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—— Abstract

In the online set-disjointness problem the goal is to preprocess a family of sets F, so that given two
sets S, S’ € F, one can quickly establish whether the two sets are disjoint or not. If N = Zse]-' |S],
then let N? be the preprocessing time and let N? be the query time. The most efficient known
combinatorial algorithm is a generalization of an algorithm by Cohen and Porat [TCS’10] which
has a tradeoff curve of p + g = 2. Kopelowitz, Pettie, and Porat [SODA’16] showed that, based on
the 3SUM hypothesis, there is a conditional lower bound curve of p 4+ 2¢ > 2. Thus, the current
state-of-the-art exhibits a large gap.

The online set-intersection problem is the reporting version of the online set-disjointness problem,
and given a query, the goal is to report all of the elements in the intersection. When considering
algorithms with N? preprocessing time and N?+4 O(op) query time, where op is the size of the output,
the combinatorial algorithm for online set-disjointess can be extended to solve online set-intersection
with a tradeoff curve of p + ¢ = 2. Kopelowitz, Pettie, and Porat [SODA’16] showed that, assuming
the 3SUM hypothesis, for 0 < ¢ < 2/3 this curve is tight. However, for 2/3 < ¢ < 1 there is no
known lower bound.

In this paper we close both gaps by showing the following:

For online set-disjointness we design an algorithm whose runtime, assuming w = 2 (where w is

the exponent in the fastest matrix multiplication algorithm), matches the lower bound curve of

Kopelowitz et al., for ¢ < 1/3. We then complement the new algorithm by a matching conditional

lower bound for g > 1/3 which is based on a natural hypothesis on the time required to detect a

triangle in an unbalanced tripartite graph. Remarkably, even if w > 2, the algorithm matches

the lower bound curve of Kopelowitz et al. for p > 1.73688 and ¢ < 0.13156.

For set-intersection, we prove a conditional lower bound that matches the combinatorial upper

bound curve for ¢ > 1/2 which is based on a hypothesis on the time required to enumerate all

triangles in an unbalanced tripartite graph.

Finally, we design algorithms for detecting and enumerating triangles in unbalanced tripartite

graphs which match the lower bounds of the corresponding hypotheses, assuming w = 2.
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Figure 1 The left graph depicts the gap between the upper bound and lower bound curves for
online SetDisjointness prior to this work. The lower bound tradeoff (red curve) is based on the 3SUM
hypothesis and the upper bound tradeoff (blue curve) is a variation of the algorithm of Cohen and
Porat [14]. The right graph depicts the optimal online SetDisjointness tradeoff (green curve) shown
in this paper, assuming that w = 2.

1 Introduction

In the online SetDisjointness problem the goal is to preprocess a family F of subsets from
universe U such that given a query pair (S,5") € F x F, one can quickly establish whether
S and S’ are disjoint or not. The online Setlntersection problem is the reporting version
of the online SetDisjointness problem, where given a query pair (S,5’) € F x F one must
enumerate all of the elements in SN .S’

Set-disjointness problems at large, including both online SetDisjointness and online
Setlntersection, are fundamental algorithmic problems, and have many applications, for
example, in information retrieval [14, 24, 20|, graph related problems [28, 5, 29, 33, 34], and
data structures [27, 16, 29]. Moreover, both problems have played a crucial role in obtaining
conditional lower bounds (CLB) in fine-grained complexity. Specifically, many CLBs that
are based on the 3SUM hypothesis! are reductions from 3SUM to versions of SetDisjointness
or Setlntersection, which are further reduced to other algorithmic problems [32, 1, 29, 27, 5,
4, 22, 23]. The Boolean matrix multiplication (BMM) problem can be interpreted as online
SetDisjointness with the requirement that the answers to all of the queries must be computed
and stored during the preprocessing phase. Thus, the “combinatorial” BMM hypothesis?
and the CLBs that follow [1, 37, 10] are closely related to online SetDisjointness. Another
example is the orthogonal vectors (OV) hypothesis® [1, 37], which can be interpreted as
asking whether a given family of sets contains two disjoint sets.

! The 3SUM hypothesis states that in the Word RAM model of computation with O(logn) bit words,

determining whether a set of n integers contains three that sum to 0, requires n?=°M) time.

This hypothesis roughly states that algorithms for n xn BMM that are simple and do not use Strassen-like

techniques must take n®>~°™) time in the Word RAM Model with O(logn) bit words.

3 The OV hypothesis states that in the Word RAM model with O(logn) bit words, an algorithm that
can decide whether a set of n binary vectors of dimension d contains two orthogonal vectors, must take
n27°MWgoM time.
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Figure 2 The left graph depicts the gap between the upper bound and lower bound curves for
online SetIntersection prior to this work. The green curve (for g < %) is optimal, while the blue
curve is an upper bound with no matching lower bound. The right graph depicts the optimal online
Setlntersection tradeoff (green curve) shown in this paper, for all values of q.

Measuring efficiency. We measure the efficiency of algorithms for online SetDisjointness
and online Setlntersection in terms of N =} ¢~ |S|. For online SetDisjointness, let N? and
N1 be the preprocessing and query time, respectively. For online Setlntersection, let NP and
N7+ O(op) be the preprocessing and query time, respectively, where op is the size of the
output.

When discussing tradeoffs between p and ¢ we make the standard assumption that the
preprocessing phase must scan the input at least once, and so p > 1. Moreover, there is no
advantage in allowing p > 2 since for p = 2 it is straightforward to obtain a constant query
time. Thus we assume that 1 < p < 2. Similarly, a trivial query algorithm is to scan the
entire instance in O(N) time, so we assume that 0 < g < 1.

A brief history and the gaps. A variation of the algorithm of Cohen and Porat [14] for
online SetDisjointness has p + ¢ = 2 (see Section 2.1). A straightforward variation of this
algorithm also solves online Setlntersection with p+¢ = 2 (see Section 2.1). To our knowledge,

for any values of p and ¢, there is no published algorithm with a better upper-bound tradeoff.

Regarding lower bounds, assuming the 3SUM hypothesis, Pétragcu [32] proved that
for online SetDisjointness whenever 1 < p < 4/3 we have ¢ > 1/3. Patragcu’s CLB is
fairly limited with regard to the range of options for p and ¢q. The CLB tradeoff was later
improved by Kopelowitz, Pettie and Porat [29] to p + 2¢ > 2 for the full range of p and
0 < ¢ < 1/2. Kopelowitz et al. [29] also showed that, assuming the 3SUM hypothesis, for
online Setlntersection, whenever 4/3 < p < 2 and 0 < ¢ < 2/3 we have p + ¢ > 2. Thus, the
combinatorial algorithm is tight for g < %

In both problems, a large gap remains; see Figures 1 and 2. The goal of this paper is to
close the gaps for both problems.

1.1 Our Results

In this paper we take a step towards closing the gaps for both online SetDisjointness and
online Setlntersection as follows.
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New algorithm for online SetDisjointness. For online SetDisjointness we design an algo-
rithm that utilizes fast matrix multiplication (FMM) (see [15, 36, 35, 31]) and, assuming
w = 2 (where w is the exponent in the fastest matrix multiplication algorithm), matches the
lower bound curve of Kopelowitz et al. [29] for ¢ < 1/3. The algorithm borrows some ideas
from the fast sparse matrix multiplication algorithm of Yuster and Zwick [38], and is stated
in the following theorem whose proof appears in Section 2.2.

» Theorem 1. There exists an algorithm for the online SetDisjointness problem where
P+ 250 =2, for0<q <4

Spta=1+ 2, forég<g¢<1

If w > 2, the time bounds of Theorem 1 can be improved using fast rectangular matrix
multiplication (FRMM) (see [30]). In particular, if we denote by w(1,1, k) the exponent of n
in the time required to multiply an n x n* k % n matrix, then the following
corollary is straightforward from the proof of Theorem 1 (see Section 2.2).

matrix by an n

» Corollary 2. There exists an algorithm for the online SetDisjointness problem where

2—p
= (1—-¢q) w(1,1,2"0
p ( Q) w( A q)
We note that, since w(1,1,k) = 2 for k£ < 0.30298 [30, 21], for the range of p > 72.361298 =

1.73688 and ¢ < g:ggggg = 0.13156, the tradeoff becomes p 4+ 2¢q = 2, which is optimal by the

3SUM conjecture.

Unbalanced triangle detection. We complement our new algorithm with a matching CLB
for the case of ¢ > 1/3 which is based on the problem of detecting a triangle in an unbalanced
tripartite graph.

» Problem 3 (Unbalanced Triangle Detection). In the Unbalanced Triangle Detection (UTD)
problem the goal is to determine whether an undirected tripartite graph G = (AU BUC, E)
contains a triangle or not, where my = |[EN(Ax B)|, ma = [EN(BxC)|, ms = |[EN(C x A)|,
and m1 < mg < ms.

» Hypothesis 4 (UTD hypothesis). Assuming w = 2, any algorithm for the UTD problem in
the word RAM model with O(logmg) bit words, for any mi; < mg < ms, has time cost

Q ((m1 .mQ)é(mg)%—om) .

The UTD hypothesis is the natural extension of the popular Triangle Detection hypothe-
sis [1, 11, 26, 32] which states that, assuming w = 2, the current best known running time
O(m4/ 3) for triangle detection in m-edge graphs is optimal, up to m°M factors . To see this,
just set m; = mgo = mg in the UTD hypothesis and the Triangle Detection Hypothesis is
obtained by noting that when it comes to triangle problems, without loss of generality, the
input graph is tripartite®.

4 The reduction works by creating 3 copies of the vertex set, each of which is an independent set, and
placing copies of the original edges between copies of vertices (but each vertex copy is in a different
copy of the vertex set). Each triangle in the original graph appears 6 times.
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We remark an important subtlety in the UTD hypothesis: in order to disprove the
hypothesis, it is enough to design an algorithm that beats the hypothesized lower bound for
a single combination of my, ms and mgs. Nevertheless, the CLBs that we prove based on the
UTD hypothesis hold even if we restrict the UTD hypothesis to be true for the restricted
cases of mg = ms.

UTD algorithm. In Section 3 We design a new algorithm for UTD which matches the lower
bounds of the UTD hypothesis if w = 2. The algorithm is a natural (albeit not exactly
straightforward) extension of the best known algorithms for triangle detection [3].

» Theorem 5. There exists an algorithm for the UTD problem whose time cost is
@) (mg + (ma 'm2)%(m3)%+1) :

CLB for online SetDisjointness. In Section 4 we prove a CLB for online SetDisjointness
which is conditioned on the UTD hypothesis. The CLB, which matches the upper bound of
Theorem 1 for ¢ > %, assuming w = 2, is summarized in the following theorem.

» Theorem 6. Assuming w = 2, any algorithm for online SetDisjointness that has % <g<l1
must obey 2p + q > 3, unless the UTD hypothesis is false.

Assuming that w = 2, Theorems 6 and 1 combined with the 3SUM CLB of Kopelowitz
et al. [29] provide a (conditionally) optimal curve, as depicted in Figure 1.

Unbalanced triangle enumeration. For set-intersection, we prove a conditional lower bound
that matches the combinatorial upper bound curve for ¢ > 1/2 which is based on a hypothesis
on the time required to enumerate all triangles in an unbalanced tripartite graph.

» Problem 7 (Unbalanced Triangle Enumeration). In the Unbalanced Triangle Enumeration
(UTE) problem the goal is to enumerate all triangles in a given undirected tripartite graph
G=(AUBUC,E), where my = |[EN (A X B)|, ma=|EN(BxC)|, mg=|EN(Cx A)|,

and m1 < mg < ms.

» Hypothesis 8 (UTE hypothesis). Assuming w = 2, any algorithm for the UTE problem on
a graph with t triangles must have time cost t%(mlmgmg)%mgo(l) in the word RAM model
with O(log ms) bit words.

Similar to the UTD hypothesis, the UTE hypothesis implies that, assuming w = 2, the
current best known running time of O(m + ms + t%m) for triangle enumeration in m-edge
graphs by Bjerklund et al. [9] is optimal, up to m°() factors (just set m; = my = m3).

UTE algorithm. In Section 5 we design a new algorithm for UTE which, assuming w = 2,
matches the lower bounds of the UTE hypothesis. The algorithm is a natural (albeit not
exactly straightforward) extension of the best known algorithms for output-sensitive triangle
enumeration [9].

» Theorem 9. There exists an algorithm for UTE on graphs with at most t triangles whose
time cost is

3-w w—1

. 2 o
o (mg +mgt (mlmg)ﬁ +tw+1(m1m2m3)w+1> .
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CLB for online Setlntersection In Section 6, we prove the following CLB for Setlntersection
based on the UTE hypothesis, which matches the algorithm of Section 2.1 for ¢ > 1/2.

» Theorem 10. Any algorithm for online Setintersection that has % < q < 1 must obey

p+q > 2, unless the UTE hypothesis is false.

1.2 More Related Work

SetDisjointness and SetIntersection. Many existing set intersection data structures, e.g.,
[17, 7, 6], work in the comparison model in which sets are represented as sorted lists or arrays.
The benchmark in this model is the minimum number of comparisons needed to answer a
query. Bille, Pagh, and Pagh [8] used word-packing techniques to evaluate expressions of set
intersections and unions. Their query algorithm finds the intersection of k sets with a total
of n elements in O(n/log% + k- op) time, where op is the size of the output and w is the size
of a machine word. Cohen and Porat [13] designed a static O(N)-space data structure for
answering online Setlntersection queries in O(1/N(1 + SN .S’|)) time. Kopelowitz, Porat and
Pettie [28] designed an incremental algorithm for online SetDisjointness where both queries

and element insertions into sets cost O(4 /logn/l%) time.

Kopelowitz, Porat and Pettie [28] also designed a fully dynamic algorithm for both
online SetDisjointness and online SetIntersection which uses M words of space, each update

costs O(y/Mlog N) expected time, each Setlntersection query costs O(Niilﬁ;\)f]v\/op+ 1)

expected time where op is the size of the output, and each online SetDisjointness query costs

N+/log N
O=mr
time was also investigated by Afshani and Neilsen [2] and Goldstein et al. [23].

+ log N) expected time. The relationship between the space usage and query

Triangle Enumeration. Itai and Rodeh [25] showed that all ¢ triangles in a graph could be
enumerated in O(m3/2) time. Thirty years ago Chiba and Nishizeki [12] generalized [25] to
show that O(ma) time suffices, where « is the arboricity of the graph. Kopelowitz, Pettie,

and Porat [28] proved that enumerating ¢ triangles takes O(m[a/ 10?53 <7 | +1) time. Eppstein

et al. [19] designed an algorithm for the w-bit word RAM model running in O(m[a/=2=1+%)

log w

time.

The fastest algorithm for triangle enumeration in general m-edge, n-node graphs is the
algorithm of Bjorklund, Pagh, Williams, and Zwick [9] which if w = 2, runs in O(min{n? +
nt?/3 m*/3 4 mt'/3}) time.

Duraj et al. [18] showed that the related problem of establishing for each edge e in a
graph the number of triangles that contain e is equivalent to several natural range query
problems.

2 SetDisjointness Algorithms

Before we describe our new algorithm, we begin by presenting a simple algorithm for online
SetDisjointness which is a variation of the algorithm of Cohen and Porat [14], and has a
efficiency tradeoff of p + ¢ = 2. This algorithm is a building block for our new algorithm.

2.1 Heavy-Light Decomposition

» Lemma 11. There exists an algorithm for the online SetDisjointness problem with p+q = 2.

Proof. Let 0 < a < 1. A set S is said to be light if |S| < N®, and heavy otherwise. Notice
that the number of heavy sets is at most N1~.
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The algorithm stores each set via a lookup table, and precomputes the answers to all
O(N?72%) heavy pairs (pairs of heavy sets). Specifically, for a heavy pair S and S’, the
algorithm checks for each element e € S whether e € S’. The sets S and S’ are disjoint if
and only if all of the tests fail. Notice that during the precomputation, an element in a heavy
set is looked up at most N1~ times, once for each heavy set. Since the number of elements
in all heavy sets is at most N, the total preprocessing cost is O(N?~%) time and p = 2 — .

For the query, if both of the queries sets are heavy then the answer is obtained from the
precomputed information, and if at least one query set is light then the algorithm scans the
at most N elements in the light set to test whether any of these elements are in the other
set (regardless of whether the other set is heavy or light). Thus, the query cost is O(N )
and ¢ = . Finally, p+ ¢ =2 — a+ a = 2 as required. |

SetlIntersection Algorithm. It is fairly straightforward to convert the algorithm of Lemma 11
to also solve online Setlntersection with p + ¢ = 2: for each pair of heavy sets, instead of
storing only an indication of whether the sets are disjoint or not the algorithm stores the
entire intersection.

2.2 Improved algorithm

» Theorem 1. There exists an algorithm for the online SetDisjointness problem where

P+ 250 =2, for0<q <4

Zap+a=1+ 25, for 2 <q<1

Proof. The algorithm is similar to the algorithm in the proof of Lemma 11, but with a faster
method for precomputing all of the answers for heavy pairs. Thus, assume without loss of

generality that there are at most N'~% sets, where « is taken from the proof of Lemma 11.

For every element e € U, let f. = |[{S € F : e € S}| be the number of sets in F that
contain e. For a parameter 0 < 3 < 1, an element e € U is said to be frequent if f, > N7,
and rare otherwise. Let F' be the set of frequent elements and let R be the set of rare
elements. Notice that |[F| < N'™% and 3 5 fe < N.

For each rare element e, there are at most O((f.)?) = O(N?#) heavy pairs that contain e
in their intersection, and enumerating these pairs costs O((f.)?) time. In order to efficiently
enumerate these pairs for all rare elements, the algorithm computes for each element e a list
of sets that contain e by scanning the entire instance in linear time. Given these lists, the
algorithm enumerates all of the heavy pairs that have a rare element in their intersection in
O eplfe)?) = O e NOL) = ON e fe) = O(N'4) time.

The algorithm is now left with the task of establishing which heavy pairs have at least
one frequent element in their intersection. However, enumerating all heavy pairs that have
a frequent element in their intersection is too expensive. In order to reduce the time cost,
the algorithm constructs a Boolean matrix M such that the columns of M correspond to
frequent elements and the rows of M correspond to characteristic vectors of the heavy sets
after removing all of the rare elements. Thus, the size of M is |[H| x |F| where H is the set
of heavy sets. Let P = M - MT where the product is a Boolean product. Notice that i =1

if and only if there exists an element e such that the both m; . =1 and mz,j =mj. = L.

Thus, the non-zero entries of P exactly correspond to the heavy pairs that have a frequent
element in their intersection. The time cost of computing P using FMM is

|H|?|F| —20—f+(3—w)(max(a,B))
— NLU « w max Oé, .
o (min(|H|, ) =l )

74:7
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Thus, the total preprocessing time is N? = O (N1*7 4 Nw—20=f+B-w)(max(e.8))) "which is
minimized whenever 1+ 8 =w — 2a — f + (3 — w)(max(a, B8)), and then p = 1+ 3. Recall
that the query time is O(Na) and so ¢ = «.

If « < B, then g =1— ﬁ, the preprocessing time is given by p=1+ =2 — 2—'1 and
SO p+ 1q = 2. Notice that in order for this case to hold, it must be that « < =1 — %
1mp1y1ng that g =a < £ w+1

If a > 3, then a = 1 - == 1, the query time is given by ¢ = a« = 1 — 25?__11), and

21p +q =1+ % Notice that in order for this case to hold, it must be that

a—l—%Zl —1mp1y1ngthatq—a>w+1 |
» Corollary 2. There exists an algorithm for the online SetDisjointness problem where
p=(1=q) (1,10
Proof. When using FRMM, the cost to compute P is O (|H|”(1’1’10g‘H‘ %)) =
O(N(1 @)-w(1,1,1=5 a)) time. Thus, the total preprocessing time is
NP = O (Nl"'ﬁ —i—N(l*O‘)'w(l’l’%)), which is minimized whenever 1 4+ 5 = (1 — «) -
(1,171 a) andsop=(1—g¢q) w (1,171 q) <

3 Unbalanced Triangle Detection Algorithm

» Theorem 5. There exists an algorithm for the UTD problem whose time cost is
C)Ong%fhnlonm)%anm)i%>.

Proof. The algorithm uses three positive integer parameters to be set later: 74, 75, and 7¢.
A vertex a € A is said to be light if the number of edges (a,b) € EN (A x B) is at most
Ta, and heavy otherwise. Thus, the number of heavy nodes in A is at most T—Al A vertex
b € B is said to be light if the number of edges (b,¢) € EN(B x C) is at most 7, and heavy
otherwise. Thus, the number of heavy nodes in B is at most 72. A vertex ¢ € (' is said
to be light if the number of edges (¢,a) € EN(C x A) is at rnost 7o, and heavy otherwise.
Thus, the number of heavy nodes in C' is at most T—;

Light vertices. For each light a € A the algorithm enumerates all pairs of edges touching a
where one edge touches a vertex in B and the other edge touches a vertex in C, and for each
such pair the algorithm tests (in constant time) whether the pair is part of a triangle. If
there exists a triangle that contains a light a € A then one of the enumerated pairs must
be two edges from this triangle and thus the algorithm will detect this triangle. Let dg(a)
be the number of edges of a whose other endpoint is in B, and let do(a) be the number
of edges of a whose other endpoint is in C. Thus, the total number of pairs for a given
a € Ais dp(a)-dc(a). Notice that ) ., dco(a) = m3, and recall that since a is light then
dp(a) < 74. Thus, the time cost for testing whether there exists a triangle with a light « € A
vertex is

ZdB )<OTAZdC = O(7a - m3).

acA acA
Similarly, the algorithm checks whether there is exists a triangle with a light b € B or a
light ¢ € C in O(7 - m1 + 7¢ - m2). Thus, the total cost of detecting whether there exists a
triangle with at least one light vertex is O(mg + 74 - m3 + 75 - m1 + 7¢ - mg) time, where the
first mg term comes for the necessity of scanning the entire graph.
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Heavy vertices. If there is no triangle that contains at least one light vertex, then there can
only be a triangle with three heavy vertices. Here the algorithm utilizes the upper bound on
the number of heavy vertices in each part of the tripartite graph. Without loss of generality,

let a1, as, .. yam be the set of heavy vertices in A, let by, bo, .. bm2 be the set of heavy
vertices in B, and let ¢1,ca,.. ,cmg be the set of heavy vertices in A Let L be a TAl X T—;
ma ma

Boolean matrix where ¢; ; = 1 1f and only if (a;,b;) € E. Similarly, let R be a 72 x
Boolean matrix where r; ; = 1 if and only if (b;,¢;) € E, and let T be a 2 x 2 Boolean
matrix where ¢; ; = 1 if and only if (a;,¢;) € E.

The algorithm computes Z = (L - R) AT where the first operator is a BMM and the
second operator is an entry-wise AND.

> Claim 12. Z # 0 if and only if there exists a triangle in G whose vertices are all heavy.

Proof. Let X = L - R. If there exists an entry z; ; = 1 then x; ; = ¢; ; = 1. Since ¢; ; = 1,
then by definition (a;,¢;) € E. Since x; ; = 1, then there must exist an integer 1 < k <
such that l;, = 1 and 7 ; = 1, and so (a;,bx), (b, ¢;) € E, implying that the trlangle
(@i, bi, ¢j) is in G, and all of the vertices of this triangle are heavy.

For the other direction, suppose that the triangle (a;, b, ¢;) is in G, and all of the vertices
of this triangle are heavy. Then in particular l; ;, = r; = t; ; = 1. Thus, it must be that

z;; =1andso z;; = 1. <

rnz

The cost of computing Z is dominated by the cost of computing the BMM of L and R,
which is

0]
TATB - TC

The total time cost is

mimams

(min (7 72 ’:;))3—w> |

Time cost.

mi1moms
Ta - 7c - (min( 7, 72, )3 .

The time cost is minimized when the last four® terms in the summation are all equal:

O<m3+TA'M3+TB'm1+TC'm2+

m1mainsg
TA M3 =Tp M1 =TC M2 = mz m3\\3—w "
Ta Tp - Tc - (min(71, 72, 1))
Since m; < mg < mg it must be that 74 < 7¢ < 75, and so T—B? < %3 Moreover,
maTA < maTo = myTp and so 72 < T—Al Thus, mm(’T”A}, Z‘;, TCS) = T—B? By plugging in

Tp = 274 and 7o = 274, we have

m1maimnsg
TA M3 = ma  m3\\3—
Ta T Tc - (min(Zh, 72, )3
-1
- m1meoms . (m1m2)w
o m3 . M3 (_ Mz \3-w  Lw. )

TA i TA Ty TA (%f"’A) v i (mg)®
7“]71 . . .
and so 74 = (™™2)w77 . Finally, the time cost is

ms3

—1

O(ms + 74 - m3) = O(ms + (myma) 571 (m3)=51).

5 The reason for focusing only on the last four terms and not on the first term is that the last four terms
contain parameters which we can control, while the first term ms is always set.
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Notice that with an O(ms) time preprocessing we can ensure that every vertex in
A has at least one edge to B and to C (process the vertices in B and C similarly), by
removing any vertex (and its incident edges) without this property. This procedure never
removes any triangles, and ensures that m; > max{|A|,|B|}, me > max{|C|,|B|}, and
ms > max{|A|,|C|}. As m3 < |A]-|C| < my-ma, T4 > 1. Similarly, 75,7¢ > 1, so the
thresholds used by the algorithm make sense. |

4 Optimal Conditional Lower Bound for SetDisjointness

» Theorem 6. Assuming w = 2, any algorithm for online SetDisjointness that has % <g<l1
must obey 2p + q > 3, unless the UTD hypothesis is false.

Proof. To prove the theorem we first describe a reduction from the UTD problem to the
online SetDisjointness problem by describing an algorithm for UTD that uses an algorithm
for online SetDisjointness as a black box. We then show that if the online SetDisjointness
algorithm obeys 2p + ¢ = 3 — € for § < g < 1, for some constant € > 0, then there exists an
algorithm contradicting the UTD Hypothesis.

Reduction from UTD to online SetDisjointness. Given an instance G = (AUBUC, E) of
UTD, for each x € AU B define the set S, to be the set of vertices from C' that are neighbors
of z. All of the sets are given as input for the preprocessing phase of the online SetDisjointness
algorithm. Notice that the sum of the sizes of the sets is exactly N = mg + mg = O(ms),
since each edge touching a vertex in C contributes exactly one element to exactly one of the
sets. Next, for each of the my edges (a,b) € E U (A X B), the algorithm performs an online
SetDisjointness query on S, and Sp. If any of the queries returns a false (meaning that the
intersection of the two sets is not empty) then the algorithm returns that there is a triangle
in G, and otherwise, the algorithm returns that there is no triangle in G.

>> Claim 13. There exists an edge (a,b) € EN (A x B) such that S, NS, # 0 if and only if
G contains a triangle.

Proof. If there exists a triangle (a,b,c¢) € A x B x C in G, then both S, and S}, contain c.
Thus, S, NSy, # @. For the other direction, if there exists an edge (a,b) € EN (A x B) such
that S, NSy # 0 then there exists some ¢ € S, NS, which implies that (a,c), (b,c) € E, and
so (a,b,c) is a triangle in G. 4

Finally, the time cost of solving UTD is O(N? + mq - N?) = O((m3)? +my - (m3)9).

The lower bound. Suppose that there exists an online SetDisjointness algorithm with
% < g <1and 2p+ q=3— e for some positive € > 0. By rearranging,
31—q) 3

3(p_1):T_§6.

Thus, there exist constant positive numbers z and ¢, = 3¢ such that

3(1-4q)

3p—1)+e=a= 5

— €q.
Notice that, since ¢ > %, then z < w < 1. Moreover, by rearranging, there exists a

€4 such that

pgx;;?’—e’

constant € =
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and

3
q—i—xﬁ%—e’.

Thus, since the UTD hypothesis holds for any combination of my, mg and mgs (as long as
my < mg < mg), we set my = (m3)” and my = mg (recall that © < 1). The UTD hypothesis

states that the time cost for solving UTD on this setting of m;, mg and mg is Q ((mg) %3) ,

while the time cost of solving UTD using the reduction is
P 7y — p T+q) _ =3¢
O((m3)? +my - (m3)?) = O((m3)” + (m3)* ™) = O (m3) > :

thereby obtaining a contradiction. <

5 Unbalanced Triangle Enumeration

We begin with an algorithm which does not care about the number of triangles in the input.

» Lemma 14. There exists an algorithm for the UTE problem whose time cost is

O(m3+\/m1~m2~m3).

Proof. The algorithm uses the same definition and treatment of light vertices as in the
algorithm in the proof of Theorem 5, but instead of stopping once a triangle is found, the
algorithm continues until all triangles that contain at least one light vertex are enumerated.
Recall that this process costs O(ms + 74 - ms + 75 - m1 + 7¢ - m2) time.

Heavy vertices. Since there can be at most % heavy vertices in A, at most % heavy

vertices in B, and at most 22 heavy vertices in C, there can be at most T-"2"13 triangles
TC TATB"TC

whose vertices are all heavy. Thus, for each triplet of a heavy vertex a € A, a heavy vertex

b € B, and a heavy vertex ¢ € C, the algorithm spends constant time looking up whether

O my-ma-ms

(a,b,c) is a triangle or not. The time cost of enumerating all such triplets is e
A'TB'TC

Time cost. The total time cost is

miq Mg - M3
O(m3+TA'm3+TB‘m1+TC'm2+7 .
TATB " TC

The time cost is minimized when the last four terms in the summation are all equal:

miy Mo - M3
TA M3 =T M1 =T¢c My = ———.
TATB " TC

By plugging in 75 = 374 and 7¢ = %TA, we have

mi1-mo-Mms
TA Mg = ————
TA-TB *TC

mi1-mo-Mms3

ms3

TA  TA 5, TA

o (ml : m2)2

= T s

Therefore, 74 = \/%, and the total time cost is O(ms+74-m3) = O(mz—+./m1 - mg - m3).
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Similarly to the UTD algorithm, notice that with an O(ms) time preprocessing we
can ensure that every vertex in A has at least one edge to B and to C' (process the
vertices in B and C similarly), by removing any vertex (and its incident edges) without this
property. This procedure never removes any triangles, and ensures that m; > max{|A|,|B|},
mo > max{|C|,|B|}, and mg > max{|A[,|C|}. As mg < |A]|-|C| < my-mg, T4 > L.
Similarly, 75, 7¢ > 1, so the thresholds the algorithm uses make sense. |

Now we give an algorithm for UTE, assuming that the input graph has ¢ triangles. Notice
that our algorithm for UTD can count the number of triangles, so we can assume that we
know t¢.

» Theorem 9. There exists an algorithm for UTE on graphs with at most t triangles whose
time cost is

3—w w—1

. 2 o
0 (mg +mgt (mlmg)?} + tw+1(m1m2m3)w+1> .

Proof. Let L, Dy, D5, D3 be parameters to be chosen later; we will make sure that all of these
parameters are at least 1. Recall that my = EN(AX B),ma = EN(BxC),m3 = EN(AxC).

For every a € A with at most D; neighbors in C, list all triangles through a by going
through all pairs of neighbors of a. The total time over all low-degree a € A is O(m1 D) time.
Similarly, in O(m2D5) time list all triangles through all b € B with at most Do neighbors in
A and in O(msDs) time list all triangles through all ¢ € C with at most D3 neighbors in B.

Now let us set D; = m;’f?’ and Dy = mﬁfe’. As m3 > mq,ma, D1, Dy > 1. This makes
the total time so far O(msDs3).

Any triangle (a, b, ¢) that has not been listed must have that a has at least D; neighbors
in C, b has at least Dy neighbors in A and ¢ has at least D3 neighbors in B. Thus we can
restrict to a subset A’ of A of size at most ng = m1 /Dy = (my1ms)/(m3Ds3), a subset B’ of
B of size at most ng = my/D3 and a subset C’ of C of size at most nc = m3z/Dy = my/Ds.
Notice that

na = (m1/D3) - (ma/m3) < (my1/Ds) =ne < (ma/D3) =np.

Bjorklund et al. [9] give an O(L3~“n®) time algorithm that given a tripartite graph G’
with n nodes in each partition, every edge e of G’ the algorithm lists L triangles that contain
e, for some parameter L > 1, or all triangles containing e if e is in fewer than L triangles.
Our algorithm reduces to this balanced case.

Since ny < ng < np, the algorithm splits the larger partitions into parts of size roughly
na, thereby obtaining (ngnc)/n% instances of balanced graphs, where every partition has
n 4 vertices. On each one of these instances the algorithm executes the algorithm of [9] to
list up to L triangles for every edge in the remaining graph. The running time of this step is

~ o e ~ ((mimo)*~t o

O (ngnen“ 213 9) =0 ———=L__[37%).
( B A ) ngmcé}—Q

To minimize the total runtime we set

(m1m2)w—1

3—w
w w—2 :
Dgm

m3D3 =

3—w w—1
This sets D3 = L«+1 (mymso/m3)«+1. Notice that as long as L > 1, D3 > 1, just as with the
UTD algorithm the algorithm can execute an O(ms3) time preprocessing phase to make sure
that ms S mims.
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With this setting of D3, the runtime of this step becomes
T w-1 3w
10 (méu-H (m1m2) IRES Lw+l) .

Now, set L = max{1,6¢t/ms3}. The total runtime of the algorithm so far becomes:

~ 2 w— w— —w
¢ (m3 +mF T (mma) S5 4+ (m1m2m3)“’+%Ti+l) '

The only triangles remaining are those through edges that are contained in more than
L triangles. As the number of triangles is ¢ and since each triangle has 3 edges, the total
number of edges whose triangles the algorithm has not found is at most 3t/L. Notice that
from the earlier steps of the algorithm we know for every edge e how many triangles contain
e. Thus, the algorithm also knows the 3t/L edges that are left.

If L =1 and so 6t/ms < 1, we must have ¢ < m3/6 and so 3t/L = 3t < mg/2. Otherwise,
if L = 6t/ms, then we also get 3t/L = mg/2. In both cases, the total number of remaining
edges is at most m3/2, and so the algorithm recurses, applying the same steps but on an
unbalanced graph with at most mq,ms and mg/2 edges and still at most ¢ triangles. When
the number of edges becomes constant, the algorithm solves the problem via brute force.

Since in each recursive step the current largest edge set shrinks by a factor of 2, the
number of recursive steps is O(logn) and we at most tack on a logarithmic factor to the
runtime. <

6 Optimal Conditional Lower Bound for SetIntersection

» Theorem 10. Any algorithm for online Setintersection that has % < q < 1 must obey

p+q > 2, unless the UTE hypothesis is false.

Proof. To prove the theorem we first describe a reduction from the UTE problem to the
online Setlntersection problem by describing an algorithm for UTE that uses an algorithm
for online Setlntersection as a black box. We then show that if the online Setlntersection
algorithm obeys p + q¢ > 2 — € for % < ¢ < 1 and some constant € > 0, then there exists an
algorithm contradicting the UTE Hypothesis.

Reduction from UTE to online SetIntersection. The reduction is the same as the reduction
given in the proof of Theorem 6, except that instead of using online SetDisjointness, the
reduction algorithm uses Setlntersection. Specifically, the reduction algorithm does not stop
after it is established that two sets are not disjoint. Instead, for each of the m, edges
(a,b) € EU (A x B), the algorithm performs an online Setlntersection query, and for each ¢
in the output the algorithm enumerates triangle (a, b, ¢). The correctness of the reduction
follows from the following claim.

> Claim 15.  For every edge (a,b) € EN(A x B) there is a bijection between every ¢ € S, NS},
and every triangle in G containing (a, b).

Proof. If there exists a triangle (a,b,¢) € A x B x C in G, then both S, and S, contain ¢,
and so ¢ € S, NSy. For the other direction, for every edge (a,b) € EN (A x B) and every
¢ € S, N Sy, the edges (a,c) and (b, ¢) must be in E, and so (a,b,c) is a triangle in G. <

As in the proof of Theorem 6, the sum of the sizes of the sets in the online SetIntersection
instance is exactly N = mg + mg = ©(mg), and the size of the output is O(t). Finally, the
time cost of solving UTE is O(N? +mq - N7 +t) = O((m3)? +my - (m3)? + 1).
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The lower bound. Suppose that there exists an online Setlntersection algorithm with
% <g<1andp+q<2— ¢ for some positive € > 0. Without loss of generality, assume that
€ < 2 — 2q, which is okay since ¢ < 1.

By rearranging, 2p — 2 < 2 — 2q — 2e. Thus, there exists a constant positive number x
such that

2p—2+e<r<2—2q—c¢

Notice that since q¢ > % then z < 2 — 2¢ < 1. Moreover, by rearranging, there exists a
constant € > 0 such that p <1+ & —¢ and g+ <1+ 5 —¢.

Since the UTE hypothesis holds for any combination of mj, my and mg (as long as
my; < mg < mg), we set mg = me and m; = (m3)*. Moreover, let t = (m3)¥ where
y=1+5—¢.

Notice that the maximum number of triangles in an unbalanced tripartite graph with
edge set sizes my, ma, m3 is \/mimaoms = m§+$/2, so that the number of triangles we need
to list here is just a bit smaller than this.

The UTE hypothesis states that the time cost for solving UTE on this setting of mq, mq

and ms is
24wty zy_1y
Q(t%(mlmgmg)%> :Q<m3 3 ) :Q(mgHQ) 5 )

However, the time cost of solving UTE using the reduction is

O((m3)? +my - (m3)? +t) = O((m3)? + (m3)* 4 (m3)”

)
= O((m3)'T57) << Q((my)'T577),

where the last transition is due to € > 0. Thus, we have obtained a contradiction. <
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