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—— Abstract

We study interactive proof systems (IPSes) in a strong adversarial setting where the machines of
honest parties might be corrupted and under control of the adversary. Our aim is to answer the
following, seemingly paradoxical, questions:

Can Peggy convince Vic of the veracity of an NP statement, without leaking any information

about the witness even in case Vic is malicious and Peggy does not trust her computer?

Can we avoid that Peggy fools Vic into accepting false statements, even if Peggy is malicious

and Vic does not trust her computer?
At EUROCRYPT 2015, Mironov and Stephens-Davidowitz introduced cryptographic reverse firewalls
(RFs) as an attractive approach to tackling such questions. Intuitively, a RF for Peggy/Vic is an
external party that sits between Peggy/Vic and the outside world and whose scope is to sanitize
Peggy’s/Vic’s incoming and outgoing messages in the face of subversion of her/his computer, e.g. in
order to destroy subliminal channels.

In this paper, we put forward several natural security properties for RFs in the concrete setting
of IPSes. As our main contribution, we construct efficient RFs for different IPSes derived from a
large class of Sigma protocols that we call malleable.

A nice feature of our design is that it is completely transparent, in the sense that our RFs can
be directly applied to already deployed IPSes, without the need to re-implement them.
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1 Introduction

An interactive proof system (IPS) II = (P, V) allows a prover P to convince a verifier V about
the veracity of a public statement z € L, where L is an NP language and where both P
and V are modeled as interactive PPT machines. The prover is facilitated by possessing a
witness w to the fact that, indeed, x € £, and the interaction with the verifier may consist of
several rounds of communication, at the end of which the verifier outputs a verdict on the
membership of z in L.
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In order to be useful, an IPS should satisfy the following properties:

Completeness: If x € L, the honest prover (almost) always convinces the honest verifier.
Soundness: If x ¢ L, no (computationally bounded) malicious prover can convince the
honest verifier that 2 € £. An even stronger guarantee, known as knowledge soundness [9],
is to require that the only way a prover can convince the honest verifier that = € L is to
“know” a valid witness w corresponding to z. Such proofs® are called proofs of knowledge
(PoKs).

Zero Knowledge (ZK): A valid proof reveals nothing beyond the fact that = € £, and
thus in particular it leaks no information about the witness w, even in case the proof
is conducted in the presence of a (computationally bounded) malicious verifier [36]. A
weaker guarantee, known as witness indistinguishability (WT) [24], is that, whenever there
are multiple witnesses attesting that € £, no (computationally bounded) malicious
verifier can distinguish whether a proof is conducted using either of two witnesses.

One of the motivations for studying IPSes with the above properties is that they are
ubiquitous in cryptography, with applications ranging from identification protocols [24],
blind digital signatures [42], and electronic voting [16], to general-purpose maliciously secure
multi-party computation [35].

1.1 Sigma Protocols

While WI/ZK PoKs exist for all of NP, based on minimal cryptographic assumptions [23, 34,
33|, efficiency is a different story. Fortunately, it is possible to design practical interactive
proofs for specific languages, typically in the form of so-called Sigma protocols. Briefly, a
Sigma protocol is a special type of IPS consisting of just three rounds, where the prover sends
a first message a (the commitment), the verifier sends a random string § (the challenge),
and finally the prover forwards a last message v (the response). Sigma protocols satisfy two
main properties: The first one, known as special soundness, is a strong form of knowledge
soundness; the second one, known as honest-verifier zero knowledge (HVZK), is a weak form
of the zero knowledge property that only holds against honest-but-curious verifiers.

The applications of Sigma protocols to cryptographic constructions are countless (see,
e.g., [25, 17, 48, 22, 43]). These results are perhaps surprising, as Sigma protocols only satisfy
HVZK and thus guarantee no security in the presence of malicious verifiers. In some cases,
the solution to this apparent paradox is due to a beautiful technique put forward by Cramer,
Damgdard, and Schoenmakers [15], which allows to add WI to any Sigma protocol. Moreover,
it is relatively easy to transform any Sigma protocol into an interactive ZK PoK at the cost
of adding a single round of interaction [33].

1.2 Our Question

The standard definitions of security for IPSes (implicitly) rely on the assumption that honest
parties can fully trust their machines. In practice, however, such an assumption may just
be too optimistic, as witnessed by the revelations of Edward Snowden about subversion of
cryptographic standards [45, 7], and in light of the numerous (seemingly accidental) bugs in
widespread pieces of cryptographic software [38, 1, 2].

1 Sometimes, the term “proof” is used to refer to statistically sound IPSes, while computationally sound
IPSes are typically called “arguments”.
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Motivated by the above incidents, we ask the following question which constitutes the
main source of inspiration for this work:

Can we design practical interactive proofs that remain secure even if the machines of
the honest parties running them have been tampered with?

In order to see why the above question is well motivated and not trivial, let us analyze
the dramatic consequences of subverting the prover of ZK IPSes. Clearly, the problem of
subversion-resistant interactive zero knowledge is just impossible in its utmost generality, as
a subverted prover could just reveal the witness to the verifier. However, one may argue that
these kind of attacks are easily detectable, and thus can be avoided.

The problem becomes more interesting if we restrict the subversion to be undetectable,
as suggested by Bellare, Paterson, and Rogaway [11] in their seminal work on subversion of
symmetric encryption, where the authors show how to subvert any sufficiently randomized
cipher in an undetectable manner, using rejection sampling. A moment of reflection shows
that their attack can be adapted to the case of IPSes.? The solution proposed by [11] is to
rely on deterministic symmetric encryption. Unfortunately, this approach is not viable for
the case of IPSes, as it is well-known that interactive proofs with deterministic provers can
be zero knowledge only for trivial languages [32, §4.5].

Reverse firewalls

The above described undetectable attacks show that the problem of designing IPSes that
remain secure even when run on untrusted machines is simply impossible if we are not
willing to make any further assumption. In this paper, we study how to tackle subversion
attacks against interactive proofs in the framework of “cryptographic reverse firewalls (RFs)”,
introduced by Mironov and Stephens-Davidowitz [40]. In such a setting, both the prover and
the verifier are equipped with their own RF W, also modeled as an interactive PPT machine,
whose scope is solely to sanitize the parties’ incoming and outgoing messages in the face of
subversion.

Importantly, neither the prover nor the verifier put any trust in the RF, meaning that they
are not allowed to share secrets with the firewall itself. The hope is that an uncorrupted?® RF
can provide meaningful security guarantees even in case the honest prover’s and/or verifier’s
machines have been tampered with. Note that a RF can never “create security”, as it does
not even know the inputs to the protocol, but at best can preserve the security guarantees
satisfied by the initial IPS. At the same time, the RF should not ruin the functionality of the
underlying IPS, in the sense that the sanitized IPS should still work in case no subversion
takes place.

Mironov and Stephens-Davidowitz construct general-purpose RFs that can be used in
order to preserve both functionality and security of any two-party protocol. It is important
to note that since ZK/WI IPSes are a special case of secure two-party computation, their
RF constructions already seem to solve our problem.* However, the solutions in [40] are not

In particular, a subverted prover with a hardwired secret key k for a pseudorandom function Fj(-),
could sample the random coins r® needed to generate the honest prover’s message m® (for round
¢ € N) multiple times, until Fj, (m(“) leaks one bit of the witness. This attack works provided that at
least one of the prover’s messages has high-enough min-entropy.

Clearly, if both the machine of the honest party and the firewall are corrupted, there is no hope for
security. On the other hand, in case the machine is honest and the firewall is corrupt, the underlying
protocol is still secure, since we can simply think of the RF as being part of the adversary [21].

At least to some extent, since, strictly speaking, their results for IPSes are incomparable to ours. We
refer the reader to §5.1 for more details.
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practical. In particular, one of their RFs increases the round complexity of the initial IPS,
and, more importantly, it requires to carry out the underlying IPS in the encrypted domain,
thus requiring to completely change the original protocol. In contrast, we seek constructions
of RFs that can be applied directly to existing IPSes, without adding any overhead, and
without the need to re-implement them.

2 Reverse Firewalls for Interactive Proofs

In this section, we give security definitions for RFs applied to IPSes. Our notions can be
seen as special cases of the generic framework by Mironov and Stephens-Davidowitz [40],
who defined security of RFs for the more general case of arbitrary two-party protocols.

Let IT = (P, V) be an IPS for a relation R. A cryptographic reverse firewall is an external
party W that can be attached either to the prover P or to the verifier V, whose scope is
to sanitize incoming and outgoing messages in the face of parties’ subversion. Importantly,
the RF is allowed to keep its own state but cannot share state with any of the parties.
Similarly to [40], we model an interactive Turing machine M as a triple of algorithms
M := (Mpxt, Myec, Mout) specified as follows: (i) Algorithm My, takes as input the current
state and outputs the next message to be sent; (i) Algorithm M, takes as input an incoming
message, and updates the state; (iii) Algorithm Mg, takes as input the final state at the
completion of the protocol, and returns a bit.

» Definition 1 (RF for IPSes). Let I = (P,V) be an IPS for a relation R. A cryptographic
reverse firewall (RF') for 11 is a stateful algorithm W that takes as input a message, its state,
and outputs a sanitized message, together with an updated state. For an interactive Turing
machine M = (Muut, Myec, Mout) € {P,V}, and RF' W, the sanitized machine W o M := M =
(I\A/Inxt, I\A/I,ec, I\A/Iout) is specified as follows:

~

Mnxt(g) = W(MnXt(g))
'\A/lrec(ay m) = MreC(JaW(m))
Mout () = Mout (0.

As our first contribution, we put forward several natural properties that a RF for an IPS
might satisfy. In particular, we consider the following notions (see the full version [29] for
more formal definitions).

Completeness preservation: The sanitized IPS (i.e., the IPS obtained by sanitizing both

the honest prover’s and the honest verifier’s messages) still satisfies completeness.

Strong soundness preservation: Whenever x ¢ £, no malicious prover can convince the

verifier that € L, even if the verifier’s implementation has been arbitrarily subverted.

Strong ZK preservation: A valid proof reveals nothing beyond the fact that = € £, even

in case the proof is conducted in the presence of a malicious verifier talking to a prover

whose implementation has been arbitrarily subverted.

Strong WI preservation: Whenever there are multiple witnesses attesting that x € £, no

malicious verifier talking to a prover whose implementation has been arbitrarily subverted

can distinguish whether a proof is conducted using either of two witnesses.

Strong exfiltration resistance for the prover (resp. verifier): Transcripts produced by

running the sanitized IPS in the presence of a malicious verifier (resp. prover) talking

to a prover (resp. verifier) whose implementation has been arbitrarily subverted are
indistinguishable to transcripts produced by running the sanitized IPS in the presence of

a malicious verifier (resp. prover) talking to the honest prover (resp. verifier).



C. Ganesh, B. Magri, and D. Venturi

For each of the above properties (except for completeness), we also consider a weak variant
which only holds w.r.t. functionality-maintaining provers/verifiers. Intuitively, a prover is
functionality maintaining if, upon input a valid statement/witness pair, it still convinces the
honest verifier with overwhelming probability. Similarly, a verifier is functionality maintaining
if, upon input a valid statement, it still accepts with overwhelming probability in a protocol
run with the honest prover.

What is possible and what is impossible

A moment of reflection shows that soundness preservation is impossible to achieve. In fact,
an arbitrarily subverted verifier might always® output one, thus automatically accepting
both true and false statements. Such a verifier is still functionality maintaining,® and thus
this simple attack even rules out weak soundness preservation. One way to circumvent
this impossibility would be to only consider partial subversion, i.e. split the verifier into
two components, one for computing the next messages in the protocol, and the other one
for determining the final verdict on the veracity of a statement; hence, assume the latter
component to be untamperable.

Turning to subversion of the prover, consider the subverted prover that always outputs
the all-zero string. The soundness property of the underlying IPS implies that, for any RF

and for any false statement x ¢ L, a sanitized transcript in this case can never be accepting.

Moreover, assuming the language £ is non-trivial, the latter holds true even in case z is a
true statement, which in turn rules out strong exfiltration resistance. For similar reasons,
strong ZK /WI preservation are also impossible to achieve.

3 Firewall Constructions from Malleable Sigma Protocols

As our second contribution, we formalize a class of Sigma protocols which admit simple, and
very efficient, RFs for the prover. (See the full version [29] for similar constructions dealing
with functionality-maintaining subversion of the verifier.) The main idea is to use the RF
to re-randomize the prover’s messages, in order to destroy any potential subliminal channel
signaling information about the witness. The difficulty, though, is that such re-randomization
must be carried out without knowing a witness, and while at the same time preserving the
completeness property of the underlying IPS.

For the sake of concreteness, let us describe our firewall applied to the classical Sigma
protocol for proving knowledge of a discrete logarithm [49]. Here, the statement consists of a
description of a cyclic group G with generator g and prime order g, together with a value
z € G such that x = g for some w € Z,;. The prover’s first message is a random group
element & = g* € G. Finally, the prover’s last message is v = a — w - §, where f§ € Z, is the
verifier’s challenge; the verifier accepts (o, 3,7) if and only if g7 = o 2=%. Our RF sanitizes
the messages o and y from a possibly subverted implementation of the prover as follows:

a=a-g

~

o
)

=v+o0

2

for random o € Z,. Note that g7 = g% - ¢° -27# = @277, and thus the RF preserves
completeness.

5 If one insists on undetectability, the subverted verifier may output 1 upon some hard-wired, randomly
chosen, false statement = ¢ L.
5 The latter is because completeness is a guarantee that only concerns true statements.
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Prover(z,w) Reverse Firewall Verifier(x)

a=Pi(z,w;a)

e @) esMaulla) ——
B {0,1}"
# #
Y= PQ(wivﬁ7a’)
Y, 5—Bal(y,0) .

V(z,(@,5,7) =1

Figure 1 Cryptographic reverse firewall for a malleable Sigma protocol.

We now sketch the proof of weak HVZK preservation. Observe that for any o = g¢ sent
by a functionality-maintaining subverted prover, the distribution of @ = ¢**? is uniform
over G and independent of &, a, and in fact it is identical to the distribution of a in an
honest run of the original Sigma protocol (without the firewall). As for 7, note that if there
would be two possible values «,+" which make both 7 = (e, 8,7v) and 7 = (a, 8,7") valid
transcripts, the choice of which response to pick could be used by a functionality-maintaining
subverted prover as a subliminal channel signaling information about the witness. Hence,
we exploit the fact that for any prefix a, 3, there exists a unique response v such that the
verifier accepts upon input z and («, 8,7).

It follows that the distribution of 7 is identical to that of + in an honest run of the
original Sigma protocol (without the firewall). Putting it all together, we have shown that
the distribution of a sanitized transcript 7 = (@, 3,7) is identical to the distribution of an
honest transcript 7 = (a, 8,7). Thus, weak HVZK preservation follows by the fact that
Schnorr’s Sigma protocol is HVZK.

3.1 HVZK Preservation

Let us now explain how to generalize the above idea to a large class of Sigma protocols
that we call malleable. In what follows, given a Sigma protocol 3 = (P, V), we denote by
P, and P5 the algorithms that compute, respectively, the first prover’s message «, and the
last prover’s message (response) 7. The challenge space is represented” as {0, 1}, so that
there are 2¢ possible challenges, and we write V for the algorithm that the verifier runs upon
statement x and transcript 7 to make its final decision. Let A be the space of all possible
prover’s first messages; we assume that membership in A can be tested efficiently, so that V
always outputs | whenever a & A.

As for the case of Schnorr’s Sigma protocol, an additional requirement that we need is
that the prover’s responses are unique, meaning that for all x € £, and for any o« € A and
B € {0,1}*, there exists at most one® value v such that V(z, (o, 3,7)) = 1.

Intuitively, a Sigma protocol is malleable if there exists an efficient algorithm Maul for
randomizing the prover’s first message « into a value & which is distributed identically to
the first message of an honest prover. Moreover, for any challenge 3, given the coins used
to randomize « and any response v yielding a valid transcript 7 = («, 3,7), there exists an

7 In the case of Schnorr’s Sigma, protocol, the challenge space is a cyclic group. However, we can embed
such group in {0, 1}Z for some ¢ € N.

8 This property is met by many natural Sigma protocols, and was already considered in several previous
works [26, 22, 51].
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Prover(z,w) Verifier(z)
pk +s Gen(1%) S LN
B ={0,1}"
(c,d) <= Com(pk, )
- c
a = Pi(z,w;a)
e
d
%
B = Open(pk, c,d)
If 8 # L, then v = P2 (z,w, o, B, a)
Else, v =1
N BN

V(z, (@, 8,7) = 1

Figure 2 Sigma protocol compiled with standard techniques to obtain full zero knowledge.

efficient algorithm Bal for computing a balanced response 7 such that (@, 5,7) is also valid.
As we show in the full version [29], many natural Sigma protocols are already malleable.

In particular, the latter holds true for Maurer’s unifying protocol [39], which includes the
protocols by Fiat-Shamir [25], Guillou-Quisquater [37], Schnorr [49], Okamoto [41], and many
others as special cases.

Our RF construction is depicted in Fig. 1. Intuitively, the firewall uses the malleability
property of the underlying Sigma protocol in order to re-randomize the prover’s first and
last messages, in such a way that a functionality-maintaining subverted prover cannot signal
information about the witness through them. The theorem below, whose proof appears in
the full version [29], establishes its security.

» Theorem 2. Let X = (P = (P, P3),V) be a malleable Sigma protocol with unique responses,
for a relation R. The RFW of Fig. 1 preserves completeness, and is weakly HVZK preserving
for the prover.

3.2 ZK Preservation

As Sigma protocols are not in general zero knowledge, there is no hope to prove that the
above firewall weakly preserves ZK. However, a standard trick [33] allows to transform any
Sigma protocol into a 5-round IPS satisfying ZK. The idea is to let the prover send the public
key pk of a commitment scheme (Gen, Com, Open) during the first round. Then, during the
second round, the verifier forwards to the prover a commitment ¢ to the challenge 8. Finally,
the Sigma protocol is executed as before with the difference that the verifier also needs to
open the commitment, with the prover aborting if the opening is invalid. We depict such a
modified protocol in Fig. 2.

In order to build a RF for this IPS, we need to sanitize the additional messages from the
(possibly subverted, but functionality-maintaining) prover.” We do so by relying on a special
type of key-malleable commitment, which intuitively allows to maul any public key pk (via
an algorithm MaulKey) into a uniformly random public key EE, in such a way that, given
a commitment ¢ with opening d w.r.t. ﬁ, it is possible to map (c,d) into a commitment

9 The other messages are sanitized as before, i.e. we still exploit the fact that the underlying Sigma
protocol is malleable.
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Prover(z, w) ZK Reverse Firewall Verifier(z)

ok (1;76, p) < MaulKey(pk) _

pk <s Gen(1?*) _—
B+s{0,1}*
(c,d) ¢ Com(pk, )
— ¢+ MaulCom(pk, ¢, p) —
a=Pi(z,w;a)
— (@, o) s Maul(a) —
— d= BalOpen(d, p) —
8 = Open(pk, ¢, d)
If 8 # L, then
’y = P2($’w5B7a)
v

~

B = Open(pk, ¢, d)
If3=L1,thend =1
Else, ¥ = Bal(vy, o)

V(z, (@, 8,7) = 1

Figure 3 Prover’s RF for the protocol in Fig. 2.

¢ with opening d w.r.t. pk, without changing the message inside the commitment. We
denote by MaulCom and BalOpen, respectively, the algorithms for mauling the commitment
c and the opening d, and additionally require that the distribution of mauled public keys
and commitments is identical, respectively, to that of honestly computed public keys and
commitments. As we show in the full version [29], the standard Pedersen’s commitment [44]
is easily seen to be key malleable, thus yielding a concrete instantiation under the Discrete
Logarithm assumption.

Our RF for the protocol of Fig. 2 is depicted in Fig. 3. The theorem below, whose proof
appears in the full version [29], establishes its security.

» Theorem 3. Let X = (P = (P1,P2),V) be a malleable Sigma protocol with unique responses,
for a relation R. Let T' = (Gen, Com, Open) be a key-malleable commitment scheme with
message space {0,1}*. The RF W of Fig. 3 preserves completeness, and moreover is weakly
ezfiltration resistant and weakly zero-knowledge preserving for the prover.

» Remark 4 (On knowledge soundness). The IPS of Fig. 2 satisfies soundness, but is not in
general a proof of knowledge. However, we would like to note that the prover’s firewall still
works for the standard transformation of a Sigma protocol into a zero-knowledge proof of
knowledge. In such a transformation, a trapdoor commitment scheme is used to commit to
the verifier’s challenge. Then, after the verifier decommits, the prover sends the trapdoor to
the verifier. This allows an extractor to learn the trapdoor, rewind the prover, and open the
commitment to a different challenge, thus learning the response for two different challenges,
which allows it to obtain a witness using special soundness.

The prover’s RF for this protocol stays the same, except that it additionally needs to
provide a trapdoor for the mauled public key ]3% given a trapdoor for the original public key
pk. This is possible, for instance, using Pedersen’s commitment, where given a public key
pk = (g, h = g*) with trapdoor k, we can maul the key to (g = g ,ﬁ = h'2) for random t1, to.
Given the trapdoor k for the key pk, the trapdoor for the mauled key EE can be computed
as tot] 'k
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4 Firewalls for Proving Compound Statements

In this section, we show how to construct firewalls for Sigma protocols that prove compound
statements.

Given two Sigma protocols Yo and 3; for NP languages £y and L4, it is easy to obtain a
Sigma protocol Y anp for the NP language Lanp = {(z0,21) : @9 € Lo A1 € L1} by simply
running Yo and ¥; in parallel, with the verifier sending a single challenge. In a similar vein,
the OR technique by Cramer, Damgérd, and Schoenmakers [15] allows to obtain a Sigma
protocol Yor for the NP language Lor = {(z0, 1) : 2o € Lo V 21 € L1}. Importantly, if
Yo and ¥y are both perfect HVZK, Yor satisfies perfect WI. On the other hand, Garay et
al. [30] showed that if ¥y and ¥; are computational HVZK, Yogr satisfies computational WI,
although the latter holds only in case both statements zg, x; in the definition of language
Lor are true (but the prover knows either a witness for zg or for 7).

As long as Yy and X are malleable, it is easy to build RFs for Yanp and Yor using
our techniques. The RF for Yanp weakly preserves HVZK, whereas the RF for Yor weakly
preserves both HVZK and WI.

4.1 AND Composition
Given xq, r1, a prover wishes to prove to a verifier that x¢ € Ly and z; € £1. More precisely,
consider the derived relation:

RAND = {((ﬂfo,xl), (wo,wl)) : (l‘o,wo) S Ro A (a:l,wl) S Rl}

Let o = ((PY,P9),V%) (resp. £; = ((P},P}),V1)) be a Sigma protocol for language Lo
(resp. £1). A Sigma protocol Yanp for the relation Ranp can be obtained by running the
two provers of ¥y and ¥ in parallel, with the verifier sending a single challenge for both
executions. Fig. 4 shows a RF for the prover of Yanp, assuming that both ¥y and ¥, are
malleable. We prove the following result, whose proof appears in the full version [29].

Prover((zo, z1), (wo,w1)) Reverse Firewall Verifier(zo, z1)

Qo = P?(Io,wo;ao)
a1 = Pi(z1,wi;a1)
@Q,01
((/1\0,0'0) <8 Maulo(ao)
(&1,01) <3 Maull(al)
G0.01
B+ {0,1}*
B B
Yo = PY(zo, wo, B, ao)
"= P%(xlﬂwlwﬁval)
70,71
o = Balo(v0, 00)
71 = Bali(y1,01)
Y0,

VO(LL’(), (@0, 8,70)) =1
Vi(z1, (@1, 8,51)) = 1

Figure 4 Reverse firewall for the AND composition of Sigma protocols.
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» Theorem 5. Let X = (P° = (P?,PY), V) and 31 = (P! = (P1,P1), V1) be malleable Sigma
protocols with unique responses, for relations Rg and Ri. The RF W of Fig.  preserves
completeness, and is weakly HVZK preserving for the prover of the Sigma protocol YXanp for
relation RAND-

4.2 OR Composition

Given 1z, 1, a prover wishes to prove to a verifier that either ¢y € Ly or 1 € £; (without
revealing which one is the case). More precisely, consider the derived relation

Ror = {((zg, 1), w) : (o, w) € Ro V (z1,w) € Ry}

Let Yo = ((PY,PY),V°) (resp. X1 = ((P},P3),V!)) be a Sigma protocol for language Lo (resp.
L1); we denote by S° (resp. S') the HVZK simulator for 3o (resp. 31). A Sigma protocol
Yor for the relation Ror has been constructed for the first time in [15], where the authors
showed that Yogr satisfies both (perfect) special HVZK and (perfect) WI. We describe the
protocol Yog in Fig. 5, and depict our RF for the prover in Fig. 6.

Prover((zo, z1),w) Verifier(zo, z1)

ap = P?(l‘b,’lﬂ, (l)
(1—b, Br—b,Y1-b) <5 S* P (21_s)

@0,

—_— s
B+ {0,1}
*
Bo =B® Bi-s
Yo = Py (b, w, Bs, a)
B0o,B1,70,71
B =B

Vo(xo’(aoaﬂ()a’y())) ; 1
V(a1 (a1, Br,m)) = 1

Figure 5 OR composition of Sigma protocols, where b € {0, 1} is s.t. (zp, w) € Re.

As in the case of AND composition, we still rely on the fact that the input Sigma
protocols ¥, 31 are malleable. An additional difficulty, however, stems from the fact that a
functionality maintaining prover could now try to change the distribution of the challenges
Bo, B1 in such a way that, even if 5y ® f1 = [, the pair (5y, 1) signals some information
about the witness w or about the hidden bit b. Intuitively, the RF in Fig. 6 tackles this attack
by randomizing the challenges (3, By, 81. The latter requires a different form of malleability
from the underlying Sigma protocols, which we dub instance-dependent malleability, where it
should be possible to maul the prover’s first message in such a way that we can later balance
the prover’s last message as well as the verifier’s challenge.

For the RF in Fig. 6, we prove the following result, whose proof appears in the full
version [29] of this paper.

» Theorem 6. Let ¥y = (P = (PY,P9),V®) and ¥y = (P! = (P1,Pi),V!) be instance-
dependent malleable Sigma protocols with unique responses, for relations Ry and R1. The
RF W of Fig. 6 preserves completeness, and is weakly HVZK/WI preserving for the prover
of the Sigma protocol Xor for relation Ror.
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Prover((zo,z1),w) Reverse Firewall(zo, z1) Verifier(zo, z1)

ap = Py~ (@p, w; a)
(1=, Bi—b, Y1—p) <3 ST (x12s)
ap,]
po, p1 s {0,1}*
(Q0, 00) s Maulo(zo, ao, po)
(al,al) s Mauli(z1, a1, p1)

Qo
B <s{0,1}*
B
P =poDp1
B=Bdp
5
Bo=B® Bi-s
Yo = P (xs, w, By, a)
70,71,80,81
Eo = Bo @ po
Br=p1Ep1
% = Ba'o(’Yo,tTo)
1 = Bali(y1,01)
S0.71,80.51
B 2 EO 52 §1

VO (20, (@0, B, 30)) 1
Vi (@1, @1, B, 7)) £ 1

Figure 6 Reverse Firewall for the basic OR composition of Sigma protocols, where b € {0,1} is
s.t. (zp, w) € Rp.

5 Previous Work

5.1 Comparison with Mironov and Stephens-Davidowitz

In their original paper, Mironov and Stephens-Davidowitz [40] build RFs for arbitrary two-
party protocols. While their results are related to ours, since IPSes are just a special case of
two-party computation, there are some crucial differences which we highlight below.

The first RF construction sanitizes a specific combination of re-randomizable garbled
circuits and oblivious transfer, for obtaining general-purpose private function evaluation.
The second RF construction sanitizes any two-party protocol, at the price of encrypting the
full transcript under public keys that are broadcast at the beginning of the protocol. Both
constructions can be instantiated based on (variants of) the DDH assumption. When cast to
IPSes, their results yield:

(i) A RF for the prover that weakly preserves ZK. This is comparable to our RF achieving
weak ZK preservation using malleable Sigma protocols and key-malleable commitments.
However, our constructions have the advantage that we do not need to change the
initial IPS, and thus our RF can be applied directly to already existing implementations
in a fully transparent manner (and without introducing any overhead).

(i) A RF for the prover satisfying a property called strong exfiltration resistance against
an eavesdropper, which means that exfiltration resistance holds w.r.t. an arbitrarily
subverted prover talking to the honest verifier. Note that the latter does not contradict
our impossibility result ruling out strong ZK preservation, as our attacks crucially rely
on the fact that the distinguisher can (passively) corrupt the verifier.

(iii) A RF for the verifier satisfying both strong exfiltration resistance and the following
weak guarantee: No malicious prover can find statements xg,z; such that it can
distinguish transcripts obtained by talking to an arbitrarily subverted verifier holding
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either input x( or input x1. Note that the latter does not contradict our impossibility
result that rules out weak soundness preservation, since none of the above guarantees
imply soundness preservation.
We observe that the above results have at least one of the following drawbacks: (i) The RF
is not transparent, i.e. it cannot be applied to the initial protocol as is; (ii) The resulting
sanitized protocol is not efficient, as we first need to encode the function being computed as
a circuit.

Our techniques allow to overcome these limitations in the concrete case of IPSes, as our
RFs are both transparent (i.e. they can be applied directly to already deployed protocols)
and efficient (i.e. the sanitized IPSes have exactly the same efficiency as the original, both in
terms of round and communication complexity). We see this as the main novelty of our work.

5.2 Additional Related Works

Besides the already mentioned constructions, RFs have also been realized in other settings
including digital signatures [5], secure message transmission and key exchange [21, 12], and
oblivious transfer [40, 12].

Moreover, a few other lines of research recently'? emerged to tackle the challenge of
protecting cryptographic algorithms against (different forms of) subversion. We review the
main ones below.

Algorithm substitution attacks

Bellare, Patterson, and Rogaway [11] studied subversion of symmetric encryption schemes in
the form of algorithm substitution attacks (ASAs). In particular, they show that undetectable
subversion of the encryption algorithm is possible, and may lead to severe security breaches;
moreover, they prove that deterministic, stateful, ciphers are secure against the same type of
ASAs. Follow-up works improved the original paper in several aspects [18, 10], and explored
the power of ASAs in other contexts, e.g. digital signatures [5], secret sharing [31], and
message authentication codes [3].

Backdoors

Another form of subversion consists of all those attacks that surreptitiously generate public
parameters (primes, curves, etc.) together with secret backdoors that allow to bypass security.
The study of this type of subversion is motivated by the DUAL_EC_DRBG PRG incident.

A formal study of parameters subversion has been considered for several primitives, includ-
ing pseudorandom generators [20, 19], hash functions [27], non-interactive zero knowledge [8],
and public-key encryption [6].

Cliptography

Russell et al. [46] (see also [47, 4]) consider a different approach to the immunization of
cryptosystems against complete subversion (i.e., when all algorithms can be subverted by the
attacker): offline/online black-box testing. This amounts to introducing an external entity,
called the watchdog, whose goal is to test, either in an online or in an offline fashion, whether
a given cryptographic implementation is compliant with its specification.

10 All these research directions have their roots in the seminal works of Young and Yung [52] and
Simmons [50], in the settings of kleptography and subliminal channels.
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Hence, a cryptosystem is deemed secure against complete subversion if there exists a
universal watchdog such that, for every attacker subverting all algorithms, either the watchdog
detects subversion with high probability, or the cryptoscheme remains secure even when
using its subverted implementation.

Self-guarding

Yet another approach towards thwarting subversion is that of self-guarding [28]. The idea
here is to assume a trusted initialization phase in which the honest parties possess a genuine
implementation of the cryptosystem, before subversion takes place. This phase is used
in order to generate samples that will be exploited later, together with additional simple
operations that need to be implemented from scratch, to prevent leakage in the face of
subversion attacks.

6 Conclusion

We showed how to design cryptographic reverse firewalls allowing to preserve security of
interactive proof systems in the face of subversion. Our firewalls apply to a large class
of Sigma protocols meeting a natural malleability property, and can be extended to cover
classical applications of Sigma protocols for designing zero-knowledge proofs and for proving
compound statements.

We leave it as an intriguing open problem to design a reverse firewall for the OR
composition of Sigma protocols that are delayed input, as considered in [13, 14].
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