of finite
or ultimately periodic infinite words. Languages recogniz-
able by Wilke algebras correspond to ω-regular languages,
i.e. languages accepted by Büchi automata [49, 66].
(3) Regular cost functions were introduced by Colcom-
bet [23] as a quantitative extension of regular languages
that provides a unifying framework for studying limited-
ness problems. A cost function over the alphabet I is a func-
tion f : I ∗ → N∪ {∞}. Two cost functions f and д are iden-
tified if, for every subset A ⊆ N, the function f is bounded
on A iff д is bounded on A. Regular cost functions corre-
spond to languages recognizable by finite stabilization al-

gebras. The latter are ordered algebras over the signature
Γ = {1/0, ·/2, (−)#/1, (−)ω/1}, with −/n denoting arities,
subject to suitable inequations; see [26, 58]. We let TS de-
note the monad on Pos induced by this ordered algebraic
theory.

Our generic approach to learning T-recognizable languages
is based on the idea of presenting the free algebra TI =

(TI , µI ) and its finite quotient algebras as automata:

Definition 5.6 (T-refinable). A quotient e : TI ։ A in D is
T-refinable if there exists a finite quotient algebra e ′ : TI ։
(B, β) of TI and a morphism f : B ։ A with e = f · e ′.

Definition 5.7 (Automata presentation). An automata pre-

sentation of the free T-algebra TI is given by an endofunctor
F on D and an F -algebra structure δ : FT I → TI such that
(1) F (E) ⊆ E, the initial algebra µFI exists, and every reg-
ular language L : µFI → O admits a minimal automaton
Min(L);
(2) the FI -algebra (TI , [ηI , δ ]) is reachable (i.e. eT I ∈ E);
(3) a T-refinable quotient e : TI ։ A in D carries a T-
algebra quotient iff e carries an F -algebra quotient; that is,

11
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there exists αA making the left-hand square below commute
iff there exists δA making the right-hand square commute.

TTI
µI

//

Te ����

TI

e����

TA
∃αA

//❴❴❴ A

⇐⇒

FT I
δ //

Fe ����

TI

e����

FA
∃δA

//❴❴❴ A

If in (3) only the implication “⇒” is required, (F , δ ) is called
a weak automata presentation.

Remark 5.8. (1) Examples of functors F for which the first
condition is satisfied include all functors satisfying the As-
sumptions 3.5, see Remark 3.7(1) and Theorem 3.13, and
polynomial functors F = FΓ on Set or Pos for a signature Γ.
Recall from Example 3.4 that FΓ-automata are Γ-automata.
(2) Presentations of T-algebras as (sorted) Σ-automata were
previously studied by Urbat, Adámek, Chen, and Milius [59]
for the special case where D is a variety of algebras and
Σ ∈ D is a free algebra, and called unary presentations.

Example 5.9. For all monads of Example 5.2, free algebras
admit an automata presentation (in fact, a presentation as
(sorted) Σ-automata [58–60]). Here we consider three cases:
(1) Semigroups. The free semigroup T+I = I+ has a Σ-
automata presentation δ : Σ×I+→ I+ given by the alphabet

Σ = {
→
a : a ∈ I } ∪ {

←
a : a ∈ I }

and the transitions

δ (
→
a ,w) = wa and δ (

←
a ,w) = aw for w ∈ I+, a ∈ I .

Recall from Example 3.11 that µFI = I × Σ
∗. The unique

homomorphism eI+ : I ×Σ∗→ I+ interprets a word in I ×Σ∗

as a list of instructions for forming a word in I+, e.g.

eI+ (a
→
a
→

b
←

b
→
a ) = baaba.

For a weak automata presentation of I+, it suffices to take
the restriction δ ′ : Σ′×I+ → I+ of δ where Σ′ = {

→
a : a ∈ I }.

(2) Wilke algebras. The free Wilke algebra T∞(I , ∅) =

(I+, Iup) can be presented as a two-sorted Σ-automaton with
the sorted alphabet Σ = (Σ+,+, Σ+,ω, Σω,ω, ∅) given by

Σ+,+ = {
→
a : a ∈ I } ∪ {

←
a : a ∈ I }

Σ+,ω = {ω} ∪ {
→
v
ω
: v ∈ I+}

Σω,ω = {a
←
: a ∈ I }

and the transitions below, where v,w ∈ I+, z ∈ Iup, a ∈ I :

δ+,+(
→
a ,w) = wa, δ+,+(

←
a ,w) = aw,

δ+,ω (ω,w) = w
ω
, δ+,ω (

→
v
ω
,w) = wvω ,

δω,ω(a
←
, z) = az.

Recall from Example 3.11 that the initial algebra µFI consists
of sorted words over Σ with an additional first letter from I .
The homomorphism e(I+, I up) : µFI → (I

+
, Iup) views such a

word as an instruction for forming a word in (I+, Iup), e.g.

e(I+, I up)(a
→

b
→
aωa

←
a
←
) = aa(aba)ω .

To obtain a weak automata presentation, it suffices to re-
strict Σ+,+ and Σ+,ω to the finite subalphabets Σ′

+,+
= {

→
a :

a ∈ I } and Σ
′
+,ω = {ω}. A Σ

′-automaton is similar to a fam-

ily of DFAs, a concept recently employed by Angluin and
Fisman [9] for learning ω-regular languages.
(3) Stabilization algebras. Suppose that T is a monad on Set

orPos induced by a finitary signature Γ and (in-)equations E;
see Section 2. Then TI can be presented as the Γ-automaton
δ : FΓ(TI ) → TI given by the Γ-algebra structure on the
free (Γ, E)-algebraTI . The initial algebra µ(FΓ)I is the alge-
bra TΓI of Γ-terms over I , and the unique homomorphism
eT I : TΓI ։ TI interprets Γ-terms in TI . In particular, for
the monad T = TS on Pos, the free stabilization algebra TS I
admits a Γ-automata presentation for the signature Γ of Ex-
ample 5.5(3).

From now on, we fix a weak automata presentation (F , δ ) of
the free T-algebra TI .

Definition 5.10 (Linearization). The linearization of a lan-
guage L : TI → O is given by

lin(L) = ( µFI
eT I // // TI

L // O ).

Example 5.11. (1) Semigroups. Take the Σ-automata pre-
sentation of Example 5.9(1). Given L ⊆ I+, the language
lin(L) ⊆ I × Σ

∗ consists of all possible ways of gener-
ating words in L by starting with a letter a ∈ I and
adding letters on the left or on the right. For instance, if
L contains the word abc , then lin(L) contains the words

a
→

b
→
c , b

←
a
→
c , b

→
c
←
a , c

←

b
←
a .

(2) Wilke algebras. Take the weak presentation of Exam-
ple 5.9(2). Given L ⊆ (I+, Iup), the language lin(L) consists of
all possible ways of generating words in L by starting with
a letter a ∈ I and repeatedly applying any of the following
operations: (i) right concatenation of a finite word with a
letter; (ii) left concatenation of an infinite word with a let-
ter; (iii) taking the ω-power of a finite word. For instance, if

L contains the word (ab)ω , then lin(L) contains a
→

bω, b
→
aωa

←
,

a
→

bωb
←
a
←
, b
→
aωa

←
b
←
a
←
, . . .. Thus, lin(L) is a two-sorted version of

the language lasso(L) mentioned in the Introduction.
(3) Stabilization algebras. Take the presentation of Exam-
ple 5.9(3). Given a language L ⊆ TS I , the set lin(L) ⊆ TΓI

consists of all Γ-trees whose interpretation in TS I lies in L.

As demonstrated by the above examples, the linearization
allows us to identify a language L : TI → O with a lan-
guage lin(L) : µFI → O of finite words or trees. Since the
morphism eT I : µFI ։ TI is assumed to be epic by Def-
inition 5.7(2), this identification is unique; that is, lin(L)
uniquely determines L. In particular, in order to learn L, it is
sufficient to learn lin(L). This approach is supported by the
following result:

12
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Theorem 5.12. If L : TI → O is a T-recognizable language,

then its linearization lin(L) : µFI → O is regular, i.e. accepted

by some finite F -automaton.

Proof sketch. Let e : TI → (A,α) be a T-homomorphism rec-
ognizing L via p : A → O . By replacing e with its coimage,
wemay assume that e ∈ E. Theweak automata presentation
yields an F -algebra structure onAmaking e an F -algebra ho-
momorphism. Then A, viewed as an automaton with initial
states e · ηI : I → A and final states p, accepts lin(L). �

In view of this theorem, one can apply any learning algo-
rithm for finite F -automata (e.g. Generalized L∗ for the case
of adjoint automata, or a learning algorithm for tree au-
tomata [30] if F is a polynomial functor) to learn the mini-
mal automatonQL for lin(L). This automaton, together with
the epimorphism eT I , constitutes a finite representation of
the unknown language L : TI → O . If the given automata
presentation for TI is non-weak, we can go one step further
and infer from QL a minimal algebraic representation of L:

Definition 5.13 (Syntactic T-algebra). Let L : TI → O be
recognizable. A syntactic T-algebra for L is a quotient T-
algebra eL : TI ։ Syn(L) of TI such that (1) eL recognizes L,
and (2) eL factorizes through every finite quotient T-algebra
e : TI ։ (A,α) recognizing L.

TI
e // //

eL %% %%▲
▲▲

▲▲
▲▲ (A,α)

��
✤
✤

Syn(L)

Theorem 5.14. Let (F , δ ) be an automata presentation for

TI . Then every T-recognizable language L : TI → O has a syn-

tactic T-algebra Syn(L), and its corresponding F -automaton

(via the given presentation) is the minimal automaton for

lin(L):

Syn(L) � Min(lin(L)).

This theorem asserts that we can uniquely equip the learned
minimal F -automaton QL = Min(lin(L)) with a T-algebra
structure αL : TQL → QL for which the unique automata ho-
momorphism eL : TI ։ QL is a T-algebra homomorphism
eL : TI ։ (QL,αL). Then eL is the syntactic algebra for L.

Remark 5.15. To make the construction of Syn(L) from
the learned automatonQL effective, we need to assume that
the morphisms eQL , eT I , TeQL , TeT I and µI can be repre-
sented as (sorted families of) computable maps and more-
over the maps eT I and TeQL admit computable (not neces-
sarily morphic) right inverses m and n, respectively. Then
the T-algebra structure αL of Syn(L) can be represented as
the computablemap eQL ·m ·µI ·TeT I ·n; see the commutative
diagram below.

T (µFI )
TeT I // //

TeQL
&& &&▼

▼▼
▼▼

▼
TTI

TeL����

µI
// TI

eL
����

µFI
eT Ioooo

eQLzzzz✉✉
✉✉
✉✉

TQL αL
// QL

Example 5.16. This computation strategy works for all
monads of Example 5.2. We consider our running examples:
(1) Semigroups. For the Σ-automata presentation of Exam-
ple 5.9(1) and L ⊆ I+, we compute the semigroup structure
• : QL × QL → QL on QL from its automaton structure as
follows. Given q,q′ ∈ QL choose words w,w ′ ∈ I × Σ

∗

with eQL (w) = q, eQL (w
′) = q′, i.e. witnesses for the reach-

ability of q and q′. Next, choose v ∈ I × Σ
∗ with eI+(v) =

eI+(w)eI+(w
′) ∈ I+, and put q • q′ := eQL (v).

(2) Wilke algebras. Analogous to the case of semigroups.
(3) Cost functions. For a monad T on Set or Pos given by a
signature Γ and (in-)equations E and the Γ-automata pre-
sentation of TI in Example 5.9(3), the computation of αL
is trivial: the structure of the Γ-algebra Syn(L) is just the
automaton structure of QL . In particular, this applies to
the monad TS on Pos representing cost functions (Exam-
ple 5.2(3)). Thus, we obtain the first learning algorithm for
this class of languages.

6 Conclusions and Future Work

We have presented a generic algorithm (Generalized L∗) for
learning F -automata that forms a uniform abstraction of L∗-
type algorithms, their correctness proofs, and parts of their
complexity analysis, and instantiates to several new learn-
ing algorithms, e.g. for various notions of nominal automata
with name binding. Moreover, we have shown how to ex-
tend the scope of Generalized L∗, and other learning algo-
rithms for F -automata, to languages recognizable by monad
algebras. This gives rise to a generic approach to learning
numerous types of languages, including cases for which no
learning algorithms are known (e.g. cost functions).
The next step is to turn our high-level categorical ap-

proach into an implementation-level algorithm, parametric
in the monad T and its automata presentation, with corre-
sponding tool support. We expect that the recent work on
coalgebraic minimization algorithms and their implementa-
tion [27, 29] can provide guidance. It should be illuminating
to experimentally compare the performance of the generic
algorithm with tailor-made algorithms for specific types of
automata.
Our generalized L∗ algorithm is concerned with adjoint

F -automata and applies to a wide variety of automata on fi-
nite words (including weighted, residual nondeterministic,
and nominal automata), but presently not to tree automata.
To deal with the latter, the adjointness of the type functor F
needs to be relaxed, which entails that a coalgebraic seman-
tics is no longer directly available. A categorical approach to
learning tree automata, assuming a purely algebraic point of
view, was recently proposed by van Heerdt et al [62]. The
subtle interplay between the algebraic and coalgebraic as-
pects underlying learning algorithms is up for further in-
vestigation.
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A Appendix: Omitted Proofs and Details

In this appendix, we provide full proofs of all our results
and more detailed treatment of some examples omitted due
to space restrictions.

Discussion of the Assumptions 3.5 and 4.1

We comment on some technical consequences of our As-
sumptions 3.5 and 4.1.

Remark A.1. The assumption F (E) ⊆ E implies that the
factorization system (E,M) of D lifts to automata: given
an automata homomorphism h : Q → Q ′ and its (E,M)-

factorization h = (Q
e // // Q ′′ //

m // Q ′ ) in D , there ex-

ists a unique automata structure (Q ′′, δQ ′′, iQ ′′, fQ ′′) on Q ′′

such that both e and m are automata homomorphisms. In-
deed, the transitions δ ′′Q are given by diagonal fill-in

FQ
δQ

//

Fe
����

Q

e
����

FQ ′′
δQ′′

//❴❴❴

Fm

��

Q ′′
��

m

��

FQ ′
δQ′

// Q ′

and the initial and final states by

iQ ′′ = ( I
iQ
−−→ Q

e
−→ Q ′′ ),

fQ ′′ = (Q ′′
m
−→ Q ′

fQ′′
−−−→ O ).

Remark A.2. The condition FI (M) ⊆ M makes sure that
the factorization system (E,M) lifts from D to Coalg FI ,
the category of FI -coalgebras: given an FI -coalgebra homo-
morphism h : (C,γ ) → (C ′,γ ′) and its (E,M)-factorization

h = (C
e // // C ′′ //

m // C ′ ) in D , there is a unique FI -
coalgebra structure (C ′′,γ ′′) on C ′′ such that both e andm
are coalgebra homomorphisms. The structure γ ′′ is defined
via diagonal fill-in in analogy to Remark A.1.

Dually, the conditionGO (E) ⊆ E implies thatAlgGO , the
category of GO -algebras, has a factorization system lifting
(E,M).

Details for Example 3.3

We show that for each of the five categories D of Table 1
and the endofunctors F andG on D given by

F = Σ ⊗ (−) and G = [Σ,−],

the Assumptions 3.5(1)–(4) and 4.1 are satisfied.
Clearly, all the categories D with the corresponding

choices of I and O satisfy the Assumptions 3.5(1)(2). More-
over, (3) holds because D is closed. For (4), note that in all
cases E coincides with the class of all epimorphisms. Since

every left adjoint F preserves epimorphisms, it follows that
F (E) ⊆ E. It remains to verify the Assumptions 4.1. We con-
sider the cases D = Set, Pos, JSL, K-Vec; for D = Nom, see
the details for Example 3.10.

FI preserves M and intersections of M-morphisms.

This is clear for D = Set, Pos since in these categories co-
products commute with intersections, i.e. one has

(A + B) ∩ (C + D) � (A ∩C) + (B ∩ D).

For D = JSL recall that we have chosen Σ to be the free
semilattice Pf Σ0 over a finite set Σ0 of generators, i.e. the
∪-semilattice of finite subsets of Σ0. It follows that

FIX = I+Σ⊗X = I+(
∐

a∈Σ0

I )⊗X � I+
∐

a∈Σ0

I ⊗X � I+
∐

a∈Σ0

X

using that I = Pf 1, I ⊗ X � X , and the left adjoint (−) ⊗ X
preserves coproducts. Now note that the coproduct X + Y
of two semilattices coincides with the product X × Y , with
injections given by

inl : X → X × Y , x 7→ (x ,⊥)

inr : Y → X × Y , Y 7→ (⊥,y)

This implies thatmonomorphisms in JSL are stable under co-
products, and that intersections commute with coproducts.
It thus follows from the above formula for FIX that FI pre-
serves monomorphisms and intersections.
For D = K-Vec, the proof is analogous, using again the

product/coproduct coincidence.

GO preserves epimorphims. We first show that the functor
[Σ,−] preserves epimorphisms (i.e. surjections). Note first
that in D = Set, Pos, JSL,K-Vec, the object [Σ,X ] is carried
by the set D(Σ,X ) with the D-structure inherited from X

(i.e. defined pointwise), and that for any morphism e : X →
Y themorphism [Σ, e] : [Σ,X ] → [Σ,Y ] is given by f 7→ e · f .
We need to prove that [Σ, e] is surjective provided that e
is surjective; that is, for every morphism д : Σ → Y there
exists a morphism f : Σ→ X making the following triangle
commute:

Σ
f

//❴❴❴

д ##❍
❍❍

❍❍
❍❍ X

e����

Y

This follows from the fact that in each case, Σ has been cho-
sen as a projective object ofD . For instance, forD = JSLwe
construct f as follows. Recall that Σ is the free semilattice
on a finite set Σ0, and denote by η : Σ0 → Σ the universal
map. For each a ∈ Σ0, choose xa ∈ X with e(xa) = д(η(a)),
using that e is surjective. This gives a map

f0 : Σ0 → X , a 7→ xa .

Let f : Σ → X be the unique semilattice homomorphism
extending f0, i.e. with f · η = f0. Then e · f = д since this
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equation holds when precomposed with the universal map
η, as shown by the diagram below:

Σ0
η

//

f0

!!

Σ
f

//❴❴❴

д ##●
●●

●●
●● X

e����

Y

This shows that the functor [Σ,−] preserves epimorphisms.
Since epimorphisms in our categories D are stable under
products, it follows that also the functor GO = O × [Σ,−]

preserves epimorphisms.

Details for Example 3.9

(1) The functor P = [−,O] : D → Dop is a left adjoint (with
right adjoint Pop : Dop → D ) because, for each X ,Y ∈ D ,

D(X , PY ) = D(X , [Y ,O])

� D(X ⊗ Y ,O)

� D(Y ⊗ X ,O)

� D(Y , [X ,O])

= D(Y , PX ).

(2) We have a natural isomorphism

PFI � G
op

O
P .

To see this, observe that all parts of the following diagram
commute up to isomorphism.

D

FI

))

F

��

P // Dop

Gop

��

G
op

O

vv

D
P

//

I+−

��

Dop

(O×−)op

��

D
P

// Dop

The left and right parts commute by definition. The two
squares commute because for each X ∈ D ,

PFX = [Σ ⊗ X ,O] � [Σ, [X ,O]] = GPX

and

P(I + X ) � PI × PX � [ID ,O] × PX � O × PX .

The isomorphism P(I + X ) � PI × PX uses that P is a left
adjoint, i.e. preserves coproducts.

Details for Example 3.10

We verify that the functors of Example 3.10(1)–(4), see the
table below, satisfy our Assumptions 3.5(4) and 4.1. Recall
that we have chosen I = 1 and O = 2, and that the factor-
ization system of Nom is the one given by epimorphisms (=
surjective equivariant maps) and monomorphisms (= injec-
tive equivariant maps).

F G

(1) A × (−) [A,−]

(2) A ∗ (−) [A](−)

(3) A × (−) + A ∗ (−) [A,−] × [A](−)

(4) A × (−) + A ∗ (−) + [A](−) [A,−] × [A](−) × R

F preserves epimorphisms. This follows from the fact that
F is a left adjoint.

FI preservesmonomorphisms. The functorsA×(−) andA∗

(−) preserve monomorphisms by definition, recalling that
for an equivariant map e : X → Y the map A ∗ e is given by

A ∗ e : A ∗ X → A ∗ Y , (a, x) 7→ (a, e(x)).

The functor [A](−) preserves monomorphisms because it is
a right adjoint. Since coproducts in Nom are formed at the
level of Set, it follows that monomorphisms in Nom are sta-
ble under coproducts. This implies that for all the functors F
in (1)–(4), the functor FI = I +F preserves monomorphisms.

FI preserves intersections. Note that intersections of sub-
objects (i.e. equivariant subsets) in Nom are just set-
theoretic intersections. Thus, the functors A×(−) and A∗(−)

clearly preserve intersections by definition. The functor
[A](−) preserves them because it is right adjoint and thus
preserves all limits. Since intersections commute with co-
products in Set and thus also in Nom, it follows that for all
the functors F in (1)–(4), the functor FI = I + F preserves
intersections.

GO preserves epimorphisms. The functor [A](−) preserves
epimorphisms because it is a left adjoint. Moreover, we have

Lemma A.3. The functors [A,−] : Nom → Nom and

R : Nom→ Nom preserve epimorphisms.

Proof. (1) We first show that [A,−] preserves epimorphisms
(i.e. surjections). This can be deduced from the fact that ev-
ery polynomial functor on Nom preserves epimorphisms
(like in Set) and that [A,−] can be expressed as a quotient
functor of a polynomial functor [44, Lemma 6.9]. In the fol-
lowing, we give a direct proof for the convenience of the
reader.
Recall from [51, Theorem 2.19] that [A,X ] is the nominal

set of finitely supported maps f : A → X ; here f is finitely
supported if there exists a finite subset S ⊆ A such that for all
permutations π ∈ Perm(A) that fix S and all a ∈ A one has
f (π ·a) = π · f (a). In particular, equivariant maps are finitely
supported maps with support S = ∅. For any equivariant
map e : X → Y , the map [A, e] is given by

[A, e] : [A,X ] → [A,Y ], f 7→ e · f .

We need to show that [A, e] is surjective provided that e is
surjective; in other words, for every finitely supported map
д : A → Y , there exists a finitely supported map f : A → X
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making the following triangle commute:

A
f

//❴❴❴

д ##❍
❍❍

❍❍
❍❍ X

e����

Y

Fix an arbitrary atom a < A\suppд. Moreover, choose x ∈ X
with e(x) = д(a), and choose xb ∈ X with e(xb ) = д(b) for
every b ∈ suppд ∪ suppx , using that e is surjective. Define
the map f : A→ X as follows:

f (b) =

{

(b a) · x for b ∈ A \ (suppд ∪ suppx);

xb for b ∈ suppд ∪ supp x .

We claim that (i) the map f is finitely supported and (ii) it
satisfies e · f = д.

Ad (i). We show that the finite set of atoms

S = suppд ∪ suppx ∪
⋃

b ∈suppд ∪ suppx

suppxb

supports themap f . Thus, let π ∈ Perm(A) be a permutation
fixing S ; we need to prove that f (π ·b) = π · f (b) for allb ∈ A.
For b ∈ suppд ∪ suppx , we have

f (π · b) = f (b) = xb = π · xb = π · f (b).

For b ∈ A \ (suppд ∪ suppx), we get

f (π · b) = (π (b)a) · x = π · (b a) · x = π · f (b).

Here the first and last equation use the definition of f .
The middle equation holds because the two permutations
(π (b)a) and π · (b a) are equal on suppx . Indeed, both per-
mutations send a to π (b), and all elements of supp x \{a} are
fixed by both permutations because b, π (b) < suppx and π

fixes supp x .

Ad (ii). We show that e(f (b)) = д(b) for all b ∈ A. For b ∈
suppд ∪ suppx we have

e(f (b)) = e(xb ) = д(b)

by definition of f and xb . For b ∈ A \ (suppд ∪ suppx),

e(f (b)) = e((b a) · x) def. f

= (b a) · e(x) e equivariant

= (b a) · д(a) def. x

= д((b a) · a) a,b < suppд

= д(b) .

(2) We show that R preserves surjections. Recall that R is
the subfunctor of [A,−] given by

RX = { f ∈ [A,X ] : a # f (a) for every a ∈ A }.

We need to show that Re : RX → RY is surjective for every
surjective equivariant map e : X ։ Y ; that is, for every д ∈
RY , there exists f ∈ RX with e · f = д.

The definition of f is the same as in part (1) of the proof,
except that the elements x and xb (b ∈ suppд ∪ suppx ) are
now additionally required to satisfy a#x and b#xb . Such a

choice of x and xb is always possible: if x is any element
of X with e(x) = д(a), choose a′ with a′#д(a), x and put
x ′ = (a′ a) · x . Then a#x ′ and

e(x ′) = e((a′ a) · x) = (a′ a) · e(x) = (a′ a) · д(a) = д(a),

where the last equation uses that a,a′#д(a). Thus, we can
replace x by x ′. Analogously for xb .
Part (1) now shows that f is finitely supported and satis-

fies e · f = д. Moreover, we clearly have b#f (b) for every
b ∈ A by definition of f and the above choices of x and xb ,
i.e. f ∈ RX . �

Since epimorphisms in Nom are stable under products
(which follows from the corresponding property in Set), we
conclude that for all the functors G in (1)–(4), the functor
GO = 2 ×G preserves epimorphisms.

Details for Example 3.11

We describe sorted Σ-automata for the case of general
base categories D . Suppose that (D , ⊗, ID ) is a sym-
metric monoidal closed category satisfying our Assump-
tions 3.5(1)–(2), and let S be a set of sorts. Then the category
DS (equippedwith themonoidal structure and the factoriza-
tion system inherited sortwise from D ) is also symmetric
monoidal closed and satisfies the Assumptions 3.5(1)–(2).
Fix an arbitrary object I ∈ DS inputs (not necessarily the

tensor unit), an arbitrary object O ∈ DS of outputs, and a
family of objects Σ = (Σs,t )s,t ∈S in D ; we think of Σs,t as
a set of letters with input sort s and output sort t . Take the
functors

F : D
S → D

S
, (FQ)t =

∐

s ∈S

Σs,t ⊗ Qs (t ∈ S),

G : D
S → D

S
, (GQ)s =

∏

t ∈S

[Σs,t ,Qt ] (s ∈ S).

The functor F is a left adjoint of G: we have the isomor-
phisms (natural in P,Q ∈ DS )

D
S (FQ, P) =

∏

t ∈S

D((FQ)t , Pt )

=

∏

t ∈S

D(
∐

s ∈S

Σs,t ⊗ Qs , Pt )

�

∏

t ∈S

∏

s ∈S

D(Σs,t ⊗ Qs , Pt )

�

∏

s ∈S

∏

t ∈S

D(Σs,t ⊗ Qs , Pt )

�

∏

s ∈S

∏

t ∈S

D(Qs , [Σs,t , Pt ])

�

∏

s ∈S

D(Qs ,

∏

t ∈S

[Σs,t , Pt ])

=

∏

s ∈S

D(Qs , (GP)s ).

= D
S (Q,GP)

18
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Instantiating Definition 3.2 to the above data, we obtain the
concept of a sorted Σ-automaton. It is given by an S-sorted
object of statesQ ∈ DS together withmorphisms δQ,s,t , iQ,t

and fQ,t as in the diagram below for s, t ∈ S :

Σs,t ⊗ Qt

δQ,s,t

��

It
iQ,t

// Qt
fQ,t

// Ot

In generalization of the single-sorted case (see Example 3.9),
the initial algebra for FI can be described as follows. For
n ∈ N and s, t ∈ S define the object Σns,t ∈ D inductively by

Σ
0
s,t = ID , Σ

n+1
s,t =

∐

r ∈S

Σs,r ⊗ Σ
n
r ,t .

and put

Σ
∗
s,t =

∐

n∈N

Σ
n
s,t .

The initial algebra for the functor FI is given by

(µFI )t =
∐

s ∈S

Is ⊗ Σ
∗
s,t (t ∈ S).

Proof of Theorem 3.13

We first establish some basic observations about automata
homomorphisms and languages:

Proposition A.4. For each automata homomorphism

h : Q → Q ′ one has LQ = LQ ′

Proof. This follows from the commutative diagram below.
The upper triangle commutes by initiality of µFI , and all
remaining parts commute by definition.

µFI

LQ

((

LQ′

vv

eQ

��✍✍
✍✍
✍✍ eQ′

��
✶✶
✶✶
✶✶

Q

fQ
��
✵✵
✵✵
✵✵

h // Q ′

fQ′
��☞☞
☞☞
☞☞

O

�

RemarkA.5. Every F -algebra homomorphismh : (Q, δ ) →
(Q ′, δ ′) is also aG-coalgebra homomorphism h : (Q, δ@) →
(Q ′, (δ ′)@), and vice versa. Indeed, the corresponding com-
mutative squares are just adjoint transposes of each other.

FQ
δ //

Fh

��

Q

h

��

FQ ′
δ ′

// Q ′

Q
δ@

//

h

��

GQ

Gh

��

Q ′
(δ ′)@

// GQ ′

Proposition A.6. For all automata Q and Q ′, we have

LQ = LQ ′ iff mQ · eQ =mQ ′ · eQ ′ .

Proof. (1) For the “if” direction, suppose thatmQ ·eQ =mQ ′ ·

eQ ′ . Then the following diagram (where outl : GO = O ×

G → O denotes the left product projection) commutes by
the definition of γQ in Remark 3.7 and becausemQ is a GO -
coalgebra homomorphism.

Q
γQ

//

mQ

��

fQ

$$
GOQ

GOmQ

��

outl // O

νGO γ
// GO (νGO )

outl

;;✇✇✇✇✇✇✇✇✇

(4)

Thus fQ = outl ·γ ·mQ and analogously fQ ′ = outl ·γ ·mQ ′ .
This implies

LQ = fQ ·eQ = outl·γ ·mQ ·eQ = outl·γ ·mQ ′ ·eQ ′ = · · · = LQ ′ .

(2) For the “only if” direction, suppose that L := LQ = LQ ′ .
By equipping µFI with final states L : µFI → O , we can
view µFI as a GO -coalgebra, and thus eQ : µFI → Q as a
GO -coalgebra homomorphism (see Remark A.5). It follows
thatmQ ·eQ : µFI → νGO is aGO -coalgebra homomorphism.
Analogously,mQ ′ · eQ ′ is a coalgebra homomorphism. Thus,
mQ · eQ =mQ ′ · eQ ′ by finality of νGO . �

Remark A.7. For every language L : µFI → O there exists
an automaton Q accepting L. Indeed, one can choose Q =
µFI with output morphism L : µFI → O .

We are prepared to prove the minimization theorem:

Proof of Theorem 3.13. Fix an arbitrary automaton Q with
LQ = L (see Remark A.7). Viewing µFI as an automa-
ton with output morphism LQ = fQ · eQ : µFI → O , the
unique FI -algebra homomorphism eQ is an automata ho-
momorphism. Analogously, equipping νGO with the initial
states mQ · iQ : I → νGO makes the unique GO -coalgebra
homomorphism mQ : Q → νGO an automata homomor-
phism. ThusmQ · eQ is an automata homomorphism. Form
its (E,M)-factorization, see Remark A.1:

µFI
eQ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ eMin(L)

## ##❍
❍❍

❍❍
❍❍

❍❍

Q

mQ
  ❇

❇❇
❇❇

❇❇
❇ Min(L)

{{

mMin(L)
{{✈✈
✈✈
✈✈
✈✈
✈

νGO

We claim that Min(L) is the minimal automaton for L. To
this end, note first that LMin(L) = LQ = L by the “if” direc-
tion of Proposition A.6. Thus, Min(L) accepts the language
L. Moreover,Min(L) is reachable because eMin(L) ∈ E.

To establish the universal property of Min(L), suppose
that R is a reachable automaton accepting L; we need to
show that there is a unique homomorphism from R into
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Min(L). From LMin(L) = LR = L it follows that mR · eR =

mMin(L) · eMin(L) by the “only if” direction of Proposition A.6.
Thus, diagonal fill-in yields a unique automata homomor-
phism h : R → Min(L)making the diagram below commute:

µFI
eR

~~~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ eMin(L)

## ##❍
❍❍

❍❍
❍❍

❍❍

R

mR
  
❇❇

❇❇
❇❇

❇❇
h //❴❴❴❴❴❴❴❴ Min(L)

{{

mMin(L)
{{✈✈
✈✈
✈✈
✈✈
✈

νGO

Given another automata homomorphism h′ : R ։ Min(L),
we have h′ · eR = eMin(L) by initiality of µFI . Thus h′ · eR =
h · eR , which implies h′ = h because eR is epic. This proves
the desired universal property of Min(L).
The uniqueness ofMin(L) up to isomorphism follows im-

mediately from its universal property. �

The construction ofMin(L) is the above proof also shows:

Corollary A.8. An automaton Q is minimal if and only if it

is both reachable (eQ ∈ E) and simple (mQ ∈ M).

Details for Remark 4.4

That LQ = LQ ′ implies hQs,t = h
Q ′

s,t follows immediately from
the “only if” direction of Proposition A.6 and the definition

of h(−)s,t .

Details for Definition 4.8

For the diagonal fill-in δs,t to exist, we need to verify that for
each pair (s, t) as in (3), the square below is commutative:

FS

ls,t

��

Fes,t
// // FHs,t

r #s,t

��

Hs,t
//
ms,t

// T

where

ls,t = (FS
inr
−−→ I + FS = FIS

eFI s,t
−−−−→ HFI s,t

cl−1s,t
−−−→ Hs,t )

and

rs,t = (Hs,t

cs−1s,t
−−−→ Hs,GO t

ms,GO t

−−−−−−→ GOT = O×GT
outr
−−−→ GT ).

Proof. By definition of cls,t and css,t , the lower path of the
square is equal to

FS
inr
−−→ FIS

hFI s,t
−−−−→ T

and the upper path is equal to

FS
Fhs,GOt

−−−−−−→ FGOT
outr#

−−−−→ T .

We therefore need to verify that the outside of the following
diagram commutes:

FS
Fhs,GOt

//

F s

��
✼✼

✼✼
✼✼

✼

inr

��

FGOT

outr#

��

FFNI 0
F jN//

inr

��

F (µFI )
FeQ

//

inr

��

FQ

inr

��

FmQ
// F (νGO )

F j′K+1//

Fγ

��

FGK+1
O 1

(∗)

FGO t

@@�������

FI (µFI )

α

��

FI eQ

// FIQ

αQ

��

FGO (νGO )

outr#

��

FN+1
I

0

FI jN

@@✂✂✂✂✂✂✂

jN+1
// µFI eQ

// Q
mQ

// νGO
j′
K

// GK
O1

t
��
❃❃

❃❃
❃❃

❃

FIS

FI s
CC✞✞✞✞✞✞

hFI s,t

// T

All parts except (∗) clearly commute either by definition or
by naturality of inr : F → FI and outr : GO → G . For (∗),
note that the lower path is the adjoint transpose of

νGO

γ
−→ GO (νGO )

outr
−−−→ G(νGO )

Gj′
K

−−−→ GGK
O1

Gt
−−→ GT

the upper path is the adjoint transpose of

νGO

j′K+1
−−−→ GK+1

O 1
GO t
−−−→ GOT

outr
−−−→ GT ,

and the commutative diagram below shows that these two
morphisms are equal:

νGO

j′
K+1 //

γ

��

GK+1
O 1

GO t //

outr

��

GOT

outr

��

GO (νGO )

GO j′K

::ttttttttt

outr

��

G(νGO )
Gj′K

// GGK
O1 Gt

// GT

This concludes the proof. �

Proof of Theorem 4.12

The proof of the correctness and termination of the gener-
alized L∗ algorithm requires some preparation. First, recall

that for any endofunctor H , an H -coalgebra C
γ
−→ HC is re-

cursive [57] if for each H -algebra HA
α
−→ A there exists a

unique coalgebra-to-algebra homomorphism h from (C,γ )
into (A,α); that is, h makes the square below commute.

C
h //❴❴❴❴

γ

��

A

HC
Hh

// HA

α

OO
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Dually, an H -algebra HA
α
−→ A is corecursive if for each

H -coalgebra C
γ
−→ HC there exists a unique coalgebra-to-

algebra homomorphism h from (C,γ ) into (A,α).

Lemma A.9 (see [22], Prop. 6). For each recursive coalgebra

C
γ
−→ HC , the coalgebra HC

Hγ
−−→ HHC is also recursive.

Barlocco et al. [14] model prefix-closed sets as recursive
subcoalgebras of an initial algebra µH . In our present set-
ting, recursivity comes for free:

Proposition A.10. Every subcoalgebra of (FN
I
0, FN

I
¡), N ≥

0, is recursive.

In particular, this result applies to the subcoalgebras (S,σ )
in the generalized L∗ algorithm.

Proof. Suppose that s : (S,σ ) ֌ (FN
I
0, FN

I
¡) is a subcoalge-

bra for some N ≥ 0. We prove that (S,σ ) is recursive by
induction on N .

ForN = 0, note first that in any categoryD the initial object
0 has no proper subobjects. (Indeed, suppose thatm : S ֌ 0
is a subobject. Then the unique morphism ¡

S : 0 → S sat-
isfies m · ¡S = id0 by initiality of 0, so m is both monic
and split epic, i.e. an isomorphism.) Consequently, we have
(S,σ ) = (0, ¡), and this coalgebra is trivially recursive by ini-
tiality of 0.

For the induction step, let N > 0, and let (A,α) be an ar-
bitrary FI -algebra. We need to prove that there is a unique
coalgebra-to-algebra homomorphism h : (S,σ ) → (A,α).
(1) Existence. Since (FN

I
0, FN

I
¡) is a recursive coalgebra by

Lemma A.9, we have a unique coalgebra-to-algebra homo-
morphism h′ from (FN

I
0, FN

I
¡) to (A,α). Thus h = h′ · s is a

coalgebra-to-homomorphism from (S,σ ) to (A,α).
(2) Uniqueness. Suppose that h : (S,σ ) → (A,α) is a
coalgebra-to-algebra homomorphism. Form the pullback of
s and FN−1

I
¡:

FN−1I 0 //
F N−1
I

¡
// FNI 0

S ′
OO

s ′

OO

//
m

// S
OO

s

OO

Note that FN−1
I

¡ ∈ M because ¡ : 0 → FI 0 = I lies in
M by Assumption 3.5(2) and FI preserves M by Assump-
tions 4.1. Since in any factorization system (E,M) the class
M is stable under pullbacks [2, Prop. 14.15], it follows that
m, s ′ ∈ M. Since FI preserves pullbacks ofM-morphisms
by Assumptions 4.1, the upper right square in the diagram
below is a pullback, and the outer part commutes because s

is a coalgebra homomorphism. Thus, there is a unique mor-
phism n making the two triangles commute:

FN
I
0 //

F N
I
¡
// FN+1

I
0

FIS
′

OO

FI s
′

OO

//
FIm

// FIS
OO

FI s

OO

S
>>

n
>>⑤

⑤
⑤

⑤LL

s

@@

00
σ

;;

It follows thatm : (S ′,n ·m)֌ (S,σ ) and s ′ : (S ′,n ·m)֌
(FN−1I 0, FN−1I

¡) are coalgebra homomorphisms, as shown by
the two commutative diagrams below:

S
σ // FIS

S ′ //
m

//
OO

m

OO

S //
n

//
>>

σ

>>⑥⑥⑥⑥⑥⑥⑥⑥
FIS
′

OO

FIm

OO
FN−1
I

0
F N−1
I

¡
// FN

I
0

S ′ //
m

//
OO

s ′

OO

S //
n

//
??

s
??⑦⑦⑦⑦⑦⑦⑦⑦
FIS
′

OO

FI s
′

OO

By induction we know that the coalgebra (S ′,n ·m) is recur-
sive, that is, we have a unique coalgebra-to-algebra homo-
morphism д : (S ′,n ·m) → (A,α). Since also h ·m : (S ′,n ·
m) → (A,α) is coalgebra-to-algebra homomorphism (be-
ing the composite of a coalgebra homomorphism with a
coalgebra-to-algebra homomorphism), we get h · m = д.
Then the commutative diagram below shows that h = α ·

FIд · n, i.e. h is uniquely determined by д.

S
n

��

h //

σ

��

A

FIS
′

FIд

==FIm
// FS

FIh
// FA

α

OO (5)

�

Note that the proof of Proposition A.10 uses our assump-
tion that FI preserves pullbacks imM-morphisms. Since we
do not requireGO to preserve pushouts ofE-morphisms, the
corresponding statement that everyGO -quotient algebra of
(GK

O1,G
K
O !) is corecursive does not hold. However, we have

the following weaker result:

Proposition A.11. At each stage of Generalized L∗, the al-

gebra (T , τ ) is corecursive.

Proof. Recall that (T , τ ) is a quotient algebra
t : (GK

O1,G
K
O !) ։ (T , τ ) for some K > 0. We need to

show that (1) (T , τ ) is corecursive after its initialization in
Step 0 of the algorithm, and that (2) every application of
“Extend t” preserves corecursivity.

Proof of (1). Initially, we have (T , τ ) = (GO1,GO !). Since the
algebra (1, !) is trivially corecursive by terminality of 1, the
dual of Lemma A.9 shows that (T , τ ) is corecursive.
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Proof of (2). Suppose that (T , τ ) is corecursive. Applying “Ex-
tend t” replaces (T , τ ) by the algebra (T ′, t0 · GOt1), where
τ = t1 · t0. Then t0 : (GOT ,GOτ ) → (T ′, t0 · GOt1) and
t1 : (T ′, t0 ·GOt1) → (T , τ ) areGO -algebra homomorphisms,
as shown by the diagram below.

T T ′
t1oo GOT

t0oo

GOT

t0

OO

GOT

τ

OO

GOT
′

GO t1

oo

GO t1

OO

GOGOT

GO τ

OO

GO t0

oo

To show that (T ′, t0 ·GOt1) is corecursive, let (C,γ ) be aGO -
coalgebra.We need to prove that there is a unique coalgebra-
to-algebra homomorphism h from (C,γ ) into (T ′, t0 ·GOt1).

Existence. Since (T , τ ) is corecursive, the algebra (GOT ,GOτ )

is also corecursive by the dual of Lemma A.9. Thus, there
exists a unique coalgebra-to-algebra homomorphism h′

from (C,γ ) into (GOT ,GOτ ). It follows that h = t0 · h
′

is a coalgebra-to-algebra homomorphism from (C,γ ) into
(T ′, t0 · GOt1), being the composite of the coalgebra-to-
algebra homomorphismh′with the algebra homomorphism
t0.

Uniqueness. Let h be a coalgebra-to-algebra homomorphism
from (C,γ ) into (T ′, t0 · GOt1), and denote by д the unique
coalgebra-to-algebra homomorphism from (C,γ ) into the
corecursive algebra (T , τ ). Since also t1 · h is such a homo-
morphism (being the composite of a coalgebra-to-algebra
homomorphism with an algebra homomorphism), we have
t1 · h = д. From the commutative diagram below it then fol-
lows that h = t0 · GOд · γ , which shows that h is uniquely
determined by д.

T ′ C
hoo

γ

��

GOT

t0

OO

GOT
′

GO t1

OO

GOC
GOh
oo

GOд
cc●●●●●●●●●

�

LemmaA.12. Let (s, t) be closed and consistent, and suppose

that the algebra (T , τ ) is corecursive. Then the associated hy-

pothesis automaton Hs,t (see Definition 4.8) is minimal. More-

over, the two diagrams below commute:

S // s //

es,t
��
❅❅

❅❅
❅❅

❅❅
FN
I
0

jN // µFI

eHs,t
}}④④
④④
④④
④④

Hs,t

Hs,t

ms,t

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ mHs,t

!!❉
❉❉

❉❉
❉❉

❉

T GK
O1t

oo νGO
j′K

oo

In particular, by Proposition A.11, this lemma applies to
the pairs (s, t) constructed in the generalized L∗ algorithm.

Proof. (1) We first prove that the left-hand diagram com-
mutes. Consider the FI -algebra structure on Hs,t given by

[is,t , δs,t ] : FIHs,t → Hs,t .

Then es,t : (S,σ ) → (Hs,t , [is,t , δs,t ]) is a coalgebra-to-
algebra homomorphism, as shown by the commutative di-
agram below:

S
es,t

//

σ

��

Hs,t

HFi s,t

cl−1s,t
;;✈✈✈✈✈✈✈✈✈

FIS

eFI s,t
<<②②②②②②②②

FI es,t

// FIHs,t

[is,t ,δs,t ]

OO

Indeed, the upper left part commutes by the definition of
cls,t , and the lower right part commutes by definition of is,t
and δs,t (consider the two coproduct components of FIS =
I + FS separately).

Since also eHs,t · jN · s : (S,σ ) → (Hs,t , [is,t , δs,t ]) is
a coalgebra-to-algebra homomorphism (being the compos-
ite of the FI -coalgebra homomorphism s , the coalgebra-to-
algebra homomorphism jN and the FI -algebra homomor-
phism eHs,t ) and the coalgebra (S,σ ) is recursive by Propo-
sition A.10, we conclude that es,t = eHs,t · jN · s .
(2) The proof that the right-hand diagram commutes is com-
pletely analogous: one views Hs,t as a GO -coalgebra

〈fs,t , δ
@
s,t 〉 : Hs,t → GOHs,t ,

where δ
@
s,t : Hs,t → GHs,t denotes the adjoint transpose

of δs,t : FHs,t → Hs,t , and shows that both ms,t and t ·

j ′K · mHs,t are coalgebra-to-algebra homomorphisms from

(Hs,t , 〈fs,t , δ
@
s,t 〉) into the corecursive algebra (T , τ ).

(3) Since es,t ∈ E and ms,t ∈ M, it follows from the two
commutative diagrams that eHs,t ∈ E andmHs,t ∈ M (see
[2, Prop. 14.11]). Thus, the automaton Hs,t is minimal by
Corollary A.8. �
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An important invariant of the generalized L∗ algorithm
is that the subcoalgebra s is pointed and that the quotient
algebra t is co-pointed:

Definition A.13. An FI -coalgebra (R, ϱ) is pointed if there
is a morphism iR such that the left-hand triangle below com-
mutes. A GO -algebra (B, β) is co-pointed if there is a mor-
phism fR such that the right-hand triangle below commutes:

I
iR //

inl
  ❅

❅❅
❅❅

❅❅
❅ R

ϱ

��

FIR

O B
fB

oo

GOB

outl

aa❈❈❈❈❈❈❈❈
β

OO

Note that if (R, ϱ) is a subcoalgebra of (FMI 0, FMI
¡), then

iR is necessarily unique because FM
I
¡ is monic by Assump-

tions 3.5(2) and Assumptions 4.1. Dually for co-pointed quo-
tient algebras of (GM

O 0,GM
O !).

Lemma A.14. At each stage of the generalized L∗ algorithm,

the coalgebra (S,σ ) is pointed and the algebra (T , τ ) is co-

pointed.

Proof. We proceed by induction on the number of steps of
the algorithm required to construct the pair (s, t). Initially,
after Step (0), (S,σ ) is equal to (I , FI ¡), and thus pointed via
iS = idI .

I
id //

inl
��
❅❅

❅❅
❅❅

❅❅
I

FI ¡=inl

��

FI I

Dually, (T , τ ) is co-pointed via fT = idO .
Now suppose that at some stage of the algorithm, (S,σ )

is pointed and (T , τ ) is co-pointed. We need to show that
(S,σ ) remains pointed after executing “Extend s” or adding
a counterexample to s , and that (T , τ ) remains co-pointed
after executing “Extend t”.
(1) Extend s . When calling “Extend s”, the coalgebra (S,σ )
is replaced by the coalgebra (S ′, FIs0 · s1). This coalgebra is
pointed via iS ′ = s0 · iS , as witnessed by the commutative
diagram below:

I
iS //

iS′

!!

inl --

inl

++

S
s0 //

σ

  ❇
❇❇

❇❇
❇❇

❇ S ′

s1

��

FIS

FI s0

��

FIS
′

(2) Extend t . Symmetric to (1).
(3) Adding a counterexample. Let (C,γ ) be the counterexam-
ple added to (S,σ ), and denote by i : (S,σ )֌ (S ∨C,σ ∨ γ )
the embedding. Then the coalgebra (S ∨C,σ ∨γ ) is pointed

via iS∨C = i · iS , as shown by the commutative diagram be-
low:

I

inl

99

iS //

iS∨C

$$

inl
��
❅❅

❅❅
❅❅

❅❅
S

σ

��

i // S ∨C

σ∨γ

��

FIS
FI i

// FI (S ∨C)

�

Lemma A.15. Let A be an automaton. For any pointed sub-

coalgebra r : (R, ϱ)֌ (FMI 0, FMI
¡), we have

iA = ( I
iR
−→ R

r
−→ FMI 0

jM
−−→ µFI

eA
−−→ A )

Dually, for any co-pointed quotient algebrab : (GM
O 1,GM

O !)։
(B, β), we have

fA = (A
mA
−−→ νGO

j′M
−−→ GM

O 1
b
−→ B

fB
−−→ O ).

Proof. The first statement follows from the commutative di-
agram below, all of whose parts either commute trivially or
by definition.

I
iA //

iR

��

inl

��
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

inl

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑

inl

%%

inl

,,❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳ A

FIA

αA

<<②②②②②②②②②

FIR
FI r // FM+1I 0

FI jM //

jM+1
((❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
FI (µFI )

FI eA

OO

α

!!❇
❇❇

❇❇
❇❇

❇❇

R
r

//

ϱ

BB☎☎☎☎☎☎☎☎
FM
I
0

jM
//

FM
I
¡

==⑤⑤⑤⑤⑤⑤⑤⑤
µFI

eA

OO

The proof of the second statement is dual. �

Proposition A.16. Let (s, t) be a closed and consistent pair

as in (3), and suppose that t is co-pointed. Then the hypothe-

sis H = Hs,t and the unknown automaton Q have the same

observation tables for (s, t):

hHs,t = h
Q
s,t .

In particular, H and Q agree on inputs from S , that is,

LH · jN · s = LQ · jN · s .
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Proof. (1) For the first equality, consider the following dia-
gram:

FNI 0
jN // µFI

eQ

��

eHs,t

��☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛

S

s

OO

es,t
����

Hs,t
��

ms,t

��
mHs,t

��
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸
Q

mQ

��

T

GK
O
1

t

OO

νGO
j′K

oo

The outward commutes by definition ofhs,t and sincehs,t =
ms,t · es,t . The upper left and lower left parts commute by
Lemma A.12. It follows that the remaining part commutes
when precomposed with jN ·s and postcomposed with t · j ′K ,

which gives hHs,t = h
Q
s,t .

(2) The second equality follows by postcomposing both
sides of the equality hHs,t = h

Q
s,t with fT : T → O and ap-

plying Lemma A.15. �

The key to the termination of the learning algorithm lies
is in the following result.

Lemma A.17. Let (s, t) be a closed and consistent pair as in

(3), and suppose that t is co-pointed. Then for every counterex-
ample c forHs,t , the pair (s∨c, t) is not closed or not consistent.

Proof. Suppose for the contrary that the pair (s ∨ c, t) is
closed and consistent. Denote by

i : S ֌ S ∨C and i ′ : C → S ∨C

the two embeddings, satisfying (s∨c) ·i = s and (s∨c) ·i ′ = c .
Via diagonal fill-in we obtain a unique j : Hs,t ֌ Hs∨c,t

such that the following diagram commutes:

S // i //

es,t
����

S ∨C

es∨c,t
����

Hs,t
//

j
//

��

ms,t

��

Hs∨c,t
{{

ms∨c,t

{{✇✇
✇✇
✇✇
✇✇
✇

T

We shall show below that j is an automata homomorphism.
In particular, Hs,t and Hs∨c,t accept the same language by

Proposition A.4. Letting H = Hs∨c,t , we compute

LHs,t · jN · c

= LH · jN · c since LHs,t = LH

= fH · eH · jN · c def. LH

= fT · t · j
′
K ·mH · eH · jN · c by Lemma A.15

= fT · t · j
′
K ·mH · eH · jN · (s ∨ c) · i

′ def. i ′

= fT · h
H
s∨c,t · i

′ def. hHs∨c,t

= fT · h
Q
s∨c,t · i

′ by Prop. A.16

= · · ·

= LQ · jN · c compute backwards

This contradicts the fact that c is a counterexample for Hs,t .

To conclude the proof, it only remains to verify our above
claim that j is an automata homomorphism.
(1) j preserves transitions. Observe first that we have

ms,t · ls,t =ms∨c,t · ls∨c,t · Fi, (6)

as shown by the commutative diagram below:

FS

F i

��

ls,t
//

inr

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲ Hs,t

ms,t

��

FIS
eFI s,t //

hFI s,t
**❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱

FI i

��

HFI s,t

mFI s,t

%%❑
❑❑

❑❑
❑❑

❑❑
❑

cl−1s,t

99ssssssssss

T

FI (S ∨C)

hFI (s∨c ),t

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

eFI (s∨c ),t
// HFI (s∨c),t

mFI (s∨c ),t

99sssssssssss

cl−1s∨c,t %%❏
❏❏

❏❏
❏❏

❏❏

F (S ∨C)

inr

99rrrrrrrrrr

ls∨c,t

// Hs∨c,t

ms∨c,t

OO

Here the left-hand part commutes by naturality of inr, the
central triangle commutes by definition of h−,t (using that
(s∨c) ·i = s), and all remaining parts commute by definition.
Now, consider the following diagram:

FS
ls,t

//

F i

��

Fes,t

((PP
PPP

PPP
P Hs,t

ms,t

��

FHs,t

δs,t
//

F j

��

Hs,t

j

��

♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣

T

FHs∨c,t
δs∨c,t

// Hs∨c,t

◆◆◆
◆◆◆

◆

◆◆◆
◆◆◆

◆

F (S ∨C)
Fes∨c,t

77♥♥♥♥♥♥♥

ls∨c,t

// Hs∨c,t

ms∨c,t

OO
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The outward commutes by (6), and all parts except the cen-
tral square commute by definition. It follows that also the
central square commutes, because it commutes when pre-
composed with the epimorphism Fes,t and postcomposed
with the monomorphism ms∨c,t . Thus, j preserves transi-
tions.
(2) j preserves the initial state. Observe first that we have

ms,t · is,t =ms∨c,t · is∨c,t , (7)

as shown by the commutative diagram below:

I
is,t

//

inl

##❋
❋❋

❋❋
❋❋

❋❋
❋ Hs,t

ms,t

��

FIS
eFI s,t //

hFI s,t
**❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱

FI i

��

HFI s,t

mFI s,t

%%❑
❑❑

❑❑
❑❑

❑❑
❑

cl−1s,t

99ssssssssss

T

FI (S ∨C)

hFI (s∨c ),t

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

eFI (s∨c ),t
// HFI (s∨c),t

mFI (s∨c ),t

99sssssssssss

cl−1s∨c,t %%❏
❏❏

❏❏
❏❏

❏❏

I

inl

<<①①①①①①①①①①
is∨c,t

// Hs∨c,t

ms∨c,t

OO

Now consider the following diagram:

I
is,t

// Hs,t %%
ms,t

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

j

��

I
is∨c,t

// Hs∨c,t
//
ms∨c,t

// T

The outward commutes by (7), and the right-hand triangle
by the definition of j . Thus the left-hand part commutes,
since it does when postcomposed with the monomorphism
ms∨c,t . This proves that j preserves the initial state.
(3) j preserves final states. The proof is analogous to (2). �

With the above results at hand, we are ready to prove
Theorem 4.12:

Proof of Theorem 4.12. The algorithm only terminates if a
hypothesis Hs,t constructed in Step (2) is correct (i.e. it ac-
cepts the same language as the unknown automaton Q), in
which case Hs,t is returned. This automaton is minimal by
Lemma A.12, so Hs,t = Min(LQ ).
Thus, we only need to verify that the algorithm even-

tually finds a correct hypothesis. For any FI -subcoalgebra

r : (R, ϱ) ֌ (FMI 0, FMI
¡), let er and mr denote the (E,M)-

factorizations of eQ · jM · r .

R
r //

er
%% %%▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲ FM

I
0

jM // µFI
eQ

// Q

Qr

99

mr

99ssssssssssss

Similarly, for any GO -quotient algebra b : (GM
O 1,GM

O !) ։
(B, β), let eb andmb be the (E,M)-factorization ofb · j ′M ·mQ .

Q
mQ

//

eb
%% %%❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑ νGO

j′M // GM
O
1

b // B

Qb

99
mb

99sssssssssssss

Let (s, t) and (s ′, t ′) be two consecutive pairs appearing in
an execution of the algorithm. We show below that the fol-
lowing statements hold:
(1) If (s ′, t ′) emerges from (s, t) via “Extend s”, then ms <

ms ′ and et = et ′ .
(2) If (s ′, t ′) emerges from (s, t) via “Extend t”, then ms =

ms ′ and et < et ′ .
(3) If (s ′, t ′) emerges from (s, t) by adding a counterexample,
thenms ≤ ms ′ and et = et ′

Letting (s0, t0), (s1, t1), (s2, t2), . . . denote the sequence of
pairs constructed in an execution of the algorithm, it follows
that we obtain two ascending chains

ms0 ≤ ms1 ≤ ms2 ≤ · · · and es0 ≤ es1 ≤ es2 ≤ · · · .

of subobjects and quotients of Q , respectively. By our as-
sumption that Q is Noetherian, both chains must stabilize,
i.e. all but finitely many of the relations ≤ are equalities. By
(1) and (2), this implies that “Extend s” and “Extend t” are
called only finitely often. Moreover, whenever a counterex-
ample is added to s , this must be immediately followed by a
call of “Extend s” oder “Extend t” by Lemma A.17. Thus also
Step (2b) is executed only finitely often. This proves that the
algorithm necessarily terminates.

It remains to establish the above statements (1)–(3).
(1) An application of “Extend s” to (s, t) yields the new pair
(s ′, t ′) with

s ′ = FIs · s1 and t ′ = t .

Thus, we trivially have et = et ′ . Moreover,ms ≤ ms ′ holds
by the right-hand triangle in the diagram below, where the
morphism ns,s ′ is obtained via diagonal fill-in:

S

s0

��

es // // Qs
//
ms //

��

ns,s′

��
✤
✤
✤

Q

S ′
es′

// // Qs ′

??
ms′

??⑦⑦⑦⑦⑦⑦⑦⑦

To provems <ms ′ , we need to show that ns,s ′ is not an iso-
morphism. To this end, consider the unique morphisms ds
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and ds ′ (defined via diagonal fill-in) such that the diagrams
below commute:

S
s //

es,t

����

es

"" ""❊
❊❊

❊❊
❊ FN

I
0

jN // µFI

eQ

��

Qs ##
ms

##●
●●

●●
●

ds

{{{{①①
①①
①①

Hs,t
��

ms,t

��

Q

e t||②②
②②
②②

mQ

��

Qt}}

mt}}③③
③③
③③

T GK
O1t

oo νGO
j′
K

oo

S ′
s ′ //

es′,t

����

es′

$$ $$❍
❍❍

❍❍
❍❍

FN+1
I

0
jN+1 // µFI

eQ

��

Qs ′ $$ ms′

$$■
■■

■■
■■ds′

zzzz✉✉
✉✉
✉✉

Hs ′,t
��

ms′,t

��

Q

e t{{✈✈
✈✈
✈✈
✈

mQ

��

Qt{{

mt{{✇✇
✇✇
✇✇
✇

T GK
O1t

oo νGO
j′
K

oo

Moreover, observe that we have the following commutative
diagram:

Hs ′,t ))

ms′,t

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

S ′
hs′,t

//

es′,t

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

s1
  ❆

❆❆
❆❆

❆❆
❆ T

FIS

hFI s,t

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
eFI s,t

// HFI s,t

==
mFI s,t

==③③③③③③③③③

By the choice of s1 in “Extend s”, we have eFI s,t · s1 ∈ E. The
uniqueness of (E,M)-factorizations thus implies that, up to
isomorphism,

Hs ′,t = HFI s,t , es ′,t = eFI s,t · s1, ms ′,t =mFI s,t .

We now claim that the following diagram commutes:

Qs
//

ns,s′
//

ds

����

Qs ′

ds′

����

S

es,t

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

hs,t ��
❃❃

❃❃
❃❃

❃

es
````❆❆❆❆❆❆❆❆

s0 // S ′

es′,t

��
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾

es′
99sssssssssss

hs′,t��⑧⑧
⑧⑧
⑧⑧
⑧⑧

T

Hs,t

ms,t

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦
//

cls,t

// HFI s,t = Hs ′,t

ii
ms′,t

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

(8)

All inner parts commute by definition. Thus also the out-
ward commutes, since it does when precomposed with
the epimorphism es and postcomposed with the monomor-
phismms ′,t .
We are ready to prove our claim that ns,s ′ is not an iso-

morphism. Suppose for the contrary that it is. Since ds ′ ∈ E,
the diagram (8) yields cls,t · ds = ds ′ · ns,s ′ ∈ E. Thus
cls,t ∈ E. One the other hand, by definition of cls,t we have
mFI s,t · cls,t = ms,t ∈ M and thus cls,t ∈ M. But from
cls,t ∈ E ∩M it follows that that cls,t is an isomorphism [2,

Prop. 14.6], contradicting the fact that the input pair (s, t) of
“Extend s” is not closed.
(2) The proof is symmetric to (1).
(3) Adding a counterexample c means to to replace the pair
(s, t) by the pair (s ′, t ′) with

s ′ = s ∨ c and t ′ = t .

Thus et = et ′ . Letting i : (S,σ )֌ (S ∨C,σ ∨γ ) = (S ′,σ ′) de-
note the embedding with s = (s∨c) · i , diagonal fill-in yields
a morphism ns,s ′ making the diagram below commute:

S

i

��

es // // Qs
//
ms //

��

ns,s′

��
✤
✤
✤

Q

S ′
es′

// // Qs ′

??
ms′

??⑦⑦⑦⑦⑦⑦⑦⑦

This proves thatms ≤ ms ′ . �

Details for Remark 4.13

Let m and n be the height (i.e. the length of the longest
strictly ascending chain) of the poset of subobjects and quo-
tients of Q , respectively. The proof of Theorem 4.12 shows
that
(1) “Extend s” is executed at mostm times;
(2) “Extend t” is executed at most n times;
(3) Step (2b) is executed at mostm + n times.
Thus, Steps (1a), (1b) and (2b) are executed at most 2m+2n =
O(m + n) times.

Details for Example 4.14

(1) The statements for D = Set, Pos,K-Vec are clear.
(2) D = JSL: clearly every finite semilattice is Noetherian.
Conversely, if Q is a infinite semilattice, choose a sequence

q0,q1,q2, . . .

of elements ofQ such that qn+1 is not an element of the sub-
semilattice 〈q0, . . . ,qn〉 of Q generated by q0, . . . ,qn . Since
this subsemilattice is finite (of cardinality atmost 2n+1), such
a qn+1 can always be chosen. Then

〈q0〉֌ 〈q0,q1〉֌ 〈q0,q1,q2〉֌ . . .

is an infinite strictly ascending chain of subsemilattices of
Q , showing that Q is not Noetherian.
(3) D = Nom: We show that orbit-finite sets have the
claimed polynomial height. Let X be an orbit-finite nomi-
nal set with n orbits. It is clear that chains of subobjects, i.e.
equivariant subsets, of X have length at most n. It remains
to show the polynomial bound on chains of quotients. The
number of orbits decreases non-strictly along such a chain,
and can strictly decrease at most n times, so it suffices to
consider chains of quotients that retain the same number
of orbits. Such quotients are sums of quotients of single-
orbit sets, so it suffices to consider the case where X has
only one orbit. Then, all elements of X have supports of the
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same size k; since this number decreases non-strictly along
a chain of quotients, and can strictly decrease at most k
times, it suffices to consider chains of quotients that retain
the same support size.
We now use the standard fact that X is a quotient of A

∗k ,
the k-fold separated product of A; the same, of course, holds
for all quotients of X . A quotient of A

∗k whose elements re-
tain supports of size k is determined by a subgroup G of
the symmetric group Sk . (Specifically, the quotient deter-
mined by G identifies (a1, . . . ,ak ) and (aπ (1), . . . ,aπ (k)) for
all (a1, . . . ,ak ) ∈ A

∗k and π ∈ G . Conversely, from a given
quotient e : X ։ Y , we obtain G as consisting of all π ∈ Sk
such that e identifies (a1, . . . ,ak ) and (aπ (1), . . . ,aπ (k)) for
all (a1, . . . ,ak ) ∈ A

∗k .) The given chain of quotients thus
corresponds to a chain of subgroups of Sk , which for k ≥ 2
has length at most 2k − 3 [11].

Details for Remark 4.16

We demonstrate that the coalgebraic learning algorithm
in [14] gets stuck when applied to the setting of Σ-automata
in Nom. In the following, we assume some familiarity with
the algorithm and the notation introduced in op. cit.

A coalgebraic logic giving the semantics of nominal au-
tomata can be described in complete analogy to the Set case
[14, Example 1]. We instantiate the logical framework to

Nomop

δ
■■■

■■
■■■

■■

 (
■■■

■
■■■

■Lop

��

Nom
Poo

B

��

Nomop Nom
P

oo

where

LX = 1 + A × X , BX = 2 × [A,X ], P = [−, 2].

The right adjoint of P is Q = [−, 2] : Nomop → Nom. For
each X ∈ Nom, the map

δX : 1 + A × [X , 2] → [2 × [A,X ], 2]

sends the unique element of 1 to the left product projection,
and (a, f ) ∈ A × [X , 2] to δX (a, f ) ∈ [2 × [A,X ], 2]with

δX (a, f )(b,д) = f (д(a)) for b ∈ 2, д ∈ [A,X ].

We have the initial algebra for L given by Φ = µL = A
∗, and

the theory map

thγ : X → QΦ = [A∗, 2]

for a nominal automaton (i.e. B-coalgebra) X is just the
unique coalgebra homomorphism fromX into the final coal-
gebra νB = [A∗, 2] (cf. Example 3.9).
Now consider the nominal language K : A

∗ → 2 with
K(w) = 1 iff w has even length. We assume that the un-
known coalgebra is given by

(X
γ
−→ BX ) = (A∗

〈K,γ ′〉
−−−−−→ 2 × [A,A∗] )

with γ ′(w)(a) = wa for w ∈ A
∗, a ∈ A. (The state set X is

effectively made known to the learner in advance since the
learning algorithm computes subobjects of X . Thus, in the
typical scenario X will be orbit-infinite like in the present
example, although of course the languageK can be accepted
by an orbit-finite automaton.) The algorithm starts with the
trivial observation table

S = {ε}֌ X and Ψ = ∅֌ Φ,

This table is closed and the induced conjecture is the trivial
one-state automaton accepting all words in A

∗. Since a < K
for a ∈ A, the teacher provides the (minimal) counterexam-
ple {ε} + A֌ Φ. After adding it to Ψ, the new table is

S = {ε}֌ X and Ψ = {ε} + A֌ Φ.

The next reachability step computes the set Γ(S) of elements
of X reachable from S = {ε} in a single transition step:

Γ(S) = A.

Thus

S ∨ Γ(S) = S ∪ Γ(S) = {ε} + A֌ X .

Viewing the elements of QΨ = [{ε} + A, 2] as finitely sup-
ported subsets of Ψ = {ε} + A, we can describe the map

S ∨ Γ(S)֌ X
thγ

−−−→ QΨ

as sending ε to {ε} ⊆ Ψ and every a ∈ A to A ⊆ Ψ, i.e. the
image of this map is the discrete nominal set

S = {{ε}, A} � 2.

In order to close the table, Step 6 of the algorithm now re-
quires to choose a monomorphism S ֌ X subject to certain
conditions. But clearly there exists no monomorphism from
S = 2 to X = A

∗ in Nom, i.e. the algorithm cannot make the
required choice.

Details for Example 5.9

Our categorical notion of automata presentation involves
quotients of T-algebras. For practical purposes, it is some-
times more convenient to work with the equivalent concept
of a congruence:

Remark A.18. (1) Recall that for a monad T on Set given
by a finitary signature Γ and equations E between Γ-terms,
quotient algebras of a T-algebra (i.e. (Γ, E)-algebra)A corre-
spond bijectively to congruences on A. Here a congruence is
an equivalence relation ≡ on A respecting all Γ-operations:
for all a,a′ ∈ A with a ≡ a′, one has

γ (a1, . . . ,ai−1,a,ai+1 . . . ,an) ≡ γ (a1, . . . ,ai−1,a
′
,ai+1, . . . ,an)

for n > 0, γ ∈ Γn , i ∈ {1, . . . ,n} and aj ∈ A (j , i). The bijec-
tion identifies a quotient e : A ։ B with its kernel, i.e. the
congruence given by

a ≡ a′ ⇔ e(a) = e(a′).
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Thus, if the object TI is equipped with some Σ-automata

structure Σ ×TI
δ
−→ TI , the equivalence in Definition 5.7(3)

states precisely that an equivalence relation ≡ on TI corre-
sponding to a T-refinable quotient is a congruence on TI iff
for allw,w ′ ∈ TI and a ∈ Σ,

w ≡ w ′ implies δ (a,w) ≡ δ (a,w ′).

(2) An analogous remark applies to monads T on SetS cor-
responding to a finitary S-sorted signature Γ and equations
between Γ-terms: quotient algebras of a (Γ, E)-algebraA cor-
respond to S-sorted congruence relations, i.e. families of
equivalence relations ≡= (≡s⊆ As × As )s ∈S respecting all
operations. Thus, if TI is equipped with the structure of a
sorted Σ-automaton δs,t : Σs,t × (TI )s → (TI )t (s, t ∈ S),
the equivalence in Definition 5.7(3) states precisely that an
S-sorted equivalence relation ≡ onTI corresponding to a T-
refinable quotient is a congruence on TI iff for all w,w ′ ∈
(TI )s and a ∈ Σs,t ,

w ≡ w ′ implies δs,t (a,w) ≡ δs,t (a,w
′).

We will now describe automata presentations for semi-
groups, Wilke algebras, and general (ordered) (Γ, E)-
algebras, including stabilization algebras. We will see that
in all these cases, the equivalence in Definition 5.7(3) holds
for arbitrary, not only T-refinable, quotients.

Semigroups. The free semigroup T+I = I+ has a Σ-
automata presentation δ : Σ×I+→ I+ given by the alphabet

Σ = {
→
a : a ∈ I } ∪ {

←
a : a ∈ I }

and the transitions

δ (
→
a ,w) = wa and δ (

←
a ,w) = aw for w ∈ I+, a ∈ I .

We show that (1)–(3) of Definition 5.7 (with F = Σ×− on Set)
are satisfied. (1) is clear by Remark 5.4. For (2), recall from
Example 3.11 that µFI = I ×Σ∗. The unique homomorphism
eI+ : I × Σ

∗ → I+ interprets a word in I × Σ
∗ as a list of

instructions for forming a word in I+, e.g.

eI+ (a
→
a
→

b
←

b
→
a ) = baaba.

Thus, eI+ is surjective: given a1 . . . an ∈ I+ with ai ∈ I , we
have

a1 . . . an = eI+ (a1
→
a2 · · ·

→
an)

To show (3), we use Remark A.18(1): we need to verify that
an equivalence relation ≡ on I+ is a monoid congruence iff,
for every w,w ′ ∈ I+ and a ∈ I ,

w ≡ w ′ implies wa ≡ w ′a, aw ≡ aw ′.

The “only if” direction is clear. For the “if” direction, letw ≡
w ′ and v ∈ I+; we need to show that wv ≡ w ′v and vw ≡
vw ′. For the first equivalence, let v = a1 . . . an . Then we get
the chain of implications

w ≡ w ′ ⇒ wa1 ≡ w
′a1 ⇒ . . . ⇒ wa1 . . . an ≡ wa1 . . . an ,

i.e. wv ≡ w ′v . The proof of the second equivalence is sym-
metric.

Wilke algebras. The free Wilke algebraT∞(I , ∅) = (I+, Iup)
can be presented as a two-sorted Σ-automaton with the
sorted alphabet Σ = (Σ+,+, Σ+,ω, Σω,ω, ∅) given by

Σ+,+ = {
→
a : a ∈ I } ∪ {

←
a : a ∈ I }

Σ+,ω = {ω} ∪ {
→
v
ω
: v ∈ I+}

Σω,ω = {a
←
: a ∈ I }

and the transitions below, where v,w ∈ I+, z ∈ Iup, a ∈ I :

δ+,+(
→
a ,w) = wa, δ+,+(

←
a ,w) = aw,

δ+,ω (ω,w) = w
ω
, δ+,ω (

→
v
ω
,w) = wvω ,

δω,ω (a
←
, z) = az.

We show that (1)–(3) of Definition 5.7 (with F the functor on
Set{+,ω } from Example 3.11) are satisfied. (1) is clear by Re-
mark 5.4. For (2), recall from Example 3.11 that the initial al-
gebra µFI consists of sorted words over Σwith an additional
first letter from I . The homomorphism e(I+, I up) : µFI →
(I+, Iup) views such a word as an instruction for forming
a word in (I+, Iup), e.g.

e(I+, I up)(a
→

b
→
aωa

←
a
←
) = aa(aba)ω .

Thus e(I+, I up) is surjective: every finite word w ∈ I+ is in
the image of e(I+, I up) as in the case of semigroups, and for
an ultimately periodic word (a1 . . . an)(b1 . . . bm)ω ∈ Iup we
have

(a1 . . . ,an)(b1 . . . bm)
ω
= e(I+, I up)(b1

→

b2 · · ·
→

bmω
←
an · · ·

←
a1).

To show (3), we use Remark A.18(2): we need to verify
that a two-sorted equivalence relation ≡ on (I+, Iup) is a
congruence w.r.t. the Wilke algebra structure iff, for each
w,w ′,v ∈ I+ with w ≡ w ′ and a ∈ I , one has

aw ≡ aw ′, wa ≡ w ′a, wω ≡ (w ′)ω , wvω ≡ w ′vω ,

and for each z, z′ ∈ Iup with z ≡ z′ and a ∈ I one has az ≡
az′. The “only if” direction is clear. For the “if” direction, we
need to show that for all v,w,w ′ ∈ I+ and z, z′ ∈ Iup,

• w ≡ w ′ implies vw ≡ vw ′, wv ≡ w ′v , wω ≡ (w ′)ω and
wz ≡ w ′z;

• z ≡ z′ implies wz ≡ wz′.

Let us show thatw ≡ w ′ implieswz ≡ w ′z; the proofs of the
other statements are similar. We have z = a1 . . . any

ω with
a1, . . . ,an ∈ I and y ∈ I+. Fromw ≡ w ′ it follows that

wa1 ≡ w
′a1, wa1a2 ≡ w

′a1a2, · · · , wa1 . . . an ≡ w
′a1 . . . an ,

and thus

wz = wa1 . . . any
ω ≡ w ′a1 . . . any

ω
= w ′z.
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Stabilization algebras. Suppose that T is a monad on Set

or Pos induced by a finitary signature Γ and (in-)equationsE;
see Section 2. Then TI can be presented as the Γ-automaton
δ : FΓ(TI ) → TI given by the Γ-algebra structure on the free
(Γ, E)-algebraTI . We show that (1)–(3) of Definition 5.7 are
satisfied.
(1) is clear by Remark 5.4. For (2), observe that the ini-

tial algebra µ(FΓ)I is the algebra TΓI of Γ-terms over I , and
that the unique homomorphism eT I : TΓI ։ TI interprets Γ-
terms inTI . Since the T-algebra TI is generated by the set I
as a Γ-algebra, every element of TI can be expressed as a Γ-
term over I , i.e. eT I is surjective. (3) is clear: the equivalence
just amounts to the statement that if e is a surjective homo-
morphism of (ordered) Γ-algebras and its domain satisfies
all (in-)equations in E, then so does its codomain.
By instantiating to the monad T = TS on Pos, we see that

the free stabilization algebra TS I has a Γ-automata presen-
tation for the signature Γ of Example 5.5(3).

Proof of Theorem 5.12

Suppose that L is recognized via e : TI → (A,α) and p : A→
O , where (A,α) is a finite T-algebra. We may assume that
e ∈ E. (Otherwise consider the (E,M)-factorization

TI
e ′ // // (A′,α ′) //

m // (A,α)

of e . Since Df is closed under subobjects, L is recognized
by the finite T-algebra (A′,α ′) via e ′ and p ·m, i.e. we can
replace e by e ′.)
Since (F , δ ) forms a weak automata presentation, the

object A can be equipped with an F -algebra structure
δA : FA → A such that e : (TI , δ ) ։ (A, δA) is an F -algebra
homomorphism. Equipping TI and A with the initial states
ηI : I → TI and e · ηI : I → A, respectively, we can view TI

andA as FI -algebras and e as an FI -algebra homomorphism.
By initiality of µFI , it follows that eA = e · eT I . It follows
that the diagram below commutes, which proves that the au-
tomaton (A, δA, e ·ηI ,p) accepts the language lin(L) = L ·eT I .

µFI
eT I // //

eA
!!❇

❇❇
❇❇

❇❇
❇

TI

e

��

L // O

A

p

??⑦⑦⑦⑦⑦⑦⑦⑦

(9)

Since A is finite, we conclude that lin(L) is regular. �

Proof of Theorem 5.14

The proof is illustrated by the diagram below:

µFI
eT I // //

lin(L)

""

eA
����

TI

e

}}}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

e ′

����

L // O

A

fA

MM

B
h

oo

p′

??⑦⑦⑦⑦⑦⑦⑦⑦

Let A = Min(lin(L)) be the minimal automaton for the lan-
guage lin(L). EquippingTI with the initial states ηI : I → TI

and the final states L : TI → O , we can view TI as an au-
tomaton accepting lin(L) = L · eT I . Since eT I ∈ E (that is,
the automatonTI reachable) andA is minimal, there exists a
unique automata homomorphism e : TI ։ A. We now prove
the theorem by establishing the following claims:

Claim1. For every finite quotient T-algebra e ′ : TI ։ (B, β)
that recognizes L, there exists a unique h : B → A with e =

h · e ′.

Proof. As in the proof of Theorem 5.12, B can be viewed as
a reachable automaton recognizing lin(L). By minimality of
A, there is an automata homomorphismh : B → A. We have

h · e ′ · eT I = e · eT I

because both sides are FI -algebra homomorphisms from µFI
to B and µFI is initial. Thus h · e ′ = e because eT I is epic.

Claim 2. The automaton A can be equipped with T-
algebra structure (A,αA) such that e : TI ։ (A,αA) is a T-
homomorphism.

Proof. Since L is T-recognizable, we have L = p ′ ·e ′ for some
finite quotient T-algebra e ′ : T ։ (B, β) and some p ′ : A →
O . By Claim 1, e = h · e ′ for some h, which shows that e
is T-refinable. Since (F , δ ) is an automata presentation, we
obtain the desired αA.

Claim 3. e : TI ։ (A,αA) is a syntactic T-algebra for L.

Proof. The homomorphism e recognizes L via fA: we have

L · eT I = lin(L) = fA · eA = fA · e · eT I

and thus L = fA · e because eT I is epic. The universal prop-
erty of e follows from Claim 1. �
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