
Consuming and Persistent Types for Classical Logic
Delia Kesner

Université de Paris and Institut Universitaire de France
France

Pierre Vial
Inria (LS2N CNRS)

France

Abstract
We prove that type systems are able to capture exact mea-
sures related to dynamic properties of functional programs
with control operators, which allow implementing intricate
continuations and backtracking. Our type systems give the
number of evaluation steps to normal form as well as the
size of this normal form without any evaluation being needed.

We focus on Parigot’s λµ-calculus, a computational inter-
pretation of classical natural deduction, and our type systems
are based upon non-idempotent intersection and union types.
We introduce two kinds of arrows: consuming ones, which
type function applications that are evaluated/destroyed dur-
ing reduction, and persistent ones, which type those that are
never consumed. These two forms of arrows are the essential
tool of our typing systems to deal with control operators, as
we are going to show.

The main contribution of this paper is a type framework
capturing exact measures within the λµ-calculus for 3 differ-
ent evaluation strategies, namely, head, leftmost-outermost
and maximal, associated to the well-known notions of head,
weak and strong normalization respectively. Moreover, this
is done in a parametric way: we do not provide one type sys-
tem for each reduction strategy, as it is usually done in the
literature, but we give a unique typing system parametrizing
key concepts and factorizing common proofs.

CCS Concepts: • Theory of computation;

Keywords: classical logic, lambda-mu calculus, intersection
and union types, exact measures, natural deduction

ACM Reference Format:
Delia Kesner and Pierre Vial. 2020. Consuming and Persistent Types
for Classical Logic. In Proceedings of the 35th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS ’20), July 8–11, 2020, Saar-
brücken, Germany. ACM, New York, NY, USA, Article 1, 14 pages.
https://doi.org/10.1145/3373718.3394774

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394774

1 Introduction
In contrast to simple types, which are only soundwith respect
to termination (a simple typable term is always terminat-
ing), intersection types, pioneered by [Coppo and Dezani-
Ciancaglini 1978, 1980], provide sound and complete tools to
characterize different notions of termination (a program is
typable iff it is terminating). Idempotent intersection types
were used in different frameworks to characterize qualitative
properties of programs, such as for example solvability, nor-
malization (head, linear-head, weak, strong), etc. Inspired
from Linear Logic [Girard 1987] –a resource-aware logical
system– non-idempotent types, pioneered by [Gardner
1994] and [Kfoury 2000], refined the original intersection
type theory, which was idempotent, by providing an ade-
quate tool to reason about quantitative properties, as enlight-
ened by [de Carvalho 2007, 2018]. Indeed, for instance, it is
not only the case that a term t is typable if and only if t is ter-
minating, but, from the size of its typing derivation, it is also
possible to obtain rough upper bounds for the size of the
normal form of t and the length of the evaluation sequence
to this normal form. Thus, a type system specified by means
of non-idempotent types provides quantitative information
about a dynamic property of the program itself. This quan-
titative information is provided without having to run the
program: the typing rules are defined by induction on their
tree structure, without making any reference to reduction.

Functional Programs with Control Operators. Even
though the Curry-Howard correspondence was initially for-
mulated for intuitionistic logic and pure functional program-
ming, it was later extended to classical logic and lambda cal-
culi with control operators by the discovery of [Griffin 1990],
who remarked that the callcc operator, which captures
evaluation contexts and allows restoring them later, could be
naturally typed with Peirce’s law. The λµ-calculus was intro-
duced [Parigot 1992] thereafter as a computational interpre-
tation of classical natural deduction. Following Griffin, the
Scheme operator call-cc may be directly represented in the
λµ-calculus –as well as other control operators [de Groote
1994; Laurent 2003a]–, and is typed with the Peirce Law
((A → B) → A) → A, which is sufficient to move from
intuitionistic to classical logic. In particular, the λµ-calculus
enables backtracking, i.e. to go back multiple times to any
execution point of a program.
Some works have investigated intersection and union

types to characterize semantic properties of classical term

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial

calculi [Dougherty et al. 2008; Kikuchi and Sakurai 2014; Lau-
rent 2004; van Bakel 2010], but none of them provides quan-
titative information about normalizing terms. In [Kesner and
Vial 2017], two intersection/union type systems are proposed
to characterize head and strong normalization of λµ-terms,
but they only provide upper bounds for evaluation lengths,
while we focus in this paper on exact measures.

Exact Measures. In the case of the λ-calculus, a way to
obtain exact measures from a typing system is to consider
non-idempotent type derivations which are, in some sense,
“minimal” [de Carvalho 2007, 2018], an approach that was
later extended in [Bernadet and Lengrand 2013]. Given a term
t , one thus obtains a derivation whose measure is equal to the
sum ℓt + ft , where ℓt is the normalization length of t and ft
the size of its normal form. Thus, the measure is unsplit. But
there can be an exponential gap between ft and ℓf , and this
suggests that these measures should be computed indepen-
dently. Indeed, another approach is developed by [Accattoli
et al. 2018] which not only gives split exact measures (i.e. ℓt
and ft are captured separately) but also internalizes the no-
tion of minimal derivation. This approach has been adapted
to call-by-need [Accattoli et al. 2019], call-by-value [Accat-
toli and Guerrieri 2018], and call-by-push-value [Bucciarelli
et al. 2020]. And it is also the main approach in this paper.
However, several concepts and methods used for intuition-
istic logic do not trivially extend to the classical case, e.g.
separability [Saurin 2005], realizability [Krivine 2007], proof-
nets [Laurent 2003b], models [van Bakel 2010; Vaux 2007],
etc. It is not then surprising that the technical tools used to
obtain exact measures for intuitionistic logic do not scale up
to classical logic, and thus for several reasons:
♦ In the λ-calculus, β-reduction simply decreases the size
of non-idempotent derivations (the size of a derivation
being defined as its number of typing judgments).

♦ The λµ-calculus features another reduction, called µ, which
does not always decrease the size of derivations (and some-
times even increases it), even in the non-idempotent set-
ting [Kesner and Vial 2017].

♦ In order to obtain decreasing (i.e. quantitative) measures
in the classical setting, it is necessary to refine the notion
of size, typically by recording the arities of continutation
types inside the derivations.

♦ Yet, the system of [Accattoli et al. 2018] for the λ-calculus
collapses the information pertaining to arities, and thus
cannot be extended to the λµ-calculus (details in Sec. 3.1).

The solution we propose to capture exact measures in the
λµ-calculus is to keep track of the different nature of the
constructors involved during the evaluation process within
the type system. Indeed, a term constructor is consuming if it
is destroyed during evaluation, while a persistent constructor
remains preserved until the normal form. For that, we use
two kinds of functional arrows (consuming and persistent) in
the typing system indicating whether they will be consumed

or not during evaluation. This refines [Accattoli et al. 2018]
so that arities are not collapsed anymore. We thus succeed
in capturing exact measures with non-idempotent types in
the classical case. The resulting types and derivations are
called here exact.

Last but not least, in order to type classical constructors in
the λµ-calculus, one must collect and store together different
types, and we do this by using a non-idempotent union oper-
ator. But to precisely count the number of µ-evaluation steps
by means of these types, one needs to transform persistent
arrows into consuming ones, a transformation which can
be done by using an activation operator. This is one of
the crucial constructions that are necessary to provide exact
measures for the λµ-calculus (details in Sec. 3.2).

Parametrization. In the intersection type discipline, it is
often the case that different variants of the same type system
lead to different characterization results using similar proofs,
which are often skipped or painfully rewritten for several
(but similar) cases. In this paper, we do not want to skip these
subtleties, neither to fully prove again similar results. We
thus define a unique parametrized type framework, which
highlights the specific differences between the various char-
acterization results. This allows us to give a very concise
presentation, coming along with proofs which do not need
to be developed independently for each particular case.

Structure of the Paper. We made the following choice
of presentation to progressively show our contributions.

♦ Sec. 2 presents a type-theoretical characterization of exact
bounds for the λ-calculus w.r.t. head evaluation and head
normalization. Although this characterization is not new
per se, our alternative presentation introduces the novel
tools which are later crucial for the classical case.

♦ Sec. 3 recalls the λµ-calculus and gives its non-idempotent
system Uhd (Sec. 3.1) capturing upper bounds for head
evaluation, based on [Kesner and Vial 2017].

♦ Sec. 3.2 proposes a new type system Xhd capturing exact
bounds for head evaluation in the λµ-calculus. The role
of persistent arrows become crucial in the classical case,
as well as their transformation into consuming arrows,
what is achieved by means of the activation operator.

♦ Sec. 4 extends the technique used for head evaluation
to two more strategies: leftmost-outermost and maximal,
respectively related to weak and strong normalization.
Actually, we give a unique parametrized system that can
be instantiated for the 3 mentioned evaluations. This al-
lows us to factorize the common proofs of the properties
pertaining to the three associated strategies, and outlines
the key ingredients necessary to obtain exact bounds in
different frameworks.

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany

2 Intuitionistic Computation
This section illustrates the main principles of our general
development by treating the particular case of the head reduc-
tion strategy for the λ-calculus. Indeed, Sec. 2.2 reformulates
the results in [Accattoli et al. 2018] within a new typing
system introduced in Sec. 2.1.

We consider a countably infinite set of variablesx,y, z,
The set of λ-terms is given by the following grammar:

(terms) t,u,v ::= x | λx .t | tu

We denote by I the identity function λx .x and we abbre-
viate an application v = (. . . ((tu1)u2) . . .un) as t u1 . . .un .
Moreover, in this last case, when t is a variable or an abstrac-
tion, t is said to be the head of v . The predicate ¬abs(_)
characterizes all the terms that are not abstractions.

Free and bound variables of objects are defined as ex-
pected. We work modulo α-conversion, i.e. renaming of
bound variables. Application of the substitution {x/u} to
t , written t{x/u}, may require α-conversion in order to avoid
capture of free variables, it is defined as expected.
The λ-calculus is given by the set of λ-terms and the re-

duction relation −→β , which is the closure by all contexts
(defined in a natural way) of the following rewriting rule:

(λx .t)u 7→β t{x/u}

We use −→∗
β (resp. →+β) for the reflexive-transitive (resp.

transitive) closure of the relation −→β .
Ideally, in order to measure the evaluation lengths and the

normal forms, we would like to distinguish at the term level
the constructors which are consumed during evaluation and
those which remain in the normal form. We call the former
consuming and the latter persistent. For instance, if we
temporarily materialize application with the constructor@
in the reduction step t0 = (λx .w@x)@(λz.z) −→βw@(λz.z),
then persistent constructors in t0 can be colored in red as
follows (λx .w@x)@λz.z. Indeed, all the occurrences of the
variable x and the outermost application are destroyed dur-
ing the β-reduction step and thus are not colored. However,
in general, the notions of persistence and consumption can-
not be formalized at the term level. For instance, consider
(λx .x x)(λz.z), which reduces to (λz.z)(λz.z) and then to λz.z:
one copy of λz.z is consumed whereas the other one persists
in the normal form. Thus, the different nature of the con-
structors (consuming vs. persistent) cannot be distinguished
on the untyped level, but they can be hopefully captured in
the (non-idempotent) type derivations.

Head Normal Forms. Results of evaluation sequences
are terms having a particular syntactical form. In what fol-
lows, a term of the form λx1. . . . λxn .xt1 . . . tm (n,m ≥ 0) is
called a head normal form (HNF), and t1, . . . , tm its head
arguments. HNFs are captured by the predicate normhd(_)
in Fig. 1, where an auxiliary predicate neuthd(_) is used to

denote HNFs that are not abstractions (they are called neu-
tral HNF). We measure HNFs by using the function hd-size:
|x |hd := 1, |λx .t |hd := |t |hd + 1 and |tu |hd := |t |hd + 1. Notice
that hd-size does not count arguments of applications.�
�

�
neuthd(x)

neuthd(t)

neuthd(tu)

neuthd(t)

normhd(t)

normhd(t)

normhd(λx .t)

Figure 1. Head Neutral and Normal Terms

HeadNormalizationVersusHeadEvaluation. A λ-term
t is head normalizing (HN) if there is a reduction sequence
from t to a HNF. We concentrate, however, on a particular
deterministic relation, the head strategy, defined in Fig. 2.#

"

!

(β)
(λx .t)u −→hd t{x/u}

t −→hd t
′

λx .t −→hd λx .t
′
(abs−λ)

¬abs(t) t −→hd t
′

t u −→hd t
′u

(¬abs)

Figure 2. The Head Evaluation Strategy for the λ-Calculus

A term t is a hd-normal form, written t ↛hd, if there is
no t ′ s.t. t −→hdt

′. The term t is head terminating if t −→∗
hdt

′

and t ′ ↛hd. One easily proves that t is a HNF iff t ↛hd.
Note that t head terminating clearly implies t head nor-

malizing. The converse is also true, but the proof is non-
trivial [Barendregt 1985; Krivine 1993]. In other words, the
(deterministic) head strategy computes the head normal form
when it exists, and thus provides an implementation certifi-
cation of the abstract notion of head normalization. Intersec-
tion type systems provide elegant, short and combinatorial
proofs of this kind of certification, thus avoiding the intrica-
cies of syntactical proofs (based on residuals and complete
developments).

2.1 Upper Bounds
We now present a type system based on (non-idempotent)
intersection types, which is used to obtain upper bounds for
the head strategy presented before. In particular, intersec-
tion is associative, commutative, and non-idempotent, so that
intersection types can be represented as multisets.

Types are defined by means of the following grammar:

(Intersection Types) I,J ::= [σk]k ∈K
(Elementary Types) σ , τ ::= • | I → σ | I ↛ σ

The intersection type [σk]k ∈K is a finite multiset whose el-
ements are indexed by k ∈ K , whereK may be empty.We use
card(I) to denote the cardinal of an intersection type I, the
symbol + to denotemultiset union, e.g. [σ , τ]+ [σ] = [σ ,σ , τ]
and ⊆ to denote multiset inclusion, e.g. [σ , τ] ⊆ [σ , τ ,σ]. The
constant • is called the end type, it can only be assigned

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial

to subterms that are never going to be applied, including
abstractions, e.g. λx .x in the term y(λx .x). There are two
kinds of arrows: → is a consuming arrow, which types ap-
plication constructors that are going to be consumed during
evaluation, while ↛ is a persistent arrow, typing applica-
tion constructors which are persistent, i.e. remain in the
normal form. We write I ⇒ σ when we do not want to
distinguish between the two kinds of arrows. We define the
persistent order function #p_ on elementary types as #p(σ)
is 1 when σ = I ↛ τ , and 0 otherwise.
Variable assignments (written Γ), are total functions

from variables to intersection types; we use supp(Γ) for
the support of Γ. The notation Γ(x) stands for [] when
x < supp(Γ). We write Γ ∧ Γ′ for x 7→ Γ(x) + Γ′(x), where
supp(Γ ∧ Γ′) = supp(Γ) ∪ supp(Γ′). When supp(Γ) and
supp(Γ′) are disjoint we may write Γ; Γ′ instead of Γ ∧ Γ′.
We write x : [σk]k ∈K ; Γ, even when K = ∅, for the follow-
ing variable assignment (x : [σk]k ∈K ; Γ)(x) = [σk]k ∈K and
(x : [σk]k ∈K ; Γ)(y) = Γ(y) if y , x . We use Γ′ ⊆ Γ when
Γ′(x) ⊆ Γ(x) for all x .
We present the type system U λ

hd (U means Upper) in
Fig. 3, it is based on regular (resp. auxiliary) judgments
of the form Γ ⊢ t : σ (resp. Γ ⊩ t : I). In both cases t is said
to be the subject of the judgment. A (type) derivation is a
tree obtained by applying the (inductive) typing rules of the
system. We write Φ ▷ TJ for a type derivation concluding
with the judgment TJ , and just ▷TJ if there exists Φ such
that Φ ▷ TJ , in which case the subject of the judgment is
said to be typable. The size of a type derivationΦ, written
sz(Φ), is obtained by counting all the nodes of the tree, except
those corresponding to the rule ∧.#

"

!

(ax)
x : [σ] ⊢ x : σ

Γ;x : I ⊢ t : σ
(abs)

Γ ⊢ λx .t : I → σ

(Γk ⊢ t : σk)k ∈K
(∧)

∧k ∈K Γk ⊩ t : [σk]k ∈K

Γt ⊢ t : I⇒σ Γu ⊩ u : I
(app)

Γt ∧ Γu ⊢ t u : σ

Figure 3. System U λ
hd: Upper Bounds for the λ-Calculus

System U λ
hd corresponds to the original non-idempotent

intersection type system for λ-calculus [Gardner 1994], ex-
cept that arrows are here of two kinds, consuming or per-
sistent, a difference which does not play any role for the
moment. A well-known result is the following:
Theorem 2.1 (Upper Bounds for Head Reduction). A term
t is U λ

hd typable iff t is head-normalizing iff the head strategy
terminates on t . Moreover, the size of the type derivation of t
gives an upper bound to the sum ℓ + f , where ℓ is the length
of the head-evaluation of t and f is the size of the HNF of t .

Theorem. 2.1 relies on quantitative subject reduction: not
only typing is stable under reduction, but the size of deriva-
tions, given by the number of their judgments, decreases:

Proposition 2.2 (Quantitative Subject Reduction). If Π ▷Γ ⊢

t : σ and t −→β t
′, then there is Π′ ▷ Γ ⊢ t ′ : σ such that

sz(Π) ≥ sz(Π′).

A few words should be said about the quantitative as-
pect of this last statement: since the type system is non-
idempotent, then given a typed redex (λx .r)s , the types of
x match the types of s , number-wise. Once such a redex is
fired, giving r {x\s}, the (app) and the (abs)-rules typing the
redex are destroyed, as well as all the (ax)-rules typing x ,
and no duplication takes place at the level of typing deriva-
tions because of non-idempotency: indeed, the size of the
derivation decreases by 2 + k , where k ≥ 0 is the number
of (ax)-rules typing x . Now, when this redex is fired inside
a typed term t , each subderivation typing (λx .r)s inside the
whole type derivation of t decreases w.r.t. size. However, it
is also possible that (λx .r)s occurs untyped in t , and then the
decrease of the size of the derivation typing t is null. This
explains why, in system U λ

hd, only upper bounds (and not
exact measures) can be captured.
Note that, since head redexes are always typed, subject

reduction is always strictly decreasing for the head-strategy.

2.2 Exact Measures
The types that we have defined so far are enough to char-
acterize normalization properties ([Bucciarelli et al. 2017]
for a survey) by providing the expected corresponding up-
per bounds. However, only some restricted form of typing,
known as tight types in [Accattoli et al. 2018], provides exact
measures for head reduction lengths and size of normal forms.
In this paper, we refine the notion of tightness by introducing
the one of exact types, which take into account the arities
of types, while keeping a distinction between the consum-
ing/persistent aspect of constructors. These two features of
exact types are necessary to deal with the classical case in
Sec. 3.2. A hd-exact exact type is given by the following
grammar:

Exhd ::= • | [] ↛ Exhd

A hd-exact intersection type is a multiset containing only
hd-exact elementary types. We also use the notations Exhd(_)
and IExhd(I) as predicates to characterize such hd-exact
elementary and intersection types, respectively. A hd-exact
elementary type of length d , written ed , is the unique
hd-exact elementary type of length d (d is the number of
arrows), and is used to type hd-normal forms that can still
be applied to d arguments without creating any new redex.
Thus, while exact elementary types ed (d ⩾ 1) are going
to be assigned only to neutral terms, e0 can be assigned to
both neutral terms and abstractions. Notice that every hd-
elementary exact type is necessarily identified with ed for
some d ≥ 0.

We present the type systemXλ
hd (X means eXact) in Fig. 4,

it is based on regular (resp. auxiliary) judgments of the

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany

form Γ ⊢(ℓ,f) t : σ (resp. Γ ⊩(ℓ,f) t : I), where the counters
ℓ and f are integers:
♦ ℓ counts the number of β-steps of the head strategy, this is
done by counting the number of consuming abstractions.

♦ f counts the size of the normal form, and this is done by
counting the rules typing constructors that are persistent.

'

&

$

%

(ax)
x : [σ] ⊢(0,1) x : σ

Γ;x : I ⊢(ℓ,f) t : σ
(abs)

Γ ⊢(ℓ+1,f −card(I)) λx .t : I → σ

Γ;x : I ⊢(ℓ,f) t : Exhd IExhd(I)
(•)

Γ ⊢(ℓ,f +1) λx .t : •

(Γk ⊩(ℓk ,fk) t : σk)k ∈K
(∧)

∧k ∈K Γk ⊩+k∈K (ℓk ,fk) t : [σk]k ∈K

Γt ⊢
(ℓt ,ft) t : I ⇒ σ Γu ⊩(ℓu ,fu) u : I

(app)
Γt ∧ Γu ⊢(ℓt+ℓu ,ft+fu+#p(I⇒σ)) t u : σ

Figure 4. System Xλ
hd: Exact Measures for the λ-Calculus

Let us now discuss a few aspects of the rules:
♦ The (ax)-rule adds 1 to the second counter f , which is
designed to measure the size of the normal form. However,
some variables are substituted during evaluation (they are
consumed), and so their contribution to the value of f
must be removed later. This is why (abs) decreases f by
card(I).

♦ The (•)-rule types abstractions that will never be applied
during evaluation. Indeed, their type is not an arrow type.

♦ The (abs)-rule types abstractions that will be consumed
during β-evaluation (so that a consuming arrow is in-
troduced). That is why the first counter of the rule con-
tributes to ℓ by adding 1, while the second counter re-
moves card(I), which is the number of typed variables
x bound by the abstraction that will be consumed during
evaluation. Notice that there is no equivalent rule intro-
ducing persistent arrows, they can only be introduced via
the (ax)-rule.

♦ The (app)-rule does not increase the number of evalu-
ation steps: they are already recorded by the abstrac-
tion rule (abs). An application only increases counter
f –representing the size of the head normal form– when
the arrow type on the left premise is persistent.

Notice that, thanks to our consuming/persistent duality for
arrows, there is only one rule to type all applications, in
contrast to [Accattoli et al. 2018].

Exact derivations. Not all the derivations of system Xλ
hd

capture the exact measures of their subject. These exact
measures are captured when the judgments are exact:

Definition 2.3 (Exact judgments and derivations). A judg-
ment Γ ⊢ t : σ is exact when σ and Γ(x) (for all x) are exact.
An exact derivation concludes with an exact judgment, in
which case the typed term is said to be exacty typable.

A first observation to understand how exact derivations
capture exact measures is that exact types ensure that the
arguments of HNFs are never typed. Indeed, the head variable
is always typed with an exact type, whose domain is empty.
For instance, let t1 and t2 be two terms and consider the exact
type τ = [] ↛ [] ↛ • and the derivation below.

(ax)
x : [τ] ⊢(0,1) x : τ

(∧)
⊩(0,0) t1 : []

(app)
x : [τ] ⊢(0,1+0+1=2) x t1 : [] ↛ • ⊩(0,0) t2 : []

(app)
x : [τ] ⊢(0,2+0+1=3) x t1 t2 : •

(•)
x : [τ] ⊢(0,3+1=4) λy.x t1 t2 : •

The second counter increased in the two app-rules comes
from #p(τ) = #p([] ↛ •) = 1. The typed term λy.x t1 t2 is
a HNF whose hd-size is 4. Thus, the final counter (0, 4) has
the expected value. Observe how the operator #p_, counting
one for each persistent arrow, ensures that the number of
(persistent) application constructors is computed correctly.

Another interesting example of exact derivation is given
in Fig. 5 for the term t = (λx .x x)(λz.z), whose HNF is I,
obtained in 2 hd-steps: t →hd (λz.z)(λz.z) →hd I. Since
|I|hd = 2, the expected counter is (2, 2), which is indeed the
one obtained in Fig. 5. This time, the exact derivation has no
persistent arrow, simply because the HNF does not contain
any application. As a side remark, observe how the non-
idempotent machinery works. During reduction the term
λz.z is duplicated: one copy is persistent and the other one
is consuming. Non-idempotency allows distinguishing in
the type derivation the different behaviours of the copies
of λz.z during reduction. More generally, non-idempotent
types give a natural mechanism to type a subterm as many
times as it is duplicated during evaluation, thus making it
possible to discern the nature of all its different copies, be-
fore starting computation. This is why persistence and con-
sumption, which are dynamic notions, can be captured by
non-idempotent intersection types.

The following result can be seen as a reformulation of [Ac-
cattoli et al. 2018] in our new typing framework:

Theorem 2.4 (Exact Measures for Head Reduction). The
term t is exactly-typable with counters (ℓ, f) (i.e. ▷Γ ⊢(ℓ,f) t : σ
is exact) iff the head strategy terminates on t in ℓ β-steps in a
head normal form of size f .

This theorem also relies on a quantitative subject reduc-
tion property: one may check that a head reduction step

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial'

&

$

%

(ax)
x : [[•] → •] ⊢(0,1) x : [•] → •

(ax)
x : [•] ⊢(0,1) x : •

(∧)
x : [•] ⊢(0,1) x : [•]

(app)
x : [•, [•] → •] ⊢(0,1+1+0=2) x x : •

(abs)
⊢(1,2−2=0) λx .x x : [•, [•] → •] → •

(ax)
z : [•] ⊢(0,1) z : •

(abs)
⊢(1,1−1=0) λz.z : [•] → •

(ax)
z : [•] ⊢(0,1) z : •

(•)
⊢(0,1+1=2) λz.z : •

(∧)
⊩(1,2) λz.z : [[•] → •, •]

(app)
⊢(1+1=2,0+2+0=2) (λx .x x)(λz.z) : •

Figure 5. An Example of Exact Derivation in System Xλ
hd

always decreases the first counter ℓ by 1 (the situation will
be trickier for leftmost-outermost and maximal evaluation
in Sec. 4.3). Moreover, as noted in the above type derivation
of λy.x t1 t2, exact judgments ensure that the arguments of
head variables always remain untyped, so that the second
counter f exactly captures the hd-size of the HNF.

TowardsWeak and Strong Normalization. Other stan-
dard notions of normalization associated to the λ-calculus
are weak and strong normalization, related, respectively, to
the leftmost-outermost and the maximal deterministic reduc-
tion strategies. We will come back to the formal definitions
of these notions in Sec. 4. As for now, it is worth mentioning
that by just modifying some of the previous definitions, it is
possible to obtain exact measures for these strategies too by
using the same method. Moreover, this can be done within
a parametrized framework which provides a unified pre-
sentation for the three standard strategies (head, leftmost,
maximal) of λ-calculus, as well as to their associated notions
of (head, weak, strong) normalization. The parametric for-
malism that we propose in Sec. 4.2 allows factorizing the
various characterizations in the literature, as well as their
proofs, in a concise and elegant way. For now, let us move
forward by extending the method to the λµ-calculus.

3 Classical Computation
This section extends the technique of Sec. 2 to the head
strategy of the λµ-calculus. We then introduce exact types:
while tight types as defined in [Accattoli et al. 2018] cannot
capture exact measures in classical logic, the types defined
in Sec. 2 can be extended to do so in the λµ-calculus.

We consider a countable infinite set of variablesx,y, z, . . .
(resp. names α, β,γ , . . .). Objects, terms and commands of
the λµ-calculus are given by the following grammars:

(objects) o ::= t | c
(terms) t,u,v ::= x | λx .t | tu | µα .c
(commands) c ::= [α]t

The grammar extends λ-terms with two new constructors:
commands [α]t (“call continuation α with t as argument”)
and µ-abstractions µα .c (“record the current continuation
as α and continue as c”). We say that t is named α in the
command [α]t . The predicate ¬abs(_) now characterizes all
the objects that are neither λ nor µ-abstractions.

Free and bound variables of objects are defined as ex-
pected, in particular fv(µα .c) := fv(c) and fv([α]t) := fv(t).
Free names of objects are also defined as expected, in par-
ticular fn(µα .c) := fn(c) \ {α } and fn([α]t) := fn(t) ∪ {α }.
Bound names are defined accordingly.
We work modulo α-conversion, i.e. renaming of bound

variables/names, e.g. [δ]µα .[α]λx .xz ≡ [δ]µβ .[β]λy.yz. Ap-
plication of the substitution {x/u} to the object o, written
o{x/u}, may require α-conversion in order to avoid capture
of free variables/names, and it is defined as expected. Appli-
cation of the replacements {α\\u} to the object o, written
o{α\\u}, passes the term u as an argument to any command
of the form [α]t , i.e. every subcommand [α]t in o is replaced
by [α](t u). This operation may require α-conversion. Thus,
e.g. if I = λz.z, then (x(µα[α]xy)){x/I} = I(µα[α]Iy), and
([α]x(µβ .[α]y)){α\\I} = [α](x(µβ .[α]yI))I.
The λµ-calculus is given by the set of λµ-objects and the

reduction relation −→λµ , sometimes simply written −→,
which is the closure by all contexts of the two rules:

(λx .t)u 7→β t{x/u}
(µα .c)u 7→µ µα .c{α\\u}

defined by means of the substitution and replacement appli-
cation notions presented above. A reduction step −→β (resp.
−→µ) is erasing if x < fv(t) (α < fn(c)).

As a side remark, the operational semantics of the calculus
often includes the rules [α]µβ .c −→ρ c{α/β} or µα .[α]c −→η c ,
when α < fv(c). But the left and right-hand side terms of
these rules can be seen as structurally equivalent terms from
the proof-net perspective, as enlightened by [Laurent 2003b].
Therefore, they are not really contributing to the logical
meaning of proof/term transformations, and this is why we
have preferred to keep the reduction system as simple as
possible.

Head Normal Forms. HNF s are extended by adding the
predicates in Fig. 6 to those in Fig. 1. The hd-size function
is extended to λµ-HNFs by: |[α]t |hd := |t |hd and |µα .c |hd :=
|c |hd+1. Notice that we choose to ignore names of commands
in the size: setting |[α]|hdt := |t |hd + 1 would have been
possible without compromising the results to come.

We also extend the head strategy for λµ-objects by adding
the rules in Fig. 7 to those in Fig. 2. The λµ-object o is head
terminating if ρ : o −→∗

hdo
′ and o′ ↛hd.

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany�
�

�
�

normhd(t)

normhd([α]t)

normhd(c)

normhd(µα .c)

Figure 6. Extending Head Neutral and Normal Terms�

�

�

�
(µα .c)u −→hd µα .c{α\\u}

(µ)

c −→hd c
′

µα .c −→hd µα .c
′
(abs−µ)

t −→hd t
′

[α]t −→hd [α]t
′
(com)

Figure 7. Extending the Head Evaluation Strategy

3.1 Upper Bounds
We now slightly reformulate the type system in [Kesner and
Vial 2017], written here U

λµ
hd , or simply Uhd, which provides

upper bounds for the head strategy in the λµ-calculus.
The system is based on intersection and union types. Inter-

section is to type distinct occurrences of the same variable
differently. Dually, union is used to type distinct occurrences
of the same name differently. Indeed, while free and bound
variables are typed with intersection types, free and bound
names (and thus µ-abstractions, and actually all terms) must
be assigned union types. Our intersection and union opera-
tors are associative, commutative, and non-idempotent, so that
they can be represented as multisets. Consequently, we use
two different kinds of multisets: [] for intersection types (IT)
and ⟨ ⟩ for union types (UT). Types are defined by mutual
induction:

(UT) U,V ::= ⟨⟩ | N

(Non-Empty UT) N ::= ⟨σk ⟩k ∈K (K , ∅)

(IT) I,J ::= [Nk]k ∈K
(Elementary Types) σ , τ ::= • | I → N | I ↛ N

Notice that union types used to build intersections are
never empty. This will ensure that the empty union type
⟨ ⟩ cannot be assigned to any term. However, the empty
intersection type [] may occur anywhere as the domain of
an arrow. We write ⟨σ ⟩n (n ≥ 1), to denote a multiset ⟨ ⟩
containing n occurrences of the same type σ , and we may
use in particular simply ®• to denote anymultiset ⟨•⟩k (k ≥ 1).
Moreover, ⟨•⟩ may be written •. A special category of union
types is given by the blind types, defined by the grammar:

B ::= ®• | ⟨[] → B⟩

The arity of types and union types is defined by induc-
tion: ar(•) = 0, ar(I → N) = ar(N) + 1, ar(I ↛ N) =

ar(N) + 1; ar(⟨σk ⟩k ∈K) := mink ∈K ar(σk). Thus, the arity
of a type counts the number of application arguments it
can be fed with. The (non-deterministic) choice opera-
tor _∗ on union types is defined as follows: ifU , ⟨ ⟩, then
U∗ = U, otherwise ⟨ ⟩∗ = B, where B is any arbitrary blind

union type (we make a slight abuse of vocabulary by calling
_∗ an operator rather than a relation, and this without any
technical consequence).
Left-hand sides of applications are generally typed with

unions of the form F = ⟨I1 ⇒ N1, . . . ,Ik ⇒ Nk ⟩, called
function types. To reason about the (app)-rule in a more
synthetic way, we set dom(F) = ∧k=1...nIk and codom(F) =

∨k=1...nNk , the domain and codomain of F . Variable as-
signments Γ are total functions from variables to intersection
types and name assignments ∆ are total functions from
names to (possibly empty) union types. They come alongwith
similar notations used before for the λ-calculus in Sec. 2, e.g.
supp(∆), ∆(α), ∆ ∨ ∆′, ∆;∆′, ∆ ⊆ ∆′, α : U, etc.

The syntax directed rules of the type system Uhd are pre-
sented in Fig. 8. Terms can never be assigned empty union
types (see [Kesner and Vial 2017; Laurent 2004] for a discus-
sion), which is ensured in particular by the choice operator
in the (muU)-rule. Notice again that this system does not
make any specific use of persistent arrows: they are still not
necessary to obtain upper bounds.

Theorem 3.1 (Upper Bounds for Head Reduction,[Kesner
and Vial 2017]). A λµ-object o is Uhd-typable iff o is head-
normalizing iff the head strategy terminates on o. Moreover, the
“size” (cf. discussion below) of the derivation typing o gives an
upper bound to the sum ℓ +m + f , where ℓ,m are respectively
the number of β- and µ-steps in the head-evaluation of t and
f is the size of the HNF of t .

Aquantitative subject reduction property for the λ-calculus
still holds for a suitable definition of derivation size (the same
we refer to in the above theorem), e.g. the one in [Kesner
and Vial 2017]. But such a notion cannot be a simple ex-
tension of that for the λ-calculus, which simply counts the
number of judgments of a derivation. Indeed, µ-reduction
creates several (n ⩾ 0) application nodes. As argued in ibid.,
to obtain a quantitative measure for the λµ-calculus, the
size of a (derivation typing a) µ-abstraction µα .c must
also measure the types that are stored by the name α
inside the command c.
Let us shortly explain why. Consider a µ-redex (µα .c)s ,

where α has type A → B. Then all subterms v named α
are of type A → B, they are replaced after µ-reduction by
applications of the form v s , of type B, smaller than A → B.
That is, the type of α changes along µ-evaluation in the
simply typed case. Thus, the size of the new type stored by α
has been reduced (in particular, its arity has decreased by 1),
and this suggests how a quantitative measure can be defined
for the λµ-calculus. We will use this observation in Sec. 3.2
to define the counters measuring µ-evaluation within the
forthcoming type system capturing exact measures.
As a consequence, arities must be measured to obtain

exact bounds in a classical framework, but the tight types
of [Accattoli et al. 2018] cannot measure arities, and thus,
cannot be extended to the λµ-calculus. Indeed, tight types

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial'

&

$

%

(ax)
x : [N] ⊢ x : N | ∅

Γ;x : I ⊢ t : N | ∆
(abs)

Γ ⊢ λx .t : ⟨I → N⟩ | ∆

Γ ⊢ t : N | ∆
(c)

Γ ⊢ [α]t | ∆ ∨ {α : N}

Γ ⊢ c | ∆;α : U
(muU)

Γ ⊢ µα .c : U∗ | ∆

(Γk ⊢ t : Nk | ∆k)k ∈K
(∧)

∧k ∈K Γk ⊩ t : [Nk]k ∈K | ∨k ∈K∆k

Γt ⊢ t : F | ∆t Γu ⊩ u : dom(F) | ∆u
(app)

Γt ∧ Γu ⊢ t u : codom(F) | ∆t ∨ ∆u

Figure 8. Upper System Uhd for the λµ-Calculus (Head Evaluation Strategy)

are specified by means of two type constants neut and abs
so that t : neut is derivable when t reduces to a neutral
HNF, and the system is equipped with a second rule to type
(persistent) applications:

Γ ⊢ t : neut

Γ ⊢ t u : neut
This rule does not record how many arguments a head vari-
able may be fed with (intuitively, neut behaves like a type
with infinitely many persistent arrows), and thus, the re-
sulting system cannot provide a decreasing measure for µ-
reduction steps.
Before explaining how we capture exact measures in the

λµ-calculus (next section), let us comment on the relation be-
tween our system and Laurent’s encoding of classical natural
deduction into Polarized Linear Logic.

Connection with Linear Logic. The translation of λµ-
calculus into Polarized Linear Logic (PLL) in [Laurent 2003b]
puts in evidence the non-trivial behaviors of the calculus.
More precisely, duplication caused by the substitution of vari-
ables (resp. the replacement of names) in the term language
is materialized by duplication of boxes (resp. tensor products)
on the logical side, modelled by intersection (resp. union)
multisets in our type system. On the other side, while the
arity of types is used here to count µ-reduction steps, i.e. the
length of the list of arguments of a µ-abstraction, the number
of copies of tensors in PLL is rather captured by the notion
of cardinality (different from arity) of union types. A last ob-
servation is that contraction is admissible for negative types
in PLL, i.e. any negative type may be duplicated during cut
elimination, while in our system, intersection/union types
are strictly non-idempotent, so that they are split (instead of
duplicated) during reduction.

3.2 Exact Measures
This section introduces the typing system X

λµ
hd , simply writ-

ten Xhd, which refines and extends Uhd so that exact deriva-
tions in Xhd will capture exact measures for the head eval-
uation in the λµ-calculus. The notion of exact types in a
classical framework is generalized as follows. A hd-exact
elementary type is now given by the following grammar:

Exhd ::= • | [] ↛ ⟨Exhd⟩

We use the notation ed (d ≥ 0) for an exact elementary type
of arity d (d persistent arrows). An hd-exact intersection

type is of the form [⟨σ1⟩, . . . , ⟨σm⟩], where every σi is a hd-
exact elementary type. Thus, a hd-exact intersection type is
an intersection of singleton union types. A hd-exact union
type is of the form ⟨σ1, . . . ,σn⟩, where every σi is a hd-exact
elementary type. We may write IExhd (resp. UExhd) for a hd-
exact intersection (resp. union) type. We use the predicate
Exhd(_) to characterize hd-exact types. Note that these no-
tions generalize the ones introduced for the intuitionistic
case in Sec. 2.2.
In order to state the main properties of system Xhd, we

first need to generalize the notion of exact derivation. A vari-
able (resp. name) assignment Γ (resp. ∆) is hd-exact when
Γ(x) (resp. ∆(α)) is a hd-exact intersection (resp. union) type
for all x ∈ supp(Γ) (resp. all α ∈ supp(∆)). We then write
Exhd(Γ) (resp. Exhd(∆)). Judgments are now decorated with
counters of the form (ℓ,m, f), where the new componentm
counts the number of µ-steps of the head strategy. A regu-
lar judgment Γ ⊢(ℓ,m,f) t : N | ∆ is hd-exact when Exhd(Γ),
Exhd(N), Exhd(∆). A command judgment Γ ⊢(ℓ,m,f) c | ∆ is
hd-exact when Exhd(Γ) and Exhd(∆). This extends to auxil-
iary judgments. A derivation is hd-exactwhen it concludes
with a hd-exact judgment, in which case the typed object
is said to be hd-exactly typable. Exactness of derivations
pertains only to the conclusion of a derivation, so it is not a
global condition on the derivation.
The definition of the rules of Xhd in Fig. 9 is subtle, and

makes use of different operators. The (non-deterministic)
activation operator on elementary and union types is de-
fined by: •↑ = •, (I → N)↑ = I → N ↑, (I ↛ N)↑ =

I → N ↑, ⟨ ⟩↑ = B (an arbitrary blind union type), and
⟨σk ⟩

↑

k ∈K = ⟨σ ↑

k ⟩k ∈K when K , ∅. Intuitively, the activation
operator chooses a blind type for an empty union type, and
replaces the top-level (i.e. those which are not nested in
an intersection) persistent arrows by consuming ones. As
we see in the (muX)-rule, the activation operator prevents
types of µ-abstractions to be empty. The persistence or-
der of a non-empty union type N = ⟨σk ⟩k ∈K counts the
number of root persistent arrows and is defined by #pN =
card{k ∈ K | ∃I, N ′, σk = I ↛ N ′}, e.g. #p⟨[•] ↛ ⟨[®•] ↛
®•⟩⟩ = 1 and #p⟨[®•] ↛ •,I → N,I ↛ N⟩ = 2. The cumu-
lated persistence of types counts the number of top-level
persistent arrows, which will in turn help count persistent
applications that µ-abstractions create during µ-evaluation,
and is defined as follows: cp(•) = 0, cp(I → N) = cp(N),

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany

cp(I ↛ N) = cp(N)+1 and cp(⟨σk ⟩k ∈K) = +k ∈Kcp(σk). All
these operators are used in the typing rules. The (muU)-rule
of system Uhd in Fig. 8 differs from the (muX)-rule of system
Xhd in Fig. 9: the latter features the activation operator which
transforms top-level persistent arrows into consuming ones.
This is not a detail: the introduction of two kinds of arrows
and the activation operator on persistent arrows are the key
features allowing system Xhd to provide exact measures. In
what follows, we discuss these tools in detail, but let us also
mention before some other salient features of the (muX)-rule.

Counting Mechanisms of the (muX)-Rule. The (muX)-
rule is the key ingredient of the typing system for the classi-
cal case, it concludes with the counter

(ℓ,m + ar(N), f + 1 + cp(U))

where µα .c is typed withN = U↑. This means that the oper-
ator _↑ is used only once onU: it produces a new non-empty
typeN (which is blind) ifU = ⟨ ⟩, and activates the top-level
persistent arrows of U when U , ⟨ ⟩. Notice, however, that
the output of this possibly non-deterministic choice is used
twice in the conclusion of the rule (in the second counter,
and in the type of µ .c). Let us explain now why this rule
appropriately counts consuming and persistent constructors,
before discussing the crucial role of the activation operator.
♦ The size of µ-abstractions was defined as |µα .c |hd = |c |hd+
1: hence the +1 on the third counter of the (muX)-rule.

♦ µ-reduction may create persistent applications: for in-
stance in (µα .[α]x)I −→µα .[α](x I). Therefore, we use the
operator cp(_) in the third counter to record the number of
persistent applications that will be created by each typed
µ-abstraction. This aspect of the type system is illustrated
in the forthcoming Example 4.1.

♦ The arity operator ar(_) in the second counter captures
how many times the µ-abstraction will be evaluated in
a µ-reduction. More precisely, the activation operator
N = U↑ (where α : U) used to type µα .c raises a blind
union type when U is empty. As a consequence, µα .c is
always typed with a non-empty union, whose arity must
be recorded in the second counter, so that it is possible to
count the number of µ-evaluation steps that are generated
by this µ-abstraction µα .c , whether they are erasing or
not. This explains the use of ar(N) in the second counter
of the (muX)-rule.

As previously mentioned, a blind typeN is raised by _↑ when
the typeU of α is ⟨ ⟩, e.g. when α occurs in some untyped
subterms of c only. When this blind typeN is also functional
(i.e.N , ®•), its domain is empty: this ensures that the future
arguments of the µ-abstraction µα .c : ⟨[] → . . . ⟨[] →

®•⟩⟩ are also going to be left untyped. This is essential to
guarantee subject reduction for erasing evaluation steps.

Activation Operator. In order to capture exact measures
in the classical setting, the crucial point is that persistent

arrows can be activated, featured in the (muX)-rule by means
of the activation operation _↑. Indeed, we introduced two
kinds of arrows to capture arities, which are necessary to
deal with classical logic, as explained in Sec. 3.1. However,
as it turns out, even when α has a non-empty type N while
typing c , the abstraction µα .c cannot have this same typeN
in all generality, as it is the case in system Uhd or in [Laurent
2004; Parigot 1992]. Indeed, the top-level persistent arrows
of N should be transformed into consuming ones.
But why transforming persistent arrows into consuming

is necessary? To explain that, let us suppose that the typing
rule for the µ-abstraction does not change persistent arrows
into consuming ones, and let us call (µ†) the corresponding
modified typing rule. We can then construct the following
exact derivation Φ, where γ , β , α are fresh names (recall
notation ed from Sec. 3.2).

(ax)
x : [⟨e2⟩] ⊢(0,0,1) x : ⟨e2⟩ | ∅

(app)
x : [⟨e2⟩] ⊢(0,0,2) x z : ⟨e1⟩ | ∅

(c)
x : [⟨e2⟩] ⊢(0,0,2) [α]x z | α : ⟨e1⟩

(µ†)
x : [⟨e2⟩] ⊢(0,0,2+1) µγ .[α]x z : ®• | α : ⟨e1⟩

(c)
x : [⟨e2⟩] ⊢(0,0,3) [β](µγ .[α]x z) | α : ⟨e1⟩, β : ®•

(µ†)
x : [⟨e2⟩] ⊢(0,1,3+1+1) µα .[β](µγ .[α]x z) : ⟨e1⟩ | β : ®•

The counter of the top (µ†)-rule would be justified by
ar(®•) = 0 and cp(⟨ ⟩) = 0. The counter of the bottom (µ†)-
rule would be justified by ar(⟨e1⟩) = 1 (recall that (µ†) does
not change persistent to consuming arrows) and cp(⟨e1⟩) = 1.
Remark that Φ concludes with an exact judgment, however,
the resulting final counter (0, 1, 5) turns out to be wrong: it
does not only count one potential µ-step for a hd-normal
form in an exact judgment, but the hd-size of this normal
form is also wrong (5 instead of 4). This explains why the ac-
tivation operator should change persistent to consuming ar-
rows, so that µ-abstractions are never typed with functional
persistent exact types. However, thanks to the operator _↑, us-
ing (muX) instead of (µ†) in the previous example, the deriva-
tion would conclude with µα .[β](µγ .[α]x z) : ⟨[] → ®•⟩,
which is not an exact type: indeed, the rule (muX) tells us
that the above derivation does not capture exact measures
(we should have actually assigned e1 to x instead of e2).

3.3 Main Properties
The lemma below gives some key properties of the exact
system Xhd. The first one is dubbed exact spreading, which
is a technical observation used to prove exact subject re-
duction/expansion as well as soundness and completeness
for NFs. The second point states that when a HNF is exactly
typed, then its hd-size is captured by the typing. The last
point ensures that all the HNFs are indeed exactly typable.
The three points are proved by structural induction.

Lemma 3.2 (Basic Properties).

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial

'

&

$

%

(ax)
x : [N] ⊢(0,0,1) x : N | ∅

Γ;x : I ⊢(ℓ,m,f) t : N | ∆
(abs)

Γ ⊢(ℓ+1,m,f −card(I)) λx .t : ⟨I → N⟩ | ∆

Γ ⊢(ℓ,m,f) t : N | ∆
(c)

Γ ⊢(ℓ,m,f) [α]t | ∆ ∨ α : N

Γ;x : I ⊢(ℓ,m,f) t : UExhd | ∆ IExhd(I)
(•)

Γ ⊢(ℓ,m,f +1) λx .t : • | ∆

Γ ⊢(ℓ,m,f) c | ∆;α : U N = U↑

(muX)
Γ ⊢(ℓ,m+ar(N),f +1+cp(U)) µα .c : N | ∆

(Γk ⊢(ℓk ,mk ,fk) t : Nk | ∆k)k ∈K
(∧)

∧k ∈K Γk ⊩+k∈K (ℓk ,mk ,fk) t : [Nk]k ∈K | ∨k ∈K ∆k

Γt ⊢
(ℓt ,mt ,ft) t : F | ∆t Γu ⊩(ℓu ,mu ,fu) u : dom(F) | ∆u

(apphd)
Γt ∧ Γu ⊢(ℓt+ℓu ,mt+mu ,ft+fu+#pF) t u : codom(F) | ∆t ∨ ∆u

Figure 9. Exact System Xhd for the λµ-calculus (Head Strategy)

1. (Exact Spreading) Let t be a neutral HNF and Φ ▷ Γ ⊢(ℓ,m,f)

t :N |∆. If Exhd(Γ), then N = ⟨ed ⟩ for some d≥0.
2. (Soundness of hd-NF) Let t be a HNF and Φ ▷ Γ ⊢(ℓ,m,f) t :

N | ∆. Then ℓ =m = 0 and f = |t |hd.
3. (Completeness for hd-NF) Let t be a HNF. Then t is exactly

typable.

System Xhd enjoys quantitative subject reduction and ex-
pansion in the same way system Uhd does. However, in the
case of exact derivations, the decrease is always equal to 1.
This allows us to prove the following exact characterization:

Theorem 3.3 (Exact Measures for Head Reduction). A λµ-
object o is exactly typable with counters (ℓ,m, f) iff the head
strategy terminates on o in ℓ β-steps andm µ-steps in a head
normal form of size f .

4 Beyond Head Normalization
In this section, we extend the technique introduced in Sec. 3.2
for head-evaluation to another two evaluation strategies of
the λµ-calculus: leftmost-outermost and maximal reduction,
related to weak and strong normalization, respectively. We
start by defining these strategies, then we present them in a
parametrized way.

Full Normal Forms. A full normal form, or just a nor-
mal form (NF), is an object which does not contain any β-
or µ-redex. NFs can be characterized by the predicates in
Fig. 10.�

�

�

�
neutfull(x)

neutfull(t) normfull(u)

neutfull(tu)

neutfull(t)

normfull(t)

normfull(t)

normfull(λx .t)

normfull(t)

normfull([α]t)

normfull(c)

normfull(µα .c)

Figure 10. Full Neutral and Normal Forms

Wemeasure NFs by using the function full-size: |x |full :=
1, |λx .t |full := |t |full + 1, |tu |full := |t |full + |u |full + 1,
|[α]t |full := |t |full and |µα .c |full := |c |full + 1.

Weak Normalization and Leftmost-Outermost Eval-
uation. A λµ-objecto isweaklynormalizing (WN) if there
is a reduction sequence from o to a NF. When o is not a nor-
mal form, it is reducible, and thus it contains in particular a
leftmost-outermost (lo) redex: the one whose abstraction
is the leftmost one when o is seen as a string of characters.
The lo strategy →lo consists in reducing this lo redex (a
formal definition later). An objecto is lo terminating (LOT)
if the lo strategy terminates on o. Clearly, LOT implies WN,
and, as in the hd-case, the (non-trivial) converse implication
also holds, i.e. LOT and WN are equivalent.

StrongNormalization andMaximal Evaluation. A λµ-
object o is strongly normalizing (SN) if o is not the source
of an infinite reduction sequence. In particular, if o is SN,
then the lo strategy terminates on o, so o isWN. The converse
is not true: if o = (λx .y)Ω (where Ω is the non-terminating
term (λz.z z)(λz.zz)), then o → y, so that o is WN, but o is
not SN, since Ω −→Ω, and thus also o −→o. It turns out that
there is a deterministic evaluation strategy producing such a
longest (and possibly infinite) sequence, which is called the
maximal evaluation strategy, written −→mx. In particular,
this strategy computes a NF when o is SN but does not termi-
nate when o is not SN. It extends the maximal strategy of the
λ-calculus [van Raamsdonk et al. 1999] in that it performs
an erasing reduction step only when the argument has been
fully evaluated. Otherwise, there is a risk to erase a non-SN
term. For instance, if t = (λx .y)u →β y, then t is SN iff u
is SN, which means that the erasing reduction step t →β y
causes a semantic loss1 of information. This is why the
maximal strategy must first evaluate the subterm u before
erasing it. In other words, the maximal evaluation refines
the leftmost one by adding new steps to evaluate erasable ar-
guments before consumption, while leftmost blindly erases
them. For instance, if o = (µα .[β]x)((λx .(λy.z)(x x))(z z))
with α , β , x,y , z, then o −→

hd/lo
µα .[β]x while o →mx

(µα .[β]x)((λy.z)((z z)(z z))) →mx (µα .[β]x)z →mx µα .[β]x .

1In contrast, there is no semantic loss w.r.t. HN/WN, i.e. whether t −→t ′ is
erasing or not, t is HN (resp. WN) iff t ′ is HN (resp. WN).

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Parametric Evaluation. A parametric presentation of
the 3 strategies head, leftmost and maximal is given in Fig. 11.
We write

e
→S for an S-reduction step (S ∈ {hd, lo, mx}),

where, intuitively, the integer e , called the erasuremeasure,
denotes the quantity of information which is lost during re-
duction. Indeed, when S = mx and the step is non-erasing,
then e = 0 (no semantic loss); when S = mx and the step is
erasing, e is the size of the erased normal form (→mx erases
only NFs); and e = 0 when S ∈ {hd, lo} or the step is not
erasing. The reflexive-transitive closure of

e
→S is defined as

expected by cumulating erasure measures. The integer e will
play a important role in the final Theorem. 4.4.

4.1 Towards Exact Measures
This section discusses the extension of the method from
hd-evaluation to the lo/max cases.

Leftmost-Outermost Evaluation. The strategy lo first
behaves like hd-evaluation, but once a HNF has been obtained,
then it inductively evaluates all the head arguments: it is
designed to compute NFs. In the case of system Xhd for hd-
evaluation, exact types ensure that the arguments of HNFs are
left untyped. For lo-evaluation, however, one should instead
ensure that the arguments of HNFs are typed exactly once:
this is done by redefining exact types so that their domains
are now of cardinal 1, i.e. of the form [®•] ↛ . . .↛ [®•] ↛ ®•.
We thus now accept derivations of the form:

(ax)
x : [®•] ↛ [®•] ↛ ®• u1 : ®•

(app)
x u1 : [®•] ↛ ®• u2 : ®•

(app)
x u1 u2 : ®•

(•)
λy.x u1 u2 : ®•

where inductively, u1 and u2 are typed with ®•, which would
mean here that u1 and u2 are weakly normalizing (compared
with the typing of λy.x t1 t2 in the hd-case on page).

Notice that typing persistent abstractions with rules (•)
and (muX) should ensure that these abstractions can also
be assigned the type ®•, so that the induction works. Modi-
fying the definition of exact types is actually the only in-
gredient which is necessary in order to characterize lo-
termination/weak normalization.

Maximal Evaluation. The strategy mx computes NFs,
like lo. However, whereas erasable arguments do not matter
regarding the termination of hd/lo, it is necessary to ensure
that they are normalizing for mx to terminate, as explained
above. Thus, in order to capture normalization for mx, it is
necessary for erasable arguments to be typed. To do so, it
turns out to be sufficient to change the standard definition
of domain for arrow types (cf. Sec. 3.1) in order to force the
arguments to be always typed. To do so, it is sufficient to
change the definition of domains of arrow types by setting
domnb([] ⇒ U) = [®•], where nb stands for non-blind erasing,
whereas the previous standard notion for domains will be

henceforth indicated with b, standing for blind erasing: this
choice ensures that erasable arguments are always typed,
and more precisely that they are typed once with the exact
type ®•. For instance, the system giving exact measures for
mx accepts:

(ax)
y : [•] ⊢(0,0,1) y : • |

(abs)
y : [•] ⊢(1,0,1) λx .y : [] → • |

(ax)
x : [•] ⊢(0,0,1) x : • |

(•+∧)
⊩(0,0,2) I : [•] |

(app)
y : [•] ⊢(1,0,3) (λx .y)I : • |

4.2 Parametric Type System
We present in Fig. 12 a type system XS , which is parametric
w.r.t. an evaluation strategy S ∈ {hd, lo, mx}, each of them
related to head, weak and strong normalization, respectively.
As already discussed, each strategy S ∈ {hd, lo, mx} depends
on a notion of hd or full normal form (Figures 1, 6 and 10),
together with a notion of b or nb domain for arrow types
(Fig. 13). Remark, however, that the notion of codomain is
not parametric.'

&

$

%

domS (⟨ϕk ⟩k ∈K) := ∧k ∈Kdom(ϕk)
domS (I ⇒ σ) := I if I , []

domb([] ⇒ σ) := []

domnb([] ⇒ σ) := [®•] (non-deterministic choice)

codom(I ⇒ σ) := σ
codom(⟨ϕk ⟩k ∈K) := ∨k ∈Kcodom(ϕk)

Figure 13. Domains and Codomains

The table below summarizes the 3 case studies:
Strategy Normal Forms Domain

hd hd blind
lo full blind
mx full non-blind

Normal Forms. The kind of normal form (hd/full) also
determines the appropriate notions of size (|_|hd/|_|full) and
exact types (Exhd/Exfull), which are defined in Fig. 14. Note
also that rule (•S) depends on the notion of exact types.�
�

�
Exhd ::= • | [] ↛ ⟨Exhd⟩ UExS ::= ⟨ExiS ⟩i ∈I

Exfull ::= • | [®•] ↛ ⟨Exfull⟩ IExS ::= [⟨ExiS ⟩]i ∈I

Figure 14. Exact Types

Domains. The kind of domain (b/nb) determines if the
argument of a function should be typed or not when the
left-hand side of its arrow type is empty, this affects the rule
(appS).
For instance, when S = lo, lo-normal form means full-

normal form, lo-exact types means full-exact types, and
domlo() means domb().

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial'

&

$

%

x ∈ fv(t)
(β−∈)

(λx .t)u
0
→S t{x/u}

α ∈ fn(c)
(µ−∈)

(µα .c)u
0
→S µα .c{α\\u}

¬abs(t) t
e
→S t ′

t u
e
→S t ′u

(¬abs)

t
e
→S t ′

λx .t
e
→S λx .t ′

(abs−λ)
c

e
→S c ′

µα .c
e
→S µα .c ′

(abs−µ)
t

e
→S t ′

[α]t
e
→S [α]t ′

(com)

Common evaluation rules S ∈ {hd, lo, mx}

neutfull(t) u
e
→S u ′

t u
e
→S t u ′

(neut)

x < fv(t)
β−<−b

(λx .t)u
0
→S t

α < fn(c)
µ−<−b

(µα .c)u
0
→S µα .c

Computing full normal forms (S ∈ {lo, mx}) Blind erasure (S ∈ {hd, lo})

u
e
→mx u

′ x < fv(t)
(a-λ)

(λx .t)u
e
→mx (λx .t)u ′

u
e
→mx u

′ α < fn(c)
(a-µ)

(µα .c)u
e
→mx (µα .c)u ′

normfull(u) x < fv(t)
(β−<−nb)

(λx .t)u
|u |mx
→ mx t

normfull(u) α < fn(c)
(µ−<−nb)

(µα .c)u
|u |mx
→ mx µα .c

Evaluating arguments before erasure (mx)

Figure 11. A Parametric Definition of the Three Evaluation Strategies hd/lo/mx'

&

$

%

(ax)
x : [N] ⊢(0,0,1) x : N | ∅

Γ;x : I ⊢(ℓ,m,f) t : N | ∆
(abs)

Γ ⊢(ℓ+1,m,f −card(I)) λx .t : ⟨I → N⟩ | ∆

Γ ⊢(ℓ,m,f) t : N | ∆
(c)

Γ ⊢(ℓ,m,f) [α]t | ∆ ∨ α : N

Γ;x : I ⊢(ℓ,m,f) t : UExS | ∆ IExS (I)
(•S)

Γ ⊢(ℓ,m,f +1) λx .t : • | ∆

Γ ⊢(ℓ,m,f) c | ∆;α : U N = U↑

(muX)
Γ ⊢(ℓ,m+ar(N),f +1+cp(U)) µα .c : N | ∆

(Γk ⊢(ℓk ,mk ,fk) t : Nk | ∆k)k ∈K
(∧)

∧k ∈K Γk ⊩+k∈K (ℓk ,mk ,fk) t : [Nk]k ∈K | ∨k ∈K ∆k

Γt ⊢
(ℓt ,mt ,ft) t : F | ∆t Γu ⊩(ℓu ,mu ,fu) u : domS (F) | ∆u

(appS)
Γt ∧ Γu ⊢(ℓt+ℓu ,mt+mu ,ft+fu+#pF) t u : codom(F) | ∆t ∨ ∆u

Figure 12. Parametric System XS for the λµ-Calculus

Exact Derivations. A regular judgment Γ ⊢(ℓ,m,f) t :
N | ∆ is S-exact when ExS (Γ), ExS (N), ExS (∆). Similar def-
inition holds for command/auxiliary judgments. An XS -
derivation is S-exact when it concludes with an S-exact
judgment, in which case the typed object is said to be S-
exactly typable. Notice that this definition is local (pertain-
ing only the bottom judgment), in contrast to [Accattoli et al.
2018] for the case S = mx 2.

Example 4.1. Consider t = (µα .[β](y(µγ .[α]x)µγ .[α]I))I,
so that lo-evaluation gives:
t −→µ µα .[β](y(µγ .[α]x I)µγ .[α](I I)

−→β µα .[β](y(µγ .[α]x I)µγ .[α]I

which is a full-normal form of size 12, so the expected
counters are (1, 1, 12). Indeed, we sketch a lo-exact typing
in Fig. 15, where we use (∗) when several typing rules are

2More precisely, arbitrary types are used in [Accattoli et al. 2018] to type
argument of erasing functions in the case S = mx, while only exact types
can be chosen here.

applied without giving the full details of them. Since γ does
not occur free, the µγ -abstraction raises blind types that we
choose to be •. The cumulated persistence cp(·) is equal to
1 in the (muX)-rule introducing µα and counts the persis-
tent application node of x I which is created by the µ-step
(whereas it is consuming in I I). This illustrates some of
the remarks concluding Sec. 3.2. Interestingly, if we assign
the lo-exact type N2 = ⟨[•] ↛ ⟨[•] ↛ •⟩⟩ to x instead of
N1 = ⟨[•] → •⟩, the derivation concludes with

x : [N2],y : [N2] ⊢
(1,2,13) t : ⟨[•] → •, •⟩ | β : •

which does not have the good counter because it is not exact
anymore: the activation operator has transformed top-level
persistent arrows into consuming ones while typing µα .

4.3 Main Properties
Lem. 3.2 generalizes to the parametric type system, and can
be stated using all the parametric notions introduced before

Consuming and Persistent Types for Classical Logic LICS ’20, July 8–11, 2020, Saarbrücken, Germany'

&

$

%

N1 := ⟨[•] ↛ •⟩ (lo-exact) N
↑

1 = ⟨[•] → •⟩ N2 := ⟨[•] ↛ N1⟩ = ⟨[•] ↛ ⟨[•] ↛ •⟩⟩ (lo-exact)
t1 ::= µγ .[α]x t2 ::= µγ .[α]I

...

...
(∗)

x : [N1] ⊩
(0,0,2) µγ .[α]x : [•] | α : N1

...
(∗)

⊩(1,0,1) µγ .[α]I : [•] | α : N ↑

1
(∗)

x : [N1],y : [N2] ⊢
(1,0,6) (y t1)t2 : • | α : ⟨[•] ↛ •, [•] → •⟩

c+muX)
x : [N1],y : [N2] ⊢

(1,1,6+1+1=8) µα .[β](y t1) t2 : ⟨[•] → •⟩2 | β : •

...
(∗)

⊩(0,0,4) I : [•, •] | ∅
(appS)

x : [N1],y : [N2] ⊢
(1,1,8+4=12) (µα .[β]((y t1) t2))I : ⟨•⟩2 | β : •

Figure 15. Exact XS -Derivation (S = lo)

Subject reduction holds for S ∈ {hd, lo}, i.e. variable/name
assignments and types are stable under reduction, and it in-
duces a decrease of ℓ + m + f , which is strict when the
redex is typed. However, subject reduction does not hold
for S = mx when mx-steps because some subderivation may
type an erasable term, e.g. the one typing z in (λx .y)z (thus
reflecting the so-called semantic loss). This difference be-
tween hd/lo and mx is reflected in the statement of the forth-
coming Lem. 4.2. Moreover, to obtain exact measures for
every strategy S ∈ {hd, lo, mx}, we expect a decrease of
1 for each S-step (w.r.t. S-exact derivations), which indeed
holds. However, such a property cannot be proved directly
on exact derivations: induction fails because a subderivation
of an S-exact derivation is not necessarily S-exact. For in-
stance, let t u be exactly typed, ¬abs(t) but t →S λx .t ′0, then
t u →S (λx .t ′0)u →S t ′0{x/u}. Thus, t and λx .t ′0 are typed
with a consuming functional type ⟨I → N⟩: in particular,
t is not exactly typed, whereas the induction hypothesis
should be applied on the step t →S λx .t ′0. This is why we
need a weaker notion, called S-quasi-exact derivation: a
regular judgment Γ ⊢(ℓ,m,f) t : N | ∆ is S-quasi-exact if
ExS (Γ) and ExS (∆) and either ExS (N) or ¬abs(t). This gener-
alizes to command/auxiliary judgments. An XS -derivation
is S-quasi-exact when it concludes with an S-quasi-exact
judgment. A left-hand side subderivation of an S-quasi-exact
derivation is also S-quasi-exact, a property which enables
the inductive proof of the statement below.

Lemma 4.2 (Quasi-Exact Subject Reduction). Assume Φ ▷
Γ ⊢

(ℓ,m,f)
S t : N | ∆ is S-quasi-exact and t

e
→S t ′ for S ∈

{hd, lo, mx}. Then, there exists a derivation Φ′ ▷ Γ′ ⊢
(ℓ′,m′,f −e)
S

t ′ : N | ∆′ where Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that
♦ If e = 0 (e.g., if S ∈ {hd, lo}), then Γ = Γ′ and ∆ = ∆′.
♦ If t −→β t

′, then ℓ′ = ℓ − 1 andm′ =m.
♦ If t −→µt

′, then ℓ′ = ℓ andm′ =m − 1.
Moreover3, if Φ is S-exact, then Φ′ is also S-exact.

Furthermore, quasi-exact derivations also enjoy subject
expansion when S ∈ {hd, lo}, but the following weaker form
of subject expansion applies to the three cases:
3If Φ is only quasi-exact, then Φ′ is not necessarily quasi-exact.

Lemma 4.3 (Quasi-Exact Subject Expansion). Assume Φ′ ▷

Γ′ ⊢(ℓ
′,m′,f) t ′ : N | ∆′ is S-quasi-exact and t

e
→S t ′. Then

there exists a XS -derivation Φ ▷ Γ ⊢(ℓ,m,f +e) t : N | ∆ where
Γ′ ⊆ Γ, ∆′ ⊆ ∆, Exmx(Γ), Exmx(∆):

♦ If e = 0 (e.g. if S ∈ {hd, lo}), then Γ = Γ′ and ∆ = ∆′.
♦ If t −→β t

′, then ℓ = ℓ′ + 1 andm =m′;
♦ If t −→µt

′, then ℓ = ℓ′ andm =m′ + 1.
Moreover, if Φ′ is S-exact, Φ is S-exact.

Using Lemmas 3.2-2 and 4.2 we prove soundness, and
Lemmas 3.2-3 and 4.3 give completeness. We thus obtain:

Theorem 4.4 (Parametric Capture of Exact Measures). Let
S ∈ {hd, lo, mx} and t be a λµ-term. Then there is an S-exact
derivation Φ ▷ Γ ⊢(ℓ,m,f) t : N | ∆ iff t S-evaluates with an
erasure measure of e to an S-normal form of S-size f − e in
exactly ℓ β-steps andm µ-steps.

5 Conclusion
We defined type systems based on non-idempotent intersec-
tions and unions, being able to capture exact measures for
evaluation lengths and size of normal forms in the setting
of a functional language with control-operators. Our case
studies focus on three different evaluation strategies for the
λµ-calculus: head, leftmost and maximal. We prove sound-
ness and completeness properties for all of them, thus giving
both directions of each characterization.
This contribution is based on the crucial notion of per-

sistence and consumption. Moreover, it is synthesized in a
unique parametric type system subsuming the three men-
tioned strategies, thus factorizing their common proofs. This
approach is modular and gives a unified method to obtain
exact measures for different cases.
It would also be interesting to study exact measures ob-

tained by using CPS translations into the λ-calculus.
We expect to transfer the ideas in this paper to a classi-

cal sequent calculus system. We also plan to extend this
framework to other evaluation strategies such as classical
call-by-value and classical call-by-need [Ariola et al. 2011].
It would also be interesting to export the notion of persis-
tence/consumption to a categorical/denotational setting.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Delia Kesner and Pierre Vial

References
Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2018.

Tight Typings and Split bounds. PACMPL 2, ICFP (2018), 94:1–94:30.
Beniamino Accattoli and Giulio Guerrieri. 2018. Types of Fireballs. InAPLAS

(LNCS), Vol. 11275. Springer, 45–66.
Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. 2019. Types by

Need. In ESOP (LNCS), Vol. 11423. Springer, 410–439.
Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. 2011. Classical Call-by-

Need and Duality. In the 10th International Conference on Typed Lambda
Calculi and Applications (TLCA), Novi Sad, Serbia, June 1-3 (Lecture Notes
in Computer Science), Luke Ong (Ed.), Vol. 6690. Springer-Verlag, 27–44.

Henk Barendregt. 1985. The Lambda-Calculus: Its Syntax and Sematics.
Elsevier.

Alexis Bernadet and Stéphane Lengrand. 2013. Non-idempotent intersection
types and strong normalisation. Logical Methods in Computer Science 9,
4 (2013).

Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. 2020.
The Bang Calculus Revisited. Submitted.

Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-
Idempotent Intersection Types for the Lambda-Calculus. Logic Journal
of the IGPL 4, 25 (2017), 431–464.

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1978. A new type as-
signment for lambda-terms. Archive for Mathematical Logic 19 (1978),
139–156.

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1980. An extension of
the basic functionality theory for the λ-calculus. Notre Dame Journal of
Formal Logic 4 (1980), 685–693.

Daniel de Carvalho. 2007. Sémantiques de la logique linéaire et temps de
calcul. These de Doctorat. Université Aix-Marseille II.

Daniel de Carvalho. 2018. Execution time of λ-terms via denotational
semantics and intersection types. Mathematical Structures in Computer
Science 28, 7 (2018), 1169–1203.

Philippe de Groote. 1994. On the Relation between the Lambda-Mu-Calculus
and the Syntactic Theory of Sequential Control. In the 5th International
Conference on Logic Programming and Automated Reasoning (LPAR), Kiev,
Ukraine, July 16-22 (Lecture Notes in Computer Science), Frank Pfenning
(Ed.), Vol. 822. Springer-Verlag, 31–43.

Daniel J. Dougherty, Silvia Ghilezan, and Pierre Lescanne. 2008. Character-
izing strong normalization in the Curien-Herbelin symmetric lambda
calculus: Extending the Coppo-Dezani heritage. Theoretical Computer
Science 398, 1-3 (2008), 114–128.

Philippa Gardner. 1994. Discovering Needed Reductions Using Type Theory.
In Theoretical Aspects of Computer Software, International Conference
TACS ’94, April 19-22 (Lecture Notes in Computer Science), Masami Hagiya
and John C. Mitchell (Eds.), Vol. 789. Springer, 555–574.

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987),
1–102.

Timothy Griffin. 1990. A Formulae-as-Types Notion of Control. In 17th
Annual ACM Symposium on Principles of Programming Languages (POPL).
ACM Press, 47–58.

Delia Kesner and Pierre Vial. 2017. Types as Resources for Classical Natural
Deduction. In the 2nd International Conference on Formal Structures for
Computation and Deduction, FSCD 2017 (LIPIcs), Dale Miller (Ed.), Vol. 84.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 24:1–24:17.

Assaf Kfoury. 2000. A linearization of the Lambda-calculus and conse-
quences. Journal of Logic and Computation 10, 3 (2000), 411–436.

Kentaro Kikuchi and Takafumi Sakurai. 2014. A Translation of Intersection
and Union Types for the λµ-Calculus. In the 12th Asian Symposium on
Programming Languages and Systems (APLAS), Singapore, November 17-
19 (Lecture Notes in Computer Science), Jacques Garrigue (Ed.), Vol. 8858.
Springer-Verlag, 120–139.

Jean-Louis Krivine. 1993. Lambda-calculus, types andmodels. Ellis Horwood.
Jean-Louis Krivine. 2007. Realizability in classical logic. Panoramas et

synthèses 27 (2007), 197–229.

Olivier Laurent. 2003a. Krivine’s abstract machine and the lambda-mu
calculus. (2003). https://perso.ens-lyon.fr/olivier.laurent/lmkamen.pdf.

Olivier Laurent. 2003b. Polarized proof-nets and λµ-calculus. Theoretical
Computer Science 290, 1 (Jan. 2003), 161–188.

Olivier Laurent. 2004. On the denotational semantics of the untyped lambda-
mu calculus. Unpublished note.

Michel Parigot. 1992. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In International Conference on Logic Programming
and Automated Reasoning (Lecture Notes in Computer Science), Andrei
Voronkov (Ed.), Vol. 624. Springer-Verlag, 190–201.

Alexis Saurin. 2005. Separation with Streams in the lambdaµ-calculus. In
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings. IEEE Computer Society, 356–365.
https://doi.org/10.1109/LICS.2005.48

Steffen van Bakel. 2010. Sound and Complete Typing for lambda-mu. In
the Fifth Workshop on Intersection Types and Related Systems, ITRS 2010,
Edinburgh, U.K., 9th July 2010. (EPTCS), Elaine Pimentel, Betti Venneri,
and Joe B. Wells (Eds.), Vol. 45. 31–44.

Femke van Raamsdonk, Paula Severi, Morten Heine Sørensen, and Hongwei
Xi. 1999. Perpetual Reductions in Lambda-Calculus. Inf. Comput. 149, 2
(1999), 173–225.

Lionel Vaux. 2007. Convolution Lambda-Bar-Mu-Calculus. In Typed Lambda
Calculi and Applications, 8th International Conference, TLCA 2007, Paris,
France, June 26-28, 2007, Proceedings (Lecture Notes in Computer Science),
Simona Ronchi Della Rocca (Ed.), Vol. 4583. Springer-Verlag, 381–395.

