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Abstract
We prove new complexity results for computational problems in certain wreath products of groups
and (as an application) for free solvable groups. For a finitely generated group we study the
so-called power word problem (does a given expression uk1

1 . . . u
kd
d , where u1, . . . , ud are words over

the group generators and k1, . . . , kd are binary encoded integers, evaluate to the group identity?)
and knapsack problem (does a given equation ux1

1 . . . u
xd
d = v, where u1, . . . , ud, v are words over

the group generators and x1, . . . , xd are variables, have a solution in the natural numbers). We
prove that the power word problem for wreath products of the form G o Z with G nilpotent and
iterated wreath products of free abelian groups belongs to TC0. As an application of the latter, the
power word problem for free solvable groups is in TC0. On the other hand we show that for wreath
products G o Z, where G is a so called uniformly strongly efficiently non-solvable group (which form
a large subclass of non-solvable groups), the power word problem is coNP-hard. For the knapsack
problem we show NP-completeness for iterated wreath products of free abelian groups and hence
free solvable groups. Moreover, the knapsack problem for every wreath product G o Z, where G is
uniformly efficiently non-solvable, is Σp

2-hard.
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1 Introduction

Since the seminal work of Dehn [7] on the word and conjugacy problem in surface groups,
the area of combinatorial group theory [31] is tightly connected to algorithmic questions.
The famous Novikov-Boone result [4, 40] on the existence of finitely presented groups with
undecidable word problem was one of the first undecidability results that touched real
mathematics. Since this pioneering work, the area of algorithmic group theory has been
extended in many different directions. More general algorithmic problems have been studied
and also the computational complexity of group theoretic problems has been investigated. In
this paper, we focus on the decidability/complexity of two specific problems in group theory
that have received considerable attention in recent years: the knapsack problem and the
power word problem.
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126:2 The Complexity of Knapsack Problems in Wreath Products

Knapsack problems. There exist several variants of the classical knapsack problem over the
integers [21]. In the variant that is particularly relevant for this paper, it is asked whether a
linear equation x1 ·a1+· · ·+xd ·ad = b, with a1, . . . , ad, b ∈ Z, has a solution (x1, . . . , xd) ∈ Nd.
A proof for the NP-completeness of this problem for binary encoded integers a1, . . . , ad, b

can be found in [15]. In contrast, if the numbers ai, b are given in unary notation then the
problem falls down into the circuit complexity class TC0 [8]. In the course of a systematic
investigation of classical commutative discrete optimization problems in non-commutative
group theory, Myasnikov, Nikolaev, and Ushakov [33] generalized the above definition of
knapsack to any f.g. group G: The input for the knapsack problem for G (KP(G) for short)
is an equation of the form gx1

1 · · · g
xd

d = h for group elements g1, . . . , gd, h ∈ G (specified by
finite words over the generators of G) and pairwise different variables x1, . . . , xd that take
values in N and it is asked whether this equation has a solution (in Section 3.2, we formulate
this problem in a slightly more general but equivalent way). In this form, KP(Z) is exactly
the above knapsack problem for unary encoded integers studied in [8] (a unary encoded
integer can be viewed as a word over a generating set {t, t−1} of Z). For the case where
g1, . . . , gd, h are commuting matrices over an algebraic number field, the knapsack problem
has been studied in [1]. Let us emphasize that we are looking for solutions of knapsack
equations in the natural numbers. One might also consider the variant, where the variables
x1, . . . , xd take values in Z. This latter version can be easily reduced to our knapsack version
(with solutions in N), but we are not aware of a reduction in the opposite direction.1 Let us
also mention that the knapsack problem is a special case of the more general rational subset
membership problem [26].

We also consider a generalization of KP(G): An exponent equation is an equation of the
form gx1

1 · · · g
xd

d = h as in the specification of KP(G), except that the variables x1, . . . , xd are
not required to be pairwise different. Solvability of exponent equations for G (ExpEq(G) for
short) is the problem where the input is a conjunction of exponent equations (possibly with
shared variables) and the question is whether there is a joint solution for these equations in
the natural numbers.

Let us briefly survey the results about knapsack obtained in [33] and subsequent papers:
Knapsack can be solved in polynomial time for every hyperbolic group [33]. Some
extensions of this result can be found in [11, 25].
There are nilpotent groups of class 2 for which knapsack is undecidable. Examples are
direct products of sufficiently many copies of the discrete Heisenberg group H3(Z) [22],
and free nilpotent groups of class 2 and sufficiently high rank [37]. In contrast, knapsack
for H3(Z) is decidable [22]. Thus, direct products to not preserve decidability of knapsack.
Knapsack is decidable for every co-context-free group [22], i.e., groups where the set
of all words over the generators that do not represent the identity is a context-free
language. Lehnert and Schweitzer [23] have shown that the Higman-Thompson groups
are co-context-free.
Knapsack belongs to NP for all virtually special groups (finite extensions of subgroups of
graph groups) [28]. The class of virtually special groups is very rich. It contains all Coxeter
groups, one-relator groups with torsion, fully residually free groups, and fundamental
groups of hyperbolic 3-manifolds. For graph groups (a.k.a. right-angled Artin groups) a

1 Note that the problem whether a given system of linear equations has a solution in N is NP-complete,
whereas the problem can be solved in polynomial time (using the Smith normal form) if we ask for a
solution in Z. In other words, if we consider the knapsack problem for Zn with n part of the input,
then looking for solutions in N seems to be more difficult than looking for solutions in Z.
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complete classification of the complexity was obtained in [29]: If the underlying graph
contains an induced path or cycle on 4 nodes, then knapsack is NP-complete; in all other
cases knapsack can be solved in polynomial time (even in LogCFL).
Knapsack is NP-complete for every wreath product A o Z with A 6= 1 f.g. abelian [12]
(wreath products are formally defined in Section 3.1).
Decidability of knapsack is preserved under finite extensions, HNN-extensions over finite
associated subgroups and amalgamated free products over finite subgroups [28].

For a knapsack equation gx1
1 · · · g

xd

d = h we may consider the set of all solutions {(n1, . . . , nd) ∈
Nd | gn1

1 · · · g
nd

d = g in G}. In the papers [25, 22, 29] it turned out that in many groups the
solution set of every knapsack equation is a semilinear set (see Section 2 for a definition).
We say that a group is knapsack-semilinear if for every knapsack equation the set of all
solutions is semilinear and a semilinear representation can be computed effectively (the same
holds then also for exponent equations). Note that in any group G the set of solutions on an
equation gx = h is periodic and hence semilinear. This result generalizes to solution sets of
knapsack instances of the for gx1g

y
2 = h (see Lemma 9), but there are examples of knapsack

instances with three variables where solutions sets (in certain groups) are not semilinear.
Examples of knapsack-semilinear groups are graph groups [29] (which include free groups
and free abelian groups), hyperbolic groups [25], and co-context free groups [22].2 Moreover,
the class of knapsack-semilinear groups is closed under finite extensions, graph products,
amalgamated free products with finite amalgamated subgroups, HNN-extensions with finite
associated subgroups (see [10] for these closure properties) and wreath products [12].

Power word problems. In the power word problem for a f.g. group G (PowerWP(G) for
short) the input consists of an expression un1

1 un2
2 · · ·u

nd

d , where u1, . . . , ud are words over
the group generators and n1, . . . , nd are binary encoded integers. The problem is then to
decide whether the expression un1

1 un2
2 · · ·u

nd

d evaluates to the identity in G. The power word
problem arises very naturally in the context of the knapsack problem: it allows us to verify a
proposed solution for a knapsack equation with binary encoded numbers. The power word
problem has been first studied in [27], where it was shown that the power word problem for
f.g. free groups has the same complexity as the word problem and hence can be solved in
logarithmic space. Other groups with easy power word problems are f.g. nilpotent groups
and wreath products A o Z with A f.g. abelian [27]. In contrast it is shown in [27] that
the power word problem for wreath products G o Z, where G is either finite non-solvable
or f.g. free, is coNP-complete. Implicitly, the power word problem appeared also in the
work of Ge [13], where it was shown that one can verify in polynomial time an identity
αn1

1 αn2
2 · · ·α

nd

d = 1, where the αi are elements of an algebraic number field and the ni are
binary encoded integers. The power word problem is a special case of the compressed word
problem [24], which asks whether a grammar-compressed word over the group generators
evaluates to the group identity.

Main results. Our main focus is on the problems PowerWP(G), KP(G) and ExpEq(G)
for the case where G is a wreath product. We start with the following result:

I Theorem 1. PowerWP(G o Z) is in TC0 for every f.g. nilpotent group G.

2 Knapsack-semilinearity of co-context free groups is not stated in [22] but follows immediately from the
proof for the decidability of knapsack.
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Theorem 1 generalizes the above mentioned result from [27] (for G abelian) in a nontrivial
way. Our proof analyzes periodic infinite words over a nilpotent group G. Roughly speaking,
we show that one can check in TC0, whether a given list of such periodic infinite words
pointwise multiplies to the identity of G. We believe that this is a result of independent
interest. We use this result also in the proof of the following theorem:

I Theorem 2. KP(G o Z) is NP-complete for every finite nilpotent group G 6= 1.

Next, we consider iterated wreath products. Fix r ≥ 1 and define the iterated wreath
products W0,r = Zr and Wm+1,r = Zr oWm,r. By a famous result of Magnus [32] the free
solvable group Sm,r of derived length r and rank m embeds into Wm,r. Our main results for
these groups are:

I Theorem 3. PowerWP(Wm,r) and hence PowerWP(Sm,r) is in TC0 for m ≥ 0, r ≥ 1.

It was only recently shown in [35] that the word problem (and the conjugacy problem) for
every free solvable group belongs to TC0. Theorem 3 generalizes TC0 membership of the
word problem.

I Theorem 4. ExpEq(Wm,r) and hence ExpEq(Sm,r) is NP-complete for m ≥ 0, r ≥ 1.

For the proof of Theorem 4 we show that if a given knapsack equation over Wm,r has a
solution then it has a solution where all numbers are exponentially bounded in the length
of the knapsack instance. Theorem 4 then follows easily from Theorem 3. For some other
algorithmic results for free solvable groups see [34].

Finally, we show new hardness results for the power word problem and knapsack problem.
For this we make use so-called uniformly strongly efficiently non-solvable groups (uniformly
SENS groups) that were recently defined in [3]. Roughly speaking, a group G is uniformly
SENS if there exists nontrivial nested commutators of arbitrary depth that moreover, are
efficiently computable in a certain sense (see Section 6 for the precise definition). The
essence of these groups is that they allow to carry out Barrington’s argument showing the
NC1-hardness of the word problem for a finite solvable group [2]. We prove the following:

I Theorem 5. PowerWP(G o Z) is coNP-hard for every f.g. uniformly SENS group G.

This result generalizes a result from [27] saying that PowerWP(G o Z) is coNP-hard for the
case that G is f.g. free or finite non-solvable.

I Theorem 6. KP(G o Z) is Σp2-hard for every f.g. uniformly SENS group G.

Recall that for every nontrivial group G, KP(G o Z) is NP-hard [12]. We also show several
corollaries of Theorems 5 and 6. For instance, we show that for the famous Thompson’s
group F , PowerWP(F ) is coNP-complete and KP(F ) is Σp2-hard.

2 Preliminaries

Complexity theory. We assume some knowledge in complexity theory; in particular the
reader should be familiar with the classes P, NP, and coNP. The class Σp2 (second existential
level of the polynomial time hierarchy) contains all languages L ⊆ Σ∗ for which there exists
a polynomial p and a language K ⊆ Σ∗#{0, 1}∗#{0, 1}∗ in P (for a symbol # /∈ Σ ∪ {0, 1})
such that x ∈ L if and only if ∃y ∈ {0, 1}≤p(|x|)∀z ∈ {0, 1}≤p(|x|) : x#y#z ∈ K.

The class TC0 contains all problems that can be solved by a family of threshold circuits of
polynomial size and constant depth. In this paper, TC0 will always refer to the DLOGTIME-
uniform version of TC0. A precise definition is not needed for our work; see [42] for details.
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All we need is that the following arithmetic operations on binary encoded integers belong to
TC0: iterated addition and multiplication (i.e., addition and multiplication of n many n-bit
numbers) and division with remainder.

For languages (or computational problems) A,B1, . . . , Bk ⊆ {0, 1}∗ we write A ∈
TC0(B1, . . . , Bk) (A is TC0-Turing-reducible to B1, . . . , Bk) if A can be solved by a family
of threshold circuits of polynomial size and constant depth that in addition may also use
oracle gates for the languages B1, . . . , Bk (an oracle gate for Bi yields the output 1 if and
only if the string of input bits belongs to Bi).

Semilinear sets. Fix a dimension d ≥ 1. All vectors will be column vectors. For a
vector v = (v1, . . . , vd)T ∈ Zd we define its norm ‖v‖ := max{|vi| | 1 ≤ i ≤ d} and
for a matrix M ∈ Zc×d with entries mi,j (1 ≤ i ≤ c, 1 ≤ j ≤ d) we define the norm
‖M‖ = max{|mi,j | | 1 ≤ i ≤ c, 1 ≤ j ≤ d}. Finally, for a finite set of vectors A ⊆ Nd let
‖A‖ = max{‖a‖ | a ∈ A}. We extend the operations of vector addition and multiplication
of a vector by a matrix to sets of vectors in the obvious way. A linear subset of Nd is a
set of the form L = L(b, P ) := b + P · Nk, where b ∈ Nd and P ∈ Nd×k. A set S ⊆ Nd is
called semilinear if it is a finite union of linear sets. Semilinear sets play an important role in
automata theory, logic, and other areas. They are precisely the sets definable in Presburger
arithmetic, i.e. first-order logic over the structure (N,+), and thus form a Boolean algebra.

For a semilinear set S =
⋃k
i=1 L(bi, Pi), we call the tuple (b1, P1, . . . , bk, Pk) a semilinear

representation of S. The magnitude of the semilinear representation (b1, P1, . . . , bk, Pk) is
max{‖b1‖, ‖P1‖ . . . , ‖bk‖, ‖Pk‖}. The magnitude ‖S‖ of a semilinear set S is the minimal
magnitude of all semilinear representations for S.

It is often convenient to treat mappings ν : {x1, . . . , xd} → N, where X = {x1, . . . , xd} is a
finite set of variables, as vectors. To this end, we identify ν with the vector (ν(x1), . . . , ν(xd))T.
This way, vector operations (e.g. addition and scalar multiplication) and the notion of
semilinearity carry over to the set NX of all mappings from X to N.

3 Groups

We assume that the reader is familiar with the basics of group theory. Let G be a group. We
always write 1 for the group identity element. For g, h ∈ G we write [g, h] := g−1h−1gh for
the commutator of g and h and gh for h−1gh. For subgroups A,B of G we write [A,B] for
the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B. The order of an
element g ∈ G is the smallest number z > 0 with gz = 1 and ∞ if such a z does not exist.
The group G is torsion-free, if every g ∈ G \ {1} has infinite order.

We say that G is finitely generated (f.g.) if there is a finite subset Σ ⊆ G such that
every element of G can be written as a product of elements from Σ; such a Σ is called a
finite generating set for G. We also write G = 〈Σ〉. We then have a canonical morphism
h : Σ∗ → G that maps a word over Σ to its product in G. If h(w) = 1 we also say that w = 1
in G. For g ∈ G we write |g| for the length of a shortest word w ∈ Σ∗ such that h(w) = g.
This notation depends on the generating set Σ. We always assume that the generating set Σ
is symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. Then, we can define on Σ∗ a natural
involution ·−1 by (a1a2 · · · an)−1 = a−1

n · · · a−1
2 a−1

1 for a1, a2, . . . , an ∈ Σ. This allows to use
the notations [g, h] = g−1h−1gh and gh = h−1gh in the case g, h ∈ Σ∗. By computing a
homomorphism h : G1 = 〈Σ1〉 → G2 = 〈Σ2〉, we mean computing the images h(a) for a ∈ Σ1.

ICALP 2020



126:6 The Complexity of Knapsack Problems in Wreath Products

A group G is called orderable if there exists a linear order ≤ on G such that g ≤ h implies
xgy ≤ xhy for all g, h, x, y ∈ G [39, 38]. Every orderable group is torsion-free (this follows
directly from the definition) and has the unique roots property [41], i.e., gn = hn implies
g = h. The are numerous examples of orderable groups: for instance, torsion-free nilpotent
groups, right-angled Artin groups, and diagram groups are all orderable.

Two elements g, h ∈ G in a group G are called commensurable if gx = hy for some
x, y ∈ Z \ {0}. This defines an equivalence relation on G, in which the elements with finite
order form an equivalence class. By [39, Corollary 1.2] commensurable elements in an
orderable group commute.

3.1 Wreath products
Let G andH be groups. Consider the direct sumK =

⊕
h∈H Gh, where Gh is a copy of G. We

view K as the set G(H) of all mappings f : H → G such that supp(f) := {h ∈ H | f(h) 6= 1}
is finite, together with pointwise multiplication as the group operation. The set supp(f) ⊆ H
is called the support of f . The group H has a natural left action on G(H) given by
hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding semidirect product
G(H) oH is the (restricted) wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).
There are canonical mappings

σ : G oH → H with σ(f, h) = h and
τ : G oH → G(H) with τ(f, h) = f

In other words: g = (τ(g), σ(g)) for g ∈ G oH. Note that σ is a homomorphism whereas τ is
in general not a homomorphism. Throughout this paper, the letters σ and τ will have the
above meaning, which of course depends on the underlying wreath product G oH, but the
latter will be always clear from the context.

The following intuition might be helpful: An element (f, h) ∈ G oH can be thought of
as a finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the
mapping f) together with the distinguished element h ∈ H, which can be thought of as
a cursor moving in H. If we want to compute the product (f1, h1)(f2, h2), we do this as
follows: First, we shift the finite collection of G-elements that corresponds to the mapping
f2 by h1: If the element g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove
g from a and put it to the new location h1a ∈ H. This new collection corresponds to the
mapping f ′2 : a 7→ f2(h−1

1 a). After this shift, we multiply the two collections of G-elements
pointwise: If in a ∈ H the elements g1 and g2 are sitting (i.e., f1(a) = g1 and f ′2(a) = g2),
then we put the product g1g2 into the location a. Finally, the new distinguished H-element
(the new cursor position) becomes h1h2.

Clearly, H is a subgroup of G oH. We also regard G as a subgroup of G oH by identifying
G with the set of all f ∈ G(H) with supp(f) ⊆ {1}. This copy of G together with H generates
G oH. In particular, if G = 〈Σ〉 and H = 〈Γ〉 with Σ ∩ Γ = ∅ then G oH is generated by
Σ ∪ Γ. In this situation, we will also apply the above mappings σ and τ to words over Σ ∪ Γ.

In [34] it was shown that the word problem of a wreath product G oH is TC0-reducible to
the word problems for G and H. Let us briefly sketch the argument. Assume that G = 〈Σ〉
and H = 〈Γ〉. Given a word w ∈ (Σ ∪ Γ)∗ one has to check whether σ(w) = 1 in H and
τ(w)(h) = 1 in H for all h in the support of τ(w). One can compute in TC0 the word σ(w)
by projecting w onto the alphabet Γ. Moreover, one can enumerate the support of τ(w)
by going over all prefixes of w and checking which σ-values are the same. Similarly, one
produces for a given h ∈ supp(τ(w)) a word over Σ that represents τ(w)(h).
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We will need the following result from [30] (which holds only for the so-called restricted
wreath product that we consider in this paper):

I Theorem 7 ([30]). If G and H are orderable then also G oH is orderable.

3.2 Knapsack problem
Let G = 〈Σ〉 be a f.g. group. An exponent expression over G is an expression of the
form E = v0u

x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗, non-empty words
u1, . . . , ud ∈ Σ∗, and variables x1, . . . , xd. Here, we allow xi = xj for i 6= j. If every variable
xi occurs at most once, then E is called a knapsack expression. Let X = {x1, . . . , xd}
be the set of variables that occur in E. For a homomorphism h : G → G′ = 〈Σ′〉 (that
is specified by a mapping from Σ to (Σ′ ∪ Σ′−1)∗), we denote with h(E) the exponent
expression h(v0)h(u1)x1h(v1)h(u2)x2h(v2) · · ·h(ud)xdh(vd). For a mapping ν ∈ NX , we
define ν(E) = v0u

ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xd)

d vd ∈ Σ∗. We say that ν is a G-solution for E if
ν(E) = 1 in G. With solG(E) we denote the set of all G-solutions of E. The length of
E is defined as |E| =

∑d
i=1 |ui|+ |vi|. We define solvability of exponent equations over G,

ExpEq(G) for short, as the following decision problem:
Input A finite list of exponent expressions E1, . . . , En over G.
Question Is

⋂n
i=1 solG(Ei) non-empty?

The knapsack problem for G, KP(G) for short, is the following decision problem:
Input A single knapsack expression E over G.
Question Is solG(E) non-empty?
It is an easy observation that the choice of the generating set Σ has no influence on the
decidability or complexity of these problems. For the knapsack problem in wreath products
the following result has been shown in [12]:

I Theorem 8 ([12]). For every nontrivial group G, KP(G o Z) is NP-hard.

3.3 Knapsack-semilinear groups
The group G is called knapsack-semilinear if for every knapsack expression E over Σ, the
set solG(E) is a semilinear set of vectors and a semilinear representation can be effectively
computed from E. Since semilinear sets are effectively closed under intersection, it follows
that for every exponent expression E over Σ, the set solG(E) is semilinear and a semilinear
representation can be effectively computed from E. Moreover, solvability of exponent
equations is decidable for every knapsack-semilinear group. As mentioned above, the class
of knapsack-semilinear groups is very rich. An example of a group G, where knapsack is
decidable but solvability of exponent equations is undecidable is the Heisenberg group H3(Z)
(which consists of all upper triangular (3× 3)-matrices over the integers, where all diagonal
entries are 1), see [22]. In particular, H3(Z) is not knapsack-semilinear. A non-semilinear
solution set can be achieved with a three-variable knapsack instance over H3(Z). For two
variables, the solutions sets are semilinear for any group. In fact, they have a particularly
simple structure:

I Lemma 9. Let G be a group and g1, g2, h ∈ G be elements.
(i) The solution set S1 = {(x, y) ∈ Z2 | gx1g

y
2 = 1} is a subgroup of Z2. If G is torsion-free

and {g1, g2} 6= {1} then S1 is cyclic.
(ii) The solution set S = {(x, y) ∈ Z2 | gx1g

y
2 = h} is either empty or a coset (a, b) + S1 of

S1 where (a, b) ∈ S is any solution.

ICALP 2020



126:8 The Complexity of Knapsack Problems in Wreath Products

For a knapsack-semilinear group G and a finite generating set Σ for G we define a growth
function. For n ∈ N let Knap(n) (resp., Exp(n)) be the finite set of all knapsack expressions
(resp., exponent expression) E over Σ such that solG(E) 6= ∅ and |E| ≤ n. We define the
mapping KG,Σ : N→ N and EG,Σ : N→ N as follows:

KG,Σ(n) = max{‖solG(E)‖ | E ∈ Knap(n)}, (1)
EG,Σ(n) = max{‖solG(E)‖ | E ∈ Exp(n)}. (2)

Clearly, if solG(E) 6= ∅ and ‖solG(E)‖ ≤ N then E has a G-solution ν such that ν(x) ≤ N for
all variables x that occur in E. Thus, if G has a decidable word problem and a computable
bound on the function KG,Σ, then we can solve KP(G) non-deterministically: given a
knapsack expression E with variables from X, we guess ν : X → N with σ(x) ≤ N for all
variables x and then check (using an algorithm for the word problem) whether ν is a solution.

Let Σ and Σ′ be two generating sets for the group G. Then there is a constant c such
that KG,Σ(n) ≤ KG,Σ′(cn), and similarly for EG,Σ(n). To see this, note that for every a ∈ Σ′
there is a word wa ∈ Σ∗ such that a and wa represent the same element in G. Then we can
choose c = max{|wa| | a ∈ Σ′}. Due to this fact, we do not have to specify the generating
set Σ when we say that KG,Σ (resp., EG,Σ) is polynomially/exponentially bounded.

Important for us is also the following result from [12]:

I Theorem 10 ([12]). If G and H are knapsack-semilinear then so is G oH.
The proof of this result in [12] does not yield a good bound of KGoH(n) in terms of KG(n)
and KH(n) (and similarly for the E-function). One of our main achievements is such a bound
for the case that the left factor G is f.g. abelian. For EG(n) we then have the following bound,
which follows from well-known bounds on solutions of linear Diophantine equations [43]:

I Lemma 11. If G is a f.g. abelian group then EG(n) ≤ 2nO(1) .

3.4 Power word problem
A power word (over Σ) is a tuple (u1, k1, u2, k2, . . . , ud, kd) where u1, . . . , ud ∈ Σ∗ are
words over the group generators (called the periods of the power word) and k1, . . . , kd ∈ Z
are integers that are given in binary notation. Such a power word represents the word
uk1

1 u
k2
2 · · ·u

kd

d . We will often identify the power word (u1, k1, u2, k2, . . . , ud, kd) with the word
uk1

1 u
k2
2 · · ·u

kd

d . Moreover, if ki = 1, then we usually omit the exponent 1 in a power word.
The power word problem for the f.g. group G, PowerWP(G) for short, is the following:
Input A power word (u1, k1, u2, k2, . . . , ud, kd).
Question Does uk1

1 u
k2
2 · · ·u

kd

d = 1 hold in G?
Due to the binary encoded exponents, a power word can be seen as a succinct description of
an ordinary word. We have the following simple lemma.

I Lemma 12. If the f.g. group G is knapsack-semilinear, EG(n) is exponentially bounded,
and PowerWP(G) belongs to NP then ExpEq(G) belongs to NP.

4 Wreath products of nilpotent groups and the integers

Nilpotent groups. The lower central series of a group G is the sequence of groups (Gi)i≥0
with G0 = G and Gi+1 = [Gi, G]. The group G is nilpotent if there is a c ≥ 0 with Gc = 1;
in this case the minimal c with Gc = 1 is called the nilpotency class of G. In this section we
prove Theorems 1 and 2. Our main tool are periodic words over G as introduced in [12].
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Periodic words over groups. Let G = 〈Σ〉 be a f.g. group. Let Gω be the set of all functions
f : N→ G, which forms a group by pointwise multiplication (fg)(t) = f(t) · g(t). A function
f ∈ Gω is periodic if there exists a number d ≥ 1 such that f(t) = f(t + d) for all t ≥ 0.
The smallest such d is called the period of f . If f ∈ Gω has period d and g ∈ Gω has period
e then fg has period at most lcm(d, e). A periodic function f ∈ Gω with period d can be
specified by its initial d elements f(0), . . . , f(d − 1) where each element f(t) is given as a
word over the generating set Σ. The periodic words problem Periodic(G) over G is the
following:
Input Periodic functions f1, . . . , fm ∈ Gω and a binary encoded number T .
Question Does the product f =

∏m
i=1 fi satisfy f(t) = 1 for all t ≤ T?

We shall derive Theorems 1 and 2 from the following result:

I Theorem 13. If G is a f.g. nilpotent group then Periodic(G) belongs to TC0.

Previously it was proven that Periodic(G) belongs to TC0 if G is abelian [12]. As an
introduction let us reprove this result.

Let ρ : Gω → Gω be the shift-operator, i.e. (ρ(f))(t) = f(t + 1), which is a group
homomorphism. For a subgroup H of Gω, we denote by H(n) the smallest subgroup of Gω
that contains ρ0(H), ρ1(H), . . . , ρn(H). Note that (H(m))(n) = H(m+n) for any m,n ∈ N. A
function f ∈ Gω satisfies a recurrence of order d ≥ 1 if ρd(f) is contained in the subgroup
〈f〉(d−1) of Gω. If f has period d then f clearly satisfies a recurrence of order d.

Let us now consider the case that G is abelian. Then, also Gω is abelian and we use the
additive notation for Gω. The following lemma is folklore:

I Lemma 14 (cf. [17]). Let G be a f.g. abelian group. If f1, . . . , fm ∈ Gω satisfy recurrences
of order d1, . . . , dm ≥ 1 respectively, then

∑m
i=1 fi satisfies a recurrence of order

∑m
i=1 di.

Proof. Observe that Gω is a Z[x]-module with scalar multiplication
d∑
i=0

aix
i · f 7→

d∑
i=0

aiρ
i(f). (3)

Then f ∈ Gω satisfies a recurrence of order d ≥ 1 if and only if there exists a monic
polynomial p ∈ Z[x] of degree d (where monic means that the leading coefficient is one) such
that pf = 0. Therefore, if p1, . . . , pm ∈ Z[x] such that deg(pi) = di ≥ 1 and pifi = 0 then∏m
i=1 pi

∑m
j=1 fj =

∑m
j=1(

∏m
i=1 pi)fj = 0. Since

∏m
i=1 pi is a monic polynomial of degree

d :=
∑m
i=1 di,

∑m
i=1 fi satisfies a recurrence of order d. J

The above lemma implies that
∑m
i=1 fi = 0 if and only if

∑m
i=1 fi(t) = 0 for all 0 ≤ t ≤ d− 1,

where d is the sum of the periods of the fi.
Let us now turn to the nilpotent case. For n ∈ N, let Gω,n be the subgroup of Gω

generated by all elements with period at most n. Then Gω,n is closed under shift. The key
fact for showing Theorem 13 is the following.

I Proposition 15. If G is a f.g. nilpotent group, then there is a polynomial p such that every
element of Gω,n satisfies a recurrence of order p(n).

Let H ≤ Gω be a subgroup which is closed under shifting, i.e. ρ(H) ⊆ H. Since the shift
is a homomorphism, the commutator subgroup [H,H] is closed under shifting as well. We
will work in the abelianization H ′ = H/[H,H] where we write f̄ for the coset f [H,H]. We
also define ρ : H ′ → H ′ by ρ(f̄) = ρ(f). This is well-defined since fg−1 ∈ [H,H] implies
ρ(f)ρ(g)−1 = ρ(fg−1) ∈ [H,H] and hence ρ(f) = ρ(g). As an abelian group H ′ is a Z-module
and, in fact, H ′ forms a Z[x]-module using the shift-operator. By the above remark (see (3))
we have the following (where we use the multiplicative notation for H ′):
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I Lemma 16. H ′ is a Z[x]-module with the scalar multiplication
∑d
i=0 aix

i·f̄ 7→
∏d
i=0 ρ

i(f̄)ai .

Our first step for proving Proposition 15 is to show that every element of Gω,n satisfies a
polynomial-order recurrence, modulo some element in [Gω,n, Gω,n].

I Lemma 17. For every f ∈ Gω,n, we have ρd(f) ∈ 〈f〉(d−1)[Gω,n, Gω,n] for d = n(n+ 1)/2.

Proof. Suppose f = f1 · · · fm such that f1, . . . , fm ∈ Gω are elements of period ≤ n.
According to Lemma 16, we consider Gω,n/[Gω,n, Gω,n] as a Z[x]-module.

If g ∈ Gω has period q then ρq(g)g−1 = 1 and thus (xq − 1)ḡ = ρq(ḡ)ḡ−1 = 1. Define the
polynomial p(x) =

∏n
i=1(xi − 1) =

∑d
i=0 aix

i of degree d = n(n + 1)/2 satisfying ad = 1.
Since all functions f1, . . . , fm have period at most n, we have pf̄ = 1. Explicitly, this means
1 = pf̄ = ρ0(f̄)a0 · ρ1(f̄)a1 · · · ρd(f̄)ad = ρ0(f)a0 · · · ρd(f)ad . Noticing that ad = 1, we can
write ρd(f) = gh for some g ∈ 〈f〉(d−1) and h ∈ [Gω,n, Gω,n], which has the desired form. J

The following lemma gives us control over the remaining factor from [Gω,n, Gω,n].

I Lemma 18. Let G be a group with nilpotency class c. Then [Gω,n, Gω,n] ⊆ [G,G]ω,n2c .

Proof. We need the fact that the commutator subgroup [F, F ] of a group F with generating
set Γ is generated by all left-normed commutators [g1, . . . , gk] := [[. . . [[g1, g2], g3], . . . ], gk],
where g1, . . . , gk ∈ Γ∪Γ−1 and k ≥ 2, cf. [6, Lemma 2.6]. Therefore [Gω,n, Gω,n] is generated
by all left-normed commutators [g1, . . . , gk] where k ≥ 2 and g1, . . . , gk ∈ Gω have period at
most n. Furthermore, we can bound k by c since any left-normed commutator [g1, . . . , gc+1]
is trivial (recall that G is nilpotent of class c). A left-normed commutator [g1, . . . , gk] with
2 ≤ k ≤ c and g1, . . . , gk periodic with period at most n is a product containing at most
2k ≤ 2c distinct functions of period at most n (namely, the g1, . . . , gk and their inverses).
Hence [Gω,n, Gω,n] is generated by functions g ∈ [G,G]ω of period at most n2c. J

Proof of Proposition 15. We proceed by induction on the nilpotency class of G. If G has
nilpotency class 0, then G is trivial and the claim is vacuous. Now suppose that G has
nilpotency class c ≥ 1. According to Lemma 17, we have ρd(f) ∈ 〈f〉(d−1)h for some
h ∈ [Gω,n, Gω,n]. By Lemma 18, we have [Gω,n, Gω,n] ⊆ [G,G]ω,n2c . Since the group [G,G]
has nilpotency class at most c− 1 (we included a proof for this in the full version [9]), we
may apply induction. Thus, we know that ρe(h) ∈ 〈h〉(e−1) for some e = e(n2c). We claim
that then ρd+e(f) ∈ 〈f〉(d+e−1). Note that ρd+e(f) ∈ ρe(〈f〉(d−1)h) ⊆ ρe(〈f〉(d−1))ρe(h) ⊆
〈f〉(d+e−1) · ρe(h). Therefore, it suffices to show that ρe(h) ∈ 〈f〉(d+e−1). Since ρd(f) ∈
〈f〉(d−1)h we have h ∈ 〈f〉(d) and thus ρe(h) ∈ 〈h〉(e−1) ⊆ (〈f〉(d))(e−1) = 〈f〉(d+e−1). J

Proof of Theorem 13. Given periodic functions f1, . . . , fm ∈ Gω with maximum period n,
and a number T ∈ N. By Proposition 15 the product f = f1 · · · fm satisfies a recurrence of
order d, where d is bounded polynomially in n. Notice that f = 1 if and only if f(t) = 1 for
all t ≤ d− 1. Hence, it suffices to verify that f1(t) · · · fm(t) = 1 for all t ≤ min{d, T}. This
can be accomplished by solving in parallel a polynomial number of instances of the word
problem over G, which is contained in TC0 by [36]. J

Proof of Theorem 1. In [27] it is shown that for every f.g. group G, PowerWP(G o Z)
belongs to TC0(Periodic(G),PowerWP(G)). By [27] the power word problem for a f.g.
nilpotent group belongs to TC0 and by Theorem 13, Periodic(G) belongs to TC0. J

Proof of Theorem 2. By Theorem 8, KP(G o Z) is NP-hard. For the upper bound we use
the following result from [12] that holds for every f.g. group G: There is a non-deterministic
polynomial time Turing machineM that takes as input a knapsack expression E over GoZ and
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outputs in each leaf of the computation tree the following data: (i) an instance of ExpEq(G)
and (ii) a finite list of instances of Periodic(G). Moreover, the input expression E has
a (G o Z)-solution if and only if the computation tree has a leaf in which all Periodic(G)
instances are positive. If G is finite and nilpotent, then Periodic(G) belongs to TC0 and
ExpEq(G) belongs to NP (this holds for every finite group). The theorem follows. J

5 Wreath products with abelian left factors

In this section we consider wreath products AoH where A is f.g. abelian and H is a f.g. torsion-
free group. We study for which groups H, the complexity of the power word/knapsack
problem in H is passed on to A oH. As applications, we obtain Theorems 3 and 4.

Power word problem over A o H. As a first step, we normalize a given power word
uk1

1 . . . ukd

d , i.e. ensure that u1, . . . , ud ∈ AH, say ui = aihi for some ai ∈ A and hi ∈ H
for 1 ≤ i ≤ d. Intuitively, the computation of the power word can be described by finite
progressions in the Cayley graph of H, which are labelled with elements ai from A. The goal
is to determine whether the labels on each point cancel out in the abelian group A. Here,
a progression in H is a sequence p = (ghk)0≤k≤` with offset g ∈ H and period h ∈ H. If
h 6= 1 then p is a ray. For all 1 ≤ i ≤ d the power word writes the element ai into the Cayley
graph of H along the progression pi = (hk1

1 . . . h
ki−1
i−1 h

k
i )0≤k≤ki

. Notice that the offset of pi is
given as a power word for hk1

1 . . . h
ki−1
i−1 and the period is given explicitly as a word for the

group element h; we call such a progression power-compressed.
To solve the power word problem over AoH it seems inevitable to compute the intersection

set {(i, j) ∈ [0, k] × [0, `] | abi = ghj} of two given power-compressed progressions p =
(abi)0≤i≤k, q = (ghj)0≤j≤`, for any pair of progressions appearing in the power word. Such a
intersection set is always a finite progression in N2 (c.f. Lemma 9).

However, the key insight of Theorem 3 is that it essentially suffices to compute the
intersection of parallel rays, i.e. rays with commensurable periods. This is because two
non-parallel rays can intersect at most once. Therefore, the number of points in H that cancel
to zero with the help of intersections between non-parallel rays can be at most polynomial.

Therefore, roughly speaking, we proceed as follows. Consider a class C of parallel rays
from the progressions p1, . . . ,pd. First, we compute the intersection sets of all rays in C.
Second, we decide whether the number of points in the support of C which do not cancel to
0 in A exceeds a polynomial bound. In order to count such non-cancelling points, we use
Lemma 14 to limit the search to (polynomially many) polynomial-length rays. If our bound
on such non-cancelling points is exceeded, then we can reject the entire power word: As
mentioned above, non-parallel rays pi can only intersect at a polynomial number of points in
C. If, however, our bound is obeyed, we can explicitly compute the non-cancelling points (as
power compressed words) for each parallelity class C and verify that they do evaluate to 0 in
the entire set of progressions pi.

In order to (i) compute the intersection set of two parallel power-compressed rays and
(ii) count non-cancelling points, we need to solve a generalization of the power word problem
in the group H, which we explain next. For a f.g. group G = 〈Σ〉 we define the power
compressed power problem PowerPP(G):
Input A word u ∈ Σ∗ and a power word (v1, k1, . . . , vd, kd) over Σ.
Output A binary encoded number z ∈ Z with uz = v where v = vk1

1 . . . vkd

d , or no if uz = v

has no solution.
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Note that the word u in the input of PowerPP is uncompressed. In order to guarantee that
we have small uncompressed inputs to PowerPP, we need to show another property of our
groups. Specifically, we prove that the intersection set of parallel rays has a small period: A
group G = 〈Σ〉 is tame with respect to commensurability, or short c-tame, if there exists a
number d ∈ N such that for all commensurable elements g, h ∈ G having infinite order there
exist numbers s, t ∈ Z \ {0} such that gs = ht and |s|, |t| ≤ O((|g|+ |h|)d).

Our algorithm for the power word problem sketched above yields the following:

I Proposition 19. If the group H is c-tame and torsion-free then PowerWP(A o H) is
TC0-reducible to PowerPP(H).

This means, in order to solve the power word problem for groups Wm,r and Sm,r in TC0,
we also need to solve the power compressed power problem in TC0. To this end, we first
establish TC0 membership of PowerPP in groups Wm,r in the following transfer result.

I Theorem 20. Let H and A be f.g. groups where A is abelian and H is c-tame and
torsion-free. Then PowerPP(A oH) is TC0-reducible to PowerPP(H).

To show Theorem 20, we provide an elementary (but still somewhat involved) TC0-reduction
from PowerPP(A oH) to PowerWP(A oH) and PowerPP(H) and apply Proposition 19.

Finally, we need to show that all the groups Wm,r and Sm,r are c-tame.

I Proposition 21. For all r ≥ 1, m ≥ 0 the groups Wm,r and Sm,r are c-tame.

For Proposition 21, we use elementary arguments and the unique roots property of Wm,r.
The preceding ingredients now yield Theorem 3.

Proof of Theorem 3. We will prove by induction on m ∈ N that PowerPP(Wm,r) and
hence also PowerWP(Wm,r) belongs to TC0. If m = 0 then PowerPP(W0,r) is the
problem of solving a system of r linear equations aix = bi where ai is given in unary encoding
and bi is given in binary encoding for 1 ≤ i ≤ r. Since integer division belongs to TC0 (here,
we only have to divide by the unary encoded integers ai) this problem can be solved in TC0.
The inductive step follows from Theorem 20 and the fact that all groups Wm,r are c-tame
(Proposition 21) and torsion-free. J

Knapsack problem over A o H. For the knapsack problem we prove the following transfer
theorem (recall the definition of an orderable group from Section 3 and the definition of the
function EG(n) from (2) in Section 3.3):

I Theorem 22. Let H and A be f.g. groups where A is abelian and H is orderable and
knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).

The proof of Theorem 22 follows a similar pattern as Theorem 20. The condition that
H is orderable ensures that parallel rays in H are contained in cosets of a common cyclic
subgroup. We describe the solution set of an exponent equation over A oH as a disjunction
of polynomially large existential Presburger formulas, which use exponent equations over H
and inequalities as atomic formulas. Here, we do not need to algorithmically construct the
formula: Its mere existence yields an exponential bound on the size of a solution.

Using Theorem 3 and 22 we can prove Theorem 4: let us fix an iterated wreath product
W = Wm,r for some m ≥ 0, r ≥ 1 (recall that W0,r = Zr and Wm+1,r = Zr oWm,r). Since
Zm is orderable, Theorem 7 implies that W is orderable. Moreover, by Theorem 10, W is
also knapsack-semilinear. Since by Lemma 11, EA(n) is exponentially bounded for every
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f.g. abelian group A, it follows from Theorem 22 that EW (n) is exponentially bounded
as well. By Theorem 3 and Lemma 12, ExpEq(W ) belongs to NP. Finally, NP-hardness
of ExpEq(W ) follows from the fact that the question whether a given system of linear
Diophantine equations with unary encoded numbers has a solution in N is NP-hard.

6 Wreath products with difficult knapsack and power word problems

In this section we provide additional details concerning Theorems 5 and 6. We start with a
formal definition of uniformly SENS groups [3].

Strongly efficiently non-solvable groups. Let us fix a f.g. group G = 〈Σ〉. Following [3]
we need the additional assumption that the generating set Σ contains the group identity 1.
This allows to pad words over Σ to any larger length without changing the group element
represented by the word. One also says that Σ is a standard generating set for G. The group
G is called strongly efficiently non-solvable (SENS) if there is a constant µ ∈ N such that for
every d ∈ N and v ∈ {0, 1}≤d there is a word wd,v ∈ Σ∗ with the following properties:
|wd,v| = 2µd for all v ∈ {0, 1}d,
wd,v = [wd,v0, wd,v1] for all v ∈ {0, 1}<d (here we take the commutator of words),
wd,ε 6= 1 in G.

The group G is called uniformly strongly efficiently non-solvable if, moreover,
given v ∈ {0, 1}d, a binary number i with µd bits, and a ∈ Σ one can decide in linear
time on a random access Turing-machine whether the i-th letter of wd,v is a.

In [3] the authors defines also the weaker condition of being (uniformly) efficiently non-
solvable. The definition is more technical and it is not clear whether it really leads to a
larger class of groups. Examples for uniformly SENS groups are: finite non-solvable groups
(more generally, every f.g. group that has a finite non-solvable quotient), f.g. non-abelian free
groups, Thompson’s group F , and weakly branched self-similar groups with a f.g. branching
subgroup (this includes several famous self-similar groups like the Grigorchuk group, the
Gupta-Sidki groups and the Tower of Hanoi groups); see [3] for details.

Wreath products with difficult knapsack problems. Recall that Theorem 6 states that
KP(G o Z) is Σp

2-hard for every uniformly SENS group G. For the proof we consider G-
programs. A G-program is a sequence of instructions (X, a, b) where X is a boolean variable
and a, b are generators of G. Given an assignment for the boolean variables, one can evaluate
the G-program in the natural way: If X is set to 1 (resp., 0) then the instruction (X, a, b)
evaluates to a (resp. b). The resulting sequence of group generators evaluates to an element
of G and this is the evaluation of the G-program under the given assignment. We consider
now the following computational problem ∃∀-Sat(G): Given a G-program P , whose variables
are split into two sets X and Y , does there exist an assignment α : X → {0, 1} such that for
every assignment β : Y → {0, 1} the program P evaluates to the group identity under the
combined assignment α ∪ β?

We prove Theorem 6 in two steps. The first is Σp2-hardness of ∃∀-Sat(G).

I Lemma 23. Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then, ∃∀-Sat(G) is Σp2-hard.

Proof. We prove the lemma by a reduction from the following Σp2-complete problem: given
a boolean formula F = F (X,Y ) in disjunctive normal form, where X and Y are disjoint
tuples of boolean variables, does the quantified boolean formula ∃X∀Y : F hold? Let us fix
such a formula F (X,Y ). We can write F as a fan-in two boolean circuit of depth O(log |F |).
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By [3, Remark 34] we can compute in logspace from F a G-program P over the variables
X ∪ Y of length polynomial in |F | such that for every assignment γ : X ∪ Y → {0, 1} the
following two statements are equivalent:

F (γ(X), γ(Y )) holds.
P (γ) = 1 in G.

Hence, ∃X∀Y : F holds if and only if ∃X∀Y : P = 1 holds. J

The second step is to reduce ∃∀-Sat(G) to KP(G o Z). In fact, this reduction works for
any f.g. group G.

I Lemma 24. For every f.g. nontrivial group G, ∃∀-Sat(G) is logspace many-one reducible
to KP(G o Z).

Proof sketch. Let us fix a G-program

P = (Z1, a1, b1)(Z2, a2, b2) · · · (Z`, a`, b`) ∈ ((X ∪ Y )× Σ× Σ)∗

where X and Y are disjoint sets of variables. Let m = |X| and n = |Y |. We want to construct
a knapsack expression E over G oZ which has a solution if and only if there is an assignment
α : X → {0, 1} such that P (α ∪ β) = 1 for every assignment β : Y → {0, 1}. Let us choose a
generator t for Z. Then Σ∪{t, t−1} generates the wreath product G oZ. First, we compute in
logspace the m+ n first primes p1, . . . , pm+n and fix a bijection p : X ∪ Y → {p1, . . . , pm+n}.
Moreover, let M =

∏m+n
i=1 pi.

Roughly speaking, the idea is as follows. Each assignment α : X → {0, 1} will correspond
to a valuation ν for our expression E. The resulting element ν(E) ∈ G o Z then encodes the
value P (α∪ β) for each β : Y → {0, 1} in some position s ∈ [0,M − 1]. To be precise, to each
s ∈ [0,M − 1], we associate the assignment βs : Y → {0, 1} where βs(Y ) = 1 if and only if
s ≡ 0 mod p(Y ). Then, τ(ν(E))(s) will be P (α ∪ βs). This means, ν(E) = 1 implies that
P (α ∪ β) = 1 for all assignments β : Y → {0, 1}.

Our expression implements this as follows. For each i = 1, . . . , `, it walks to the right
to some position M ′ ≥M and then walks back to the origin. On the way to the right, the
behavior depends on whether Zi is an existential or a universal variable. If Zi is existential,
we either place ai at every position (if α(Zi) = 1) or bi at every position (if α(Zi) = 0).
If Zi is universal, we place ai in the positions divisible by p(Zi); and we place bi in the
others. That way, in position s ∈ [0,M − 1], the accumulated element will be P (α ∪ βs).
The complete proof can be found in the full version [9]. J

Let us now show some applications of Theorem 6:

I Corollary 25. KP(G o Z) is Σp2-complete for G finite non-solvable or f.g.non-abelian free.

Proof. Finite non-solvable groups and f.g. non-abelian free groups are uniformly SENS [3].
By Theorem 6, KP(G o Z) is Σp

2-hard. It remains to show that KP(G o Z) belongs to Σp
2.

According to [12] (see also the proof of Theorem 2) it suffices to show that Periodic(G) and
ExpEq(G) both belong to Σp2. The problem Periodic(G) belongs to coNP (since the word
problem for G can be solved in polynomial time) and ExpEq(G) belongs to NP. For a finite
group this is clear and for a free group one can use [29]. J

Theorem 6 can be also applied to Thompson’s group F . This is one of the most well
studied groups in (infinite) group theory due to its unusual properties, see e.g. [5]. It
can be defined in several ways; let us just mention the following finite presentation: F =
〈x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉. Thompson’s group F is uniformly SENS [3]

and contains a copy of F o Z [14]. Theorem 6 yields:
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I Corollary 26. The knapsack problem for Thompson’s group F is Σp2-hard.

We conjecture Σp2-completeness. Since F is co-context-free [23], KP(F ) is decidable [22].

Wreath product with difficult power word problems. In [27] it was shown that the problem
PowerWP(G o Z) is coNP-complete in case G is a finite non-solvable group or a f.g. free
group. The proof in [27] immediately generalizes to the case were G is uniformly SENS. This
yields Theorem 5. Alternatively, one can prove Theorem 5 by showing that
∀-Sat(G) (the question whether a given G-program P evaluates to the group identity for
all assignment) is coNP-hard if G is uniformly SENS, and
∀-Sat(G) is logspace many-one reducible to PowerWP(G o Z).

This can be shown with the same reductions as in Lemmas 23 and 24.
Fix a f.g. group G = 〈Σ〉. With WP(G,Σ) we denote the set of all words w ∈ Σ∗ such

that w = 1 in G (the word problem for G with respect to Σ). We say that G is co-context-free
if Σ∗ \WP(G,Σ) is context-free (the choice of Σ is not relevant for this) [18, Section 14.2].

I Theorem 27. The power word problem for a co-context-free group G belongs to coNP.

Proof. The following argument is similar to the decidability proof for knapsack in co-
context-free groups in [22]. Let G = 〈Σ〉 and let (u1, k1, u2, k2, . . . , ud, kd) be the input
power word, where ui ∈ Σ∗. We can assume that all ki are positive. We have to check
whether uk1

1 u
k2
2 · · ·u

kd

d is trivial in G. Let L be the complement of WP(G,Σ), which is
context-free. Take the alphabet {a1, . . . , ad} and define the morphism h : {a1, . . . , ad}∗ → Σ∗
by h(ai) = ui. Consider the language K = h−1(L) ∩ a∗1a∗2 · · · a∗d. Since the context-free
languages are closed under inverse morphisms and intersections with regular languages, K is
context-free too. Moreover, from the tuple (u1, u2, . . . , ud) we can compute in polynomial
time a context-free grammar for K: Start with a push-down automaton M for L (since
L is a fixed language, this is an object of constant size). From M one can compute in
polynomial time a push-down automaton M ′ for h−1(L): when reading the symbol ai, M ′
has to simulate (using ε-transitions) M on h(ai). Next, we construct in polynomial time a
push-down automaton M ′′ for h−1(L)∩ a∗1a∗2 · · · a∗d using a product construction. Finally, we
transform M ′′ back into a context-free grammar. This is again possible in polynomial time
using the standard triple construction. It remains to check whether ak1

1 a
k2
2 · · · a

kd

d /∈ L(G).
This is equivalent to (k1, k2, . . . , kd) /∈ Ψ(L(G)), where Ψ(L(G)) denotes the Parikh image
of L(G). Checking (k1, k2, . . . , kd) ∈ Ψ(L(G)) is an instance of the uniform membership
problem for commutative context-free languages, which can be solved in NP according to
[19]. This implies that the power word problem for G belongs to coNP. J

I Theorem 28. For Thompson’s group F , the power word problem is coNP-complete.

Proof. Since F is co-context-free [23], Theorem 27 yields the upper bound. The lower bound
follows from Theorem 5 and the facts that F is uniformly SENS and that F o Z ≤ F . J

7 Open problems

Our results naturally lead to several open research problems:
Theorems 1 and 5 leave some room for further improvements. In this context, a particularly
interesting problem is the power word problem for a wreath product G o Z, where G is
finite solvable but not nilpotent. Recall that for Theorem 5 we reduced ∀-Sat(G) to
PowerWP(G o Z). This reduction works for every non-trivial f.g. group. Moreover, the
problem whether a given equation u = v with variables holds in G for all assignments
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of the variables to elements of G (called EqnId(G) in [44]) can be easily reduced to ∀-
Sat(G). This allows us to apply recent results from [44], where the author constructs finite
solvable groups G for which EqnId(G) cannot be solved in polynomial time assuming
the exponential time hypothesis (this holds for instance for all finite solvable groups of
Fitting length at least 4). Hence, there is no hope to find a polynomial time algorithm
for the power word problem for G o Z for every finite solvable group G, but one can still
look at restricted classes of solvable groups.
We believe that in Theorem 22, the assumption that H is orderable is not needed. In
other words, we conjecture the following: Let H and A be f.g. groups where A is abelian
and H is knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).
Recall the we proved that knapsack for Thompson’s group F is Σp2-hard. Decidability of
knapsack for Thompson’s group F follows from [22] and the fact that F is co-context-free.
It is shown in [22] that for every co-context-free group the knapsack problem reduces to
checking non-universality of the Parikh image of a bounded context-free language. The
latter problem belongs to NEXPTIME [20, Theorem 2.10] (see also [16, Corollary 1]). It
would be interesting to find better complexity bounds for this problem.

References
1 Lazlo Babai, Robert Beals, Jin-Yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative

equations over commuting matrices. In Proceedings of SODA 1996, pages 498–507. ACM/SIAM,
1996.

2 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

3 Laurent Bartholdi, Michael Figelius, Markus Lohrey, and Armin Weiß. Groups with
ALOGTIME-hard word problems and PSPACE-complete compressed word problems. Technical
report, arXiv.org, 2020. arXiv:1909.13781.

4 William Boone. The word problem. Annals of Mathematics. Second Series, 70:207–265, 1959.
5 John W. Cannon, William J. Floyd, and Walter R. Parry. Introductory notes on Richard

Thompson’s groups. L’Enseignement Mathématique, 42(3):215–256, 1996.
6 Anthony E. Clement, Stephen Majewicz, and Marcos Zyman. The Theory of Nilpotent Groups.

Springer, 2017.
7 Max Dehn. Über unendliche diskontinuierliche Gruppen. Mathematische Annalen, 71:116–144,

1911. In German.
8 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic meta theorems for circuit

classes of constant and logarithmic depth. Electronic Colloquium on Computational Complexity
(ECCC), 18:128, 2011.

9 Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. The complexity of
knapsack problems in wreath products. CoRR, abs/2002.08086, 2020. arXiv:2002.08086.

10 Michael Figelius, Markus Lohrey, and Georg Zetzsche. Closure properties of knapsack semilinear
groups. CoRR, abs/1911.12857, 2019. arXiv:1911.12857.

11 Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in products
of groups. Journal of Symbolic Computation, 74:96–108, 2016.

12 Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack problems for
wreath products. In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

13 Guoqiang Ge. Testing equalities of multiplicative representations in polynomial time (extended
abstract). In Proceedings of the 34th Annual Symposium on Foundations of Computer Science,
FOCS 1993, pages 422–426. IEEE Computer Society, 1993.

14 Victor S. Guba and Mark V. Sapir. On subgroups of the R. Thompson group F and other
diagram groups. Mat. Sb., 190(8):3–60, 1999.

http://arxiv.org/abs/1909.13781
http://arxiv.org/abs/2002.08086
http://arxiv.org/abs/1911.12857


M. Figelius, M. Ganardi, M. Lohrey, and G. Zetzsche 126:17

15 Christoph Haase. On the complexity of model checking counter automata. PhD thesis, University
of Oxford, St Catherine’s College, 2011.

16 Christoph Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In
Proceedings of CSL-LICS 2014, pages 47:1–47:10. ACM, 2014.

17 Tore Herlestam. On functions of linear shift register sequences. In Proceedings of EUROCRYPT
’85, volume 219 of Lecture Notes in Computer Science, pages 119–129. Springer, 1986.

18 Derek F. Holt, Sarah Rees, and Claas E. Röver. Groups, Languages and Automata, volume 88
of London Mathematical Society Student Texts. Cambridge University Press, 2017.

19 Dung T. Huynh. Commutative grammars: The complexity of uniform word problems. In-
formation and Control, 57:21–39, 1983.

20 Dung T. Huynh. The complexity of equivalence problems for commutative grammars. Inform-
ation and Control, 66(1/2):103–121, 1985.

21 Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

22 Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in
nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume
677 of Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016.

23 Jörg Lehnert and Pascal Schweitzer. The co-word problem for the Higman-Thompson group
is context-free. Bulletin of the London Mathematical Society, 39(2):235–241, 2007.

24 Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.
Springer, 2014.

25 Markus Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545:390–415, 2020.
26 Markus Lohrey, Benjamin Steinberg, and Georg Zetzsche. Rational subsets and submonoids

of wreath products. Information and Computation, 243:191–204, 2015.
27 Markus Lohrey and Armin Weiß. The power word problem. In Proceedings of MFCS 2019,

volume 138 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

28 Markus Lohrey and Georg Zetzsche. Knapsack in graph groups, HNN-extensions and amal-
gamated products. In Proceedings of STACS 2016, volume 47 of LIPIcs, pages 50:1–50:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

29 Markus Lohrey and Georg Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62(1):192–246, 2018.

30 Patrizia Longobardi and Mercede Maj. On some classes of orderable groups. Milan Journal of
Mathematics, 68(1):203–216, 1998.

31 R. C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer, 1977.
32 Wilhelm Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series,

40:764–768, 1939.
33 Alexei Miasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups.

Mathematics of Computation, 84:987–1016, 2015.
34 Alexei Miasnikov, Vitaly Roman’kov, Alexander Ushakov, and Anatoly Vershik. The word

and geodesic problems in free solvable groups. Transactions of the American Mathematical
Society, 362(9):4655–4682, 2010.

35 Alexei Miasnikov, Svetla Vassileva, and Armin Weiß. The conjugacy problem in free solvable
groups and wreath products of abelian groups is in TC0. Theory of Computing Systems,
63(4):809–832, 2019.

36 Alexei Miasnikov and Armin Weiß. TC0 circuits for algorithmic problems in nilpotent groups.
In Proceedings of MFCS 2017, volume 83 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

37 Alexei Mishchenko and Alexander Treier. Knapsack problem for nilpotent groups. Groups
Complexity Cryptology, 9(1):87–98, 2017.

38 Roberta Mura and Akbar H. Rhemtulla. Orderable groups. Marcel Dekker, 1977.

ICALP 2020



126:18 The Complexity of Knapsack Problems in Wreath Products

39 Bernhard Hermann Neumann. On ordered groups. American Journal of Mathematics, 71(1):1–
18, 1949.

40 Pyotr S. Novikov. On the algorithmic unsolvability of the word problem in group theory.
American Mathematical Society, Translations, II. Series, 9:1–122, 1958.

41 Dale Rolfsen. Low-dimensional topology and ordering groups. Mathematica Slovaca, 64(3):579–
600, 2014.

42 Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999.
43 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer equalities

and inequalities. Proceedings of the American Mathematical Society, 72(1):155–158, 1978.
44 Armin Weiß. Hardness of equations over finite solvable groups under the exponential time

hypothesis. CoRR, abs/2002.10145, 2020. arXiv:2002.10145.

http://arxiv.org/abs/2002.10145

	Introduction
	Preliminaries
	Groups
	Wreath products
	Knapsack problem
	Knapsack-semilinear groups
	Power word problem

	Wreath products of nilpotent groups and the integers
	Wreath products with abelian left factors
	Wreath products with difficult knapsack and power word problems
	Open problems

