Computation of Hadwiger Number and Related
Contraction Problems: Tight Lower Bounds

Fedor V. Fomin

University of Bergen, Norway
fomin@ii.uib.no

Daniel Lokshtanov
University of California, Santa Barbara, CA, USA
daniello@ucsb.edu

Ivan Mihajlin
University of California, San Diego, CA, USA
imikhail@cs.ucsd.edu

Saket Saurabh

Department of Informatics, University of Bergen, Norway
The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University of the Negev, Beer-Sheva, Israel
meiravze@bgu.ac.il

—— Abstract

We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in
G) cannot be computed in time n°™, unless the Exponential Time Hypothesis (ETH) fails. This
resolves a well-known open question in the area of exact exponential algorithms. The technique
developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule
out the existence of n°™-time algorithms (up to ETH) for a large class of computational problems
concerning edge contractions in graphs.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Hadwiger Number, Exponential-Time Hypothesis, Exact Algorithms, Edge
Contraction Problems

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.49
Category Track A: Algorithms, Complexity and Games
Related Version The full version of this paper is available at http://arxiv.org/abs/2004.11621.

Funding Fedor V. Fomin: Research Council of Norway via the project MULTIVAL.

Daniel Lokshtanov: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant no. 715744), and United States - Israel Binational Science
Foundation grant no. 2018302.

Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant DST/SJF/MSA-
01/2017-18.

Meirav Zehavi: Israel Science Foundation grant no. 1176/18, and United States — Israel Binational
Science Foundation grant no. 2018302.

© Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi;
37 licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 49; pp. 49:1-49:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:daniello@ucsb.edu
mailto:imikhail@cs.ucsd.edu
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2020.49
http://arxiv.org/abs/2004.11621
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2

Tight Lower Bounds on the Computation of Hadwiger Number

1 Introduction

The Hadwiger number h(G) of a graph G is the largest number h for which the complete
graph K} is a minor of G. Equivalently, h(G) is the maximum size of the largest complete
graph that can be obtained from G by contracting edges. It is named after Hugo Hadwiger,
who conjectured in 1943 that the Hadwiger number of G is always at least as large as its
chromatic number. According to Bollobas, Catlin, and Erdds, this conjecture remains “one
of the deepest unsolved problems in graph theory” [4].

The Hadwiger number of an n-vertex graph G can be easily computed in time n®(
by brute-forcing through all possible partitions of the vertex set of G into connected sets,
contracting each set into one vertex and checking whether the resulting graph is a complete
graph. The question whether the Hadwiger number of a graph can be computed in single-
exponential 29 time was previously asked in [1, 6, 13]. Our main result provides a negative
answer to this open question.

» Theorem 1. Unless the Exponential Time Hypothesis (ETH) is false, there does not exist
an algorithm computing the Hadwiger number of an n-vertex graph in time n°™.

The interest in the complexity of the Hadwiger number is naturally explained by the
recent developments in the area of exact exponential algorithms, that is, algorithms solving
intractable problems significantly faster than the trivial exhaustive search, though still
in exponential time [8]. Within the last decade, significant progress on upper and lower
bounds of exponential algorithms has been achieved. Drastic improvements over brute-force
algorithms were obtained for a number of fundamental problems like GRAPH COLORING [3]
and HAMILTONICITY [2]. On the other hand, by making use of the ETH, lower bounds could
be obtained for 2-CSP [15] or for SUBGRAPH ISOMORPHISM and GRAPH HOMOMORPHISM |[6].

GRAPH MINOR (deciding whether a graph G contains a graph H as a minor) is a
fundamental problem in graph theory and graph algorithms. GRAPH MINOR could be seen
as special case of a general graph embedding problem where one wants to embed a graph
H into graph G. In what follows we will use n to denote the number of vertices in G and
h to denote the number of vertices in H. By the theorem of Robertson and Seymour [14],
there exists a computable function f and an algorithm that, for given graphs G and H,
checks in time f(h) - n® whether H is a minor of G. Thus the problem is fixed-parameter
tractable (FPT) being parameterized by H. On the other hand, Cygan et al. [6] proved
that unless the ETH fails, this problem cannot be solved in time n°™ even in the case when
|[V(G)| = |[V(H)|. Other interesting embedding problems that are strongly related to GRAPH
MINOR include the following problems.

SUBGRAPH ISOMORPHISM: Given two graphs G and H, decide whether G contains a

subgraph isomorphic to H. This problem cannot be solved in time n°(™) when |V (G)| =

|V (H)|, unless the ETH fails [6]. In the special case called CLIQUE, when H is a clique, a

brute-force algorithm checking for every vertex subset of G whether it is a clique of size

h solves the problem in time n®). The same algorithm also runs in single-exponential

time O(2"n?). It is also known that CLIQUE is W[1]-hard parameterized by h and cannot

be solved in time f(h)-n°™ for any function f unless the ETH fails [7, 5].

GRAPH HOMOMORPHISM: Given two graphs G and H, decide whether there exists a

homomorphism from G to H. (A homomorphism G — H from an undirected graph G

to an undirected graph H is a mapping from the vertex set of G to that of H such that

the image of every edge of G is an edge of H.) This problem is trivially solvable in time

RO and an algorithm of running time h°("™ for this problem would yield the failure of

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

the ETH [6]. However, for the special case of H being a clique, GRAPH HOMOMORPHISM
is equivalent to h-COLORING (deciding whether the chromatic number of G is at most h),
and thus is solvable in single-exponential time 2" - @) [3, 12]. When the graph G is a
complete graph, the problem is equivalent to finding a clique of size n in H, and then is
solvable in time 2" - RO,

ToPOLOGICAL GRAPH MINOR: Given two graphs G and H, decide whether G contains
H as a topological minor. (We say that a graph H is a subdivision of a graph G if G
can be obtained from H by contracting only edges incident with at least one vertex of
degree two. A graph H is called a topological minor of a graph G if a subdivision of H
is isomorphic to a subgraph of G.) This problem is, perhaps, the closest “relative” of
GRAPH MINOR. Grohe et al. [11] gave an algorithm of running time f(h) - n3 for this
problem for some computable function f. Similar to GRAPH MINOR and SUBGRAPH
ISOMORPHISM, this problem cannot be solved in time n°(™ when |V (G)| = |V (H)|, unless
the ETH fails [6]. However for the special case of the problem with H being a complete
graph, Lingas and Wahlen [13] gave a single-exponential algorithm solving the problem
in time 2°0(").

Thus all the above graph embedding “relatives” of GRAPH MINOR are solvable in
single-exponential time when graph H is a clique. However, from the perspective of exact
exponential algorithms, Theorem 1 implies that finding the largest clique minor is the most
difficult problem out of them all. This is why we find the lower bound provided by Theorem 1
surprising. Moreover, from the perspective of parameterized complexity, finding a clique
minor of size h, which is FPT, is actually easier than finding a clique (as a subgraph) of size h,
which is W[1]-hard, as well as from finding an h-coloring of a graph, which is para-NP-hard.

Theorem 1 also answers another question of Cygan et al. [6], who asked whether deciding
if a graph H can be obtained from a graph G only by edge contractions, could be resolved
in single-exponential time. By Theorem 1, the existence of such an algorithm is highly
unlikely even when the graph H is a complete graph. Moreover, the technique developed
to prove Theorem 1, appears to be extremely useful to rule out the existence of n°("™-time
algorithms for various contraction problems. We formalize our results with the following
F-CONTRACTION problem. Let F be a graph class. Given a graph G and t € N, the task is
to decide whether there exists a subset F' C E(Q) of size at most ¢ such that G/F € F (where
G/F is the graph obtained from G by contracting the edges in F'). We prove that in each
of the cases of F-CONTRACTION where F is the family of chordal graphs, interval graphs,
proper interval graphs, threshold graphs, trivially perfect graphs, split graphs, complete split
graphs and perfect graphs, unless the ETH fails, 7~-CONTRACTION is not solvable in time
n°(") | For lack of space, some of these results are relegated to the full version of this paper
(see [9]).

Technical Details. A summary of the reductions presented in this paper is given in Fig. 1.
To prove our lower bounds, we first revisit the proof of Cygan et al. [6] for the ETH-hardness
of a problem called L1ST SUBGRAPH ISOMORPHISM. Informally, in this problem we are given
two graphs G and H on the same number of vertices, as well as a list of vertices in H for
each vertex in GG, and we need to find a copy of G in H so that each vertex u in G is mapped
to a vertex v in H that belongs to its list (i.e. v belongs to the list of). We prove that
the instances produced by the reduction (after some modification) of [6] have a very useful
property that we crucially exploit later. Specifically, we construct a proper coloring of G as
well as a proper coloring of H, and show that every vertex v in H that belongs to the list of
some vertex u is, in fact, of the same color as u.

49:3

ICALP 2020

49:4

Tight Lower Bounds on the Computation of Hadwiger Number

‘ Properly Colored List Subgraph Homomorphism ‘

l

‘ Properly Colored List Subgraph Isomorphism ‘

Cross Matching

Noisy Structured Clique Contraction
special case of Clique Contraction

Hadwiger Number Split Contraction, Perfect Contraction F-Contraction

Complete Split Contraction special case of Chordal Contraction,

Interval Contraction, Proper Interval

Contraction, Threshold Contraction,
Trivially Perfect Contraction

Figure 1 A summary of the problems considered in this paper, and the reductions between them.

Having proved the above, we turn to prove the ETH-hardness of a special case of CLIQUE
CONTRACTION where the input graph is highly structured. To this end, we introduce an
intermediate problem called CROSS MATCHING. Informally, in this problem we are given
a graph L with a partition (4, B) of its vertex set, and need to find a perfect matching
between A and B whose contraction gives a clique. To see the connection between this
problem and LIST SUBGRAPH ISOMORPHISM, think of the subgraph of L induced by one side
of the partition — say, A — as a representation of the complement of GG, and the subgraph of
L induced by the other side of the partition as a representation of H. Then, the edges that
go across A and B in a perfect matching can be thought of as a mapping of the vertices of G
to the vertices of H. The crossing edges of L are easily defined such that necessarily a vertex
of G can only be matched to a vertex in its list. In particular, we would like to enforce that
every “non-edge” of the complement of G (which corresponds to an edge of G) would have
to be mapped to an edge of H in order to obtain a clique. However, the troublesome part is
that non-edges of the complement of G may also be “filled” (to eventually get a clique) using
crossing edges rather than only edges of H. To argue that this critical issue does not arise,
we crucially rely on the proper colorings of G and H.

Now, for the connection between CROSS MATCHING and CLIQUE CONTRACTION, note
that a solution to an instance of CROSS MATCHING is clearly a solution to the instance
of CLIQUE CONTRACTION defined by the same graph, but the other direction is not true.
By adding certain vertices and edges to the graph of an instance of CROSS MATCHING, we
enforce all solutions to be perfect matchings between A and B. In particular, we construct the
instances of CLIQUE CONTRACTION in a highly structured manner that allows us to derive
not only the ETH-hardness of CLIQUE CONTRACTION itself, but to build upon them and
further derive ETH-hardness for a wide variety of other contraction problems. In particular,
we show that the addition of “noise” (that is, extra vertices and edges) to any structured
instance of CLIQUE CONTRACTION has very limited effect. Roughly speaking, we show that
the edges in the “noise” and the edges going across the “noise” and core of the graph (that
is, the original vertices corresponding to the structured instance of CLIQUE CONTRACTION)
are not “helpful” when trying to create a clique on the core (i.e. it is not helpful to try to
use these edges in order to fill non-edges between vertices in the core). Depending on the
contraction problem at hand, the noise is slightly different, but the proof technique stays the
same — first showing that the core must yield a clique, and then using the argument above
(in fact, in all cases but that of perfect graphs, we are able to invoke the argument as a black
box) to show that the noise is, in a sense, irrelevant.

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

Preliminaries. As we only use standard notations, we present them only in the full version
of this paper.

2 Lower Bound: Prop-Colored List Subgraph Isomorphism

In this section we build upon the work of Cygan et al. [6] and show a lower bound for a

problem called PROPERLY COLORED LIST SUBGRAPH IsoMORPHISM (Prop-CoL LSI).

Intuitively, PRoP-CoL LSI is a variant of SPANNING SUBGRAPH ISOMORPHISM where given
two graphs G and H, we ask whether G is isomorphic to some spanning subgraph of H. The
input to the variant consists also of proper colorings of G and H and an additional labeling
of vertices in G by subsets of vertices in H of the same color, so that each vertex in G can
be mapped only to vertices in H contained in its list. Formally, it is defined as follows.

PROPERLY COLORED LIST SUBGRAPH ISOMORPHISM (ProP-CoL LSI)

Input: Graphs G and H with proper colorings ¢ : V(G) = {1,...,k}and ey : V(H) —
{1,...,k} for some k € N, respectively, and a function £ : V(G) — 2V#) such that for
every u € V(G) and v € l(u), ca(u) = cy(v).

Question: Does there exist a bijective function ¢ : V(G) — V(H) such that (4) for
every {u,v} € E(G), {¢(u),po(v)} € E(H), and (ii) for every u € V(G), p(u) € £(u)?

Notice that as the function ¢ above is bijective rather than only injective, we seek a
spanning subgraph. Our objective is to prove the following statement.

» Lemma 2. Unless the ETH is false, there does not exist an algorithm that solves PROP-COL
LSI in time n°™ where n = |V (G)|.

In [6], the authors considered the two problems defined below. Intuitively, the second is
defined as PropP-CoL LSI when no proper colorings of H and G are given (and hence the
labeling of vertices in G is not restricted accordingly); the first is defined as the second when
we seek a homomorphism rather than an isomorphism (i.e., the sought function ¢ may not
be injective) and also |V (G)| may not be equal to |V (H)| (thus ¢ may neither be onto).

L1sT SUBGRAPH HOMOMORPHISM (LSH)

Input: Graphs G and H, and a function ¢ : V(G) — 2V) |

Question: Does there exist a function ¢ : V(G) — V(H) such that (i) for every
{u,v} € E(G), {¢(u),p(v)} € E(H), and (i) for every u € V(G), ¢(u) € £(u)?

LisT SUBGRAPH ISOMORPHISM (LSI)

Input: Graphs G and H where |V(G)| = |V(H)|, and a function £ : V(G) — 2V,
Question: Does there exist a bijective function ¢ : V(G) — V(H) such that (i) for
every {u,v} € E(G), {¢(u),p(v)} € E(H), and (ii) for every u € V(G), ¢(u) € £(u)?

The proof of hardness of LSI consists of two parts:
Showing ETH-hardness of LSH.
Giving a fine-grained reduction from LSH to LSI.

We cannot use the hardness of LLSI as a black box because PROP-CoOL LSI is a special
case of LSI. Nevertheless, we will prove that the instances generated by the reduction (with
a minor crucial modification) of Cygan et al. [6] have the additional properties required to
make them instances of our special case.

49:5

ICALP 2020

49:6

Tight Lower Bounds on the Computation of Hadwiger Number

Figure 2 The reduction in Definition 4. The vertices of G are depicted by black shapes, where
each distinct shape represents a different color (say, square is 1, rectangle is 2 and oval is 3), and
the vertices of G are depicted by circles enclosing the vertex sets identifies with them, where the
color of a vertex is the color of its circle (say, black is 1, green is 2, yellow is 3, red is 4, blue is 5
and grey is 6). Edges (of both graphs) are depicted by black lines. (The graph H is not shown).
Then, the function ¢p is defined as follows: ¢p(1) = 2z,¢5(2) = ¢5(5) = w,¢ps(3) =z, ¢r(4) =0,
and ¢p(6) = y. Moreover, the function ¢p/ is defined as follows: ¢p/(1) = ¢p/(2) = ¢p/(4) =
u, ¢p(3) = v, and ¢p/(5) = ¢p/(6) = 0. With respect to B and B’, the labeling ¢ is defined
as follows: ¢(B) = {(R,4) : R[1] # 0,R[2] = R[5] # 0,R[3] # 0,R[4] = 0,R[6] # 0}, and
U(B') = {(R,5) : R[1] = R[2] = R[4] # 0, R[3] # 0, R[5] = R[6] = 0}.

Lower Bound: Properly Colored Subgraph Homomorphism. Adapting the scheme of
Cygan et al. [6] to our purpose, we will first show that finding a homomorphism remains
hard if it has to preserve a given proper coloring:

PROPERLY COLORED LIST SUBGRAPH HOMOMORPHISM (PrOP-CoOL LSH)

Input: Graphs G and H with proper colorings ¢ : V(G) — {1,...,k}and cy : V(H) —
{1,...,k} for some k € N, respectively, and a function £ : V(G) — 2V#) such that for
every u € V(G) and v € l(u), cg(u) = cg(v).

Question: Does there exist a function ¢ : V(G) — V(H) such that (i) for every
{u,v} € E(G), {p(u),p(v)} € E(H), and (%) for every u € V(G), ¢(u) € £(u)?

In [6], the authors gave a reduction from the 3-COLORING problem on n-vertex graphs of
degree 4 (which is known not to be solvable in time 2°(™) unless the ETH fails), which generates
equivalent instances (G', H',¢) of LSH where both |V (G')| and |V (H’)| are bounded by
O(i5e7)- This proves that LSH is not solvable in time n°™ where n = max{|V(G)|, |V (H)|}
unless the ETH fails. For their reduction, Cygan et al. [6] considered the notion of a
grouping (also known as quotient graph) G of a graph G is a graph with vertex set V(G) =
{Bi,Ba,...,B;} where (By, Bs,...,B;) is a partition of V(G) for some t € N and for any
distinct 4, j € {1,...,t}, the vertices B; and B, are adjacent in G if and only if there exist
u € B; and v € Bj that are adjacent in G. Specifically, they computed a grouping with a

coloring having specific properties as stated in the following lemma (see also Fig. 2.).

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

» Lemma 3 (Lemma 3.2 in [6]). For any constant d > 1, there exist positive integers A = A(d),
ng = no(d) and a polynomial time algorithm that for a given graph G on n > ng vertices of
mazimum degree d and a positive integer r < \ /5%, finds a grouping G of G and a coloring

: V(G) — [Ar] with the following properties:

V(G < V(G)]/r; B

The coloring ¢ is a proper coloring of G2;!

Each vertex of G is an independent set in G;

For any edge {B;, B;} € E(G), there exists ezactly one pair (u,v) € B; x B; such that
{u,v} € E(G).

o =0

Now, we describe the reduction of [6]. Here, without loss of generality, it is assumed that
G has no isolated vertices, else they can be removed. An explanation of the intuition behind
this somewhat technical definition is given below it.

» Definition 4. For any instance G of 3-COLORING where G has degree d and a positive

integer v = o(\/[V(G)|), the instance reduce(G) = (G, H,{) of LSH is defined as follows.
The graph G. Let G and ¢: V(G) — {1,2,..., L} be the grouping and coloring given by
Lemma 3 where L = \(d)r. Additionally, for each B € V(G), define ¢ : {1,2,...,L} —
B U {0} as follows: for any i € {1,2,...,L}, if there exists (u,v, B’) such that uw € B
and v € B', {u,v} € E(G) and ¢(B') =i, then ¢p(i) = u, and otherwise ¢p(i) = 0.2
The graph H. Let V(H) = {(R,]) : R € {0,1,2,3}-,1 € L}* and E(H) = {{(R,1), (R,
)} : R[I'T# R[]}
The labeling (. For any B € V(G), let {(B) contain all vertices (R,1) € V(H) such
that ¢(B) =1, and there exists f : B — {1,2,3} such that for alli € {1,2,...,L}, either
¢p(i) = R[i] = 0 or both ¢p(i) # 0 and f(¢p(i)) = R[i].

Intuitively, for every vertex B € V(G), the function ¢p can be interpreted as follows.

It is the assignment, for every possible color ¢ € {1,..., L}, of the unique vertex u within
the vertex set identified with B itself that is adjacent to some vertex in the vertex subset
identified with some vertex B’ € V(G) colored i, if such a vertex u exists (else the assignment
is of 0). In a sense, B thus stores the information on the identity of each vertex within
it that is adjacent (in G) to some vertex outside of it, where each such internal vertex is
uniquely accessed by specifying the color of the vertex in G whose identified vertex set
contains the neighbor. With respect to the graph H and labeling ¢, we interpret each vertex

(R,]) € V(ﬁ) as a “placeholder” (i.e. potential assignment of the sought function ¢) for any

vertex B € V(G) that “complies with the pattern encoded by the pair (R,1)” as follows.

First and straightforwardly, B must be colored [. Here, we remind that the colors of vertices

in G belong to {1,..., L}, while vertices in G are colored 1, 2 or 3 only. Then, the second

requirement is that we can recolor (by f) the vertices in B so that the color of each vertex

in B that is adjacent (in G) to some vertex outside B is as encoded by the vector R — that

is, for each color ¢ € {1,..., L}, if the vertex ¢p(4) is defined (i.e., ¢p(i) # 0), then its color

(which is 1,2 or 3) must be equal to the i-th entry of R. (More intuition is given in Fig. 2.)
Now, we state the correctness of the reduction.

! The square G2 of a graph G is the graph on vertex set V(G) and edge set {{u,v} : {u,v} € E(G) or
there exists w € V(G) with {u,w}, {v,w} € E(G)}.

2 The uniqueness of u (if it exists), and thus the validity of ¢, follows from Properties 2 and 4 in Lemma 3.

3 That is, R is a vector with L entries where each entry is 0, 1, 2 or 3.

49:7

ICALP 2020

49:8

Tight Lower Bounds on the Computation of Hadwiger Number

» Lemma 5 (Lemma 3.3 in [6]). For any instance G of 3-COLORING where G is an n-vertex

graph of degree d, and a positive integer r = o(\/[V(G)]), the instance reduce(G) = (G, H, ()

is computable in time polynomial in the sizes of G, G and ﬁ, and has the following properties.
G is a Yes-instance of 3-COLORING if and only if (G, H,!) is a Yes-instance of LSH.
\V(G)| < n/r, and |V(H)| < ~(d)" where ~ is some computable function of d.

We next prove that we can add colorings to the instance reduce(G) = (G, H,¢) of LSH
in order to cast it as an instance of PrROP-CoL LSH while making a minor mandatory
modification to the graph H.

» Lemma 6. Given an instance reduce(G) :~(C~}',P~I,€) of LSH, an_equivalent instance
(G,H', cz,ci,,0) of PROP-COL LSH, where H' is a subgraph of H, is computable in
polynomial time.

Proof. Define c; = ¢ where ¢ is the coloring of G in Definition 4. Additionally, let H’ be the

subgraph of H induced by the vertex set {(R,1) € V(H) : there exists B € V(G) such that
(R,1) € {(B)}. Then, define c, : V(H') — {1,2,..., L} as follows: for any (R,l) € V(H'),
define ¢z, ((R,1)) = [. Notice that, by the definition of V(ﬁ'), every set assigned by ¢ is

subset of V(H'). L
First, we assert that (G, H’, (T cﬁ,,é) is an instance of PRoP-CoL LSH. To this end,
we need to verify that the thr«ie following properties hold.
1. ¢g is a proper coloring of G.
2. ¢y, Is a proper coloring of H'.
3. For every B € V(G) and (R, 1) € {(B), it holds that c5(B) = cg,((R,1)).
By the definition of ¢z, it is a proper coloring of éQ, which is a supergraph of G. Thus,

cs is a proper coloring of G.

Now, we argue that cz, is a proper coloring of H’. To this end, consider some edge
{(R,1),(R',I')} € E(H'). We need to show that e (R,1)) # ez, (R, 1')). By the definition
of c,, we have that ¢, ((R,1)) = l and ¢, ((R',1")) = I, and therefore it suffices to show that
I #1'. By the definition of E(H) (which is a superset of E(H')), we have that R[l'] # R'[l].
Thus, necessarily at least one among R[l'] and R’[l] is not 0, and so we suppose w.l.o.g. that
R[l'] is not 0. Furthermore, since (R,1) € V(H'), we have that there exists B € E(G) such
that (R,1) € ¢(B). Thus,

¢(B) = 1.

There exists f: B — {1,2,3} such that for all i € {1,2,..., L}, either ¢p(i) = R[i] =0

or both ¢p(i) # 0 and f(¢p (7)) = R[i].

From the second property, and because R[l'] # 0, we necessarily have that both ¢g(I') # 0
and f(¢p(l')) = R[l']. In particular, by the definition of ¢g, having ¢5(I') # 0 means
that there exists (u,v, B’) such that u € B, v € B', {u,v} € E(G) and ¢(B’) =1'. By the
definition of G as a grouping of G, having v € B, v € B’ and {u,v} € E(G) implies that
{B, B’} € E(G). Because ¢ is a proper coloring of G, this means that &(B) # &(B'). Since
¢(B) =1and ¢(B’') =1, we derive that | # I’. Hence, c~, is indeed a proper coloring of H'.

To conclude that (G, H', ¢~

Nt cﬁﬂﬁ) is indeed an instance of PROP-CoL LSH, it remains to

assert that for every B € V(G) and (R, 1) € {(B), it holds that c5(B) = c,((R,1)). To this
end, consider some B € V(G) and (R,) € ¢(B). By the definition of ¢ (recall Definition 4),
(R.1) € {(B) implies that ¢(B) = l. As c5 = ¢, we have that c5z(B) = [. Moreover, the

definition of ¢, directly implies that ¢z, ((R,1)) = I. Thus, c5(B) = cg,((R,1)).

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

Finally, we argue that (G, H,¢) is a Yes-instance of LSH if and only if (G, H’ C ¢ l)
is a Yes-instance of PROP-CoOL LSH. In one direction, because H'isa subgraph of H it is
immediate that if (G, H', ¢g: ¢, 0) is a Yes-instance of PrRop-CoL LSH, then so is (G, H,0).
For the other direction, suppose that (G, H,{) is a Yes-instance of LSH. Thus, there exists a
function ¢ : V/(G) — V(H) such that (i) for every {B, B’} € E(G), {¢(B),¢(B')} € E(H),
and (ii) for every B € V(G), ¢(B) € {(B). In particular, directly by the definition of
V(H'), the second condition implies that for every B € V(G), it holds that ¢(B) € V(H’)
Thus, because H’ is an induced subgraph of H, it holds that for every {B, B’} € E(G),
{¢(B), o(B")} € E(H'). Therefore, ¢ witnesses that (G, H’ ,¢5 Cg.e) is a Yes-instance of

Pror-CoL LSH. |

We are now ready to assert the hardness of PROP-CoOL LSH. The proof, based on
Lemmas 3, 5 and 6, can be found in the full version of this paper.

» Lemma 7. Unless the ETH is false, there does not exist an algorithm that solves PROP-COL
LSH in time n°™ where n = max(|V(G)|, |V (H)|).

From Graph Homomorphism to Subgraph Isomorphism. In this part, we observe that
the reduction of [6] from LSH to LST can be essentially used as is to serve as a reduction
from PropP-CoL LSH to PROP-CoL LSI. For the sake of completeness, we give the full
details (and the conclusion of the proof of Lemma 2) in the full version of this paper.

3 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for CLIQUE CONTRACTION, we prove a
lower bound for an intermediate problem called CROSS MATCHING that somewhat resembles
CLIQUE CONTRACTION, and which is defined as follows.

CROSS MATCHING

Input: A graph G with a partition (A, B) of V(G) where |A| = |B].

Question: Does there exist a perfect matching M in G such that every edge in M has
one endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

» Lemma 8. Unless the ETH is false, there does not exist an algorithm that solves CROSS
MATCHING in time n°™ where n = |A|.

Proof. Towards a contradiction, suppose that there exists an algorithm, denoted by Matchin-
gAlg, that solves CROSS MATCHING in time n°(™ where n is the number of vertices in the
set A in the input. We will show that this implies the existence of an algorithm, denoted by
LSIAlg, that solves PROP-CoOL LSI in time n°™ where n is the number of vertices in the
input graph G, thereby contradicting Lemma 2 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G, H,cg,cm, £) of
Prop-CoL LSI, LSIAlg constructs an instance (L, A, B) of CROSS MATCHING as follows
(see Fig. 3):

V(L) = V@ UV(H).
E()=FE(G)UEH)U{{u,v} :ueV(G),v € L(u)}.
=V(G) and B =V (H).

49:9

ICALP 2020

49:10

Tight Lower Bounds on the Computation of Hadwiger Number

L
G H
v e L(u)

Figure 3 The construction of an instance of CROSS MATCHING in the proof of Lemma 8.

Then, LSIAlg calls MatchingAlg with (L, A, B) as input, and returns the answer of this call.

Denote n = |[V(G)|, and notice that |A| = |B| = n. Thus, because MatchingAlg runs in
time |A|°0AD = no(™ 50 does LSIAlg.

For the correctness of the algorithm, first suppose that (G, H, cg, cm, £) is a Yes-instance
of Prop-CoL LSI. This means that there exists a bijective function ¢ : V(G) — V(H)
such that (i) for every {u,v} € E(G), {¢(u),p(v)} € E(H), and (ii) for every u € V(G),
o(u) € L(u). Having ¢ at hand, we will show that (L, A, B) is a Yes-instance, which will
imply that the call to MatchingAlg with (L, A, B) as input returns Yes, and hence LSIAlg
returns Yes.

Based on ¢, we define a subset M C E(L) as follows: M = {{u,¢(u)} : u € A}. Notice
that the containment of M in E(L) follows from the definition of F(L) and Condition (%)
above. Moreover, by the definition of A, B and because ¢ is bijective, it further follows that
M is a perfect matching in L such that every edge in M has one endpoint in A and the other
in B. Thus, to conclude that (L, A, B) is a Yes-instance, it remains to argue that L/M is
a clique. To this end, we consider two arbitrary vertices x and y of L/M, and prove that
they are adjacent in L/M. Necessarily x is a vertex that replaced two vertices u € A and
u’ € B such that {u,u'} € M, and y is a vertex that replaced two vertices v € A\ {u} and
v' € B\ {u'} such that {v,v'} € M. By the definition of contraction, to show that x and
y are adjacent in L/M, it suffices to show that u and v are adjacent in L or v’ and v’ are
adjacent in L (or both). To this end, suppose that u and v are not adjacent in L, else we are
done. By the definition of E(L), this means that {u,v} ¢ F(G) and hence {u,v} € E(G).
By Condition (i) above, we derive that {p(u),p(v)} € E(H). By the definition of M, we
know that v = p(u) and v' = ¢(v), therefore {v’,v'} € E(H). In turn, by the definition of
E(L), we get that {u/,v'} € E(L). Thus, the proof of the forward direction is complete.

Now, suppose that LSIAlg returns Yes, which means that the call to MatchingAlg with
(L, A, B) returns Yes. Thus, (L, A, B) is a Yes-instance, which means that there exists a
perfect matching M in G such that every edge in M has one endpoint in A and the other in
B, and G/M is a clique. We define a function ¢ : A — B as follows. For every u € V(G),
let p(u) = v where v is the unique vertex in B such that {u,v} € M; the existence and
uniqueness of v follows from the supposition that M is a perfect matching such that every
edge in M has one endpoint in A and the other in B. Furthermore, by the definition of A, B
and the edges in E(L) with one endpoint in A and the other in B, it directly follows that
¢ is a bijective mapping between V(G) and V(H) such that for every u € V(G), it holds
that ¢(u) € L(u). Thus, it remains to argue that for every edge {u,v} € E(G), it holds
that {p(u), p(v)} € E(H). To this end, consider some arbitrary edge {u,v} € E(G), and
denote u’ = p(u) and v' = p(v). Because L/M is a clique and M is a matching that, by the
definition of ¢, necessarily contains both {u, '} and {v,v'}, we derive that at least one of
the following four conditions must be satisfied: (7) {u,v} € E(L); (ii) {v',v'} € E(L); (i)

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

{u,v'} € B(L); (iv) {v,u'} € E(L). Because {u,v} € E(G), we have that {u,v} ¢ E(G) and
therefore {u,v} ¢ E(L). Thus, we are left with Conditions (%), (iii) and (iv). Now, we will
crucially rely on the proper colorings of G and H to rule out the satisfaction of Conditions
(#ii) and (iv).

> Claim 9. For any two edges {z,2'},{y,y'} € E(L) such that {z,y} € E(G) and
a2,y € V(H), it holds that neither {z,y'} nor {y, 2’} belongs to E(L).

Proof of Claim 9. Because c¢ is a proper coloring of G and {z,y} € E(G), it holds that
ca(z) # zg(y). Because {x,2'},{y,v'} € E(L), z,y € V(G) and o', y’ € V(H), and by the
definition of F(L), it holds that 2’ € L(z) and y' € L(y), and therefore cg(z) = cy(2’) and
ca(y) = ea(y'). Thus, cg(z) # cu(y') and cg(y) # cu(2'), implying that ' ¢ L(x) and
' ¢ L(y). In turn, by the definition of F(L), this means that neither {x,y'} nor {y,2'}
belongs to E(L). This completes the proof of the claim. <

We now return to the proof of the lemma. By Claim 9, we are only left with Condition (i),
that is, {u/,v'} € E(L). However, by the definition of E(L), this means that {u',v'} € E(H).
As argued earlier, this completes the proof of the reverse direction. <

4 Lower Bounds: Clique Contraction and Hadwiger Number

In this section, we prove a lower bound for CLIQUE CONTRACTION and consequently for
HADWIGER NUMBER, defined as follows.

CLIQUE CONTRACTION
Input: A graph G and ¢t € N.
Question: Is there a subset F' C E(G) of size at most ¢ such that G/F is a clique?

HADWIGER NUMBER
Input: A graph G and h € N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for
HADWIGER NUMBER (called Theorem 1 in the introduction) will follow as a corollary.

» Theorem 10. Unless the ETH is false, there does not exist an algorithm that solves CLIQUE
CONTRACTION in time n®™ where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem called NO1SY STRUCTURED CLIQUE CONTRAC-
TION (which will arise in Section 5) along with a special case of it that is also a special case
of CLIQUE CONTRACTION. Then, we will prove a crucial property of instances of No1sy
STRUCTURED CLIQUE CONTRACTION, and afterwards we will use this property to prove
Theorem 10 and its corollary. The definition of the new problem is as follows (see Fig. 4).

49:11

ICALP 2020

49:12

Tight Lower Bounds on the Computation of Hadwiger Number

Figure 4 An instance of NOISY STRUCTURED CLIQUE CONTRACTION where dashed lines represent
non-edges.

Noisy STRUCTURED CLIQUE CONTRACTION

Input: A graph G on at least 6n vertices for some n € N, and a partition (A, B,C, D, N)
of V(@) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to any
vertex in D, and no vertex in B is adjacent to any vertex in C'.

Question: Does there exist a subset F' C F(G) of size at most n such that G[AU B U
CUDUX]/F is a clique,” where X = {u € N : there exists a vertex v € AUBUCUD
such that v and v belong to the same connected component of G[F]}?

% Note that F' might contain edges outside G[AU B U C U D U X]. Then, we slightly abuse notation
so that GIJAU BUC U D U X]/F refers to GGAUBUCUDUX]/(FNE(G[AUBUCU DU X))).

Intuitively, the vertex set X consists of the noise (represented by N) that “interacts” with
non-noise (represented by V(G) \ N) through contracted edges (in F'), i.e. the vertices in N
that lie together with at least one vertex in V(G) \ N in a component that will be contracted
and thereby replaced by a single vertex. We refer to the special case of NOISY STRUCTURED
CLIQUE CONTRACTION where N = () as STRUCTURED CLIQUE CONTRACTION. Note that
STRUCTURED CLIQUE CONTRACTION is also a special case of CLIQUE CONTRACTION.

Solutions to instances of NOISY STRUCTURED CLIQUE CONTRACTION exhibit the fol-
lowing property, which will be crucial in the proof of Theorem 10 as well as results in
Section 5.

» Lemma 11. Let F be a solution to an instance (G, A, B,C, D, N,n) of NOISY STRUCTURED
CLIQUE CONTRACTION. Then, F is a matching of size n in G such that each edge in F' has
one endpoint in A and the other in B.

Proof. We first argue that every vertex in A U B is incident to at least one edge in F.
Targeting a contradiction, suppose that there exists a vertex u € AU B that is not incident
to any edge in F. Because [AUBUCUD|=6n, |F|<nand GAUBUCUDUX]/F is a
clique (where the last two properties follow from the supposition that F' is a solution), it
holds that GJAUBUCUDUX]/F is a clique on at least 5n+ | X| vertices. Hence, the degree
of every vertex in GJAUBUC U DU X]/F, and in particular of u, should be 5n — 1+ |X| in
G[AUBUCUDU X]/F. However, because no vertex in A is adjacent to any vertex in D
and no vertex in B is adjacent to any vertex in C, the degree of any vertex in AU B, and in
particular of u, is at most [AUB|—1+4|CUD|/2+|X| =4n—1+|X]| in GJAUBUCUDUX].
Because u is not incident to any edge in F, its degree in GJAU BUC U D U X]/F is at
most its degree in GJAU BUC U D U X]. This is a contradiction, thus we get that indeed
every vertex in AU B is incident to at least one edge in F'. From this, because |F| < n and
|A U B| = 2n, we derive that F' is a perfect matching in G[A U B].

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

Figure 5 The construction of an instance of STRUCTURED CLIQUE CONTRACTION in the proof of
Lemma 12 where dashed lines represent non-edges.

It remains to argue that every edge in F' has one endpoint in A and the other in B.
Targeting a contradiction, suppose that this is false. Because F' is a perfect matching in
G[A U BJ, this means that there exist two vertices a,a’ € A such that {a,a'} € F. By the
definition of NoI1sy STRUCTURED CLIQUE CONTRACTION, neither a nor o’ is adjacent to
any vertex in D. Moreover, note that D C V(G[AU BUC U DU X]|/F). In particular,
the vertex of GJAU BUC U DU X]/F yielded by the contraction of {a,a’} is not adjacent
to any vertex of D in G[AU BUC U D U X]/F. However, this is a contradiction because
G[AUBUCUDUX]/F is a clique. <

We now prove a lower bound for STRUCTURED CLIQUE CONTRACTION. Because it is a
special case of CLIQUE CONTRACTION, this will directly yield the correctness of Theorem 10.

» Lemma 12. Unless the ETH 1is false, there does not exist an algorithm that solves
STRUCTURED CLIQUE CONTRACTION in time n°™) where n = |V (G)].

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliCon-
Alg, that solves STRUCTURED CLIQUE CONTRACTION in time n°("™ where n is the number
of vertices in the input graph. We will show that this implies the existence of an algorithm,
denoted by MatchingAlg, that solves CROSS MATCHING in time n°(™) where n is the size of
the set A in the input, thereby contradicting Lemma 8 and hence completing the proof.

We define the execution of MatchingAlg as follows. Given an instance (G, A, B) of CROSS
MATCHING, MatchingAlg constructs an instance (H, A, B,C, D,n) of STRUCTURED CLIQUE
CONTRACTION as follows (see Fig. 5):

Let n = |A[, and K be a clique on 4n new vertices. Let (C, D) be a partition of V(K)

such that |C| = | D).

V(H)=V(G)UV(K).

EH)=EGUEK)U{{a,c}:ac A,ce C}U{{b,d}:be B,d € D}.

Then, MatchingAlg calls CliConAlg with (H, A, B,C, D,n) as input, and returns the answer.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|?UVEDD < o) it follows that MatchingAlg runs in time n°(™).

For the correctness of the algorithm, first suppose that (G, A, B) is a Yes-instance of
CRrROSS MATCHING. This means that there exists a perfect matching M in G such that every
edge in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M C E(H). We will show that H/M is a clique. As |M| = n, this will mean
that (H, A, B,C, D,n) is a Yes-instance of STRUCTURED CLIQUE CONTRACTION, which will
mean, in turn, that the call to CliConAlg with (H, A, B,C, D,n) as input returns Yes, and
hence MatchingAlg returns Yes.

49:13

ICALP 2020

49:14

Tight Lower Bounds on the Computation of Hadwiger Number

Note that V(H/M) = V(K)UV(G/M). To show that H/M is a clique, we consider two
arbitrary vertices u,v € V(H/M), and show that they are adjacent in H/M. If u,v € V(K),
then because K is a clique, it is clear that {u,v} € E(H/M). Moreover, if u,v € G/M, then
because G/M is a clique, it is clear that {u,v} € E(H/M). Thus, one of the vertices u and
v belongs to V(G/M) and the other belongs to V(K). We suppose w.l.o.g. that u ¢ V(K).
Because M is a perfect matching in G such that every edge in M has one endpoint in A
and the other in B, it follows that u resulted from the contraction of the edge between
some a € A and some b € B. If v € C, then {a,v} € E(H), and otherwise v € D and so
{b,v} € E(H). Thus, by the definition of contraction, we conclude that {u,v} € E(H/M).
This completes the proof of the forward direction.

Now, suppose that MatchingAlg returns Yes, which means that the call to CliConAlg with
(H, A, B,C,D,n) returns Yes. Thus, (H, A, B,C, D,n) is a Yes-instance, which means that
there exists a subset F' C E(H) of size at most n such that H/F is a clique. We will show
that F' is a perfect matching in G such that every edge in F' has one endpoint in A and the
other in B. Because H/F is a clique, this will imply that G/F is a clique and thus that
(G, A, B) is a Yes-instance of CROSS MATCHING. To achieve this, notice that by Lemma 11,
F' is a matching of size n in H such that each edge in F' has one endpoint in A and the other
in B. Because G = H[A U B], we have that F is a perfect matching in G. Thus, the proof of
the reverse direction is complete. <

» Corollary 13. Unless the ETH is false, there does mot exist an algorithm that solves
HADWIGER NUMBER in time n°™) where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Hadwi-
gerAlg, that solves HADWIGER NUMBER in time n°"™) where n is the number of vertices in
the input graph. We will show that this implies the existence of an algorithm, denoted by
CliConAlg, that solves CLIQUE CONTRACTION in time n°(") where n is the number of vertices
in the input graph, thereby contradicting Theorem 10 and hence completing the proof.

We define the execution of CliConAlg as follows. Given an instance (G,t) of CLIQUE
CONTRACTION, if G is not connected, then CliConAlg returns No, and otherwise it returns
Yes if and only if HadwigerAlg returns Yes when called with (G, |V (G)| —t) as input. Because
the call to HadwigerAlg with input (G, |V (G)| — t) runs in time n°"™ where n = |V (G)|, we
have that CliConAlg runs in time n°"™ as well.

For the correctness of the algorithm, first observe that if G is not connected, then no
sequence of edge contractions can yield a clique, and hence it is correct to return No. Thus,
now assume that G is connected. First, suppose that (G,t) is a Yes-instance of CLIQUE
CONTRACTION. This means that there exists a sequence of at most ¢ edge contractions that
transforms G into a clique. In particular, this clique must have at least |V (G)| — ¢ vertices,
and therefore the Hadwiger number of G is at least as large as |V (G)| —t. By the correctness
of HadwigerAlg, its call with (G, |V (G)| —t) returns Yes, and therefore CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to HadwigerAlg
with (G,|V(G)| —t) returns Yes. By the correctness of HadwigerAlg, the clique K} for
h =|V(G)| —t is a minor of G. This means that there is a sequence of vertex deletions, edge
deletions and edge contractions that transforms G into K. In particular, this sequence can
contain at most ¢t vertex deletions and edge contractions in total. Furthermore, by replacing
each vertex deletion for a vertex v by an edge contraction for some edge e incident to v (which
exists because G is connected) and dropping all edge deletions, we obtain another sequence
that transforms G into Kj. Because this sequence contains only edge contractions, and at
most ¢ of them, we conclude that (G, t) is a Yes-instance of CLIQUE CONTRACTION. <

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

Figure 6 A two-cliques graph (see Definition 15).

5 Lower Bounds for Contraction to Graph Classes Problems

In this section, we prove lower bounds for several cases of the F~-CONTRACTION problem,
defined as follows. Here, F is a (possibly infinite) family of graphs.

F-CONTRACTION
Input: A graph G and ¢t € N.
Question: Does there exist a subset F' C E(G) of size at most ¢ such that G/F € F?

Notice that CLIQUE CONTRACTION is the case of F-CONTRACTION where F is the
family of cliques. In this section, we consider the cases of F~-CONTRACTION where F is the
family of chordal graphs, interval graphs, proper interval graphs, threshold graphs, trivially
perfect graphs, split graphs, complete split graphs and perfect graphs, also called CHORDAL
CONTRACTION, INTERVAL CONTRACTION, PROPER INTERVAL CONTRACTION, THRESHOLD
CONTRACTION, TRIVIALLY PERFECT CONTRACTION, SPLIT CONTRACTION, COMPLETE
SPLIT CONTRACTION and PERFECT CONTRACTION, respectively. Before we define these
classes formally, it will be more enlightening to first define only the class of chordal graphs
as well as somewhat artificial classes of graphs that will help us prove lower bounds for many
of the classes above in a unified manner.

» Definition 14 (Chordal Graphs). A graph is chordal if it does not contain Cy for all £ > 4
as an induced subgraph.

Our first class of graphs is defined as follows (see Fig. 6).

» Definition 15 (Two-Cliques Graphs). A two-cliques graph is a graph G such that there
exist A, B C V(Q) such that AU B = V(G), G[A] and G[B] are cliques, and there do not
exist vertices a € A\ B and b € B\ A such that {a,b} € E(G). The two-cliques class is the
class of all two-cliques graphs.

It should be clear that the two-cliques class is a subclass of the class of chordal graphs.
Now, we further define a family of classes of graphs as follows.

» Definition 16 (Non-Trivial Chordal Class). We say that a class of graphs F is non-trivial
chordal if it is a subclass of the class of chordal graphs, and a superclass of the two-cliques
class.

Clearly, the class of cliques is not a non-trivial chordal class, and the class of chordal
graphs is a non-trivial chordal class. The rest of this section is divided as follows. First, in
Section 5, we prove a lower bound for any non-trivial chordal class. Then, in Section 5, we
prove a lower bound for some graph classes that are not non-trivial chordal.

Non-Trivial Chordal Graph Classes. Here, our objective is to prove the following theorem.
Afterwards, we will derive lower bounds for several known graph classes as corollaries.

49:15

ICALP 2020

49:16

Tight Lower Bounds on the Computation of Hadwiger Number

Figure 7 The construction of an instance of F-CONTRACTION in the proof of Theorem 17 where
dashed lines represent non-edges.

» Theorem 17. Let F be any non-trivial chordal graph class. Unless the ETH is false, there
does not exist an algorithm that solves F-CONTRACTION in time n°™ where n = |V (G)).

For the proof of this theorem, the following well-known property of chordal graphs will
come in handy. This property is a direct consequence of the alternative characterization
of the class of chordal graphs as the class of graphs that admit clique-tree decompositions,
see [10].

» Proposition 18. Let G be a chordal graph, and let u and v be two non-adjacent vertices
in G. Then, G[N(u) N N(v)] is a clique.

We are now ready to prove Theorem 17.

Proof of Theorem 17. Targeting a contradiction, suppose that there exists an algorithm,
denoted by NonTrivChordAlg, that solves F-CONTRACTION in time n°™ where n is the
number of vertices in the input graph. We will show that this implies the existence of an
algorithm, denoted by CliConAlg, that solves STRUCTURED CLIQUE CONTRACTION in time
n°") where n is the number of vertices in the input graph, thereby contradicting Lemma 12
and hence completing the proof.

We define the execution of CliConAlg as follows. Given an instance (G, A, B,C, D,n)
of STRUCTURED CLIQUE CONTRACTION, CliConAlg constructs an instance (H,n) of F-
CONTRACTION as follows (see Fig. 7):

Let n = |A|. Moreover, let K and K’ be two cliques, each on 2n new vertices.

V(H)=V(G)UV(K)UV(K').

EH)=EG)UEK)UEK')U{{u,v}:u e V(G),ve V(K)UV(K")}.
Then, CliConAlg calls NonTrivChordAlg with (H, n) as input, and returns the answer of this call.

First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in
time |V (H)|°0VED < ne) it follows that CliConAlg runs in time n°(™).

For the correctness of the algorithm, first suppose that (G, A, B,C, D,n) is a Yes-instance
of STRUCTURED CLIQUE CONTRACTION. This means that there exists a subset FF C E(Q)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F. Thus, (H,n) is a Yes-instance
of F-CONTRACTION, which means that the call to NonTrivChordAlg with (H,n) as input
returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg
with (H,n) returns Yes. Thus, (H,n) is a Yes-instance of F-CONTRACTION, which means
that there exists a subset F' C E(H) of size at most n such that H/F € F. In particular, H/F

F.V. Fomin, D. Lokshtanov, I. Mihajlin, S. Saurabh, and M. Zehavi

is a chordal graph. Based on Proposition 18, we will first show that H{AUBUCUDUX]|/F
is a clique, where X = {u € V(K)UV(K’) : there exists a vertex v € AU B UC U D such
that u and v belong to the same connected component of H[F|}.

Targeting a contradiction, suppose that H[AU BUC U D U X]/F is not a clique, and
therefore there exist two non-adjacent vertices v and v in this graph. By the definition of X,
H[AUBUCUDUX]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from AUBUC U D. In
particular, u and v are also non-adjacent vertices in H/F. By Proposition 18, this implies that
(H/F)[Ng;p(u) NNy p(v)] is a clique. Let Cy (resp. C2) be the set of connected components
of H[F] that contain at least one vertex from V(K;) (resp. V(K3)). Because |F| < n and
[V(K1)| = |V (K2)| = 2n, there exists at least one component C; € C; (resp. Cy € C2) that
does not contain any vertex from AU BUC U D. Let ¢; and ¢z be the vertices of H/F
yielded by the replacement of C; and Cs, respectively. As all vertices in V(K7) U V(K3)
are adjacent to all vertices in AU BUC U D, we have that ci,c2 € Ng/p(u) N Ng/p(v).
However, there do not exist a vertex in V(K7) and a vertex in V(K3) that are adjacent in
H, and for every vertex in V(K1) UV (K3), its neighborhood outside this set is contained
in AUBUCUD. Thus, ¢; and ¢; must be non-adjacent in H/F. However, this is a
contradiction to the argument that (H/F)[Ng,r(u) N Ng rp(v)] is a clique. From this, we
derive that H{HAU BUC U D U X|/F is indeed a clique.

Now, notice that (H, A, B,C, D, N,n) where N = V(K;)UV (K3) is an instance of NOIsY
STRUCTURED CLIQUE CONTRACTION. Furthermore, since |F| < n and we have already
shown that H{/AUBUCUD U X]/F is a clique, we have that F' is a solution to this instance.
Therefore, by Lemma 11, F' is a matching of size n in H such that each edge in F' has one
endpoint in A and the other in B. In particular, F' C E(G) and hence X =). Because
G = H[AU B UC U D], we thus derive that G/F is a clique. Thus, we conclude that
(G,A,B,C,D,n) is a Yes-instance of STRUCTURED CLIQUE CONTRACTION. This completes
the proof of the reverse direction. |

Now, we give definitions for several classes of graphs for which lower bounds will follow
from Theorem 18. First, a graph is an interval graph if there exists a set of intervals on
the real line such that the vertices of the graph are in bijection with these intervals, and
there exists edge between two vertices if and only if their intervals intersect. A graph is a
proper interval graph if, in the former definition, we also add the constraint that all intervals
must have the same length. A graph is a threshold graph if it can be constructed from a
one-vertex graph by repeated applications of the following two operations: addition of a
single isolated vertex to the graph; addition of a single vertex that is connected to all other
vertices. A graph is trivially perfect if in each of its induced subgraphs, the maximum size of
an independent set equals the number of maximal cliques.

It is well-known that every graph that is a (proper) interval graph, or a threshold graph,
or a trivially perfect graph, is also a chordal graph (see [10]). Moreover, it is immediate
to verify that the two-cliques class is a subclass of the classes of (proper) interval graphs,
threshold graphs and trivially perfect graphs. Thus, these classes are non-trivial chordal
graphs classes, and therefore Theorem 17 directly implies lower bounds for them:

» Corollary 19. Unless the ETH is false, none of the following problems admits an algorithm
that solves it in time n°™ where n = |V(G)|: CHORDAL CONTRACTION, INTERVAL CON-
TRACTION, PROPER INTERVAL CONTRACTION, THRESHOLD CONTRACTION and TRIVIALLY
PERFECT CONTRACTION.

49:17

ICALP 2020

49:18

Tight Lower Bounds on the Computation of Hadwiger Number

Other Graph Classes. In Section 4, we proved a lower bound for a class of graphs that is
not non-trivial chordal, namely, the class of cliques. In the full version of this paper, we
show that our approach can yield lower bounds also for other classes of graphs that are not
non-trivially chordal, including the classes of SPLIT GRAPHS, COMPLETE SPLIT GRAPHS
and PERFECT GRAPHS.

—— References

1

10

11

12

13

14

15

Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:
The untold story. In 34th Symposium on Theoretical Aspects of Computer Science (STACS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Andreas Bjorklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280-299, 2014. doi:10.1137/110839229.

Andreas Bjorklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion—
exclusion. STAM J. Computing, 39(2):546-563, 2009.

B. Bollobas, P. A. Catlin, and P. Erdés. Hadwiger’s conjecture is true for almost every graph.
European J. Combin., 1(3):195-199, 1980. doi:10.1016/S0195-6698(80)80001-1.

Jianer Chen, Benny Chor, Michael R. Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information
and Computation, 201(2):216-231, 2005. doi:10.1016/j.ic.2005.05.001.

Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. J.
ACM, 64(3):18:1-18:22, 2017. doi:10.1145/3051094.

Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

Fedor V. Fomin and Dieter Kratsch. Ezxact Exponential Algorithms. Springer, 2010. An
EATCS Series: Texts in Theoretical Computer Science.

Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi.
Computation of hadwiger number and related contraction problems: Tight lower bounds.
CoRR, abs/2004.11621, 2020. arXiv:2004.11621.

Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. North-Holland
Publishing Co., Amsterdam, The Netherlands, The Netherlands, 2004.

Martin Grohe, Ken-ichi Kawarabayashi, Daniel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479-488, 2011.
Eugene L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66-67, 1976.

Andrzej Lingas and Martin Wahlen. An exact algorithm for subgraph homeomorphism. J.
Discrete Algorithms, 7(4):464-468, 2009. doi:10.1016/j.jda.2008.10.003.

Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Combinatorial Theory Ser. B, 63(1):65-110, 1995.

Patrick Traxler. The time complexity of constraint satisfaction. In Parameterized and Ezxact
Computation, pages 190-201. Springer, 2008.

https://doi.org/10.1137/110839229
https://doi.org/10.1016/S0195-6698(80)80001-1
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1145/3051094
http://arxiv.org/abs/2004.11621
https://doi.org/10.1016/j.jda.2008.10.003

	Introduction
	Lower Bound: Prop-Colored List Subgraph Isomorphism
	Lower Bound for the Cross Matching Problem
	Lower Bounds: Clique Contraction and Hadwiger Number
	Lower Bounds for Contraction to Graph Classes Problems

