
Hardness Results for Constant-Free Pattern
Languages and Word Equations
Aleksi Saarela
Department of Mathematics and Statistics, University of Turku, Finland
amsaar@utu.fi

Abstract
We study constant-free versions of the inclusion problem of pattern languages and the satisfiability
problem of word equations. The inclusion problem of pattern languages is known to be undecidable
for both erasing and nonerasing pattern languages, but decidable for constant-free erasing pattern
languages. We prove that it is undecidable for constant-free nonerasing pattern languages. The
satisfiability problem of word equations is known to be in PSPACE and NP-hard. We prove that the
nonperiodic satisfiability problem of constant-free word equations is NP-hard. Additionally, we prove
a polynomial-time reduction from the satisfiability problem of word equations to the problem of
deciding whether a given constant-free equation has a solution morphism α such that α(xy) 6= α(yx)
for given variables x and y.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words

Keywords and phrases Combinatorics on words, pattern language, word equation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.140

Category Track B: Automata, Logic, Semantics, and Theory of Programming

1 Introduction

The first topic of this article is pattern languages. If we fix an alphabet of variables and
an alphabet of constants, we can define a pattern as a word consisting of variables and
constant letters (constants are often called terminals). Given a pattern U , the nonerasing
pattern language of U is the set of images of U under all morphism that map the variables
to nonempty constant words and preserve the constants. The erasing pattern language of U
is defined in a similar way, except that the variables can be mapped also to the empty word.
Nonerasing pattern languages were introduced by Angluin [1] and erasing pattern languages
by Shinohara [33].

There are many interesting algorithmic questions about pattern languages, and they are
related to applications such as pattern matching and inductive inference. The membership
problem of pattern languages, which can also be called the matching problem, is NP-complete
in both the nonerasing and erasing case, and so are many of its variations, see, e.g., [10]
and [24]. Checking the emptiness of the intersection of two pattern languages is essentially a
special case of the satisfiability problem of word equations (discussed later in the introduction),
and can therefore be done in polynomial space.

The equivalence problem of two pattern languages is almost trivially decidable in the
nonerasing case: If the alphabet of constants is not unary, the nonerasing pattern languages
of two patterns are the same if and only if the patterns are identical up to a renaming of the
variables [1] (if the alphabet of constants is unary, the problem is a bit more complicated
but still easily decidable). In the erasing case, however, the decidability of the equivalence
problem is an open question.

The inclusion problem of pattern languages was mentioned as an open question in [1]. It
was proved to be undecidable in both the nonerasing and erasing case by Jiang, Salomaa,
Salomaa and Yu [18]. They reduced the undecidable problem of determining whether a

EA
T

C
S

© Aleksi Saarela;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 140; pp. 140:1–140:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6636-2317
mailto:amsaar@utu.fi
https://doi.org/10.4230/LIPIcs.ICALP.2020.140
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

140:2 Hardness Results for Constant-Free Pattern Languages and Word Equations

nondeterministic two-counter automaton without input has an accepting computation to the
inclusion problem of erasing pattern languages, which they then reduced to the inclusion
problem of nonerasing pattern languages. Both proofs are very complicated. They also
proved that the inclusion problem of constant-free erasing pattern languages is decidable.
This proof is simpler but not trivial.

Analyzing the equivalence and inclusion of pattern languages naturally leads to eight
decision problems depending on whether we consider the nonerasing or erasing case and
whether we consider patterns with or without constants. By the results mentioned above,
the decidability status of six of these eight problems was known after [18], but two questions
were left open: Is the equivalence problem decidable for erasing pattern languages, and is
the inclusion problem decidable for constant-free nonerasing pattern languages? In [18], a
positive answer was conjectured for the first question. The second one was only stated as an
open problem with no conjecture. The questions have remained open since then.

The results in [18] were very interesting for many reasons. First, they solved a famous
problem that had been open for many years. Second, the inclusion problem is important for
inductive inference of pattern languages, see, e.g., the articles of Ng and Shinohara [25] and
Reidenbach [28]. Third, nonerasing pattern languages became perhaps the first example of a
family of formal languages with a trivially decidable equivalence problem but undecidable
inclusion problem. Some other families where the equivalence problem is decidable but the
inclusion problem is undecidable are the family of languages accepted by finite deterministic
multitape automata (decidability of equivalence proved by Harju and Karhumäki [12]) and
the family of deterministic context-free languages (decidability of equivalence proved later
by Sénizergues [32]), but in these cases the undecidability result is the easier one. It is also
interesting that for the equivalence problem of patterns, the nonerasing case is easier, while
for the inclusion problem of constant-free patterns, the erasing case is easier.

A lot of further research on the inclusion problem has been done. For example, Freyden-
berger and Reidenbach [11] proved that the inclusion problem remains undecidable if the size
of the alphabet of constants is fixed to be a positive integer k, as long as k ≥ 2 in the erasing
case and k ≥ 4 in the nonerasing case. Both variants of the inclusion problem are decidable if
the alphabet of constants is unary or infinite. Bremer and Freydenberger [4] proved stronger
results: Both the erasing and the nonerasing inclusion problem are undecidable even for a
fixed number of variables, as long as this number is large enough, and even if the size of the
alphabet of constants is two. This result holds also if the second pattern is required to be
constant-free.

In this article, we answer one of the open questions by proving that the inclusion problem
of constant-free nonerasing pattern languages is undecidable. The result holds even for a
fixed number of variables, as long as this number is large enough, and even if the size of
the alphabet of constants is two. Among the problems we have discussed, our new result
provides the first example where the constant-free version of a problem is undecidable, and
the first example where the decidability status of the nonerasing and erasing version has
been proved to be different. See Table 1 for a summary.

Let us now move to the topic of equations. A word equation can be defined as a pair
(U, V) of patterns, and a solution can be defined as a constant-preserving morphism α such
that α(U) = α(V). Like in the case of pattern languages, there are a couple of variations
of word equations. First, we can study either the general case of equations with constants,
or the restricted case of constant-free equations. Algorithmic questions are usually studied
for equations with constants. Some other questions, such as independence [13, 26] and
parameterizability [14, 30], are more often studied for constant-free equations. Second, we

A. Saarela 140:3

Table 1 The decidability of the equivalence (=) and inclusion (⊆) problem of nonerasing (NE)
and erasing (E) languages of constant-free patterns (CF) and patterns with constants (C). The
decidable problems have been marked with a plus and the undecidable ones with a minus. The new
result proved in this article has been circled.

= NE E ⊆ NE E
CF + + CF 	 +
C + ? C − −

can either allow a solution α to be erasing or require it to be nonerasing. This does not
usually make as big of a difference as in the case of the equivalence and inclusion of pattern
languages, but it can have an effect on some things, for example, the size of largest known
independent systems of equations [20]. We allow solutions to be erasing in this article.

The satisfiability problem of word equations, that is, the problem of deciding whether a
given word equation (or a system of equations) has a solution, is one of the major algorithmic
problems on words. The satisfiability problem was proved to be decidable by Makanin [23]. A
survey of Makanin’s algorithm can be found in [8]. The first PSPACE algorithm was given by
Plandowski [27]. Jeż gave a simpler PSPACE algorithm [16] and proved that the satisfiability
problem is in NSPACE(n) [17]. Linear integer programming and the membership problem of
pattern languages can both be easily reduced to the satisfiability problem, so it is NP-hard.
The NP-completeness of the satisfiability problem is a big open question.

Many special cases have been analyzed. For one-variable equations, the satisfiability
problem can be solved in linear time, as proved by Jeż [15], for two-variable equations, in
time O(n5), as proved by Da̧browski and Plandowski [7], and for quadratic equations, it
is NP-hard, as proved by Robson and Diekert [29]. Some other results can be found in
the article of Day, Manea and Nowotka [6]. Some quite powerful generalizations of word
equations were proved to be solvable in polynomial space by Diekert and Elder [9].

There is not much research about the satisfiability of constant-free word equations.
Constant-free equations always have solutions (at least the one mapping all variables to
the empty word, and usually infinitely many other trivial ones), so the natural decision
problem for them is to ask whether an equation has a nontrivial solution, for some definition
of “nontrivial”. It is known that deciding whether a constant-free three-variable equation
has a nonperiodic solution is in NP [30]. Nontrivial constant-free equations on one or two
variables have only periodic solutions.

Constant-free equations might seem much simpler than general ones, but we prove that
deciding whether a given constant-free equation has a nonperiodic solution is NP-hard, and
for a given constant-free equation and given variables x, y, deciding whether there exists
a solution α such that α(xy) 6= α(yx) is as hard as the general version of the satisfiability
problem.

Our proofs are based on the idea of simulating constants by variables in a certain way:
We replace the constants by words consisting of new variables, and then we make sure that
these words behave sufficiently much like constants by adding prefixes and suffixes to the
patterns or new equations to a system of equations. The details differ quite a bit depending
on the problem.

2 Preliminaries

First, we recall some standard notation, definitions, and results related to combinatorics on
words and free monoids. For more, see [5, 21, 3].

ICALP 2020

140:4 Hardness Results for Constant-Free Pattern Languages and Word Equations

The symbols Σ,Γ,Ξ are always used to denote alphabets. Alphabets are usually finite,
but at one point, we use an infinite alphabet. For k ≥ 1, let Σk = {0, . . . , k − 1}. When we
need an alphabet of size k, we often use specifically the alphabet Σk. The empty word is
denoted by ε.

A word U is a factor of a word V if there exist words X,Y such that V = XUY . If we
can choose X = ε, then U is a prefix, if we can choose Y = ε, then U is a suffix, and if we
can choose X 6= ε 6= Y , then U is an internal factor of V .

A nonempty word is primitive if it is not a power of a shorter word. If U = V n and V is
primitive, then V is a primitive root of U .

A language M ⊆ Σ∗ is a submonoid of Σ∗ if it is closed under concatenation and contains
ε. Let M1 and M2 be submonoids of Σ∗ and Γ∗. A mapping α : M1 →M2 is a morphism if
α(UV) = α(U)α(V) for all U, V ∈M1. The most common case is M1 = Σ∗ and M2 = Γ∗.

Let L ⊆ M1. A morphism α : M1 → M2 is nonerasing if α(x) 6= ε for all x 6= ε,
L-preserving if α(x) = x for all x ∈ L, L-periodic if α(xy) = α(yx) for all x, y ∈ L, and
L-nonperiodic if α(xy) 6= α(yx) for some x, y ∈ L.

In the following theorem, we have collected some folklore results related to these definitions.

I Theorem 1. Let U and V be words.
1. UV = V U if and only if there exists a word R such that U, V ∈ R∗.
2. Every nonempty word has a unique primitive root.
3. If U is primitive, then it is not an internal factor of U2.
4. If |Σ| = 2, then every Σ-nonperiodic morphism Σ∗ → Γ∗ is injective.

If every element of a submonoid M of Σ∗ has a unique representation as a product of
elements of some subset B ⊆M , then M is a free monoid and B is its basis. Of course, Σ∗
is a free monoid and Σ is its basis.

If M is a free monoid with a basis B, then every mapping α : B → Γ∗ can be extended
to a morphism M → Γ∗ in a unique way, and every injective mapping α : B → Γ can be
extended to an injective morphism M → Γ∗. Moreover, if L ⊆ B ∩ Γ, then every mapping
α : B r L → Γ∗ can be extended to an L-preserving morphism M → Γ∗ in a unique way.
Therefore, we often define a morphism α by just saying that it is L-preserving and giving
the values α(x) for all x ∈ B r L.

We need the following well-known characterization of free monoids.

I Theorem 2. Let M be a submonoid of Σ∗. M is a free monoid if and only if there does
not exist words U, V,W ∈ Σ∗ such that U, V W,UV,W ∈M but V /∈M .

Let Ξ be an alphabet of variables and Σ an alphabet of constants. The alphabets Ξ and
Σ are assumed to be disjoint. A pattern over (Ξ,Σ) is a word U ∈ (Ξ ∪ Σ)+. The pattern U
is constant-free if U ∈ Ξ+. The nonerasing pattern language of U , denoted by LNE(U), is
the set of images of U under all nonerasing Σ-preserving morphisms (Ξ ∪ Σ)∗ → Σ∗.

In the following definitions, by an alphabet of size ?, we mean an alphabet of arbitrary
finite size. For m,n, k ∈ Z+ ∪ {?}, we define the following decision problems related to
patterns:

Inclusion problem of nonerasing pattern languages PatInclNE(m,n, k): Given alphabets
Ξ1,Ξ2,Σ of sizes m,n, k, respectively, a pattern U over (Ξ1,Σ), and a pattern V over
(Ξ2,Σ), decide whether LNE(U) ⊆ LNE(V).
Inclusion problem of constant-free nonerasing pattern languages PatInclCF

NE(m,n, k): Given
alphabets Ξ1,Ξ2,Σ of sizes m,n, k, respectively, a constant-free pattern U over (Ξ1,Σ),
and a constant-free pattern V over (Ξ2,Σ), decide whether LNE(U) ⊆ LNE(V).

As mentioned in the introduction, PatInclNE(?, ?, ?) was shown to be undecidable already
in [18]. We need the following stronger result from [4].

A. Saarela 140:5

I Theorem 3 ([4], Theorem 3.10). PatInclNE(3, 2554, 2) is undecidable.

I Remark 4. Often, we use symbols from the end of the English alphabet (e.g., u, v, w, x, y, z
in the next example) for ordinary variables, symbols from the beginning of the alphabet
(e.g., a, b) for special variables that end up playing the role of constants in some sense, and
nonnegative integers (e.g., 0, 1) for the actual constants.

I Example 5. It is mentioned in several articles [18, 24] that one reason why the inclusion
problem of nonerasing pattern languages is so difficult is that many unavoidability properties
can be formulated in terms of pattern languages. In our new undecidability proof, an
important role is played by one unavoidability result, although an extremely simple one:
Every binary word of length at least 4 has a nonempty square factor, and therefore every
binary word of length at least 6 has a nonempty internal square factor. By considering
patterns over ({u, v, w, x, y, z},Σ2), this can be expressed as LNE(uvwxyz) ⊆ LNE(xy2z).
More specifically, we will need the fact that LNE(x2y2) r LNE(xy2z) = {0011, 1100}.

A word equation over (Ξ,Σ) is a pair of patterns over (Ξ,Σ). A solution of an equation
(U, V) is a Σ-preserving morphism α : (Ξ ∪ Σ)∗ → Σ∗ such that α(U) = α(V). A system of
equations is a set of equations. A solution of a system is a morphism that is a solution of
every equation in the system.

An equation (U, V) is constant-free if U, V ∈ Ξ+. For constant-free equations, Ξ-periodic
solutions are considered trivial. We often call these solutions just periodic and the others
nonperiodic.

I Example 6. Consider word equations over ({x, y, z},Σ2). The equation (x2, y0y) has no
solutions, because |α(x2)| is even and |α(y0y)| is odd for all Σ2-preserving morphisms α.
The constant-free equation (x2, yzy) has nonperiodic solutions α defined by

α(x) = (PQ)i+1P, α(y) = (PQ)iP, α(z) = QPPQ

for all P,Q ∈ Σ∗2, PQ 6= QP , i ∈ Z≥0, and periodic solutions α defined by

α(x) = P i+j , α(y) = P i, α(z) = P 2j

for all P ∈ Σ∗2, i, j ∈ Z≥0.

By the theorem of Lyndon and Schützenberger [22], if Ξ = {x, y, z} and k,m, n ≥ 2, then
the word equation (xk, ymzn) has only periodic solutions. In other words, if α is a {y, z}-
nonperiodic morphism, then α(ymzn) is primitive. In Theorem 7, we state a generalization
of this result that we need later. It was proved by Spehner [34] and by Barbin-Le Rest and
Le Rest [2]. A shorter proof can be found in [31].

I Theorem 7. Let W ∈ {y, z}∗ be a primitive word that has at least two occurrences of both
letters y and z. Let α be a {y, z}-nonperiodic morphism. Then α(W) is primitive.

For n, k ∈ Z+ ∪ {?}, we define the following decision problems related to systems of word
equations:

Satisfiability problem of word equations EqSat(n, k): Given alphabets Ξ,Σ of sizes n, k,
respectively, and a system S of equations over (Ξ,Σ), decide whether S has a solution.
Nonperiodic satisfiability problem of constant-free word equations EqSatCF

NP(n, k): Given
alphabets Ξ,Σ of sizes n, k, respectively, and a system S of constant-free equations over
(Ξ,Σ), decide whether S has a nonperiodic solution.
Noncommuting satisfiability problem of constant-free word equations EqSatCF

NC(n, k):
Given alphabets Ξ,Σ of sizes n, k, respectively, a system S of constant-free equations
over (Ξ,Σ), and variables x, y ∈ Ξ, decide whether S has a {x, y}-nonperiodic solution.

ICALP 2020

140:6 Hardness Results for Constant-Free Pattern Languages and Word Equations

As mentioned in the introduction, EqSat(?, ?) is known to be in PSPACE and NP-
hard. If Σ is unary, then word equations are essentially linear Diophantine equations, so
EqSat(?, 1) is equivalent to linear integer programming in unary notation, which is known to
be NP-complete.

We have defined the above decision problems for systems of equations. Studying single
equations instead of systems would not make them much easier, except in the case where Σ is
unary. If there are at least two distinct constant letters, then for every finite system of word
equations, we can find an equation that has exactly the same solutions as the system, and
for every finite system of constant-free word equations, we can find a constant-free equation
that has exactly the same nonperiodic solutions as the system, as proved by Hmelevskii [14].
Moreover, these equations can be constructed in polynomial time.

If A and B are decision problems and A is polynomial-time reducible to B, we use the
notation A ≤p B. If A and B are polynomially equivalent, that is, A ≤p B and B ≤p A,
then we use the notation A ≡p B.

3 Inclusion problem of pattern languages

We are going to prove that PatInclNE(?, ?, 2) ≤p PatInclCF
NE(?, ?, 2). Let the alphabet of

constants be Σ2. Let a and b be new variables that are supposed to represent the constants
0 and 1. Nonerasing morphisms that map a to 0 and b to 1 or vice versa can be called good,
and other nonerasing morphism can be called bad. For all patterns U, V , we must construct
constant-free patterns U ′, V ′ such that LNE(U ′) ⊆ LNE(V ′) if and only if LNE(U) ⊆ LNE(V).
In other words, we must show that the following conditions are satisfied:
1. If LNE(U) ⊆ LNE(V), then for all good morphisms α′, there exists a nonerasing morphism

β′ such that β′(V ′) = α′(U ′).
2. If LNE(U) ⊆ LNE(V), then for all bad morphisms α′, there exists a nonerasing morphism

β′ such that β′(V ′) = α′(U ′).
3. If LNE(U) 6⊆ LNE(V), then there exists a nonerasing morphism α′ such that for all

nonerasing morphisms β′, β′(V ′) 6= α′(U ′).
Before giving the definition of U ′ and V ′ and the formal proofs, we explain some ideas behind
the construction.

The simplest idea would be to replace 0 and 1 by a and b. Let U1, V1 be the constant-free
patterns we get from U, V this way. If we use U1, V1 as U ′, V ′, then the first condition is
satisfied. However, the next example shows that the third condition does not hold in general.

I Example 8. Let U = 0x, V = 1x, U ′ = ax, V ′ = bx. Then clearly LNE(U) 6⊆ LNE(V) and
LNE(U ′) ⊆ LNE(V ′), so the third condition does not hold.

The problem with the third condition is that β′ does not necessarily map a and b in the
same way as α′. To solve this, we use an idea that is somewhat similar to one used in [4,
Subsection 5.2], where prefixes are added to patterns to ensure that certain variables must
be mapped in a certain way. Consider the patterns

U2 = a2b2c2U1, V2 = a2b2c2V1,

where c is a new variable. If α′ is good and α′(c) is a third letter that does not appear in
α′(U1), then it is quite easy to see that β′(V2) = α′(U2) is possible only if β′(x) = α′(x) for
all x ∈ {a, b, c}. Of course, there is no third letter in Σ2, but we can define α′(c) ∈ Σ+

2 so
that it still acts as a separator in the same way a unique letter would. If we use U2, V2 as
U ′, V ′, then the first and the third condition are satisfied.

A. Saarela 140:7

Satisfying the second condition without interfering with the third condition is the most
difficult part. To solve the problems, consider patterns of the form

U4 = W1pq
2rW2a

2b2W3, V4 = W4pq
2rW5,

where p, q, r are new variables and W1, . . . ,W5 are constant-free patterns. The factors pq2r

and a2b2 act as a “switch”. If β′(pq2r) = α′(pq2r), then we can say that the switch is in
the first position. If β′(pq2r) = α′(a2b2), then we can say that the switch is in the second
position. For any α′, we can define β′ so that β′(pq2r) = α′(pq2r), so the first position is
always possible. On the other hand, we can define β′ so that β′(pq2r) = α′(a2b2) if and only
if α′ is bad, so the second position is possible for the bad morphisms but not for the good.
This allows us to handle the second condition without causing problems with the other two.

Putting these ideas together leads to the following construction. Let U be a pattern over
(Ξ1,Σ2) and V a pattern over (Ξ2,Σ2). Let a, b, c, p, q, r, s, t be new variables not in Ξ1 ∪ Ξ2.
We define a (Ξ1 ∪ Ξ2)-preserving morphism

σ : (Ξ1 ∪ Ξ2 ∪ Σ2)∗ → (Ξ1 ∪ Ξ2 ∪ {a, b})∗, σ(0) = a, σ(1) = b.

We can construct the constant-free patterns

U ′ = a2b2c2 · c2 · σ(U) · c2pq2rc · σ(V) · c2a2b2c · a
V ′ = a2b2c2 · sc · σ(V) · c2pq2rc · t (1)

where U ′ is a pattern over (Ξ1 ∪ Ξ2 ∪ {a, b, c, p, q, r},Σ2) and V ′ is a pattern over (Ξ2 ∪
{a, b, c, p, q, r, s, t},Σ2).

I Lemma 9. If LNE(U) ⊆ LNE(V), then LNE(U ′) ⊆ LNE(V ′),

Proof. Let α′ : (Ξ1 ∪Ξ2 ∪{a, b, c, p, q, r})∗ → Σ∗2 be a nonerasing morphism. We must find a
nonerasing morphism β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2 such that β′(V ′) = α′(U ′). There
are two cases depending on whether α′ is good or bad.

If α′ is good, then we can define a nonerasing morphism

α : (Ξ1 ∪ Ξ2 ∪ Σ2)∗ → Σ∗2, α = α′ ◦ σ ◦ α′ ◦ σ.

It is easy to check that α is Σ2-preserving. By the assumption LNE(U) ⊆ LNE(V), there
exists a nonerasing Σ2-preserving morphism β : (Ξ2 ∪ Σ2)∗ → Σ∗2 such that β(V) = α(U).
We can define a morphism

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2, β′(x) = α′(σ(β(x)) for all x ∈ Ξ2,

β′(x) = α′(x) for all x ∈ {a, b, c, p, q, r}.
β′(s) = α′(c),
β′(t) = α′(σ(V)c2a2b2ca).

It follows directly from the definition of β′ that

β′(a2b2c2sc) = α′(a2b2c4),
β′(c2pq2rct) = α′(c2pq2rcσ(V)c2a2b2ca). (2)

Showing that β′(σ(V)) = α′(σ(U)) requires some computations. By using the definition of
β′ and the fact that σ is Ξ2-preserving and β is Σ2-preserving, we get

β′(σ(x)) = β′(x) = α′(σ(β(x))) for all x ∈ Ξ2,

β′(σ(x)) = α′(σ(x)) = α′(σ(β(x))) for all x ∈ Σ2. (3)

ICALP 2020

140:8 Hardness Results for Constant-Free Pattern Languages and Word Equations

We have

β′(σ(V)) = α′(σ(β(V))) = α′(σ(α(U))) = α(α′(σ(U))) = α′(σ(U)), (4)

where the first equality follows from V ∈ (Ξ2 ∪ Σ2)+ and (3), the second from β(V) = α(U),
the third from (α′ ◦ σ) ◦ α = α ◦ (α′ ◦ σ), and the fourth from α being Σ2-preserving. It
follows from (2) and (4) that β′(V ′) = α′(U ′)

If α′ is bad, then α′(a2b2) is either 04, 14, or a binary word of length at least six. In all
cases, it has a nonempty internal factor that is a square, so there exists P,Q,R ∈ Σ+

2 such
that α′(a2b2) = PQ2R. We can define a morphism

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2, β′(x) = α′(x) for all x ∈ Ξ2 ∪ {a, b, c},
β′(p) = P,

β′(q) = Q,

β′(r) = R,

β′(s) = α′(c2σ(U)c2pq2r),
β′(t) = α′(a).

It follows directly from the definition of β′ that β′(V ′) = α′(U ′). J

I Lemma 10. If LNE(U) 6⊆ LNE(V), then LNE(U ′) 6⊆ LNE(V ′).

Proof. By the assumption LNE(U) 6⊆ LNE(V), there exist a nonerasing Σ2-preserving
morphism α : (Ξ1 ∪ Σ2)∗ → Σ∗2 such that β(V) 6= α(U) for all nonerasing Σ2-preserving
morphisms β : (Ξ2 ∪ Σ2)∗ → Σ∗2. We can define a morphism

α′ : (Ξ1 ∪ Ξ2 ∪ {a, b, c, p, q, r})∗ → Σ∗2, α′(x) = α(x) for all x ∈ Ξ1,

α′(a) = 0,
α′(b) = 1,
α′(c) = 10N 1,
α′(x) = 1 for all x ∈ Ξ2 ∪ {p, q, r},

where N = 1 + max{2, |α′(σ(U))|, |α′(σ(V))|}.
It is easy to see that α′(U ′) does not contain any other occurrences of α′(c) than the

ten obvious ones. We can show that if A2 is a nonempty square prefix of α′(U ′), then
A = α′(a) = 0. First, if α′(a2b2c3) is a prefix of A, then Aα′(a2b2c3) is a prefix of α′(U ′),
which is impossible, because α′(c3) does not have any occurrences in α′(U ′) starting after
the prefix α′(a2b2c3). Second, if A is a prefix of α′(a2b2c3) and |A| ≥ 5, then A00111 is a
prefix of α′(a2b2c4), which is impossible, because 111 does not have any occurrences in α′(c4).
Finally, if |A| ≤ 4, then clearly the only possibility is A = 0. Similarly, we can show that if
W is the word such that U ′ = a2b2W , then the only nonempty square prefix of α′(b2W) is
α′(b2) = 11, and the only nonempty square prefixes of α′(W) are α′(c2) and α′(c4).

To complete the proof of the theorem, we assume that

β′ : (Ξ2 ∪ {a, b, c, p, q, r, s, t})∗ → Σ∗2

is a nonerasing morphism such that β′(V ′) = α′(U ′) and derive a contradiction. Because
β′(V ′) has the nonempty square prefix β′(a2), and the only nonempty square prefix of α′(U ′)
is 00, it must be β′(a) = 0. Similarly, we see that β′(b) = 1 and β′(c) ∈ {α′(c), α′(c2)}. If
β′(c) = α′(c2), then β′(c2) = α′(c4) has two occurrences in α′(U ′), which is not possible, so
it must be β′(c) = α′(c). It follows that

A. Saarela 140:9

β′(scσ(V)c2pq2rct) = α′(c2σ(U)c2pq2rcσ(V)c2a2b2ca).

Here on the right-hand side, there are only two occurrences of α′(c2) as an internal factor, so
either

β′(scσ(V)) = α′(c2σ(U)) and β′(pq2rct) = α′(pq2rcσ(V)c2a2b2ca) (5)

or

β′(scσ(V)) = α′(c2σ(U)c2pq2rcσ(V)) and β′(pq2rct) = α′(a2b2ca). (6)

There is only one occurrence of α′(c) as an internal factor in α′(c2σ(U)), so (5) implies
β′(σ(V)) = α′(σ(U)) = α(U), which is a contradiction because β′ ◦ σ is a nonerasing Σ2-
preserving morphism. There is only one occurrence of α′(c) as an internal factor in α′(a2b2ca),
so (6) implies β′(pq2r) = α′(a2b2) = 0011, which is a contradiction because 0011 does not
have a nonempty internal square factor. These contradictions show that the morphism β′

does not exist, and therefore LNE(U ′) 6⊆ LNE(V ′). J

I Theorem 11. For all m,n ∈ Z+,

PatInclNE(m,n, 2) ≤p PatInclCF
NE(max{m,n}+ 6, n+ 8, 2).

Proof. Let U be a pattern over (Ξ1,Σ2) and V a pattern over (Ξ2,Σ2), where |Ξ1| = m

and |Ξ2| = n. Because renaming the variables in one of U and V does not change the
pattern language, we can assume that one of Ξ1 and Ξ2 is a subset of the other, and
therefore |Ξ1 ∪ Ξ2| = max{m,n}. The constant-free patterns U ′ and V ′ defined in (1) can
be constructed in polynomial time. By Lemmas 9 and 10, LNE(U) ⊆ LNE(V) if and only if
LNE(U ′) ⊆ LNE(V ′). The claim follows. J

I Corollary 12. The decision problem PatInclCF
NE(2560, 2562, 2) is undecidable.

Proof. By Theorem 3, PatInclNE(3, 2554, 2) is undecidable. It follows from Theorem 11 that
PatInclCF

NE(2560, 2562, 2) is undecidable. J

4 Nonperiodic satisfiability

We are going to prove that the decision problem EqSatCF
NP(?, 2) is NP-hard. This is based on

the NP-hardness of EqSat(?, 1). Before the proofs, we give a brief informal explanation of
the idea.

We are going to transform a system of word equations over (Ξ,Σ1) into a similarly-
behaving system of constant-free word equations over (Ξ∪ {a, b},Σ2), where a and b are new
variables. The letter 0 in the original system has two important properties: It is primitive,
and the images of all variables are powers of it. We want to replace 0 by a word consisting of
variables that has similar properties. We can use the word a2b2. For all {a, b}-nonperiodic
solutions β, the word β(a2b2) is primitive, and we can force β(x) to be a power of β(a2b2)
by adding the equation (xa2b2, a2b2x) for all x ∈ Ξ. Finally, adding the equation (xy, yx) for
all x, y ∈ Ξ makes sure that every {a, b}-periodic solution is periodic.

I Theorem 13. For all n ∈ Z+,

EqSat(n, 1) ≤p EqSatCF
NP(n+ 2, 2) and EqSat(?, 1) ≤p EqSatCF

NP(?, 2).

ICALP 2020

140:10 Hardness Results for Constant-Free Pattern Languages and Word Equations

Proof. Let S be a system of word equations over (Ξ,Σ1). Let a, b be new variables not in Ξ.
Let us define a Ξ-preserving morphism

σ : (Ξ ∪ Σ1)∗ → (Ξ ∪ {a, b})∗, σ(0) = a2b2,

and a morphism

τ : {a, b}∗ → Σ∗2, τ(a) = 0, τ(b) = 1.

We can construct in polynomial time a system of constant-free word equations

S′ = {(σ(U), σ(V)) | (U, V) ∈ S} ∪ {(xσ(0), σ(0)x) | x ∈ Ξ} ∪ {(xy, yx) | x, y ∈ Ξ}

over (Ξ∪{a, b},Σ2). To complete the proof of the theorem, we show that S′ has a nonperiodic
solution if and only if S has a solution.

First, assume that S has a solution α. We can define a nonperiodic Σ2-preserving
morphism

β : (Ξ ∪ {a, b} ∪ Σ2)∗ → Σ∗2, β(x) = τ(x) for all x ∈ {a, b},
β(x) = τ(σ(α(x))) for all x ∈ Ξ

and show that it is a solution of S′. By using the definition of β and the fact that α is
Σ1-preserving and σ is Ξ-preserving, we get

β(σ(0)) = τ(σ(0)) = τ(σ(α(0))),
β(σ(x)) = β(x) = τ(σ(α(x))) for all x ∈ Ξ. (7)

For all (U, V) ∈ S, from U, V ∈ (Ξ ∪ Σ1)∗, (7), and α(U) = α(V), it follows that

β(σ(U)) = τ(σ(α(U))) = τ(σ(α(V))) = β(σ(V)).

Thus β is a solution of (σ(U), σ(V)) for all (U, V) ∈ S. For all x ∈ Ξ, we have α(x) ∈ 0∗ and
therefore

β(x) = τ(σ(α(x))) ∈ τ(σ(0))∗ = β(σ(0))∗.

Thus β is a solution of all the other equations in S′ as well.
Second, assume that S′ has a nonperiodic solution β. From β(xy) = β(yx) for all

x, y ∈ Ξ ∪ {σ(0)} it follows that there exists a primitive word R such that β(x) ∈ R∗ for all
x ∈ Ξ ∪ {σ(0)}. If β is {a, b}-periodic, then β(σ(0)) = β(a2b2) ∈ R∗ implies β(a), β(b) ∈ R∗,
and then β is periodic, a contradiction. Therefore β must be {a, b}-nonperiodic. It follows
from Theorem 7 that β(σ(0)) is primitive and therefore β(σ(0)) = R. We can define a
bijective morphism

φ : R∗ → Σ∗1, φ(R) = 0,

and a morphism

α : (Ξ ∪ Σ1)∗ → Σ∗1, α = φ ◦ β ◦ σ.

Then α is well-defined because the image of β ◦ σ is a subset of R∗, and α is Σ1-preserving
because α(0) = φ(R) = 0, and α is a solution of S because

α(U) = φ(β(σ(U))) = φ(β(σ(V))) = α(V)

for all (U, V) ∈ S. J

I Corollary 14. The decision problem EqSatCF
NP(?, 2) is NP-hard.

Proof. Follows from Theorem 13 because EqSat(?, 1) is NP-hard. J

A. Saarela 140:11

5 Noncommuting satisfiability

We have proved that EqSatCF
NP is NP-hard, but based on this result alone, it might be possible

that, for example, EqSatCF
NP is NP-complete but EqSat is not in NP. We would like to prove

that constant-free equations are, in some sense, as hard as general word equations. We are
going to prove this kind of a result for the decision problem EqSatCF

NC.
When trying to generalize the ideas of the previous section to the case where the alphabet

of constants is Σk with k > 1, it is quite easy to define words Ci ∈ {a, b} for all i ∈ Σk so
that for all {a, b}-nonperiodic morphisms β, the words β(Ci) are distinct primitive words
and {β(C0), . . . , β(Ck−1)} is the basis of a free monoid. The problem is that we cannot make
sure that β(x) is in this free monoid for all original variables x. (This difficulty is related to
the fact that if X ∈ Σ∗, Γ (Σ, |Γ| ≥ 2, then the property X ∈ Γ∗ cannot be expressed by
word equations, see [19].) However, we can make sure that β(x) is in a certain larger free
monoid whose basis contains the words β(C0), . . . , β(Ck−1). This is sufficient to prove the
results.

I Lemma 15. Let k ∈ Z+ and let a, b be variables. Let

Ai = aib2ak−i+1 for all i ∈ {0, . . . , k + 1},
B = A2

kA
2
k+1A

2
k,

Ci = BAiB for all i ∈ {0, . . . , k − 1}.

Let β : {a, b}∗ → Σ∗ be an {a, b}-nonperiodic (and therefore injective) morphism and let

M = (β(B)Σ∗ ∩ Σ∗β(B)) ∪ {ε}.

The following are true:
1. β(A0), . . . , β(Ak+1), β(B) are primitive.
2. M is a free monoid.
3. β(C0), . . . , β(Ck−1) are in the basis of M .
4. If U ∈M r {ε} and UV = V U , then V ∈M .

Proof.
1. The primitivity of the words β(Ai) follows from Theorem 7. The word β(B) is the image

of 001100 under the morphism defined by 0 7→ β(Ak), 1 7→ β(Ak+1), and β(AkAk+1) 6=
β(Ak+1Ak) because AkAk+1 6= Ak+1Ak, so also the primitivity of β(B) follows from
Theorem 7.

2. We use Theorem 2. Clearly M is a monoid. We have to show that if U, V,W ∈ Σ∗ and
U, V W,UV,W ∈ M , then V ∈ M . If V = ε, then V ∈ M . If |V | ≥ |β(B)|, then VW
and thus also V begins with β(P), and UV and thus also V ends with β(P), so V ∈M .
If 0 < |V | < |β(B)|, then we can write U = Xβ(B), UV = Y β(B), UVW = Xβ(B)2Z

for some words X,Y, Z such that |X| < |Y | < |Xβ(B)|, so β(B) is an internal factor of
β(B)2, which contradicts the primitivity of β(P). Thus M is a free monoid by Theorem 2.

3. Clearly β(Ci) ∈M . If β(Ci) is not in the basis for some i ∈ {0, . . . , k − 1}, then it is a
product of two nonempty elements of M , so it has a factor β(B2) and thus also a factor
β(A4

k) and we can write

β(Ci) = β(A2
kA

2
k+1A

2
kAiA

2
kA

2
k+1A

2
k) = Uβ(A4

k)V. (8)

for some words U, V . Let l = |β(Ak)|. Note that l = |β(Aj)| for all j. If l divides |U |,
then it follows from (8) that β(Ak) = β(Ak+1) or β(Ak) = β(Ai), which contradicts the
injectivity of β. If l does not divide |U |, then it follows from (8) that β(Ak) is an internal
factor of β(A2

k), which contradicts the primitivity of β(Ak). This proves the claim.

ICALP 2020

140:12 Hardness Results for Constant-Free Pattern Languages and Word Equations

4. If V = ε, then V ∈ M . If |V | ≥ |β(B)|, then U and thus also V begins and ends with
β(B), so V ∈ M . If 0 < |V | < |β(B)|, then β(B) = RkR′, where R is the common
primitive root of U and V , R′ is a nonempty prefix of R, and k ≥ 1. Because β(B) is
primitive, 0 < |R′| < |R|. But R is a suffix of U and thus of β(B) = RkR′, so R is an
internal factor of R2, which contradicts the primitivity of R. This proves the claim. J

I Theorem 16. For all n ∈ Z+,

EqSat(n, ?) ≤p EqSatCF
NC(2n+ 2, 2) and EqSat(?, ?) ≤p EqSatCF

NC(?, 2).

Proof. Let S be a system of word equations over (Ξ,Σk), where Ξ = {x1, . . . , xn}. Let
a, b, y1, . . . , yn be new variables not in Ξ and let Ξ′ = Ξ∪ {a, b, y1, . . . , yn}. Let B, Ci, M be
as in Lemma 15. Let us define a Ξ-preserving morphism

σ : (Ξ ∪ Σk)∗ → (Ξ ∪ {a, b})∗, σ(i) = Ci for all i ∈ Σk,

and a morphism

τ : {a, b}∗ → Σ∗2, τ(a) = 0, τ(b) = 1.

We can construct in polynomial time a system of constant-free word equations

S′ = {(σ(U), σ(V)) | (U, V) ∈ S} ∪ {(xiByiB,ByiBxi) | i ∈ {1, . . . , n}}.

over (Ξ′,Σ2). To complete the proof of the theorem, we show that S′ has an {a, b}-nonperiodic
solution β if and only if S has a solution.

First, assume that S has a solution α. For all i, if σ(α(xi)) = ε, let Yi = ε, and
otherwise let σ(α(xi)) = BYiB. Such words Yi exist by the definition of σ. We can define an
{a, b}-nonperiodic Σ2-preserving morphism

β : (Ξ′ ∪ Σ2)∗ → Σ∗2, β(x) = τ(x) for all x ∈ {a, b},
β(xi) = τ(σ(α(xi))) for all i,
β(yi) = τ(Yi) for all i,

and show that it is a solution of S′. By using the definition of β and the fact that α is
Σk-preserving and σ is Ξ-preserving, we get

β(σ(i)) = τ(σ(i)) = τ(σ(α(i))) for all i ∈ Σk,

β(σ(x)) = β(x) = τ(σ(α(x))) for all x ∈ Ξ. (9)

For all (U, V) ∈ S, from U, V ∈ (Ξ ∪ Σk)∗, (9), and α(U) = α(V), it follows that

β(σ(U)) = τ(σ(α(U))) = τ(σ(α(V))) = β(σ(V)).

Thus β is a solution of (σ(U), σ(V)) for all (U, V) ∈ S. We have β(xi) = ε or β(xi) =
τ(BYiB) = β(ByiB) for all i, so β is a solution of the other equations (xiByiB,ByiBxi) in
S′ as well.

Second, assume that S′ has an {a, b}-nonperiodic solution β. By Lemma 15, from
β(xiByiB) = β(ByiBxi) it follows that β(xi) ∈M for all i. Again by Lemma 15, M is free
and the words β(Ci) are in the basis of M , so there exists an infinite alphabet Γ containing
Σk and an injective morphism

A. Saarela 140:13

φ : M → Γ∗ such that φ(β(Ci)) = i for all i. We can define a Σk-preserving morphism

ψ : Γ∗ → Σ∗k, ψ(x) = ε for all x ∈ Γ r Σk

and a morphism

α : (Ξ ∪ Σk)∗ → Σ∗k, α = ψ ◦ φ ◦ β ◦ σ.

Then α is well-defined because β(σ(x)) ∈ M for all x ∈ Ξ ∪ Σk, and α is Σk-preserving
because

α(i) = ψ(φ(β(Ci))) = ψ(i) = i

for all i ∈ Σk, and α is a solution of S because from β(σ(U)) = β(σ(V)) it follows that

α(U) = ψ(φ(β(σ(U)))) = ψ(φ(β(σ(V)))) = α(V)

for all (U, V) ∈ S. J

I Corollary 17. EqSat(?, ?) ≡p EqSatCF
NC(?, ?).

Proof. We proved in Theorem 16 that EqSat(?, ?) ≤p EqSatCF
NC(?, ?). To prove the other

direction, let S be a system of constant-free equations over (Ξ,Σk), k ≥ 2, and x, y ∈ Ξ. Let
p, q, r be new variables not in Ξ. It is easy to see that the system

S′ = S ∪ {(xy, p0q), (yx, p1r)}

over (Ξ ∪ {p, q, r},Σk) has a solution if and only if S has a {x, y}-nonperiodic solution: If
β is a solution of S′, then the restriction of β on (Ξ ∪ Σk)∗ is a solution of S, and it is
{x, y}-nonperiodic because

β(xy) = β(p)0β(q) 6= β(p)1β(r) = β(yx).

On the other hand, if α is an {x, y}-nonperiodic solution of S, then we can write α(xy) = PaQ

and α(yx) = PbR for some words P,Q,R and distinct letters a, b. Because S is constant-free,
every morphism we get from α by permuting the constant letters in the images of the variables
is also an {x, y}-nonperiodic solution of S, so we can assume that a = 0 and b = 1. Then
we can extend α to a solution α′ of S′ by defining α′(p) = P , α′(q) = Q, α′(r) = R. This
completes the proof. J

6 Conclusion

We have proved that the inclusion problem of nonerasing pattern languages is undecidable
even in the case of constant-free patterns. We have also proved that the nonperiodic
satisfiability problem of constant-free word equations is NP-hard, and the noncommuting
satisfiability problem of constant-free word equations is polynomially equivalent to the general
satisfiability problem of word equations.

The following questions remain open:
Is the equivalence problem of erasing pattern languages decidable?
Is the satisfiability problem of word equations in NP?
For some fixed n ≥ 3, can we prove that EqSat(n, ?) is in P or NP or NP-hard?

ICALP 2020

140:14 Hardness Results for Constant-Free Pattern Languages and Word Equations

There are also several smaller open questions raised by the new results:
Can the numbers 2560 and 2562 in Corollary 12 be made significantly smaller? This
would require either a rather different approach or improving the results in [4].
Is EqSat(?, ?) polynomial-time reducible to EqSatCF

NP(?, ?)?
In Theorem 16, we used n+ 2 new variables. Would a constant number of new variables
be sufficient?
The satisfiability problem remains NP-hard for several restricted subfamilies of word
equations. Can we prove NP-hardness results for some interesting subfamilies of constant-
free equations?

References
1 Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and System

Sciences, 21(1):46–62, 1980. doi:10.1016/0022-0000(80)90041-0.
2 Evelyne Barbin-Le Rest and Michel Le Rest. Sur la combinatoire des codes à deux mots.

Theoretical Computer Science, 41(1):61–80, 1985. doi:10.1016/0304-3975(85)90060-X.
3 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Cambridge

University Press, 2010.
4 Joachim Bremer and Dominik D. Freydenberger. Inclusion problems for patterns with a

bounded number of variables. Information and Computation, 220/221:15–43, 2012. doi:
10.1016/j.ic.2012.10.003.

5 Christian Choffrut and Juhani Karhumäki. Combinatorics of words. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, volume 1, pages 329–438. Springer,
1997. doi:10.1007/978-3-642-59136-5_6.

6 Joel D. Day, Florin Manea, and Dirk Nowotka. The hardness of solving simple word equations.
In Proceedings of the 42nd MFCS, volume 83 of LIPIcs, pages 18:1–14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.18.

7 Robert Da̧browski and Wojtek Plandowski. Solving two-variable word equations (extended
abstract). In Proceedings of the 31st ICALP, volume 3142 of LNCS, pages 408–419. Springer,
2004. doi:10.1007/978-3-540-27836-8_36.

8 Volker Diekert. Makanin’s algorithm. In M. Lothaire, editor, Algebraic Combinatorics on
Words, pages 387–442. Cambridge University Press, 2002.

9 Volker Diekert and Murray Elder. Solutions of twisted word equations, EDT0L languages, and
context-free groups. In Proceedings of the 44th ICALP, volume 80 of LIPIcs, pages 96:1–14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
96.

10 Henning Fernau and Markus L. Schmid. Pattern matching with variables: a multivariate
complexity analysis. Information and Computation, 242:287–305, 2015. doi:10.1016/j.ic.
2015.03.006.

11 Dominik D. Freydenberger and Daniel Reidenbach. Bad news on decision problems for patterns.
Information and Computation, 208(1):83–96, 2010. doi:10.1016/j.ic.2009.04.002.

12 Tero Harju and Juhani Karhumäki. The equivalence problem of multitape finite automata.
Theoretical Computer Science, 78(2):347–355, 1991. doi:10.1016/0304-3975(91)90356-7.

13 Tero Harju, Juhani Karhumäki, andWojciech Plandowski. Independent systems of equations. In
M. Lothaire, editor, Algebraic Combinatorics on Words, pages 443–472. Cambridge University
Press, 2002.

14 Ju. I. Hmelevskĭı. Equations in free semigroups. American Mathematical Society, 1976.
Translated by G. A. Kandall from the Russian original: Trudy Mat. Inst. Steklov. 107 (1971).

15 Artur Jeż. One-variable word equations in linear time. Algorithmica, 74(1):1–48, 2016.
doi:10.1007/s00453-014-9931-3.

https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1016/0304-3975(85)90060-X
https://doi.org/10.1016/j.ic.2012.10.003
https://doi.org/10.1016/j.ic.2012.10.003
https://doi.org/10.1007/978-3-642-59136-5_6
https://doi.org/10.4230/LIPIcs.MFCS.2017.18
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2009.04.002
https://doi.org/10.1016/0304-3975(91)90356-7
https://doi.org/10.1007/s00453-014-9931-3

A. Saarela 140:15

16 Artur Jeż. Recompression: a simple and powerful technique for word equations. Journal of
the ACM, 63(1):Art. 4, 51, 2016. doi:10.1145/2743014.

17 Artur Jeż. Word equations in nondeterministic linear space. In Proceedings of the 44th ICALP,
volume 80 of LIPIcs, pages 95:1–13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.95.

18 Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. Decision problems for patterns. Journal
of Computer and System Sciences, 50(1):53–63, 1995. doi:10.1006/jcss.1995.1006.

19 Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of languages
and relations by word equations. Journal of the ACM, 47(3):483–505, 2000. doi:10.1145/
337244.337255.

20 Juhani Karhumäki and Wojciech Plandowski. On the defect effect of many identities in free
semigroups. In Gheorghe Paun, editor, Mathematical aspects of natural and formal languages,
pages 225–232. World Scientific, 1994. doi:10.1142/9789814447133_0012.

21 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. URL:
http://www-igm.univ-mlv.fr/~berstel/Lothaire/AlgCWContents.html.

22 Roger C. Lyndon and Marcel-Paul Schützenberger. The equation aM = bNcP in a free group.
The Michigan Mathematical Journal, 9(4):289–298, 1962. doi:10.1307/mmj/1028998766.

23 G. S. Makanin. The problem of the solvability of equations in a free semigroup. Mat. Sb.
(N.S.), 103(2):147–236, 1977. English translation in Math. USSR Sb. 32:129–198, 1977.

24 Florin Manea and Markus L. Schmid. Matching patterns with variables. In Proceedings
of the 12th WORDS, volume 11682 of LNCS, pages 1–27. Springer, 2019. doi:10.1007/
978-3-030-28796-2_1.

25 Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397(1–3):150–165,
2008. doi:10.1016/j.tcs.2008.02.028.

26 Dirk Nowotka and Aleksi Saarela. An optimal bound on the solution sets of one-variable
word equations and its consequences. In Proceedings of the 45th ICALP, volume 107 of
LIPIcs, pages 136:1–136:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.ICALP.2018.136.

27 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM, 51(3):483–496, 2004.

28 Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397(1–3):166–193, 2008. doi:10.1016/j.tcs.2008.02.029.

29 John Michael Robson and Volker Diekert. On quadratic word equations. In Proceedings
of the 16th STACS, volume 1563 of LNCS, pages 217–226. Springer, 1999. doi:10.1007/
3-540-49116-3_20.

30 Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three unknown
equations. In Proceedings of the 13th DLT, volume 5583 of LNCS, pages 443–453. Springer,
2009. doi:10.1007/978-3-642-02737-6_36.

31 Aleksi Saarela. Studying word equations by a method of weighted frequencies. Fundamenta
Informaticae, 162(2–3):223–235, 2018. doi:10.3233/FI-2018-1722.

32 Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In Proceedings of the 24th ICALP, volume 1256 of LNCS, pages 671–681. Springer,
1997. doi:10.1007/3-540-63165-8_221.

33 Takeshi Shinohara. Polynomial time inference of extended regular pattern languages. In RIMS
Symposia on Software Science and Engineering, volume 147 of LNCS, pages 115–127. Springer,
1983. doi:doi.org/10.1007/3-540-11980-9_19.

34 Jean-Claude Spehner. Quelques problémes d’extension, de conjugaison et de présentation des
sous-monoïdes d’un monoïde libre. PhD thesis, Univ. Paris, 1976.

ICALP 2020

https://doi.org/10.1145/2743014
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.1006/jcss.1995.1006
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/337244.337255
https://doi.org/10.1142/9789814447133_0012
http://www-igm.univ-mlv.fr/~berstel/Lothaire/AlgCWContents.html
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1016/j.tcs.2008.02.028
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.1016/j.tcs.2008.02.029
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.3233/FI-2018-1722
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/doi.org/10.1007/3-540-11980-9_19

	Introduction
	Preliminaries
	Inclusion problem of pattern languages
	Nonperiodic satisfiability
	Noncommuting satisfiability
	Conclusion

