
Interaction Laws of Monads and Comonads

Shin-ya Katsumata1 , Exequiel Rivas2 , and Tarmo Uustalu3,4

1 National Institute of Informatics, Tokyo, Japan
2 Inria Paris, France

3 Dept. of Computer Science, Reykjavik University, Iceland
4 Dept. of Software Science, Tallinn University of Technology, Estonia

s-katsumata@nii.ac.jp, exequiel.rivas-gadda@inria.fr, tarmo@ru.is

Abstract. We introduce and study functor-functor and monad-comonad interaction laws as math-
ematical objects to describe interaction of effectful computations with behaviors of effect-performing
machines. Monad-comonad interaction laws are monoid objects of the monoidal category of functor-
functor interaction laws. We show that, for suitable generalizations of the concepts of dual and
Sweedler dual, the greatest functor resp. monad interacting with a given functor or comonad is its
dual while the greatest comonad interacting with a given monad is its Sweedler dual. We relate
monad-comonad interaction laws to stateful runners. We show that functor-functor interaction laws
are Chu spaces over the category of endofunctors taken with the Day convolution monoidal struc-
ture. Hasegawa’s glueing endows the category of these Chu spaces with a monoidal structure whose
monoid objects are monad-comonad interaction laws.

1 Introduction

What does it mean to run an effectful program, abstracted into a computation?
In this paper, we take the view that an effectful computation does not perform its effects; those

are to be provided externally. The computation can only proceed if placed in an environment that can
provide its effects, e.g, respond to the computation’s requests for input, listen to its output, resolve
its nondeterministic choices by tossing a coin, consistently respond to its fetch and store commands.
Abstractly, such an environment is a machine whose implementation is opaque to us; we can witness its
behavior, its evolution through externally visible states.

To formalize this intuition, we follow Moggi [23] and Plotkin and Power [26] in regards to allowed
computations (the chosen notions of computation) and describe them using a monad (resp. algebraic
theory) T on the category of types and functions that we want to compute on. Allowed machine be-
haviors (the chosen notion of machine behavior), at the same time, are described with a comonad D.
An operational semantics is then described by what we call an interaction law, a natural transformation
ψ : TX ×DY → X × Y compatible with the (co)unit and (co)multiplication. This polymorphic function
sends a computation (TX) and a machine behavior from some initial state (DY) into a return value X
and a final state Y . It is also fine to work with notions of computation and machine behavior that do
not include “just returning” or/and are not closed under sequential composition; those can be described
with plain functors instead of a monad and a comonad.

We take special interest in the questions (a) which is the “greatest” comonad interacting with the given
monad T (so any interaction law of T with any comonad would factor through the canonical interaction
law of T with this comonad)? and (b) which is the “greatest” monad (resp. functor) interacting with a
given comonad D (or functor G)? To answer these, we draw inspiration from algebra, where the dual of
a vector space V is V ◦ = V → K. The answer to (b) turns out to be: the dual of D (resp. G), under
a suitably generalized concept of dual. Question (a) is harder. To answer it, we need to generalize the
concept of what is called the Sweedler dual. The greatest comonad interacting with T is the Sweedler
dual of T .

The contributions in this paper are the following:

(i) We introduce functor-functor interaction laws, define the dual of a functor, and show that the greatest
functor interacting with a given functor is its dual (Section 2).

(ii) We study monad-comonad interaction laws as monoid objects of the category of functor-functor
interaction laws. We show that the dual lifts from functors to comonads and that the greatest monad
interacting with a given comonad is its dual whereas for monads it does not lift like this; for the
greatest comonad interacting with a monad, the Sweedler dual is needed (Section 3).

(iii) We relate monad-comonad interaction laws to stateful runners of Uustalu [36] (Section 4).

ar
X

iv
:1

91
2.

13
47

7v
1

 [
cs

.L
O

]
 3

1
D

ec
 2

01
9

https://orcid.org/0000-0001-7529-5489
https://orcid.org/0000-0002-2114-624X
https://orcid.org/0000-0002-1297-0579

2 S.-y. Katsumata, E. Rivas and T. Uustalu

(iv) Using the Day convolution and duoidal categories, we recast monad-comonad interaction laws as
monoid-comonoid interaction laws, and relate them to two standard constructions: Chu spaces and
Hasegawa’s glueing (Section 6). This gives us a method for computing the Sweedler duals of free
monoids (monads) and their quotients by equations.

We also introduce and study residual functor-functor interaction laws, monad-comonad interaction
laws and stateful runners as generalizations where the machine need not be able to perform all effects of
the computation (Section 5).

We assume the reader to be familiar with adjunctions/monads/comonads, extensive categories [11],
Cartesian closed categories, ends/coends (the end-coend calculus [9,20]). In a nutshell, extensive categories
are categories with well-behaved finite coproducts.

Throughout most of the paper (Sections 2–4), we work with one fixed base category C that we assume
to be extensive with finite products. For some constructions (the dual of a functor), we also need that C
is Cartesian closed. For the same constructions, we also use certain ends that we either explicitly show
to exist or only use when they happen to exist. We also rely on Cartesian closedness in most examples.

2 Functor-functor interaction

We begin with functor-functor interaction, to then proceed to the monad-comonad interaction laws in
the next section.

2.1 Functor-functor interaction laws

In a functor-functor interaction law, computations over a set of values X are elements of FX where F is
a given functor. Machine behaviors over a set of states Y are elements of GY where G is another given
functor. Any allowed computation and any allowed machine behavior can help each other reach a return
value and a final state by interacting as prescribed.

We define an functor-functor interaction law on C to be given by two endofunctors F , G together
with a family of maps

φX,Y : FX ×GY → X × Y
natural in X and Y .

Example 1. The archetypical example of a functor-functor interaction law is defined by FX = A ⇒ X,
GY = A×Y , and φ (f, (a, y)) = (f a, y) for some fixed object A. But we can also take, e.g., FX = A⇒ X,
GY = C × Y , and φ (f, (c, y)) = (f (h c), y) for some fixed map h : C → A.

Example 2. A more interesting example is obtained by taking FX = A⇒ (B×X), GY = A× (B ⇒ Y),
φ (f, (a, g)) = let (b, x) ← f a in (x, g b). We can vary this by taking GY = (A ⇒ B) ⇒ (A × Y) and
φ (f, h) = let 〈f0, f1〉 ← f ; (a, y)← h f0 in (f1a, y).

Example 3. If C has the relevant initial algebras and final coalgebras, we can get interaction laws by
iterating the above interactions, e.g., with FX = µZ.X + (A⇒ (B×Z)) and GY = νW. Y × (A× (B ⇒
W)), or with FX = νZ.X + (A⇒ (B×Z)) and GY = µW. Y × (A× (B ⇒W)). We will shortly explain
the construction of φ in the first of these two cases.

An interaction law map between (F,G, φ), (F ′, G′, φ′) is given by natural transformations f : F → F ′,
g : G′ → G such that φX,Y ◦ (idFX × gY) = φ′X,Y ◦ (fX × idG′Y).

Interaction laws form a category IL(C), where the identity on (F,G, φ) is (idF , idG), and the compo-
sition of (f, g) : (F,G, φ) → (F ′, G′, φ′) and (f ′, g′) : (F ′, G′, φ′) → (F ′′, G′′, φ′′) is (f ′ ◦ f, g ◦ g′). The
condition on a interaction law map is met for the composition because of the commutation of the diagram

FX ×GY
φX,Y // X × Y

FX ×G′Y

id×gY 44

fX×id **
FX ×G′′Y

id×g′Y 44

fX×id **

F ′X ×G′Y
φ′X,Y // X × Y

F ′X ×G′′Y

id×g′Y 44

f ′X×id **
F ′′X ×G′′Y

φ′′X,Y // X × Y

Interaction Laws of Monads and Comonads 3

The composition monoidal structure of [C, C] induces a similar monoidal structure on the category
IL(C). The tensorial unit is (Id, Id, idId×Id). The tensor of (F,G, φ) and (J,K,ψ) is (F ·J,G·K,ψ◦φ·(J×K)).
The tensor of (f, g) : (F,G, φ) → (F ′, G′, φ′) and (j, k) : (J,K,ψ) → (J ′,K ′, ψ′) is (f · j, g · k). The
condition on an interaction law map is met by the commutation of

F (JX)×G(KY)
φJX,KY // JX ×KY

ψX,Y // X × Y

F (JX)×G(K′Y)
φJX,K′Y //

id×GkY 33

JX ×K′Y
id×kY

66

F (JX)×G′(K′Y)

id×gKY 55

fJX×id))
F ′(JX)×G′(K′Y)

φ′
JX,K′Y //

FjX×id ++

JX ×K′Y
fX×id

((
F ′(J ′X)×G′(K′Y)

φ′
J′X,K′Y // J ′X ×K′Y

ψ′X,Y // X × Y

2.2 Two degeneracy results

Here are two simple degeneracy results. We first recall the notion of operation for monads and functors.

A comment on operations The concept of (algebraic) operation of a monad can be defined in several ways.
Given a monad T , an n-ary operation of T can be defined to be a natural transformation c′ : (TX)n → TX
(where Xn is n-fold product of X with itself) satisfying

(TTX)n

(µX)n

��

c′TX // TTX

µX

��
(TX)n

c′X // TX

This is the format used by Plotkin and Power [27]. (We do not require here that T is strong and drop
compatibility with the strength.) Alternatively, we can say that it is a natural transformation c : Xn →
TX and drop the requirement of commutation with µ, as done by Jaskelioff and Moggi [19].

We can also say that it is a map 1 → Tn (a “generic effect” in the sense of Plotkin and Power [26])
but, for this to amount to the same as the previous alternative, one needs that T is strong.

If a finitary set monad T is determined by a Lawvere theory (L, L) where L is a category with finite
products and L : Fop → L is identity on objects and strictly product-preserving, one can say that an
operation is a map n → 1 in L. Given a monad T on an arbitrary category C, its large Lawvere theory
is ((Kl(T))op, Jop) where J : C → Kl(T) is the left adjoint of the Kleisli adjunction. A map n → 1 in
(Kl(T))op is the same as a map 1→ Tn in C.

In this paper, we prefer to work with operations as maps c : Xn → TX because this format is intuitive
and economic in proofs by diagram chasing but also because it makes sense when T is only a functor and
not a monad.

Functors with a nullary operation For the functor MaybeX = (just : X) + (nothing : 1), it should be
clear intuitively that it cannot have a nondegenerate interacting functor: from the element nothing0 of
Maybe 0, one cannot possibly extract an element of 0. Formally, we have the following theorem.

Theorem 1. If a functor F has a nullary operation, i.e., comes with a family of maps cX : 1 → FX
natural in X, then any interacting functor G is constant zero, i.e., GY ∼= 0 for any Y .

Proof. Indeed, for any Y , we have the map

GY
〈!,id〉 // 1×GY

c0×id // F0×GY
φ0,Y // 0× Y

fst // 0

Since the initial object of an extensive category is strict (any map to 0 is an isomorphism), we can
conclude that GY ∼= 0. ut

The theorem applies to Maybe since it comes with a nullary operation nothingX : 1→ MaybeX.

4 S.-y. Katsumata, E. Rivas and T. Uustalu

Functors with a commutative binary operation A similar no-go theorem holds for commutative binary
operations.

Theorem 2. If a functor F has a commutative binary operation, i.e., comes with a family of maps
cX : X ×X → FX natural in X such that cX = cX ◦ symX,X , then any interacting functor G is constant
zero, i.e., GY ∼= 0 for any Y .

Proof. Let B = (tt : 1) + (ff : 1). Then, for any Y , the map

fY = GY
〈!,id〉 // 1×GY

〈tt,ff〉 // (B× B)×GY
cB×id // FB×GY

θB,Y // B× Y
fst // B

has the property that not ◦ fY = fY :

(B× B)×GY

sym×id

��

cB×id

((
GY

〈!,id〉 // 1×GY

〈tt,ff〉
66

〈ff,tt〉 //

〈tt,ff〉 ((

(B× B)×GY

(not×not)×id

��

cB×id // FB×GY

Fnot×id

��

θB,Y // B× Y

not×id

��

fst // B

not

��
(B× B)×GY

cB×id // FB×GY
θB,Y // B× Y

fst // B

By stability of coproducts under pullback in an extensive category, we can pull the coprojections of
B back along fY

PY

iY
��

hY // 1

tt
��

GY
fY // B

QY

jY

OO

kY // 1

ff

OO

and the result is a pullback again.

Now we have
1

tt

��
PY

hY

66

hY

''

iY // GY
fY //

fY

&&

B

B

not
99

1

tt
OO ff

BB

so by disjointness of coproducts in an extensive category we have a map h′Y : PY → 0 as a unique map
into the pullback 0 of tt and ff:

1
tt

!!
PY

hY

55

hY))

h′Y // 0

==

!!

B

1
ff

==

Similarly we get a map k′Y : QY → 0. Hence we have a map f ′Y : GY → 0 from copairing h′Y and k′Y :

PY

iY
��

h′Y

##
GY

f ′Y // 0

QT

jY

OO

k′Y

<<

Since the initial object is strict in an extensive category, it follows that GY ∼= 0. ut

Interaction Laws of Monads and Comonads 5

The degeneracy problem can be overcome by switching to a residual version of interaction laws,
discussed in detail in Section 5 below. As a sneak preview, given a monad R on C, an R-residual functor-
functor interaction law is given by two endofunctors F , G and a family of maps φ : FX×GY → R(X×Y)
natural in X, Y . The monoidal structure of the category IL(C, R) of R-residual functor-functor interaction
laws relies on the monad structure of R. Typically, one would use the maybe, finite nonempty multiset
or finite multiset monad as R.

2.3 On the structure of IL(C)

We now look at some ways to construct functor-functor interaction laws systematically.

“Stretching” Given a functor-functor interaction law (F,G, φ) and natural transformations f : F ′ → F
and g : G′ → G, we have a functor-functor interaction law (F ′, G′, φ ◦ (f × g)).

Self-duality For any functor-functor interaction law (F,G, φ), we have another functor-functor interaction
law (F,G, φ)rev = (G,F, φrev) where φrevX,Y = symY,X ◦ φY,X ◦ symFX,GY . This object mapping extends
to maps by (f, g)rev = (g, f), so we have a functor (−)rev : (IL(C))op → IL(C). The functor (−)rev is an
isomorphism between (IL(C))op and IL(C).

The final functor-functor interaction law The final functor-functor interaction law is (1, 0, φ) where

φX,Y = 1× 0
snd // 0

? // X × Y . By self-duality, the initial functor-functor interaction law is (0, 1, φrev).

Product of two functor-functor interaction laws Given two functor-functor interaction laws (F0, G0, φ0)
and (F1, G1, φ1), their product is (F0 × F1, G0 +G1, φ) where

φX,Y = (F0X × F1X)× (G0Y +G1Y)
rdist //

(F0X × F1X)×G0Y + (F0X × F1X)×G1Y
fst×id+snd×id //

F0X ×G0Y + F1X ×G1Y
φ0X,Y +φ1X,Y // X × Y +X × Y ∇ // X × Y

By self-duality, the coproduct of (G0, F0, φ
rev
0) and (G1, F1, φ

rev
1) is (G0 +G1, F0 × F1, φ

rev).

An initial algebra-final coalgebra construction Assume that C has the relevant initial algebras and final
coalgebras. Given functors F,G : C × C → C and a family of maps φX,Y,W,Z : F (X,Z)×G(Y,W)→ X ×
Y +Z×W natural in X,Y, Z,W . Then we have an interaction law (F ′, G′, φ′) where F ′X = µZ. F (X,Z),
G′X = νW.G(Y,W) and φ′ is constructed as follows. We equip G′Y ⇒ (X×Y) with an F (X,−)-algebra
structure θ0X,Y by currying the map

θX,Y = F (X,G′Y ⇒ (X × Y))×G′Y
id×outG(Y,−) //

F (X,G′Y ⇒ (X × Y))×G(Y,G′Y)
φX,Y,G′Y⇒(X×Y),G′Y//

X × Y + (G′Y ⇒ (X × Y))×G′Y id+ev // X × Y +X × Y ∇ // X + Y

The map φ′X,Y is obtained by uncurrying the corresponding unique map φ0X,Y : F ′X → G′Y ⇒ (X × Y)
from the initial F (X,−)-algebra.

Restricting to fixed F or G Sometimes it is of interest to focus on interaction laws of a fixed first functor
F or a fixed second functor G (and accordingly on interaction law maps with the first resp. the second
natural transformation the identity natural transformation on F resp. G). We denote the corresponding
categories by IL(C)|F,− and IL(C)|−,G. The isomorphism of categories IL(C)op ∼= IL(C) given by (−)rev

restricts to (IL(C)|F,−)op ∼= IL(C)|−,F .
The final object of IL(C)|F,− is (F, 0, φ) where

φX,Y = FX × 0
snd // 0

? // X × Y

By self-duality, the initial object of IL(C)|−,F is (0, F, φrev). About the initial object of IL(C)|F,− we will
see in the next subsection.

6 S.-y. Katsumata, E. Rivas and T. Uustalu

2.4 Functor-functor interaction in terms of the dual

If C is Cartesian closed, then we can define the dual G◦ of an endofunctor G on C by

G◦X =
∫
Y
GY ⇒ (X × Y)

provided that this end exists, and the dual g◦ : G◦ → G′◦ of a natural transformation g : G′ → G by

g◦X =
∫
Y
gY ⇒ (X × Y)

This construction is contravariantly functorial, i.e., if the dual is everywhere defined, then we have (−)◦ :
[C, C]op → [C, C]. The existence of all the ends required for this is a strong condition (e.g., a small category
that has all limits under classical logic is necessarily a preorder by an argument by Freyd [21]). But for
well-definedness and functoriality of (−)◦ in the general case, it suffices to restrict it to those endofunctors
on C that happen to have the dual or, if one so wishes, to some well-delineated smaller class of functors
that are guaranteed to have it (e.g., to finitary functors if C is locally finitely presentable). For (−)◦ to
be a contravariant endofunctor on some full subcategory of [C, C], we can restrict it to those endofunctors
on C that are dualizable any finite number of times or to some other class of functors closed under the
dual. Throughout this paper, we deliberately ignore this existence issue: we either explicitly prove for the
ends of interest that they exist or we use such ends on the assumption that they happen to exist.

We have ∫
Y
C(GY,

F◦Y︷ ︸︸ ︷∫
X
FX ⇒ (Y ×X)) ∼=

∫
Y,X
C(GY × FX, Y ×X)

∼=
∫
X,Y
C(FX ×GY,X × Y) ∼=

∫
X
C(FX,

∫
Y
GY ⇒ (X × Y)︸ ︷︷ ︸

G◦X

)

where by the top-level ends we just indicate collections (not necessarily sets) of natural transformations,
so existence is not an issue.

Thus, to have a functor-functor interaction law of F , G is the same as to have a natural transformation
φ : F → G◦ or a natural transformation φ : G→ F ◦.

Under the first of these identifications, an interaction law map between (F,G, φ) and (F ′, G′, φ′) is
given by natural transformations f : F → F ′ and g : G′ → G satisfying g◦ ◦ φ = φ′ ◦ f . Under the
second one, an interaction law map between (F,G, φ) and (F ′, G′, φ′) is given by natural transformations
f : F → F ′ and g : G′ → G satisfying φ ◦ g = f◦ ◦ φ′.

We have thus established that these categories are isomorphic:

(o) the category IL(C) of functor-functor interaction laws;
(i) the comma category [C, C] ↓ (−)◦ of triples of two functors F,G and a natural transformation F → G◦;
(ii) the comma category (−)◦

op ↓ [C, C]op of triples of two functors F,G and a natural transformation
G→ F ◦.

From these observations it is immediate that IL(C)|−,G ∼= [C, C]/G◦ and IL(C)|F,− ∼= F ◦\[C, C]op.
Hence, the initial object of IL(C)|−,G is (0, G, . . .) while the final object is (G◦, G, . . .). The initial object
of IL(C)|F,− is (F, F ◦, . . .) while the final object is (F, 0, . . .).

2.5 Dual for some constructions on functors

Here are constructions of the dual for some basic constructions of functors.

Dual of the identity functor Id◦ ∼= Id.

Proof. Let GY = Y . Then

G◦X =

∫
Y

Y ⇒ (X × Y)

∼=
∫
Y

(1⇒ Y)⇒ (X × Y)

∼= X × 1
∼= X

Interaction Laws of Monads and Comonads 7

Duals of terminal functor, products of a functor, initial functor, coproduct of two functors

– Let GY = 1. Then G◦X ∼= 0.

Proof.

G◦X =

∫
Y

1⇒ (X × Y)

∼=
∫
Y

X × Y

∼= X ×
∫
Y

Y

∼= X × 0
∼= 0

– Let GY = A×G′Y . Then G◦X ∼= A⇒ G′◦X.

Proof.

G◦X =

∫
Y

A×G0Y ⇒ (X × Y)

∼=
∫
Y

A⇒ (G0Y ⇒ (X × Y))

∼= A⇒
∫
Y

G0Y ⇒ (X × Y)

= A⇒ G◦0X

– A little more generally, for GY =
∑
a : A.G′a Y , one has G◦X ∼=

∏
a : A. (G′a)◦X.

– Specializing to A = 0 resp. A = B, we learn: Let GY = 0. Then G◦X ∼= 1. Let GY = G0 Y +G1 Y .
Then G◦X ∼= G◦0X ×G◦1X.

Dual of exponents of the identity functor Let GY = A⇒ Y . Then G◦X ∼= A×X.

Proof.

G◦X =

∫
Y

(A⇒ Y)⇒ (X × Y)

∼= X ×A
∼= A×X

Example 4. Let GY = Y + = µZ. Y × (1 + Z) ∼=
∑
n : N. ([0..n] ⇒ Y) (nonempty lists). We have

G◦X ∼=
∏
n : N. ([0..n]×X).

Sometimes only a “lower bound” on the dual of a functor constructed from some given functors can
be expressed in terms of their duals. This holds for the composition of two general functors, incl. for
exponents of a general functor.

Dual of exponents of a general functor Let GY = A⇒ G′ Y . For a general G′, we only have a canonical
natural transformation with components A×G′◦ Y → G◦ Y .

Proof.

G◦X =

∫
Y

(A⇒ G′Y)⇒ (X × Y)

←
∫
Y

A× (G′Y ⇒ (X × Y))

∼= A×
∫
Y

G′Y ⇒ (X × Y)

= A×G′◦X

8 S.-y. Katsumata, E. Rivas and T. Uustalu

Dual of composition of two general functors For general G0, G1, we only have the canonical natural
transformation mG0,G1 : G◦0 ·G◦1 → (G0 ·G1)◦.

Proof.

G◦X =

∫
Y

G0(G1Y)⇒ (X × Y)

←
∫
Y

∫
Z

(Z ⇒ G1Y)⇒ (G0Z ⇒ (X × Y))

∼=
∫
Z

G0Z ⇒
∫
Y

(Z ⇒ G1Y)⇒ (X × Y)

←
∫
Z

G0Z ⇒
∫
Y

(G1Y ⇒ (X × Y))× Z

∼=
∫
Z

G0Z ⇒ ((

∫
Y

G1Y ⇒ (X × Y))× (

∫
Y

Z))

=

∫
Z

G0Z ⇒ (G◦1X × Z)

= G◦0(G◦1X)

This hints that (−)◦ : [C, C]op → [C, C] is not monoidal, but only lax monoidal (see Section 3.4).

Example 5. Let G0 Y = A ⇒ Y , G1 Y = B × Y , so GY = (G0 · G1)Y = A ⇒ (B × Y) ∼=
(A⇒ B)×(A⇒ Y). The dual of G is G◦X ∼= (A⇒ B)⇒ (A×X) rather than (G◦0 ·G◦1)X ∼= A×(B ⇒ X)
as we might perhaps expect. We saw the interaction law of G with G◦ in Example 2. The canonical natural
transformation mG0,G1 : G◦0 ·G◦1 → G◦ is mG0,G1 (a, f) = λg. (a, f (g a)).

3 Monad-comonad interaction

3.1 Monad-comonad interaction laws

In a monad-comonad interaction law, the allowed computations (the chosen notion of computation) must
include “just returning” and be closed under sequential composition, so they are defined by a monad
rather than a functor. To match this, the allowed machine behaviors (the notion of machine behavior) are
defined by a comonad. The idea is that interaction of a “just returning” computation should terminate
immediately (in the initial state of the given machine behavior) whereas interaction of a sequence of
computations should amount to a sequence of interactions.

We define a monad-comonad interaction law on C to be given by a monad T = (T, η, µ) and a comonad
D = (D, ε, δ) together with a family ψ of maps

ψX,Y : TX ×DY → X × Y

natural in X and Y (i.e., a functor-functor interaction law of T , D where T and D carry a monad resp.
comonad structure) such that also

X × Y X × Y

X ×DY

id×εY 55

ηX×id))
TX ×DY

ψX,Y // X × Y

TTX ×DDY
ψTX,DY// TX ×DY

ψX,Y // X × Y

TTX ×DY

id×δY 44

µX×id **
TX ×DY

ψX,Y // X × Y

(1)

Example 6. Take TX = A ⇒ X, DY = A × Y and ψ (f, (a, y)) = (f a, y) for a fixed object A. The
functors T and D are a monad (a reader monad) resp. a comonad and ψ meets the conditions (1).

Example 7. Take TX = B×X, DY = B ⇒ Y , ψ ((b, x), g) = (x, g b) for a fixed monoid B. The functors
T , D are a monad (a writer monad) resp. a comonad and ψ meets the requisite conditions.

Example 8. Take TX = A⇒ (B ×X), DY = A× (B ⇒ Y), ψ (f, (a, g)) = let (b, x)← f a in (x, g b) for
a fixed monoid B acting on a fixed object A. The functors T , D are a monad (an update monad [6]) resp.
a comonad and ψ meets the requisite conditions.

Interaction Laws of Monads and Comonads 9

Monad-comonad interaction laws are essentially the same as monoid objects in the monoidal category
IL(C) of functor-functor interaction laws. To be precise, a monad-comonad interaction law ((T, η, µ),
(D, ε, δ), ψ) yields a monoid ((T,D, ψ), (η, ε), (µ, δ)) and vice versa.

A monad-comonad interaction law map between (T,D, ψ), (T ′, D′, ψ′) is a pair (f : T → T ′, g :
D′ → D) of a monad map and a comonad map that, as a pair of natural transformations between the
underlying functors, is a functor-functor interaction law morphism between the underlying functor-functor
interaction laws.

Monad-comonad interaction law maps correspond to monoid morphisms in IL(C). Thus monad-
comonad interaction laws form a category MCIL(C) isomorphic to the category Mon(IL(C)).

3.2 A degeneracy result

Monads with an associative operation Here is a degeneracy theorem for monad-comonad interaction laws.

Theorem 3. If a monad T has an associative binary operation, i.e., family of maps cX : X ×X → TX
natural in X satisfying

(X ×X)×X

ass

��

cX×ηX// TX × TX
cTX // TTX

µX

''
TX

X × (X ×X)
ηX×cX// TX × TX

cTX // TTX
µX

77

then, for any comonad D and interaction law ψX,Y : TX ×DY → X × Y , we have

(X ×X)×X ×DY

fst×id×id

��

cX×ηX×id// TX × TX ×DY
cTX×id// TTX ×DY

µX×id // TX ×DY
ψX,Y

''
X ×X ×DY

cX×id // TX ×DY
ψX,Y // X × Y

X × (X ×X)×DY

id×snd×id

OO

ηX×cX×id// TX × TX ×DY
cTX×id// TTX ×DY

µX×id // TX ×DY

ψX,Y

77

Proof. For any Y , by distributivity in an extensive category, B × Y is a coproduct of Y and Y with
coprojections 〈tt ◦ !, id〉 and 〈ff ◦ !, id〉.

By stability of coproducts under pullback in an extensive category, we can pull θB,Y ◦〈cB◦〈tt,ff〉◦!, id〉 :
DY → B× Y back along the coprojections of B× Y and get that DY is a coproduct of two objects PY
and QY with coprojections iY and jY :

PY

iY
��

hY // Y

〈tt◦!,id〉
��

DY
〈〈tt,ff〉◦!,id〉// B× B×DY

cB×id // TB×DY
ψB,Y // B× Y

QY

jY

OO

kY // Y

〈ff◦!,id〉

OO

It is easily checked that we have

X ×X × PY

id×iY
��

fst×id // X × PY
id×hY

''
X ×X ×DY

cX×id // TX ×DY
ψX,Y // X × Y

X ×X ×QY

id×jY

OO

snd×id // X ×QY
id×kY

77

Also by stability of coproducts under pullback, we can pull δY : DY → DDY back along the copro-
jections of DDY and get that DY is a coproduct of two objects P ′Y and Q′Y with coprojections i′Y and

10 S.-y. Katsumata, E. Rivas and T. Uustalu

j′Y :

P ′Y

i′Y ��

fY // PDY

iDY
��

DY
δY // DDY

Q′Y

j′Y

OO

gY // QDY

jDY

OO

Hence, for any X, by distributivity, also X × (X ×X)×DY is a coproduct of X × (X ×X)× P ′Y
and X × (X ×X)×Q′Y with coprojections id× i′Y and id× j′Y .

Now, the two maps ψX,Y ◦ψTX,DY ◦(cTX◦ηX×cX)×δY and ψX,Y ◦ψTX,DY ◦(cTX◦ηX×(ηX◦snd))×δY
both satisfy both triangles of the unique copair of ψX,Y ◦ (ηX ◦ fst)× (hDY ◦ fY) and ψX,Y ◦ (cX ◦ snd)×
(kDY ◦ gY), i.e., they are the same map. Indeed, we have

X × PDY
ηX×id

))
X × (X ×X)× P ′Y

id×i′Y
��

id×fY // X × (X ×X)× PDY

id×iDY
��

ηX×cX×id//

fst×id
44

TX × TX × PDY

id×iDY
��

fst×id // TX × PDY
id×hDY

((
X × (X ×X)×DY

id×δY // X × (X ×X)×DDY
ηX×cX×id// TX × TX ×DDY

cTX×id// TTX ×DDY
ψTX,DY// TX ×DY

ψX,Y // X × Y

X × (X ×X)×Q′Y

id×j′Y

OO

id×gY // X × (X ×X)×QDY

id×jDY

OO

ηX×cX×id//

snd×id **

TX × TX ×QDY

id×jDY

OO

snd×id // TX ×QDY
id×kDY

66

X ×X ×QDY
cX×id

55

And, using associativity, we also have

X × PDY
ηX×id

++
X × (X ×X)× P ′Y

id×i′Y��

id×snd×fY // X ×X × PDY
id×iDY��

ηX×ηX×id //

fst×id 33

TX × TX × PDY
id×iDY��

fst×id // TX × PDY
id×hDY

**
X × (X ×X)×DY

id×snd×δY // X ×X ×DDY
ηX×ηX×id // TX × TX ×DDY

cTX×id// TTX ×DDY
ψTX,DY// TX ×DY

ψX,Y // X × Y

X × (X ×X)×Q′Y

ass−1×id

��

id×j′Y
OO

id×snd×gY // X ×X ×QDY
id×jDY
OO

ηX×ηX×id //
snd×id

++

TX × TX ×QDY

id×jDY
OO

snd×id // TX ×QDY
id×kDY

44

X ×QDY

ηX×id 33

(X ×X)×X ×Q′Y
id×gY //

id×j′Y��

(X ×X)×X ×QDY

fst×id

OO

snd×id 33
cX×ηX×id//

id×jDY��

TX × TX ×QDY

snd×id

77

id×jDY��
(X ×X)×X ×DY

id×δY // (X ×X)×X ×DDY
cX×ηX×id// TX × TX ×DDY

cX×id // TTX ×DDY

ψTX,DY

BB

(X ×X)×X ×DY
cX×ηX×id// TX × TX ×DY

cX×id // TTX ×DY
TTX×δY

33

µX×id

++
TX ×DY

ψX,Y // X × Y

X × (X ×X)×DY

ass−1×id

OO

ηX×cX×id// TX × TX ×DY
cX×id // TTX ×DY

id×δY

++

µX×id

33

X × (X ×X)×DY
id×δY // X × (X ×X)×DDY

ηX×cX×id// TX × TX ×DDY
cX×id // TTX ×DDY

ψTX,DY// TX ×DY
ψX,Y // X × Y

X × (X ×X)×Q′Y

id×j′Y
OO

id×gY // X × (X ×X)×QDY

id×jDY
OO

snd×id ++

ηX×cX×id// TX × TX ×QDY
id×jDY
OO

snd×id // TX ×QDY
id×kY

44

X ×X ×QDY
cX×id

33

Interaction Laws of Monads and Comonads 11

The desired result now follows by the following calculation:

TX ×DY
TηX×id

**

TX ×DY
ψX,Y // X × Y

X ×X ×DY

cX×id 33

ηX×ηX×id // TX × TX ×DY
cTX×id// TTX ×DY

µX×id 44
id×δY // TTX ×DDY

ψTX,DY// TX ×DY
ψX,Y // X × Y

X × (X ×X)×DY

id×snd×id

OO
ηX×cX×id// TX × TX ×DY

cTX×id// TTX ×DY

µX×id **

id×δY // TTX ×DDY
ψTX,DY// TX ×DY

ψX,Y // X × Y

TX ×DY
ψX,Y

// X × Y

ut

Example 9. The monad TX = X+ of nonempty lists (the free semigroup delivering monad) comes with
an associative operation dbltX : X×X → T X defined by dblt (x0, x1) = [x0, x1]. The degeneracy theorem
tells us that, while functor-functor interaction laws can accomplish this, no monad-comonad interaction
law can extract x1 from a list [x0, x1, x2] and more generally any middle element xi (0 < i < n+ 1) from
a list [x0, . . . , xn+1].

Just as functor-functor interaction laws can be generalized to a residual variant to counteract degen-
eracies, so can monad-comonad interaction laws (see Section 5).

3.3 On the structure of MCIL(C)

We now explore the structure of the category MCIL(C). As this is the category of monoid objects of
IL(C), the structure of MCIL(C) is in many respects similar to IL(C). But there are also important
differences.

“Stretching” Given a monad-comonad interaction law (T,D, ψ), a monad morphism f : T ′ → T and a
comonad morphism g : D′ → D, we have a monad-comonad interaction law (T ′, D′, ψ ◦ f × g).

Final and initial monad-comonad interaction laws The final monad-comonad interaction law is (1, 0, ψ)
where ψX,Y : 1× 0→ X × Y is the evident map.

The initial monad-comonad interaction law is (Id, Id, idId×Id).

Product of two monad-comonad interaction laws Given two monad-comonad interaction laws (T0, D0, ψ0)
and (T1, D1, ψ1), their product is (T0×T1, D0+D1, ψ) where ψX,Y : (T0X×T1X)×(D0Y +D1Y)→ X×Y
is defined as in Section 2. The product of the underlying functors of the two monads is the underlying
functor of their product.

Coproduct of two monad-comonad interaction laws The coproduct of two monad-comonad interaction
laws is given by the coproduct of the two monads, the product of the two comonads and a suitable natural
transformation. The coproduct of two monads is complicated to construct. For two ideal monads, it can
be expressed in terms of initial algebras of endofunctors on C × C (mutually inductive types) [14].

Interaction laws of a composite monad Given two monad-comonad interaction laws (T0, D, ψ0) and
(T1, D, ψ1) and a monad-monad distributive law λ of T1 over T0. Then T0 · T1 is a monad. If ψ0 and
ψ1 are matching in the sense of commutation of

T1T0X ×DDY
ψ1T0X,DY // T0X ×DY

ψ0X,Y // X × Y

T1T0X ×DY

id×δY 33

λX×δY ++
T0T1X ×DDY

ψ0T1X,DY // T1X ×DY
ψ1X,Y // X × Y

then we have a monad-comonad interaction law (T0 · T1, D, ψ) where

ψX,Y = T0T1X ×DY
id×δY // T0T1X ×DDY

ψ0T1X,DY // T1X ×DY
ψ1X,Y // X × Y

The condition above is precisely the condition for (λ, idD) to be a map between the functor-functor
interaction laws (T1 ·T0, D, ψ0 ◦ψ1 ·(T0×D)◦(idT0·T1

×δ)) and (T0 ·T1, D, ψ1 ◦ψ0 ·(T1×D)◦(idT0·T1
×δ)).

12 S.-y. Katsumata, E. Rivas and T. Uustalu

Interaction laws of a composite monad and a composite comonad Given two monad-comonad interaction
laws (T0, D0, ψ0) and (T1, D1, ψ1), a monad-monad distributive law λ of T1 over T0 and a comonad-
comonad distributive law κ of D0 over D1. Then T0 · T1 is a monad and D0 ·D1 is a comonad. If ψ0 and
ψ1 are matching in the sense of commutation of

T1T0X ×D1D0Y
ψ1T0X,D0Y// T0X ×D0Y

ψ0X,Y // X × Y

T1T0X ×D0D1Y

id×κY 22

λX×id ,,
T0T1X ×D0D1Y

ψ0T1X,D1Y// T1X ×D1Y
ψ1X,Y // X × Y

then we have a monad-comonad interaction law (T0 · T1, D0 ·D1, ψ) where

ψX,Y = T0T1X ×D0D1Y
ψ0T1X,D1Y// T1X ×DY

ψ1X,Y // X × Y

The condition above is precisely the condition for (λ, κ) to be a map between the functor-functor
interaction laws (T1 · T0, D1 ·D0, ψ0 ◦ ψ1 · (T0 ×D0)) and (T0 · T1, D0 ·D1, ψ1 ◦ ψ0 · (T1 ×D1)).

An initial algebra-final coalgebra construction The initial algebra-final coalgebra construction from Sec-
tion 2 gives a monad-comonad interaction law if we start with a parameterized monad T , a parameterized
comonad D [35] and a family of maps ψX,Y,Z,W : T (X,Z) × D(Y,W) → X × Y + Z ×W natural in
X,Y, Z,W that agree in the sense of commutation of the diagrams

X × Y X × Y

inl

��

X ×D(Y,W)

id×εY,W 33

ηX,Z×id ++
T (X,Z)×D(Y,W)

ψX,Y,Z,W// X × Y + Z ×W

T (T (X,Z), Z)×D(D(Y,W),W)
ψT (X,Z),D(Y,W),Z,W// T (X,Z)×D(Y,W) + Z ×W

ψX,Y,Z,W+id// (X × Y + Z ×W) + Z ×W

id+inr

��

T (T (X,Z), Z)×D(Y,W)

id×δY,W 22

µX,Z×id ,,
T (X,Z)×D(Y,W)

ψX,Y,Z,W // X × Y + Z ×W

We get a monad-comonad interaction law (T ′, D′, ψ′) where T ′X = µZ. T (X,Z), D′Y = νW.D(Y,W)
and ψ′ is defined as in Section 2. The functors T ′ and D′ carry monad resp. comonad structures [35] and
the natural transformation ψ agrees with those.

Free monad-comonad interaction law If C has relevant initial algebras and final coalgebras, then, given
an interaction law (F,G, φ), the free monad-comonad interaction law is provided by the free monad F ∗

and the cofree comonad G† and a suitable natural transformation ψ′.
The free monad is given by F ∗X = µZ.X+FZ. Its monad structure is induced by the parameterized

monad T (X,Z) = X +FZ. Similarly, the cofree comonad is given by G†Y = νW. Y ×GW . Its comonad
structure is induced by the parameterized comonad D(Y,W) = Y × GW . In order to construct ψ′

following the construction we described in the previous paragraph, we need to construct a family of maps
ψX,Y,Z,W : (X + FZ)× (Y ×GW)→ X × Y + Z ×W natural in X,Y, Z,W . This is defined as follows:

ψX,Y,Z,W = (X + FZ)× (Y ×GW)
ldist //

X × (Y ×GW) + FZ × (Y ×GW)
id×fst+id×snd//

X × Y + FZ ×GW
id+φZ,W // X × Y + Z ×W

Restricting to fixed T or D We denote the categories obtained from MCIL(C) by fixing the monad T or
the comonad D by MCIL(C)|T,− and MCIL(C)|−,D. The final object of MCIL(C)|T,− is (T, 0, ψ) where

ψX,Y = TX × 0
snd// 0

? // X × Y ; note that 0 is the initial comonad. The initial object of MCIL(C)|−,D

is (Id, D, ψ) where ψX,Y = X ×DY id×εY // X × Y ; this is because Id is the initial monad.

Interaction Laws of Monads and Comonads 13

3.4 Monad-comonad interaction in terms of dual and Sweedler dual

Similarly to case of functor-functor interaction laws and maps between them, the dual allows us to
obtain useful alternative characterizations of monad-comonad interaction laws and their maps. But a
complication arises, see below.5

First, let us notice that we have, canonically, a natural transformation e : Id→ Id◦ and, for any F , G,
a natural transformation mF,G : F ◦ ·G◦ → (F ·G)◦. These are informally defined by eXx = λY . λy. (x, y) :
X →

∫
Y
Y ⇒ (X × Y) and (mF,G)Xf = λY . λz. let (g, w) ← fGY z in gY w :

∫
Y ′
FY ′ ⇒ (

∫
Y ′′

GY ′′ ⇒
(X × Y ′′)) × Y ′ →

∫
Y
F (GY) ⇒ (X × Y). The natural transformation e is a natural isomorphism; its

inverse e−1 : Id◦ → Id is defined by e−1X f = let (x,)← f1∗ in x :
∫
Y
Y ⇒ (X × Y)→ X.

The data (e,m) satisfy the conditions to make (−)◦ : [C, C]op → [C, C] a lax monoidal functor wrt. the
(Id, ·) composition monoidal structure of [C, C].

Now, as a first alternative characterization, a monad-comonad interaction law of T and D is essentially
the same as a natural transformation ψ : T → D◦ satisfying

Id

η

��

e // Id◦

ε◦
��

T
ψ // D◦

T · T
µ

��

ψ·ψ // D◦ ·D◦
mD,D // (D ·D)◦

δ◦
��

T
ψ // D◦

Now, since (−)◦ : [C, C]op → [C, C] is lax monoidal, it sends monoids in [C, C]op to monoids in [C, C], i.e.,
comonads to monads. In particular, it sends the comonad (D, ε, δ) to the monad D◦ = (D◦, ε◦ ◦e, δ◦ ◦m).
The conditions above are precisely the conditions for ψ to be a monad map from T to D◦. Summing up,
a monad-comonad interaction law of T , D amounts to a monad map ψ : T → D◦.

As a second alternative, a monad-comonad interaction law of T , D is given by a natural transformation
ψ : D → T ◦ satisfying

Id
e // Id◦

D

ε

OO

ψ // T ◦
η◦

OO D ·D
ψ·ψ // T ◦ · T ◦

mT,T // (T · T)◦

D

δ

OO

ψ // T ◦
µ◦
OO (2)

Now, unfortunately, (−)◦ is not oplax monoidal, so it does generally not send comonoids to comonoids,
and T ◦ is generally not a comonad. We could define a candidate counit for T ◦ as e−1 ◦ η◦ : T ◦ → Id, but
there is generally no candidate for the comultiplication as we cannot invert mT,T . So we cannot generally
say that a monad-comonad interaction law is a comonad map from D to T ◦; the functor T ◦ is not a
comonad.

But it may be that there exists what one could informally describe as the greatest comonad smaller
(in an appropriate sense) than T ◦. The formal object of interest here is what we call, following the use of
this word in other contexts [31,30,17], the Sweedler (or finite) dual of the monad T . It is really just the
greatest among all comonads D satisfying conditions (2).

We say that the Sweedler dual of the monad T is the (unique up to isomorphism, if it exists) comonad
T • = (T •, η•, µ•) together with a natural transformation ι : T • → T ◦ such that

Id
e // Id◦

T •

η•

OO

ι // T ◦
η◦

OO T • · T • ι·ι // T ◦ · T ◦
mT,T // (T · T)◦

T •

µ•

OO

ι // T ◦
µ◦
OO (3)

and such that, for any comonad D = (D, ε, δ) and a natural transformation ψ satisfying conditions (2),
there exists a unique comonad map h : D → T • satisfying ψ = ι ◦ h as summarized in the following
diagrams:

Id
e // Id◦

Id

T •

η•

OO

ι // T ◦

η◦

OO

D

ε

OO

h 66
ψ

33

T • · T • ι·ι // T ◦ · T ◦
mT,T // (T · T)◦

D ·D
h·h 55

ψ·ψ

22

T •

µ•

OO

ι // T ◦

µ◦

OO

D

δ

OO

h
44

ψ

11

The left-hand diagrams of (3) and (2) are secondary in this definition. In the left-hand diagram of (3),
η• is determined by ι as η• = e−1 ◦ η◦ ◦ ι. The left-hand diagram of (2) commutes trivially when ψ = ι ◦h
for some comonad map h.

5 We discuss these isomorphisms of categories only on the level of objects here.

14 S.-y. Katsumata, E. Rivas and T. Uustalu

Now, if T has the Sweedler dual, there is a bijection between monad-comonad interaction laws of T ,
D, i.e, natural transformations ψ : D → T ◦ satisfying (2), and comonad maps h : D → T •. Indeed, any
natural transformation ψ satisfying (2) induces a unique comonad map h such that ι◦h = ψ by definition
of T •. On the other hand, for a comonad map h, we get a natural transformation ψ satisfying (2) simply
as the composition ι ◦ h. These constructions are inverses.

To sum up, we have proved that the following categories are isomorphic:

(o) monad-comonad interaction laws;

(i) triples of a monad T , a comonad D and a monad map from T to D◦;

(ii) triples of a monad T , a comonad D and a natural transformation from D to T ◦ subject to conditions
(2);

(iii) triples of a monad T , a comonad D and a comonad map from D to T •.

We see that the initial object of MCIL(C)|−,D is (Id, D, . . .) while the final object is (D◦, D, . . .). The
initial object of MCIL(C)|T,− is (T, T •, . . .) while the final object is (T, 0, . . .).

Calculating the Sweedler dual is a complicated matter and we will come to it in Section 6. But here are
two examples where the dual of the underlying functor of a monad is not a comonad and the underlying
functor of the Sweedler dual differs from the dual.

Example 10. In Example 4, we saw that the dual of the functor TX = X+ (nonempty lists) was
T ◦Y ∼=

∏
n : N. [0..n] × Y . While the functor T is a monad (the free semigroup delivering monad),

its dual T ◦ is not a comonad. The Sweedler dual is T •Y = Y × (Y + Y), η• (y,) = y, δ• (y, inl y′) =
((y, inl y′), inl (y′, inl y′)), δ• (y, inr y′) = ((y, inr y′), inr (y′, inr y′)), with ιY : T •Y → T ◦Y defined by
ι (y,) 0 = (0, y), ι (, inl y′) (n + 1) = (0, y′), ι (, inr y′) (n + 1) = (n + 1, y′). The monad-comonad
interaction law ψX,Y : TX × T •Y → X × Y is defined by ψ ([x0], (y,)) = (x0, y),
ψ ([x0, . . . , xn+1], (, inl y′)) = (x0, y

′), ψ ([x0, . . . , xn+1], (, inr y′)) = (xn+1, y
′).

Example 11. We learned in Example 5 that the dual of the functor TX = A ⇒ (B × X) is T ◦Y =
(A ⇒ B) ⇒ (A × Y). But the Sweedler dual of T as a monad when B is a monoid acting on A is
T •Y = A× (B ⇒ Y), ι (a, f) = λg. (a, f (g a)). In Example 8, we showed the monad-comonad interaction
law of T and T •.

4 Stateful running

Monad-comonad interaction laws are related to stateful runners as introduced by Uustalu [36]. Next
we present the basic facts about runners using the Sweedler dual and then explain the connection to
monad-comonad interaction laws.

4.1 Runners

A runner is similar to a monad-comonad interaction law but the allowed machine behaviors are restricted
to operate on a fixed state set and their dynamics is also fixed (in the sense that, for any prospective initial
state, there is a behavior pre-determined). Only the initial state is not fixed. The state set is manifest
but the notion of machine behavior and the pre-determined dynamics are coalesced with the interaction
protocol into the natural transformation that is the runner. The runner is a polymorphic function sending
any allowed computation and initial state into a return value and a final state.

Given a monad T = (T, η, µ) on C, we call a (stateful) runner of T an object Y with a family θ of
maps

θX : TX × Y → X × Y

natural in X, satisfying

X × Y

ηX×id
��

X × Y

TX × Y
θX // X × Y

TTX × Y

µX×id
��

θTX // TX × Y
θX // X × Y

TX × Y
θX // X × Y

Interaction Laws of Monads and Comonads 15

Example 12. We revisit Example 5 about the update monad TX = A ⇒ (B ×X) defined by an action
↓ : A × B → A of a monoid B on an object A. An update lens [5] is an object Y together with maps
lkp : Y → A, upd : Y × B → Y such that lkp is a map between the B-sets (Y, upd) and (A, ↓). Any
update lens gives us a runner of T via θX : (A⇒ (B×X))×Y → X×Y defined by θ (f, y) = let (b, x)←
f (lkp y) in (x, upd (y, b)). In fact, runners of this monad are in a bijection with update lenses and those
in turn are essentially the same as coalgebras for the comonad DY = A× (B ⇒ Y).

A runner map between (Y, θ), (Y ′, θ′) is a map f : Y → Y ′ satisfying (idX×f)◦θX = θ′X ◦ (idTX×f).
Runners and their maps form a category Run(T).

Like monad-comonad interaction laws and maps between them, runners and maps between them
admit a number of alternative characterizations.

The first one is that runners of T are essentially the same as objects Y endowed with a monad map
ϑ : T → StY where StY = (StY , ηY , µY) is the state monad for Y whose underlying functor is defined by
StYX = Y ⇒ (X × Y). This is via the bijection of natural transformations∫

X
C(TX × Y,X × Y) ∼=

∫
X
C(TX, Y ⇒ (X × Y)︸ ︷︷ ︸

StYX

)

Under this bijection, the runner conditions amount to the monad map conditions

X

ηX
��

X

ηYX��
TX

ϑX // StYX

TTX

µX
��

ϑTX // StY TX
StY ϑX// StY StYX

µYX��
TX

ϑX // StYX

A map f : Y → Y ′ is a runner map between (Y, ϑ), (Y ′, ϑ′) iff

TX
ϑX // Y ⇒ X × Y

id⇒id×f
++
Y ⇒ X × Y ′

TX
ϑ′X // Y ′ ⇒ X × Y ′

f⇒id

33

Second, a runner of the monad T is also essentially the same thing as a coalgebra (Y, γ) of the functor
T ◦ satisfying the conditions

Y
eY // Id◦Y

Y
γ // T ◦Y

η◦Y

OO Y
γ // T ◦Y

T◦γ // T ◦T ◦Y
(mT,T)Y// (T · T)◦Y

Y
γ // T ◦Y

µ◦Y

OO (4)

This is because of the bijection∫
X
C(TX × Y,X × Y) ∼=

∫
X
C(Y × TX, Y ×X) ∼= C(Y,

∫
X
TX ⇒ (Y ×X)︸ ︷︷ ︸

T◦Y

)

A runner map between (Y, γ), (Y ′, γ′) is a coalgebra map, i.e., a map f : Y → Y ′ such that

Y

f
��

γ // T ◦Y

f
��

Y ′
γ′ // T ◦Y ′

Recall that the functor T ◦ is generally not a comonad as mT,T is not invertible, so we cannot generally
speak of functor coalgebras satisfying conditions (4) as comonad coalgebras.

Lastly, recall that the costate comonad for an object Y is defined by CostY = (CostY , εY , δY) is
defined by CostY Z = (Y ⇒ Z) × Y , εY (f, y) = f y, δY (f, y) = (λy′. (f, y′), y). This gives us a third
characterization: a runner is essentially the same as an object Y together with a natural transformation
ζ between the underlying functor of the costate comonad CostY and the functor T ◦ satisfying

Id
e // Id◦

CostY
εY

OO

ζ // T ◦
η◦

OO CostY · CostY
ζ·ζ // T ◦ · T ◦

mT,T // (T · T)◦

CostY

δY

OO

ζ // T ◦
µ◦
OO (5)

16 S.-y. Katsumata, E. Rivas and T. Uustalu

This is because of the bijection

C(Y, T ◦Y) ∼= 6
∫
Z
C(Y ⇒ Z, Y ⇒ T ◦Z) ∼=

∫
Z
C((Y ⇒ Z)× Y︸ ︷︷ ︸

CostY Z

, T ◦Z)

A runner map between (Y, ζ), (Y ′, ζ ′) is a map f : Y → Y ′ satisfying

(Y ⇒ Z)× Y
ζ′Z // T ◦Z

(Y ′ ⇒ Z)× Y

id×f ++

(f⇒id)×id 33

(Y ′ ⇒ Z)× Y ′
ζZ

// T ◦Z

If the Sweedler dual comonad T • of the monad T exists, then we can continue this reasoning. We see
that a runner is the essentially the same as an object Y with a comonad morphism between CostY and
T • and that is further essentially the same as an object Y with a comonad coalgebra of T •.

Summing up, we have established that the following categories are isomorphic:

(o) runners of T ;
(i) objects Y with a monad map from T to StY ;
(ii) functor coalgebras of T ◦ subject to conditions (4);

(iii) objects Y with a natural transformation from CostY to T ◦ subject to conditions (5);
(iv) objects Y with a comonad map from CostY to T •;
(v) comonad coalgebras of T •.

4.2 Runners vs. monad-comonad interaction laws

Monad-comonad interaction laws of T , D are in a bijection with D-coalgebraic T -runner specs by which we
mean carrier-preserving functors between Coalg(D) and Run(T), i.e., functors Ψ : Coalg(D)→ Run(T)
such that

Coalg(D)

U &&

Ψ // Run(T)

UyyC
Indeed, given a monad-comonad interaction law ψ, we can define a runner spec Ψ by

(Ψ (Y, γ))X = (Y, TX × Y
id×γ // TX ×DY

ψX,Y // X × Y)

In the opposite direction, given a runner spec Ψ , we build a interaction law from the cofree coalgebras of
D. For any Y , we have the cofree coalgebra (DY, δY) and define a monad-comonad interaction law φ by

φX,Y = TX ×DY
Ψ(DY,δY)X // X ×DY

id×εY // X × Y

A pair of a monad map f : T → T ′ and a comonad map g : D′ → D is an interaction law map between
(T,D, ψ) and (T ′, D′, ψ′) iff the corresponding coalgebraic runner specs satisfy

Coalg(D)
Ψ // Run(T)

Coalg(D′)

Coalg(g)

OO

Ψ ′ // Run(T ′)

Run(f)

OO

(Notice that Coalg(−) : Comnd(C)→ CAT and Run(−) : (Mnd(C))op → CAT.) So the categories of
monad-comonad interaction laws and coalgebraic runner specs are isomorphic.

More modularly, but assuming that all Sweedler duals exist, the isomorphism of the categories of
monad-comonad interaction laws and coalgebraic runner specs follows from the following sequence of
isomorphisms of categories, using that Run(T) ∼= Coalg(T •):

(o) monad-comonad interaction laws;
(i) triples of a monad T , a comonad D and a comonad map between D, T •;
(ii) triples of a monad T , a comonad D and a carrier-preserving functor between Coalg(D), Coalg(T •);

(iii) coalgebraic runner specs.
6 As T ◦ is necessarily strong, we can apply an internal version of the Yoneda lemma.

Interaction Laws of Monads and Comonads 17

5 Residual interaction and running

We will now generalize interaction laws to allow that that not all of the effect of a computation is serviced
by a machine behavior in an interaction.

5.1 Residual interaction

Given a monad R = (R, ηR, µR) on our base category C. We can generalize functor-functor and monad-
comonad interaction laws as follows.

An R-residual functor-functor interaction law is given by endofunctors F , G on C together with a
family of maps

φX,Y : FX ×GY → R(X × Y)

natural in X, Y .
An R-residual interaction law map between (F,G, φ), (F ′, G′, φ′) is given by natural transformations

f : F → F ′, g : G′ → G such that

FX ×GY
φX,Y // R(X × Y)

FX ×G′Y

id×gY 33

fX×id
++
F ′X ×G′Y

φ′X,Y // R(X × Y)

R-residual functor-functor interaction laws form a category IL(C, R).
This category is monoidal. The tensorial unit is (Id, Id, ηR · (Id × Id)). The tensor of (F,G, φ) and

(J,K, ψ) is (F · J,G ·K,µR ◦R · ψ ◦ φ · (J ×K)).
An R-residual monad-comonad interaction law of a monad T and a comonad D is a family ψ of maps

ψX,Y : TX ×DY → R(X × Y)

natural in X and Y , satisfying

X × Y X × Y

ηRX×Y
��

X ×DY

id×εY 33

ηX×id
++
TX ×DY

ψX,Y // R(X × Y)

TTX ×DDY
ψTX,DY// R(TX ×DY)

RψX,Y // RR(X × Y)

µRX×Y
��

TTX ×DY
id×δY 33

µX×id
++
TX ×DY

ψX,Y // R(X × Y)

Example 13. Let RX = X + E (the exceptions monad). Take TX = A⇒ (X + E), DY = A× Y ; these
are a monad and a comonad. The natural transformation ψ (f, (a, y)) = case f a of (inlx 7→ (inlx, y) |
inr e 7→ inr e) satisfies the conditions of a R-residual monad-comonad interaction law.

R-residual monad-comonad interaction laws are the same as monoid objects in the monoidal category
IL(C, R).

R-residual monad-comonad interaction law maps are defined as expected and correspond to monoid
morphisms.

The category MCIL(C, R) of R-residual monad-comonad interaction laws is isomorphic to
Mon(IL(C, R)).

5.2 Relationship to interaction laws on Kleisli categories

It is tempting to guess that an R-residual functor-functor interaction law of F , G would be the same thing
as a functor-functor interaction law on the Kleisli category of R. But this is jumping to conclusions too
hastily. For something like this to be feasible, we need, first of all, that F , G lift to Kl(R). A necessary and
sufficient condition is the presence of distributive laws of F and G over R, i.e., natural transformations
κ : F · R → R · F and λ : G · R → R · G agreeing with the monad structure of R. Then we define the

18 S.-y. Katsumata, E. Rivas and T. Uustalu

lifted versions of F , G on objects by F̄X = FX, ḠY = GY ; for maps k : X → RX ′, ` : Y → RY ′, we
define F̄ k = κX′ ◦ Fk : FX → RFX ′ and Ḡ` = λY ′ ◦G` : GY → RGY ′.

Moreover, we also need to lift × to Kl(R) as a bifunctor and monoidal structure. For this, a necessary
and sufficient condition is monoidality of R as a monad, i.e., the presence of a family of maps mX,Y :
RX ×RY → R(X ×Y) natural in X, Y agreeing with both the product monoidal structure of C and the
monad structure of R. (This is the same as R being commutative strong monad.) For objects, we then
define X ×̄ Y = X × Y , and for maps k : X → RX ′, ` : Y → RY ′, we define k ×̄ ` = mX′,Y ′ ◦ (k × `) :
X × Y → R(X ′ × Y ′).

The naturality condition for φX,Y : FX × GY → R(X × Y) as an interaction law of F̄ , Ḡ is: for all
k, `,

FX ×GY
φX,Y //

Fk×G`
��

R(X × Y)

R(k×`)
��

FRX ′ ×GRY ′

κX′×λY ′
��

R(RX ′ ×RY ′)

RmR
X′,Y ′��

RFX ′ ×RGY ′

mR
FX′,GY ′ ��

RR(X ′ × Y ′)

µR
X′×Y ′��

R(FX ′ ×GY ′)
RφX′,Y ′ // RR(X ′ × Y ′)

µR
X′×Y ′ // R(X ′ × Y ′)

But the naturality condition for φ as an R-residual interaction law of F , G is: for all f , g,

FX ×GY
φX,Y //

Ff×Gg
��

R(X × Y)

R(f×g)
��

FX ′ ×GY ′
φX′,Y ′ // R(X ′ × Y ′)

The first condition implies the second:

FX ×GY
φX,Y //

Ff×Gg

��

R(X × Y)

R(f×g)

��
FX ′ ×GY ′

FηR
X′×Gη

R
Y ′

��
ηR
FX′×η

R
GY ′

$$
ηR
FX′×GY ′

&&

φX′,Y ′

((

R(X × Y)

R(ηR
X′×η

R
Y ′)

��
RηR

X′×Y ′

zz

FRX ′ ×GRY ′

κX′×λY ′

��

R(RX ′ ×RY ′)

RmR
X′,Y ′

��
RFX ′ ×RGY ′

mR
FX′,GY ′

��

RR(X ′ × Y ′)

µR
X′×Y ′

��
R(FX ′ ×GY ′)

RφX′,Y ′ // RR(X ′ × Y ′)
µR
X′×Y ′ // R(X ′ × Y ′)

R(X ′ × Y ′)

ηR
R(X′×Y ′)

55

The second condition gives the first condition restricted to pure maps of Kl(R) (maps in the image
of the left adjoint J the Kleisli adjunction of R), i.e., for maps k, ` of the form k = Jf = ηX′ ◦ f ,

Interaction Laws of Monads and Comonads 19

` = Jg = ηY ′ ◦ g:

FX ×GY
φX,Y //

Ff×Gg

��
Fk×G`

((

R(X × Y)

R(f×g)

��
R(k×`)

vv

FX ′ ×GY ′
φX′,Y ′ //

FηR
X′×Gη

R
Y ′

��
ηR
FX′×η

R
GY ′

zz
ηR
FX′×GY ′

xx

R(X × Y)

R(ηR
X′×η

R
Y ′)

��
RηR

X′×Y ′

$$

ηR
R(X′×Y ′)

��

FRX ′ ×GRY ′

κX′×λY ′

��

R(RX ′ ×RY ′)

RmR
X′,Y ′

��
RFX ′ ×RGY ′

mR
FX′,GY ′

��

RR(X ′ × Y ′)

µR
X′×Y ′

��
R(FX ′ ×GY ′)

RφX′,Y ′ // RR(X ′ × Y ′)
µR
X′×Y ′ // R(X ′ × Y ′)

We thus see that R-residual functor-functor interaction laws are more liberal than functor-functor
interaction laws in Kl(R) in that we do not need the distributive laws and monoidality of R and that the
naturality condition is weaker (only required for pure maps).

5.3 Residual stateful running

Similarly to interaction laws, the concept of runners can also be generalized.

Given a monad R = (R, ηR, µR) on C. An R-residual runner of a monad T = (T, η, µ) on C is an an
object Y with a family θ of maps

θX : TX × Y → R(X × Y)

natural in X, satisfying

X × Y

ηX×id

��

X × Y

ηRX×Y��
TX × Y

θX // R(X × Y)

TTX × Y

µX×id

��

θTX // R(TX × Y)
RθX // RR(X × Y)

µRX×Y
��

TX × Y
θX // R(X × Y)

A map of R-residual runners of T between (Y, θ), (Y ′, θ′) is a map f : Y → Y ′ satisfying

TX × Y
θX //

id×f
��

R(X × Y)

R(id×f)
��

TX × Y ′
θ′X // R(X × Y ′)

R-residual runners of T form a category Run(T,R).

R-residual runners of T are essentially the same as objects Y endowed with a monad map ϑ : T →
StR,Y where StR,Y = (StR,Y , ηR,Y , µR,Y) is the R-transformed state monad for Y whose underlying
functor is defined by StR,YX = Y ⇒ R(X × Y).

This is via the bijection of natural transformations∫
X
C(TX × Y,R(X × Y)) ∼=

∫
X
C(TX, Y ⇒ R(X × Y)︸ ︷︷ ︸

StR,YX

)

Under this bijection, the R-residual runner conditions amount to the monad map conditions

X

ηX
��

X

η
R,Y
X��

TX
ϑX // StR,YX

TTX

µX
��

ϑTX // StR,Y TX
StR,Y ϑX// StR,Y StR,YX

µ
R,Y
X��

TX
ϑX // StR,YX

20 S.-y. Katsumata, E. Rivas and T. Uustalu

A map f : Y → Y ′ is a map of R-residual runners of T between (Y, ϑ), (Y ′, ϑ′) iff

TX
ϑX // Y ⇒ R(X × Y) id⇒R(id×f)

,,
Y ⇒ R(X × Y ′)

TX
ϑ′X // Y ′ ⇒ R(X × Y ′)

f⇒id

22

So the categories of R-residual runners of T and objects Y equipped with a monad map from T to StR,Y

are isomorphic.

6 Monoid-comonoid interaction

Exploiting that monads and monad-like objects like arrows or lax monoidal functors (“applicative func-
tors”) are monoids has turned out to be very fruitful in categorical semantics (see, e.g., [19,10,33]).
We now explore this perspective by abstracting monad-comonad interaction laws into monoid-comonoid
interaction laws. This leads us to further known concepts and methods from category theory.

6.1 Interaction laws and Chu spaces

The first step in generalizing interaction laws to monoids and comonoids is to account for interaction
laws as maps in a category. Recall that the Day convolution [12] of functors F,G : C → C where C is a
category with finite products is given by

(F ? G)Z =
∫X,Y C(X × Y,Z) • (FX ×GY)

provided that this coend exists. (We take the same stance toward the question of well-definedness of the
Day convolution as we took toward the well-definedness of the dual in Section 2.) By reasoning about
natural transformations, we see that interaction laws for a pair of functors F and G amount to maps
φ : F ? G→ IdC :∫

X,Y
C(FX ×GY,X × Y) ∼=

∫
X,Y,Z

Set(C(X × Y, Z), C(FX ×GY,Z)) ∼=
∫
Z
C((F ? G)Z,Z)

We see that a functor-functor interaction law is a triple (F,G, φ : F ? G→ IdC), i.e., a Chu space [7] over
the monoid object IdC wrt. the Day convolution monoidal structure on [C, C]. An interaction law map is
a Chu space map under this view, so the category IL(C) is isomorphic to the category Chu([C, C], IdC).

This is nice, but not fine-grained enough for developing an abstract foundation for our theory. The
canonical monoidal structure on Chu(F , R) (where R is a monoid object in F) is based on the monoidal
structure of the base category F , which in our case is the Day convolution, and uses pullbacks. But we are
interested in a different monoidal structure on IL(C) that is based on composition and gives us monads
and comonads as monoids resp. comonoids. We fix this mismatch by moving to one of the cousins of the
Chu construction: glueing à la Hasegawa.

6.2 Interaction laws and Hasegawa’s glueing

Hasegawa’s glueing construction [16] works as follows. Given two monoidal categories F = (F , IF ,⊗F),
G = (G, IG ,⊗G) and a lax monoidal functor ((−)◦, e,m) : G → F . The comma category F ↓ (−)◦ carries
a monoidal structure given by:

I = (IF , IG , IF
e // (IG)◦)

(F,G, φ)⊗ (F ′, G′, φ′) = (F ⊗F F ′, G⊗G G′, F ⊗F F ′
φ⊗Fφ′// G◦ ⊗F G′◦

mG,G′// (G⊗G G′)◦)

Also, if F and G are closed and G has pullbacks, then F ↓ (−)◦ is closed.
An interesting case of this construction is when we start with a duoidal category (F , I,⊗, J, ?) closed

wrt. ? [3,13]. This is a category with two monoidal structures, and among its data are a map χ : I ?I → I
and a family of maps ξF,F ′,G,G′ : (F ⊗ F ′) ? (G ⊗ G′) → (F ? G) ⊗ (F ′ ? G′) natural in F, F ′, G,G′.
Moreover, given a monoid (R, ηR, µR) in (F , I,⊗), we define (−)◦ : Fop → F by G◦ = G −? R. This

Interaction Laws of Monads and Comonads 21

functor (−)◦ is lax monoidal wrt. the (I,⊗) monoidal structure, since as witnesses e,m of lax monoidality
we have the curryings of

e′ = I ? I
χ // I

ηR // R

m′G,G′ = (G◦ ⊗G′◦) ? (G⊗G′)
ξ // (G◦ ? G)⊗ (G′◦ ? G′)

ev⊗ev // R⊗R
µR // R

Since F , Fop

, (−)◦ fulfill the assumptions of the glueing construction, F ↓ (−)◦ is monoidal. A monoid
in this category is what we will recognize as a R-residual monoid-comonoid interaction law in the duoidal
category F .

To recover the usual functor-functor and monad-comonad interaction laws, we take (F , I,⊗, J, ?,−?)
to be [C, C] with its composition monoidal and Day convolution monoidal closed structures, and define
G◦ = G −? Id. An object of F ↓ (−)◦ is a functor-functor interaction law while a monad-comonad
interaction law is a monoid object of this category. We ignore the issue that ? and −? need not be well-
defined everywhere on [C, C]. As we remarked before, this can be solved by restricting to a full subcategory
of [C, C] given by some class of functors that is closed under ? and −? (such as finitary functors, cf. [13]).

The notions of dual and Sweedler dual emerge as follows in this setting. When the ? monoidal structure
is symmetric, we also have

Fop

(−)◦
))

> F
(−)◦op
jj

since, for any F,G ∈ |[C, C]|,

F(F,G◦) ∼= F(F ? G, Id) ∼= F(G ? F, Id) ∼= F(G,F ◦) ∼= Fop(F ◦, G).

Because of this adjunction, we call (−)◦ the dual.
Since the functor (−)◦ is lax monoidal, it lifts to a functor between the respective categories of monoids

(bear in mind that Mon(Fop) = (Comon(F))op):

(Comon(F))op
(−)◦ //

U
��

Mon(F)

U
��

Fop
(−)◦ // F

(6)

However, its left adjoint (−)◦
op

is only oplax monoidal, but not lax monoidal, so we cannot get a
similar diagram for (−)◦

op
. We want to find a substitute for this lifting, in particular, we want a left

adjoint for the lifted (−)◦:

(Comon(F))op

(−)◦
,,

> Mon(F)

(−)•op
mm

We obtain not a natural isomorphism between two functors (Comon(F))op → F as in diagram (6), but
instead only a natural transformation ι : (−)◦

op ·U → U · (−)•
op

between two functors Mon(F)→ Fop.

(Comon(F))op

U
��

Mon(F)
(−)•opoo

U
���� ι

Fop F
(−)◦op

oo

We call the functor (−)• : (Mon(F))op → Comon(F) the Sweedler dual.

6.3 Sweedler dual for some constructions of monoids

As we have seen in the setting of monad-comonad interaction laws, it is not always easy to find the
Sweedler dual. In the remainder of this section, we focus on the cases of free monoids and free monoids
quotiented by “equations” for one method to compute them.

22 S.-y. Katsumata, E. Rivas and T. Uustalu

Let F ∗ be the free monoid on F . In this case, if the cofree comonoid on F ◦ exists, then it is the
Sweedler dual of F ∗, i.e., we can show that (F ∗)• = (F ◦)†. This is seen from the following calculation:

(Comon(F))op((F ◦)†, D) ∼= Comon(F)(D, (F ◦)†) ∼= F(UD,F ◦)

∼= Fop(F ◦, UD) ∼= F(F, (UD)◦) ∼= F(F,UD◦) ∼= Mon(F)(F ∗, D◦)

This observation facilitates calculation of Sweedler duals of free monads (i.e., theories without equations).
A natural question is to ask what happens in the presence of equations. Suppose that we have a monoid
T given as a coequalizer

E∗
fL //

gL
// F ∗ // T

in Mon(F) where (−)L is the left transpose of the free/forgetful adjunction between F and Mon(F). The
maps f, g : E → UF ∗ of F represent a system of equations in a set of variables E, and we can think of T
as being the monoid obtained by calculating the free monoid and then quotienting by the equations. We
can try to obtain the Sweedler dual of T by constructing a “dual” diagram as follows. We can instantiate
ι at F ∗ and obtain a map ιF∗ : (UF ∗)◦ → U((F ∗)•) in Fop, i.e., a map ιF∗ : U((F ∗)•)→ (UF ∗)◦ in F .
By composing with f◦ and g◦, we get:

U((F ◦)†) = U((F ∗)•)
ιF∗ // (UF ∗)◦

f◦ //
g◦

// E◦

The Sweedler dual T • of T is now obtained as an equalizer in Comon(F) by

T • // (F ◦)†
(f◦◦ιF∗)R //

(g◦◦ιF∗)R
// (E◦)†

where (−)R is the right transpose of the forgetful/cofree adjunction between Comon(F) and F .

Example 14. Revisiting Example 10, the nonempty list monad TX = X+ arises as the quotient of the
free monad T0X = µZ.X + Z × Z by the associativity equation for its operation cX : X × X → T0X,
i.e., the equation

(X ×X)×X

ass

��

cX×ηX// T0X × T0X
cT0X // T0T0X µX

))
T0X

X × (X ×X)
ηX×cX// T0X × T0X

cT0X // T0T0X
µX

55

The monad T0 is the free monad on the functor FX = X×X. The dual of F is GY = Y +Y . The Sweedler
dual of T is the subcomonad of the cofree comonad T •0 Y = νW. Y × (W + W) by the coassociativity
coequation for its cooperation c′Y : T •0 Y → Y + Y , i.e., the coequation

T •0 T
•
0 Y

c′
T•0 Y // T •0 Y + T •0 Y

c′Y +εY // (Y + Y) + Y

ass

��
T •0 Y

δY 55

δY
))
T •0 T

•
0 Y

c′
T•0X // T •0 Y + T •0 Y

εY +c′Y // Y + (Y + Y)

With some calculation, we can find that T •Y ∼= Y × (Y + Y).7 The comonad map i : T • → T •0 is defined
by i (y, inl y′) = (y, inl (i (y′, inl y′))), i (y, inr y′) = (y, inr (i (y′, inr y′))),

Compared to T •0 , the comonad T • is relatively degenerate because coassociativity entails corectangu-
larity (while associativity does not entail rectangularity8), as the following theorem shows.

Theorem 4. Given a comonad (D, ε, δ) on C with a cooperation cY : DY → Y + Y . We show that the
coequation of coassociativity

DDY
cDY // DY + DY

cY +εY // (Y + Y) + Y

ass

��
DY

δY 55

δY
))
DDY

cDY // DY + DY
εY +cY // Y + (Y + Y)

7 This calculation was carried out in detail in [36].
8 In band theory, left and right rectangularity are the equations (x ∗ y) ∗ z = x ∗ z and x ∗ (y ∗ z) = x ∗ z.

Interaction Laws of Monads and Comonads 23

implies left and right corectangularity, i.e. the two coequations

DDY
cDY // DY + DY

cY +εY // (Y + Y) + Y

DY

δY
99

δY %%

cY // Y + Y

inl+id

OO

id+inr
��

DDY
cDY // DY + DY

εY +cY // Y + (Y + Y)

Proof. We can pull cDY ◦ δY back along the coproduct coprojections (the existence of these pullbacks is
part of extensivity):

PY
fY //

iY
��

DY

inl
��

DY
δY // DDY

cDY // DY + DY

QY
gY //

jY

OO

DY

inr

OO

By stability of coproducts under pullback (which is also part of extensivity), (DY, iY , jY) is a coproduct
PY and QY .

For right corectangularity, we notice that the two maps (εY + cY) ◦ cDY ◦ δY and (Y + inr) ◦ (εY +
εY) ◦ cDY ◦ δY both satisfy both triangles of the unique copair of inl ◦ εY ◦ fY and inr ◦ cY ◦ gY , so they
must be the same map. Indeed, we have both

PY
fY //

iY
��

DY
εY //

inl
��

Y

inl
��

DY
δY // DDY

cDY // DY + DY
εY +cY // Y + (Y + Y)

QY
gY //

jY

OO

DY

inr

OO

cY // Y + Y

inr

OO

and, using coassociativity, also

PY
fY //

iY

��

DY
εY //

inl

��

Y

inl

��

Y

inl

��
DY

δY // DDY
cDY // DY + DY

εY +εY // Y + Y
id+inr // Y + (Y + Y)

QY

jY

OO

gY // DY

inr

OO

inr
��

εY // Y

inr

OO

inr��
DY

δY // DDY
cDY // DY + DY

cY +εY // (Y + Y) + Y
α // Y + (Y + Y)

DY
δY // DDY

cDY // DY + DY
εY +cY // Y + (Y + Y)

QY

jY

OO

gY // DY

inr

OO

cY // Y + Y

inr

OO

The result now follows from noticing that (εY + εY) ◦ cDY ◦ δY = cY :

DY
δY // DDY

DεY
��

cDY // DY + DY

εY +εY
��

DY
cY // Y + Y

Left corectangularity is proved analogously. ut

24 S.-y. Katsumata, E. Rivas and T. Uustalu

Example 15. Going back to Example 11, the update monad TX = A ⇒ (B ×X) with B = (B, ø,⊕) a
monoid and (A, ↓) a B-set arises as the quotient of the monad T0X = µZ.X + (A ⇒ Z) + (B × Z) by
the following three equations for its operations cX : (A⇒ X)→ T0X and dX : B ×X → T0X:

X

��

ηX // T0X

A⇒ (1×X)
id⇒(ø×id)// A⇒ (B ×X)

id⇒cX // A⇒ T0X
dT0X // T0T0X

µX // T0X

B × (B ×X)

��

id×dX // B × T0X
dT0X // T0T0X

µX // T0X

(B ×B)×X
⊕×id // B ×X

dX // T0X

A⇒ (B × (A⇒ X))

id⇒(id×(↓⇒id))

��

id⇒(id×cX)// A⇒ (B × T0X)
id⇒dT0X// A⇒ T0T0X

cT0T0X// T0T0T0X
µ
(3)
X // T0X

A⇒ (B × ((A×B)⇒ X)) // A⇒ (B ×X)
id⇒dX // A⇒ T0X

cT0X // T0T0X
µX // T0X

The monad T0X is the free monad on the functor FX = (A ⇒ X) + B × X. The dual of F is GY =
(A × Y) × (B ⇒ Y). The Sweedler dual of the monad T is the subcomonad of the cofree comonad
T •0 Y = νW. Y × (A×W)× (B ⇒W) on the functor G resulting from imposing the following coequations
on its cooperations c′Y : T •0 Y → A× Y and d′Y : T •0 Y → B ⇒ Y :

T •0 Y
εY // Y

T •0 Y
δY // T •0 T •0 Y

d′
T•0 Y // A× T •0 Y

id×c′Y // A× (B ⇒ Y)
id×(ø⇒id)// A× (1⇒ Y)

OO

T •0 Y
δX // T •0 T •0 Y

c′Y // B ⇒ T •0 Y
id⇒c′Y // B ⇒ (B ⇒ Y)

T •0 Y
c′Y // B ⇒ Y

⊕⇒id // (B ×B)⇒ Y

OO

T •0 Y
δ
(3)
Y // T •0 T •0 T •0 Y

c′
T•0 T

•
0 Y// A× T •0 T

•
0 Y

id×d′
T•0 Y// A× (B ⇒ T •0 Y)

id×(id⇒c′Y)// A× (B ⇒ (A× Y))

T •0 Y
δY // T •0 T •0 Y

c′Y // A× T •0 Y
id×d′Y // A× (B ⇒ Y) // A× (B ⇒ ((A×B)× Y))

id×(id⇒(↓×id))

OO

Calculating, we can find that T •Y ∼= A × (B ⇒ Y).9 The comonad map i : T • → T •0 is defined by
i (a, f) = (f ø, (a, i (a, f)), λb. i (a ↓ b, λb′. f (b⊕ b))).

7 Related work

Works closest related to this paper on monad-comonad interaction laws are Power and Shkaravska’s work
on arrays (lenses) as comodels [32], Power and Plotkin’s study of tensors of models and comodels [28],
Abou-Saleh and Pattinson’s work on comodels for operational semantics [1], Møgelberg and Staton’s
work on linear usage of state [22] and Uustalu’s work on runners [36]—the starting point for this work.
Pattinson and Schröder [24] studied equational reasoning about comodels and noted the degeneracy from
nullary and binary cocommutative cooperations; see also Bauer’s tutorial [8]. Runners share some features
with Plotkin and Pretnar’s algebraic effect handlers [29], we describe them in the end of this section. In
their new work [4], Ahman and Bauer proposed a language design for (residual) runners.

Hancock and Hyvernat’s work on interaction structures [15] centers on the canonical interaction law of
the free monad on F ◦ and the cofree comonad on F where F is a container functor. (Intuitionistic) linear-
logic based two-party session typing [34] is very much about canonical interaction between syntactically
dual functors, as we discuss in the end of this section. The same idea is central in game-theoretic semantics
of (intuitionistic) linear logic (formulae-as-games, proofs-as-strategies) [2].

9 Also this calculation appeared in [36].

Interaction Laws of Monads and Comonads 25

Runners vs. handlers There are some similarities between handlers (now often called deep handlers) to
runners, but also significant differences.

Given a monad T = (T, η, µ) on C. We are interested in handling or running computations specified
by T .

A handler [29] for an object (value set for input computations) X is mathematically an algebra of the
monad T on X, i.e., an object Z (return value set) with a map α : TZ → Z satisfying the conditions of
a monad algebra, that also comes with a map f : X → Z.

A handler induces a unique map h : TX → Z satisfying

X

ηX
��

f

((
TX

h // Z

TTX

µX

OO

Th // TZ

α

OO

(7)

as ((TX, µX), ηX) is the free algebra of T on X.

A runner, as we know, can be taken to be an object Y (state set) with a monad map from T to the
state monad StY = (StY , ηY , µY), i.e., a natural transformation ϑ : T → StY such that, for any X, we
have

X

ηX

��

ηYX

''
TX

ϑX // StYX

StY StYX

µYX

OO

TTX

µX

OO

TϑX // TStYX

ϑ
StY X

OO

We know that that such natural transformations ϑ are in a bijection with coalgebras of the comonad
T • with carrier Y , i.e., maps γ : Y → T •Y satisfying the conditions of a comonad coalgebra.

We can see that a handler induces a map h with domain TX where X an arbitrary fixed object; the
codomain of h can be anything—Z is an arbitrary fixed object. A runner, at the same time, is a family
of maps ϑX with domain TX where X can be varied to be any object. The codomain of ϑX is of a
prescribed form—it has to be StYX where Y is an arbitrary fixed object. The map h is induced by an
algebra of the monad T while the family of maps ϑX is induced by (and also induces) a coalgebra of the
comonad T •.

We can make this comparison fairer by acknowledging that algebras (Z,α) of the monad T are in a
bijection with monad maps from T to the continuations monad (ContZ , ηZ , µZ) for the answer set Z,
defined by ContZX = (X ⇒ Z) ⇒ Z. Then for any X and f : X → Z, the map h from diagram (7)
factorizes as

X

ηX

��

ηZX

((
TX

ξX // ContZX
λk. k f // Z

ContZContZX

µZX

OO

TTX

µX

OO

TξX // TContZX

ξ
ContZX

OO

where ξ : T → ContZ is the monad map corresponding to the algebra structure α : TZ → Z.

Now both the handler-induced function ξ and the runner ϑ are functions with domain TX polymorphic
in X. Still the handler-induced function ξ is specified by an algebra of the monad T while the runner ϑ
is specified by a coalgebra of the comonad T •.

Conceptually, handlers and runners/interaction laws are really different in that, in the case of handlers,
effects are treated inside a computation while runners/interaction laws use an outside machine to do this.

26 S.-y. Katsumata, E. Rivas and T. Uustalu

Session types In session type systems, one usually works with an inductively defined set of types along
the lines of

G := Y return
| G0 +G1 internal choice
| G0 ×G1 external choice
| A×G0 output
| A⇒ G0 input

where Y is a type variable and A is a base type. (For simplicity, we ignore inductive and coinductive types
here.) Internal choice and external choice are really just special cases of output resp. input for A = B.

The dual of a type is defined recursively by

Y ◦ = Y
(G0 +G1)◦ = G◦0 ×G◦1
(G0 ×G1)◦ = G◦0 +G◦1
(A×G0)◦ = A⇒ G◦0

(A⇒ G0)◦ = A×G◦0

This syntactically defined dual agrees with our semantic concept of the dual of a functor, except for
the last clause where a discrepancy arises. We work in an arbitrary Cartesian closed category. In session
typing a linear setting is intended.

8 Conclusion and future work

We hope to have demonstrated that monad-comonad interaction laws are a natural concept for describing
interaction of effectful computations with machines providing the effects. They are well-motivated not
only as a computational model, but also mathematically, admitting an elegant theory based on concepts
and methods that have previously proved useful in other mathematical contexts, such as the Sweedler
dual.

There are many questions that we have not yet answered. What are some general ways to compute
the Sweedler dual? Power’s work [32] suggests a sophisticated iterative construction based on improving
approximations. What is a good general syntax for cooperations and coequations? What can be said
about the “dual” and the Sweedler “dual” in the presence of a residual monad and how to compute them
in this situation? How to compute the Sweedler dual in some intuitionistic linear setting adequate for
session typing?

Acknowledgements We are grateful to Robin Cockett for discussions and encouragement and to Ignacio
López Franco for pointing out the categorical work on measuring morphisms.

T.U. was supported by the Icelandic Research Fund project grant no. 196323-051, the Estonian Min-
istry of Education and Research institutional research grant no. IUT33-13, a project of the Estonian-
French Parrot cooperation programme and a guest professorship from Université Paris 13. E.R. was in
part supported by the European Research Council starting grant no. 715753 (SECOMP) and by Nomadic
Labs via a grant on “Evolution, Semantics, and Engineering of the F ∗ Verification System”. E.R. also
benefited from the above-mentioned Parrot and Icelandic Research Fund projects.

References

1. Abou-Saleh, F., Pattinson, D.: Comodels and effects in mathematical operational semantics. In: Pfenning,
F. (ed.) Proc. of 16th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS
2013. Lect. Notes in Comput. Sci., vol. 7794, pp. 129–144. Springer (2013). https://doi.org/10.1007/978-3-
642-37075-5 9

2. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. Symb. Log.
59(2), 543–574 (1994). https://doi.org/10.2307/2275407

3. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras, CRM Monograph Series, vol. 29.
Amer. Math. Soc. (2010)

4. Ahman, D., Bauer, A.: Runners in action. arXiv preprint 1910.11629 (2019), https://arxiv.org/abs/1910.
11629

5. Ahman, D., Uustalu, T.: Coalgebraic update lenses. Electron. Notes Theor. Comput. Sci. 308, 25–48 (2014).
https://doi.org/10.1016/j.entcs.2014.10.003, (Proc. of 30th Conf. on Mathematical Foundations of Program-
ming Semantics, MFPS XXX)

https://doi.org/10.1007/978-3-642-37075-5_9
https://doi.org/10.1007/978-3-642-37075-5_9
https://doi.org/10.2307/2275407
https://arxiv.org/abs/1910.11629
https://arxiv.org/abs/1910.11629
https://doi.org/10.1016/j.entcs.2014.10.003

Interaction Laws of Monads and Comonads 27

6. Ahman, D., Uustalu, T.: Update monads: Cointerpreting directed containers. In: Matthes, R., Schubert,
A. (eds.) Proc. of 19th Int. Wksh. on Types for Proofs and Programs, TYPES 2013. Leibniz Int. Proc. in
Informatics, vol. 26, pp. 1–23. Dagstuhl Publishing (2014). https://doi.org/10.4230/lipics.types.2013.1

7. Barr, M.: The Chu construction: History of an idea. Theory Appl. Categ. 17(1), 10–16 (2006), http://www.
tac.mta.ca/tac/volumes/17/1/17-01abs.html

8. Bauer, A.: What is algebraic about algebraic effects and handlers? arXiv preprint 1807.05923 (2018), https:
//arxiv.org/abs/1807.05923

9. Cáccamo, M., Winskel, G.: A higher-order calculus for categories. In: Boulton, R.J., Jackson, P.B. (eds.) Proc.
of 14th Int. Conf. on Theorem Proving in Higher Order Logics, TPHOLs 2001. Lect. Notes in Comput. Sci.,
vol. 2152, pp. 136–153. Springer (2001). https://doi.org/10.1007/3-540-44755-5 11

10. Capriotti, P., Kaposi, A.: Free applicative functors. In: Levy, P.B., Krishnaswami, N. (eds.) Proc.
of 5th Workshop on Mathematically Structured Functional Programming, MSFP 2014. Electronic
Proc. in Theoretical Computer Science, vol. 153, pp. 2–30. Open Publishing Association (2014).
https://doi.org/10.4204/eptcs.153.2

11. Carboni, A., Lack, S., Walters, R.F.: Introduction to extensive and distributive categories. J. Pure Appl. Alg.
84(2), 145–158 (1993). https://doi.org/10.1016/0022-4049(93)90035-r

12. Day, B.: On closed categories of functors. In: Mac Lane, S. (ed.) Reports of the Midwest Category Seminar
IV, Lecture Notes in Mathematics, vol. 137, pp. 1–38. Springer (1970). https://doi.org/10.1007/bfb0060438

13. Garner, R., López Franco, I.: Commutativity. J. Pure Appl. Alg. 220(5), 1707–1751 (2016).
https://doi.org/10.1016/j.jpaa.2015.09.003

14. Ghani, N., Uustalu, T.: Coproducts of ideal monads. Theor. Inf. Appl. 38(4), 321–342 (2004).
https://doi.org/10.1051/ita:2004016

15. Hancock, P., Hyvernat, P.: Programming interfaces and basic topology. Ann. Pure Appl. Logic 137(1–3),
189–239 (2006). https://doi.org/10.1016/j.apal.2005.05.022

16. Hasegawa, M.: Logical predicates for intuitionistic linear type theories. In: Girard, J.Y. (ed.) Proc. of 4th Int.
Conf. on Typed Lambda Calculi and Applications, TLCA ’99. Lect. Notes in Comput. Sci., vol. 1581, pp.
198–213. Springer (1999). https://doi.org/10.1007/3-540-48959-2 15

17. Hyland, M., López Franco, I., Vasilakopoulou, C.: Hopf measuring comonoids and enrichment. Proc. London
Math. Soc. 115(5), 1118–1148 (2017). https://doi.org/10.1112/plms.12064

18. Hyland, M., Power, J.: The category theoretic understanding of universal algebra: Lawvere theories and mon-
ads. Electron. Notes Theor. Comput. Sci. 172, 437–458 (2007). https://doi.org/10.1016/j.entcs.2007.02.019,
(Computation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin)

19. Jaskelioff, M., Moggi, E.: Monad transformers as monoid transformers. Theor. Comput. Sci. 411(51–52),
4441–4466 (2010). https://doi.org/10.1017/s0956796810000122

20. Loregian, F.: This is the (co)end, my only (co)friend. arXiv preprint 1501.02503 (2015), https://arxiv.org/
abs/1501.02503

21. Mac Lane, S.: Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5.
Springer (1978). https://doi.org/10.1007/978-1-4757-4721-8

22. Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Methods Comput. Sci. 10(1, art. 17) (2014).
https://doi.org/10.2168/lmcs-10(1:17)2014

23. Moggi, E.: Computational lambda-calculus and monads. In: Proc. of 4th Ann. Symp. on Logic in Computer
Science, LICS ’89. pp. 14–23. IEEE Press (1989). https://doi.org/10.1109/lics.1989.39155

24. Pattinson, D., Schröder, L.: Sound and complete equational reasoning over comdels. Electron. Notes Theor.
Comput. Sci. 319, 315–331 (2015). https://doi.org/10.1016/j.entcs.2015.12.019, (Proc. of 31st Conf. on Math-
ematical Foundations of Programming Semantics, MFPS XXXI)

25. Plotkin, G., Power, J.: Semantics for algebraic operations. Electron. Notes in Theor. Comput. Sci. 45, 332–345
(2001). https://doi.org/10.1016/s1571-0661(04)80970-8, (Proc. of 17th Conf. of Mathematical Foundations of
Programming Semantics, MFPS XVII)

26. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Engberg, U. (eds.) Proc. of
5th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2002. Lect. Notes
in Comput. Sci., vol. 2303. Springer (2002). https://doi.org/10.1007/3-540-45931-6 24

27. Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Categ. Struct. 11(1), 69–94 (2003).
https://doi.org/10.1023/a:1023064908962

28. Plotkin, G., Power, J.: Tensors of comodels and models for operational semantics. Electron. Notes Theor.
Comput. Sci. 218, 295–311 (2008). https://doi.org/10.1016/j.entcs.2008.10.018, (Proc. of 24th Conf. Mathe-
matical Foundations of Programming Semantics, MFPS XXIV)

29. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Comput. Sci. 9(4, art. 23) (2013).
https://doi.org/10.2168/lmcs-9(4:23)2013

30. Porst, H.E.: Hopf monoids in varieties. Algebra Universalis 79(art. 18) (2018).
https://doi.org/10.1007/s00012-018-0500-5

31. Porst, H.E., Street, R.: Generalizations of the Sweedler dual. Appl. Categ. Struct. 24(5), 619–647 (2016).
https://doi.org/10.1007/s10485-016-9450-2

32. Power, J., Shkaravska, O.: From comodels to coalgebras: State and arrays. Electron. Notes Theor. Comput.
Sci. 106, 297–314 (2004). https://doi.org/10.1016/j.entcs.2004.02.041, (Proc. of 7th Wksh. on Coalgebraic
Methods in Computer Science, CMCS 2004)

https://doi.org/10.4230/lipics.types.2013.1
http://www.tac.mta.ca/tac/volumes/17/1/17-01abs.html
http://www.tac.mta.ca/tac/volumes/17/1/17-01abs.html
https://arxiv.org/abs/1807.05923
https://arxiv.org/abs/1807.05923
https://doi.org/10.1007/3-540-44755-5_11
https://doi.org/10.4204/eptcs.153.2
https://doi.org/10.1016/0022-4049(93)90035-r
https://doi.org/10.1007/bfb0060438
https://doi.org/10.1016/j.jpaa.2015.09.003
https://doi.org/10.1051/ita:2004016
https://doi.org/10.1016/j.apal.2005.05.022
https://doi.org/10.1007/3-540-48959-2_15
https://doi.org/10.1112/plms.12064
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1017/s0956796810000122
https://arxiv.org/abs/1501.02503
https://arxiv.org/abs/1501.02503
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.2168/lmcs-10(1:17)2014
https://doi.org/10.1109/lics.1989.39155
https://doi.org/10.1016/j.entcs.2015.12.019
https://doi.org/10.1016/s1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/a:1023064908962
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1007/s00012-018-0500-5
https://doi.org/10.1007/s10485-016-9450-2
https://doi.org/10.1016/j.entcs.2004.02.041

28 S.-y. Katsumata, E. Rivas and T. Uustalu

33. Rivas, E., Jaskelioff, M.: Notions of computation as monoids. J. Funct. Program. 27(art. e21) (2017).
https://doi.org/10.1017/s0956796817000132

34. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic linear type theory. In: Proc. of
13th ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming, PPDP ’11. pp. 161–172.
ACM Press (2011). https://doi.org/10.1145/2003476.2003499

35. Uustalu, T.: Generalizing substitution. Theor. Inf. Appl. 37(4), 315–336 (2003).
https://doi.org/10.1051/ita:2003022

36. Uustalu, T.: Stateful runners of effectful computations. Electron. Notes Theor. Comput. Sci. 319, 403–421
(2015). https://doi.org/10.1016/j.entcs.2015.12.024, (Proc. of 31st Conf. on Mathematical Foundations of
Programming Semantics, MFPS XXXI)

https://doi.org/10.1017/s0956796817000132
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1051/ita:2003022
https://doi.org/10.1016/j.entcs.2015.12.024

	Interaction Laws of Monads and Comonads

