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Abstract

It is well known that univalence is incompatiblewith unique-
ness of identity proofs (UIP), the axiom that all types are
h-sets. This is due to finite h-sets having non-trivial auto-
morphisms as soon as they are not h-propositions.
A natural question is then whether univalence restricted

to h-propositions is compatible with UIP. We answer this
affirmatively by constructing a model where types are ele-
ments of a closed universe defined as a higher inductive type
in homotopy type theory. This universe has a path construc-
tor for simultaneous "partial" univalent completion, i.e., re-
stricted to h-propositions.
More generally, we show that univalence restricted to (n−

1)-types is consistent with the assumption that all types are
n-truncated. Moreover we parametrize our construction by
a suitably well-behaved container, to abstract from a con-
crete choice of type formers for the universe.

1 Introduction, Motivation, and Overview

Martin-Löf type theory [28] (MLTT) is a formal system use-
ful both for dependently typed programming and as a foun-
dations for the development of mathematics. It is the basis
of proof assistants like Agda, Coq, Idris, Lean.
Homotopy type theory (HoTT) is a variation born out of

the observation that equality proofs in MLTT behave like
paths in homotopy theory [7]. A major focus is then to char-
acterize the exact nature of equality for each type, filling
some gaps left underspecified byMLTT by taking inpiration
from the connection to spaces up to homotopy.
Central is Voevodsky’s univalence axiom, stating that equal-

ities of types corresponds to equivalence of types. From uni-
valence other extensionality principles follow, like function
and propositional extensionality: equality of functions cor-
responds to pointwise equality, and equality of propositions
corresponds to logical equivalence.
Another important contribution is the introduction of higher

inductive types (HITs), which generalize inductive types by
not only allowing elements of the type but also equalities be-
tween them to be inductively generated. A general example
is taking the quotient of a type by a relation, other examples
are finite and countable powerset types[16, 35], ordinal nota-
tions [29], syntax of type theory up to judgemental equality
[2], other forms of colimits, and types of spaces for synthetic
homotopy theory [34].

HoTT also brought attention to a classification of types
based on the complexity of their equality type. We say that
a type is (−2)-truncated or contractible if it is equivalent to
the unit type, we say a type A is (n + 1)-truncated when for
any x ,y : A, the equality type x =A y is n-truncated. In par-
ticular (−1)-truncated types are referred to as h-propositions,
and are those for which any two elements are equal, while
0-truncated types, whose equality types are h-propositions,
are called h-sets.
The h-sets are the notion of set of homotopy type the-

ory, and where most constructions will belong when using
HoTT as a foundation for set-based mathematics or to rea-
son about programs. Restricting oneself to typeswhose equal-
ity type is an h-proposition also avoids having to stipulate
coherence conditions between different ways of proving the
same equality. Such coherence conditions might be arbitrar-
ily complex and not necessarily expressible within HoTT
itself [22].
It would be tempting then, at least for these applications,

to assume that every type is an h-set, i.e., the uniqueness
of identity proofs (UIP). In the case of HITs, e.g. for set quo-
tients, an explicit equality constructor can be included to im-
pose the desired truncation level. However we are forced to
step outside the h-sets when considering them collectively
as a type, which we call the universe of h-sets, U≤0. In
fact, by univalence, equalities inU≤0 correspond to isomor-
phisms between the equated h-sets, of which in general there
are more than one. This is often unfortunate because of, e.g,
the need to define sets by induction on a set quotient, or
the lack of a convenient type that could take the role of
a Grothendieck universe when formalizing categorical se-
mantics in sets or presheaves.
The counterexample of U≤0 however does not apply to

univalence restricted to h-propositions, i.e. proposition ex-
tensionality, since any two proofs of logical equivalence be-
tween two propositions can be proven equal. Moreover re-
sults about set-truncated HITs often rely on propositional
extensionality when defining a map into h-propositions by
induction. One example is effectiveness of quotients, i.e., that
equalities [a] =A/R [b] between two representative of an
equivalence class correspond to proofs of relatednessR(a,b).

http://arxiv.org/abs/2005.00260v1
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In this paper we show, for the first time, that UIP is con-
sistent with univalence for h-propositions, and more gen-
erally that, for n ≥ 0, the assumption that every type is n-
truncated is consistent with univalence restricted to (n − 1)-
truncated types (Corollary 4.8). We refer to this as partial
univalence. We note that the result cannot be improved to
include univalence for n-truncated types, as that would im-
ply univalence for all types, and then we could prove that
the n-th universe is not an n-type by the main result of [23].
We stress that existing truncated models such as the set

model or groupoid model [19] do not model partial univa-
lence. Although the set model contains a univalent universe
of propositions, it is not the case that the set of small sets
is univalent when restricted to propositions. Similarly, the
groupoid model contains a univalent universe of sets, but
the groupoid of small groupoids is not univalent when re-
stricted to h-sets, i.e. groupoids with propositional sets of
morphisms.
The main challenge will thus be how to interpret the uni-

verses of such a theory. For a fixed collection of type for-
mers, we show how to overcome this in Section 2, where
we construct a partially univalent universe through a in-
dexed higher inductive type. In Section 3 we generalize the
construction by a signature of type formers given as an in-
dexed container [1]. We then prove the consistency of a par-
tially univalent n-truncated type theory in Section 4. The
proof uses a model of HoTT capable of interpreting indexed
higher inductive types to derive a model for our theory.
The viability of MLTT as a programming language relies

on the canonicity property: every closed term is equal to one
in canonical form. While univalence as an axiom interferes
with canonicity, cubical type theory [11] has remedied this
by representing equality proofs as paths from an abstract
interval type, and made univalence no longer an axiom. We
formulate a partially univalent 0-truncated cubical type the-
ory in Section 5. There we also prove that the theory sat-
isfies homotopy canonicity, the property that every closed
term is path equal to one in canonical form.We believe that
this result establishes an important first step towards a com-
putational interpretation of the theory. In Section 6 we dis-
cuss related works and conclude.

1.1 Formalization

We have formalized the main construction, the subject of
Sections 2 and 3, in Cubical Agda. Separately, we have for-
malized Appendix A in Agdawith univalence as a postulate.
The formalizations are available as supplementary material
to this article.

2 A 0-truncated Partially Univalent
Universe of 0-types

In this section we set up some preliminary definitions and
notations. We then provide a simpler case of our main tech-
nical result Theorem 3.13, to exemplify the reasoning neces-
sary.
When reasoning internally in type theory, we write ≡ for

judgmental equality and = for internal equality using the
identity type. Given a type A, we also write the latter as
A(−,−). Given p : a0 =A a1 and a family B over A, the de-
pendent equality b0 =B(p) b1 of b0 and b1 over p is short-
hand for the identity type p∗(b0) =B(a1) b1, where p∗(b0) is
the transport of b0 : B(a0) to B(a1) along p. Given a type
A and n ≥ −2, we write typen(A) for the type that A is
n-truncated. For n = −2,−1, 0, we have the usual special
cases isContr(A), isProp(A), isSet(A) ofA being contractible,
propositional, and a set, respectively. All of these types are
propositions.
We recall the notion of a univalent family.

Definition 2.1 (Univalence). A family Y over a type X is
univalent if the canonical map X (x0, x1) → Y (x0) ≃ Y (x1) is
an equivalence for all x0, x1 : X .

We relativize this notion with respect to a property P on
types. This is supposed to be an extensional property, in the
sense that it should depend only on Y (x), not on the “code”
x : X . Tomake this precise, we letY be a valued in a universe
U and express P as a propositional family overU.
We use theword universe in a rather weak sense: until we

add closure under some type formers, it can refer to an arbi-
trary type family. Notationwise, universes are distinguished
in that we leave the decoding function from elements ofU
to types implicit.

Definition 2.2 (Partial univalence). Let X be a type and
Y : X → U for some universe U. Let P be a propositional
family over U. We say that (X ,Y ) is P-univalent if the re-
striction of the family Y to the subtype Σx :XP(Y (x)) is uni-
valent.

We also say thatX is partially univalent or univalent for P ,
leaving Y implicit. For P ≡ typen , we say that X is univalent
for n-types. In particular, for P ≡ isProp, we say that X is
univalent for propositions.
Of particular importance is the case where Y is the iden-

tity function. In that case, we say that the universe U is P-
univalent.

Lemma2.3. Let the universeU be P-univalent. ThenY : X →
U is P-univalent exactly if its restriction to x : X with P(Y (x))
is an embedding.



Proof. Let x1, x2 : X with P(Y (x1)) and P(Y (x2)). Consider
the commuting diagram

X (x1, x2) //

##●
●●

●●
●●

●
U(Y (x1),Y (x2))

{{✇✇
✇✇
✇✇
✇✇

Y (x1) ≃ Y (x2).

SinceU is P-univalent, the right map is an equivalence. By
2-out-of-3, the left map is invertible exactly if the top map is
invertible. Quantifying over x1, x2, we obtain the claim. �

2.1 Partially Univalent Type V of (Small) Sets

Let now U≤0 be a univalent universe of sets, meaning its
elements decode to 0-truncated types. We wish to define a
“closed” 0-truncated universe V with a decoding function
ElV : V → U≤0 that is univalent for propositions in the
sense of Definition 2.2. We illustrate the essential features
of our construction by requiring that:

• V contains codes for a fixed family N : M → U≤0 of
elements ofU≤0 whereM is a set.
• V is closed under Π-types (assuming thatU≤0 is),

The former family can for example include codes for the
empty type or the type of Booleans.
Closed universes are typically defined by induction-recur-

sion, simultaneously defining the type V and the function
ElV : V → U≤0. To model the above closure conditions,
one takes:

• given m : M , a constructor N (m) : V and a clause
ElV (N (m)) ≡ N (m).
• given A : V and B : ElV (A) → V , a constructor
Π(A,B) : V and a clause

ElV (Π(A,B)) ≡
∏

(a:ElV (A))
ElV (B(a)),

In order to make V univalent for propositions, one could
imagine turning this into a higher inductive-recursive defini-
tion. Given Ai : V with ElV (Ai ) a proposition for i ∈ {0, 1}
and an equality p : U≤0(ElV (A0), ElV (A1)), one would add a
path constructor ua(e) : V (A0,A1) with a clause giving an
identification of the action of ElV on the path ua(e) with p.1

This is the right idea, but there are problems.

• While syntax and semantics of higher inductive types
have been analyzed to a certain extent [21, 26] this
analysis does not yet extend to the case of induction-
recursion. As such, the rules for higher inductive-re-
cursive types have not yet been established and none
of the known models of homotopy type theory have
been shown to admit them.
• Induction-recursion is known to increase the proof-
theoretic strength of the type theory over just (indexed)

1 In this particular case, the clause of ElV for the path constructor amounts
to nothing as it is an identification in a propositional type.

induction. Thus, we do not wish to assume it in our
ambient type theory.

Given a type I , recall that types X with a map X → I

are equivalent to families over I : in the forward direction,
one takes fibers; in the backward direction, one takes the
total type. Exploiting this correspondence, the above induc-
tive-recursive definition of V (without path constructor for
partial univalence) can be turned into an indexed inductive
definition of a family inV over U≤0. The translation of the
constructors forΠ-types andM is given in (i) and (ii) of Defi-
nition 2.4. The path constructor for partial univalence corre-
sponds to the following: given propositions Ai : U≤0 with
wAi : inV(Ai ) for i ∈ {0, 1} and an equality p : U≤0(A0,A1),
we have a path ua(e) in the family inV betwenwA0 andwA1

over p. We contract the path p with one of its endpoints and
arrive at the definition below.

Definition 2.4. The family inV overU≤0 is defined as the
following higher indexed inductive type:

(i) givenm : M , a constructorwN (m) : inV(N (m)),
(ii) given wA : inV(A) and wB (a) : inV(B(a)) for a : A

(with implicit A : U≤0 and B : A→U≤0), a construc-
torwΠ(wA,wB ) : inV(

∏

(a:A) B(a)),
(iii) given a proposition X : U≤0 with w0,w1 : inV(X ), a

path constructor ua(w0,w1) : w0 = w1.

We recoverV as the total typeV =
∑

(X :U≤0) inV(X ), with
ElV given by the first projection.
We may regard inV as a conditionally or partially proposi-

tionally truncated indexed inductive type (see Appendix B).
In this form, it becomes clear that the constructor ua indeed
suffices for partial univalence and does not introduce coher-
ence problems: it exactly enforces that the restriction of the
family inV to elements decoding to propositions is valued
in propositions.

Lemma 2.5. The type V with ElV : V → U≤0 is univalent
for propositions.

Proof. Using Lemma 2.3, we have to show that the restric-
tion of ElV : V → U≤0 to X : V with ElV (X ) a proposition
is an embedding. Unfolding to inV, this says that inV(X ) is
propositional for X : U≤0 a proposition. This is exactly en-
forced by the path constructor (iii) in Definition 2.4. �

It remains to show that V is 0-truncated. For this, we
adapt the encode-decode method to characterize the depen-
dent equalities in inV over an equality inU≤0.

2.2 Dependent Equalities in inV

In the following, we make use of (homotopy) pushouts. Re-
call [34, Section 6.8] that the pushout of a span f : A → B

and д : A → C of types is the (non-recursive) higher induc-
tive type B +A C with points constructors inl(b) : B +A C

for b : B and inr(c) : B +A C for c : C and path constructor
glue(a) : (B +A C)(inl(f (b)), inr(д(c))) for a : A.
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As in [31, Lecture 13], we do not require judgmental β-
laws even for point constructors. Thus, pushout types are
simply a particular choice of pushout squares, (homotopy)
initial cocones under the span B ← A → C . We refer to
Appendix A for some key properties of pushouts used in
our development.
An important special case is the join X ⋆Y of typesX and

Y , the pushout of X and Y under X × Y . For a proposition
P , the operation P ⋆− is also known as the closed modality
associated with P [32, Example 1.8]. We will only use the
join in this form. Recall that X ⋆Y is contractible if X or Y
is contractible. In particular, P ⋆X is contractible if P holds.

Problem 2.6. Given an equality p : U≤0(X0,X1) and wi :
inV(Xi ) for i ∈ {0, 1}, we wish to define:

• a type EqinV(p,w0,w1) of codes of equalities over p be-
tween w0 and w1

• such that EqinV(p,w0,w1) is contractible ifX0 (or equiv-
alently X1) is a proposition.

Construction. By univalence for contractible types, the type
of contractible types is contractible. Thus, the goal is con-
tractible if X0 or X1 is a proposition.
We perform double induction, first on w0 : inV(X0) and

then onw1 : inV(X1). In all path constructor cases, we know
that X0 or X1 is a proposition. By the above, the goal be-
comes an equality in a contractible type, so there is nothing
to show.
In all point constructor cases, we define

EqinV(u,w0,w1) ≡def isProp(X0)⋆ E

where E is an abbreviation for an expression that varies de-
pending on the case. Note that this makes EqinV(u,w0,w1)

contractiblewhenX0 is a proposition. The expression E codes
structural equality of the top-level constructors.

• For w0 ≡ wN (m0) and w1 ≡ wN (m1), we let E consist
of pairs (pm, c) where pm : M(m0,m1) and c is a proof
that p : U≤0(N (m0),N (m1)) is equal to the action of
M on pm .
• Forwi ≡ wΠ(wAi ,wBi )withwAi : inV(Ai ) andwBi (ai ) :
inV(Bi (ai )) for ai : Ai , all for i ∈ {0, 1}, we let E con-
sist of tuples (pA, eA,pB , eB , c) where:
– pA : U≤0(A0,A1) with eA : EqinV(pA,wA0,wA1),
– for a0 : A0,a1 : A1, and a dependent equalitypa over
pA betweena0 anda1, we havepB : U≤0(B0(a0),B1(a1))

with eB : EqinV(pB ,wB0(a0),wB1(a1)).
– c witnesses that

p : U≤0(
∏

(a0:A0) B0(a0),
∏

(a1 :A1) B1(a1))

is equal to the action of the type forming operation
Π on pA and pB .

• In the remaining “mixed” cases, we let E be empty. �

Proposition 2.7. Given p : U≤0(X0,X1) and wi : inV(Xi )

for i ∈ {0, 1}, there is an equivalence between dependent equal-
ities in inV over p between w0 andw1 and EqinV(p,w0,w1).

Proof. For the purpose of this proof, it will be convenient
to work with a different, but equivalent definition of the ex-
pression E in the construction of Problem 2.6 in the case
wi ≡ wΠ(wAi ,wBi )withwAi : inV(Ai ) andwBi (ai ) : inV(Bi (ai ))
for ai : Ai , all for i ∈ {0, 1}. Namely, we let E consist of pairs
(q, r ) as follows.

• The component q is an equality (A0,B0) = (A1,B1) in
the dependent sum

∑

(A:U≤0)A→U
≤0.

• Inducting on the equality q, we may suppose A ≡def
A0 ≡ A1 and B ≡def B0 ≡ B1. The component r is then
a triple (eA, eB , c) where
– eA : EqinV(reflA,wA0,wA1),
– eB (a) : EqinV(reflB(a),wB0 (a),wB1(a)) for a : A,
– c : p = refl.

The equivalence between this choice of E and the previous
one is a staightforward consequence of structural equiva-
lences, splitting up the equality q into components forA and
B and distributing them over the components of r .

We follow the encode-decodemethod as described in Sub-
appendix B.3. To define

w0 =inV(p) w1

encodep,w0,w1
// EqinV(p,w0,w1),

we use equality induction on p and the argument, reducing
the goal to encode′(w) : EqinV(reflX ,w,w) for w : inV(X ).
We induct on x : inV(X ).

• Forw ≡ wN (m) : inV(N (m)), we take

encode′(x) ≡ inr(reflm , refl).

• Forw ≡ wΠ(wA,wB) : inV(
∏

(a:A) B(a)), we take

encode′(x) ≡ inr

(refl(A,B), (encode
′(wA), λa. encode

′(wB(a)), refl)).

• In the path constructor case, we have thatX is a propo-
sition. Then the goal is a dependent equality in a con-
tractible type.

We now show encode−1p,w0,w1
(e) for e : EqinV(p,w0,w1).

We use double induction onw0 andw1. In all path construc-
tor cases, we know that X0 or X1 is a proposition (hence
both are). Thus, both source and target of encodep,w0,w1 are
contractible, so the goal becomes contractible. In all point
constructor cases, we have e : isProp(X0) ⋆ E where E de-
pends on the particular case. We induct on e . In the case for
inl or glue, we have isProp(X0), and the goal becomes con-
tractible. For e ≡ inr(z), we proceed with z according to the
point constructor case forw0 andw1.

• For w0 ≡ wN (m0) and w1 ≡ wN (m1), we have z =

(pm, c). By equality induction on pm : M(m0,m1), we
may suppose m ≡def m0 ≡ m1 and pm ≡ reflm . By
equality induction on c , we may then suppose p ≡ refl



and c ≡ refl. We have

e ≡ inr(reflm , refl)

≡ encode′(wN (m))

≡ encodereflN (m),wN (m),wN (m)(refl),

showing encode−1p,w0,w1
(e).

• Forwi ≡ wΠ(wAi ,wBi )withwAi : inV(Ai ) andwBi (ai ) :
inV(Bi (ai )) for ai : Ai , all for i ∈ {0, 1}, we have
z = (q, r ) as described at the beginning of this proof.
By equality induction on q : (A0,B0) = (A1,B1), we
may suppose A ≡def A0 ≡ A1, B ≡def B0 ≡ B1, and
q ≡def refl. Then r = (eA, eB , c). By equality induc-
tion c , we may suppose that p ≡ refl and c ≡ refl. By
induction hypothesis, we have

encode−1reflA,wA0,wA1
(eA),

encode−1
reflB(a),wB0(a),wB1 (a)

(eB (a)) for a : A.

By equality induction and function extensionality, we
may thus suppose that

eA ≡ encodereflA,wA0,wA1
(qA),

eB ≡ λa. encodereflB(a),wB0 (a),wB1 (a)
(qB(a))

for some qA : wA0 = wA1 and qB (a) : wB0 (a) = wB1 (a)

for a : A. By equality induction on qA and qB (after
using function extensionality), we may suppose that
wA ≡def wA0 ≡ wA1 and qA ≡ refl as well as wB ≡def
wB0 ≡ wB1 and qB ≡ λa. refl. Now we have

e ≡ inr(refl(A,B), (encode
′(wA), λa. encode

′(wB(a)), refl))

≡ encode′(wΠ(wA,wB))

≡ encoderefl∏
(a :A) B(a)

,wΠ(wA,wB ),wΠ(wA,wB)(refl),

showing encode−1p,w0,w1
(e).

• In all “mixed” cases, we have z : 0. �

For readers concerned with the length of the above argu-
ment, we note the following. In Section 3, we will motivate
abstraction that will allow us to reorganize the above argu-
ment into smaller, more general pieces.

2.3 V is a set

From our characterization of dependent equality in inV, we
obtain a corresponding characterization of equality inV . Given
X i ≡ (Xi ,wi ) : V for i ∈ {0, 1}, we define

EqV (X 0,X 1) ≡def

∑

p :U≤0(X0,X1)

EqinV(p,w0,w1).

Corollary 2.8. For X 0,X 1 : V , we have

V (X 0,X 1) ≃ EqV (X 0,X 1).

Proof. Equality types in the dependent sumV ≡
∑

(X :U≤0) inV(X )

are dependent sums of an equality inU≤0 and a dependent
equality over it. Thus, the claim is a consequence of Propo-
sition 2.7. �

Proposition 2.9. The typeV is 0-truncated.

Proof. Given X i ≡ (Xi ,wi ) : V for i ∈ {0, 1}, we wish to
showV (X 0,X 1) propositional. ByCorollary 2.8, this amounts
to showing EqV (X 0,X 1) propositional. Thiswe show by dou-
ble induction, first onw0 : inV(X0) and then onw1 : inV(X1).
Since the goal is propositional, there is nothing to show in
the path constructor cases.
In all point constructor cases, we have

EqV (X 0,X 1) =
∑

p :U≤0(X0,X1)

isProp(X0)⋆ E(p) (1)

where E(p) is as in the construction for Problem 2.6, abbrevi-
ating an expression depending on the point constructor case
(for clarity, we have made the dependency on p explicit). By
definition, this join forms a pushout square

isProp(X0) × E(p) //

��

isProp(X0)

��

E(p) // isProp(X0)⋆ E(p).

(2)

The dependent sum over a fixed type preserves pushout squares
in its remaining argument (abstractly, because it is a higher
functor left adjoint to weakening). From (1) and (2), we thus
obtain the following pushout square:

∑

(p :U≤0(X0,X1)) isProp(X0) × E(p) //
� _

��

∑

(p :U≤0(X0,X1)) isProp(X0)

��
∑

(p :U≤0(X0,X1))
E(p) // EqV (X 0,X 1).

(3)

Since U≤0 is univalent, the type U≤0(X0,X1) is proposi-
tional if isProp(X0). From this, we see that the span in (3)
is a (homotopy) product span. By invariance of pushouts
under equivalence, it follows that EqV (X 0,X 1) is equivalent
to the join

(

U≤0(X0,X1) × isProp(X0)
)

⋆

(
∑

p :U≤0(X0,X1)

E(p)
)

. (4)

We now apply Lemma A.9: to show that this join is propo-
sitional, it suffices to show that each of its factors is propo-
sitional.2 Since isProp(X0) is propositional andU≤0(X0,X1)

is propositional if isProp(X0), their product is propositional.
It remains to show that T ≡def

∑

(p :U≤0(X0,X1)) E(p) is a
proposition. For this, we argue according to the current point
constructor case, recalling the corresponding definition of
E(p) from Problem 2.6.

• In the casew0 ≡ wN (m0) andw1 ≡ wN (m1), we have

T ≡
∑

(p :U≤0(X0,X1))

∑

(pm :M(m0,m1))

(p = apN (pm))

≃ M(m0,m1),

2Alternatively, we could appeal to the fact that closed modalities are left
exact, hence preserve truncation levels [32].
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a proposition sinceM was assumed a set.
• In the casewi ≡ wΠ(wAi ,wBi ) withwAi : inV(Ai ) and
wBi (ai ) : inV(Bi (ai )) for ai : Ai for i ∈ {0, 1}, recall
thatT consists of tuples (p,pA, eA,pB , eB , c)with types
as in the construction of Problem 2.6. We contract the
equality c with its endpoint p. What remains is equiv-
alent to the dependent sum of:
– (pA, eA) : EqV (A0,A1) where Ai ≡def (Ai ,wi ),
– for a0 : A0, a1 : A1, and a dependent equality pa
over pA between a0 and a1:

(pB , eB ) : EqV (B0(a0),B1(a1))

where Bi (ai ) ≡def (Bi (ai ),wi (ai )).
Both EqV (A0,A1) and EqV (B0(a0),B1(a1)) (the latter
for all a0,a1) are (n − 1)-truncated by induction hy-
pothesis. The claim now follows by closure of (n −
1)-truncated types under dependent sums and depen-
dent products (with arbitrary domain).
• In the remaining, “mixed” cases, we have

T ≡
∑

p :U≤0(X0,X1)

⊥ ≃ ⊥,

which is propositional. �

3 n-truncated Partially Univalent
Universes of n-types

To obtain themain result of this paper, we need to generalize
the constructions of the previous section to a partially univa-
lent n-truncated universe of n-types rather than sets, and to
a universe closed under more type formers. For the sake of
generality, we will also build a universe that is P-univalent
for an arbitrary proposition P , although then-truncatedness
result will need P(X ) to imply type(n−1)(X ).
This section only makes use of univalence for (n − 1)-

types.

3.1 Indexed Containers and Preservation of
Truncation

To abstract from a particular choice of type formers, we will
parametrize our universe by a signature of them represented
by an indexed container [1], as is done for indexedW-types.
We recall here the precise definitions of indexed container

and its extension that we will use in the rest of the paper.

Definition 3.1 (Indexed container). Given a type I , an I -
indexed container is a pair (S, Pos) of a type family S over I
and a type family Pos over

∑

(i :I ) S(i) × I .

Definition 3.2 (Extension of a container). Let (S, Pos) be an
I -indexed container. Its extension ExtS,Pos takes a family F

over I and produces another:
ExtS,Pos(F , i) =

∑

(s :S (i ))
∏

(j :I ) Pos(i, s, j) → F (j)

Given (s, t) : ExtS,Pos(F , i) we will write tY (p) for t(Y )(p).

In the universe construction we will use a U≤n-indexed
container, here we demonstrate by example that they not
only cover the type formers considered in Section 2, but
also ones with a more complex signature like (truncated)
pushouts.

Example 3.3 (Nullary type formers). Given a fixed family
of types N : M → U≤n we define a container with empty
positions:

S(X ) =
∑

(m:M)(X = N (m))

Pos(_, _, _) = ⊥

Example 3.4 (Π-types). The signature for Π-types can be
represented by aU≤n-indexed container where both S and
Pos are given by indexed inductive types with constructors:

• given A : U≤n and B : A → U≤n a constructor
π (A,B) : S(

∏

(x :A) B(x)).

and with s ≡ π (A,B) and X ≡
∏

(a:A) B(a):

• a constructor posA : Pos(X , s,A)
• given a : A a constructor posB : Pos(X , s,B(a))

Example 3.5 (Truncated pushouts). Pushouts truncated to
be n-types can also be represented as a U≤n-indexed con-
tainer:

• given Ai : U≤n for i ∈ {0, 1, 2} and f : A0 → A1 and
д : A0 → A2 a constructor po(f ,д) : S(A1 +

n
A0

A2),
• for each i ∈ {0, 1, 2} a constructor
posi : Pos(A1 +

n
A0

A2, po(f ,д),Ai ).

More generally, this works for arbitrary HITs with an addi-
tional constructor ensuring n-truncatedness.

To establish the n-truncatedness of the universe we will
need to know that the extension of the container ExtS,P (F , i)
preserves the truncation level of the family F . We cannot
however just ask for typen(

∑

(i :I ) .ExtS,P (F , i)) to hold when-
ever typen(

∑

((i :I )) F (i)) holds, as the latter would already be
the whole result when F ≡ inV. We extract then the follow-
ing condition from what is needed during the induction in
the proof of Theorem 3.13.

Definition 3.6 (Retaining n-truncatedness). An I -indexed
container (S, Pos) retains n-truncation, if for any family F

over I , any ib : I and element of the extension (sb , tb ) :
ExtS,Pos(F , ib) for b ∈ {0, 1} we have that
∏

(j0 j1 :I )
∏

(p0 :Pos(i0,s0, j0),p1:Pos(i1,s1, j1))

type(n−1)(
∑

(q:j0=j1) tj0 (p0) =F (q) tj1 (p1))

implies
type(n−1)((i0, s0, t0) =

∑

(i :I ) ExtS,Pos(F ,i ) (i1, s1, t1))

Example 3.7 (Signatures retainingn-truncatedness). Exam-
ples 3.3 to 3.5 all retain n-truncatedness. The case of nullary
type formers is trivial. As mentioned the case for Π-types
follows the reasoning in Proposition 2.9. For truncated pushouts
we can observe that (X , (s, t))of type

∑

(X :U≤n ) ExtS,Pos(F ,X )

is equivalent to the following data:

• X : U≤n



• for i ∈ {0, 1, 2}, both Ai : U≤n andwi : F (Ai )

• f : A0 → A1 and д : A0 → A2

• q : X = A1 +
n
A0

A2

then X and q form a contractible pair, the types of f and д
are n-truncated by construction, so we only have to worry
about the (Ai ,wi ) pairs. But since thewi are obtained from
t , those components are handled by the premise given to us.

Coproducts of such containers also retainn-truncatedness
as their extension will correspond to the sum of the exten-
sions, which means we can collect multiple type formers
into a single n-truncatedness preserving indexed container.

3.2 A P-univalent n-truncated Universe of

n-truncated Types

Now we have everything in place to provide the final ver-
sion of our universe

V =
∑

X :U≤n

inVn,P
S,Pos(X )

with ElV : V→U≤n given by first projection. We will often
omit the sub- and sup- scripts on inV as they will be clear
from context.
The family inV is defined as follows. In analogy with the

indexed W-type WS,Pos, which one would use for an ordi-
nary closed universe, we use the P-propositional indexed W-
type inV ≡def W P

S,Pos (Definition B.3). The theory of partially
propositional indexed W-types is developed in Appendix B.
For convenience, we give here the explicit definition as an
indexed higher inductive type.

Definition3.8. Given aU≤n-indexed container (S, Pos), the
family inV overU≤n is defined as the higher inductive type
generated by the following constructors:

(i) given c : ExtS,Pos(inV,X ), a constructor tcon(c) : inV(X ),
(ii) given X : U≤n with P(X ), andw0,w1 : inV(X ), a path

constructor ua(w0,w1) : w0 =inV(X ) w1.

Lemma 2.5 generalizes to the new setting.

Lemma 3.9. Let (S, Pos) be aU≤n-indexed container, and P
a family of propositions overU≤n . The typeVwith ElV : V→
U≤n is P-univalent. �

We unfold here the definition of codes for equality in
W P

S,Pos of Subappendix B.4.

Problem 3.10. Given an equality p : U≤n(X0,X1) and wi :
inV(Xi ) for i ∈ {0, 1}, we define:

• a type EqinV(p,w0,w1) of codes of equalities between
w0 and w1 over p, as in Figure 1.
• such that EqinV(p,w0,w1) is contractible if P(X0).

Construction. The definition proceeds by double induction
on w0 and w1, defining the pair of EqinV(p,w0,w1) and its
conditional contractibility in one go. Given P(X0) the case
when bothwi are built with tcon is contractible because it’s
a join with an inhabited proposition. When either w0 orw1

is built by ua we again have by univalence that the type of
contractible types is contractible. �

From Subappendix B.4, we have the following result.

Proposition 3.11. Given p : U≤n(X0,X1) and wi : inV(Xi )

for i ∈ {0, 1}, there is an equivalence

w0 =inV(p) w1 ≃ EqinV(p,w0,w1). �

As in Section 2 we define

EqV(p,X 0,X 1) ≡def

∑

p :U≤n (X0,X1)

EqinV(p,w0,w1).

for X i ≡ (Xi ,wi ) for i ∈ {0, 1} and derive its equivalence
with equality in V.

Corollary 3.12. For X 0,X 1 : V , we have

V(X 0,X 1) ≃ EqV(X 0,X 1). �

3.2.1 V is n-truncated.

Theorem 3.13. Let (S, Pos) be an n-truncatedness retaining
container. If P(X ) implies typen−1(X ) then V is n-truncated.

Proof. Given X i ≡ (Xi ,wi ) : V for i ∈ {0, 1} we proceed
by induction on w0 and w1 to prove V(X 0,X 1) is (n − 1)-
truncated. By Corollary 3.12 and the same reasoning as in
the proof of Proposition 2.9, we have to concern ourselves
only with the following pushout square3:

∑

(p :U≤n (X0,X1))
P(X0) × E(p) //
� _

��

∑

(p :U≤n (X0,X1))
P(X0)

��
∑

(p :U≤n (X0,X1)) E(p)
// EqV (X 0,X 1)

(5)

where E(p) = Eq′inV(p, (s0, t0), (s1, t1)). By Proposition A.11,
it is enough to show the top right and bottom left corners
are (n−1)-truncated to conclude that EqV (X 0,X 1) is as well.
∑

(p :U≤n (X0,X1)) P(X0) is (n − 1)-truncated because P(X0) is a
proposition and implies typen−1(X0), so thatU≤n(X0,X1) is
(n−1)-truncated by univalence.

∑

(p :U≤n (X0,X1)) E(p) is equiv-
alent to (X0, (s0, t0)) = (X1, (s1, t1)) by Proposition 3.11, so
we can conclude its (n−1)-trucatedness by using that (S, Pos)
retains n-truncatedness, because its premise is satisfied by
the induction hypothesis. �

As the special case where P is constantly false, we obtain
the folklore construction of 0-truncated “closed” universes.

Corollary 3.14. Let (S, Pos) be a 0-truncatedness retaining
container. If P = λX .⊥ then V is 0-truncated. �

3a variant of (3)
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Eq′inV(q, (s0, t0), (s1, t1)) ≡def Σ (qs : s0 =S (q) s1).
(et :

∏

(Y :U≤n )
∏

(p0,p1) p0 =Pos(q,qs,Y ) p1 → EqinV(refl, t0Y (p0), t1Y (p1)))

EqinV(q : X0 = X1,w0,w1) ≡def

{

P(X0)⋆ Eq
′
inV(q, c0, c1) ifw0 ≡ tcon(c0),w1 ≡ tcon(c1)

by contractibility if w0 orw1 given by ua(. . .)

Figure 1. Definition of EqinV.

4 Models of n-truncated Type Theory with
Univalence for (n − 1)-types.

In this section, we show that Martin-Löf type theory with
function extensionality and the assumption that all types
are n-truncated is consistent with univalence for (n − 1)-
types.

Remark 4.1. The full strength of this statement is realized
only with a sufficiently long chain of universesU0, . . . ,Uk ,
one included in the next. For if k < n, it is known [23, Sec-
tion 6] how to modify a model of homotopy type theory
(including univalence, but no higher inductive types) to be
n-truncated by restricting types of “size” i (classified byUi )
to i-types (and restricting all types to the n-truncated).

For the reason given in the above remark, we consider
Martin-Löf type theory to come with an ω-indexed (cumu-
lative) hierarchy of universesU0,U1, . . .. Alternatively, we
could include higher inductive types, which in the presence
of univalence for (n−1)-types are still able to produce proper
n-types.4 However, a key point is still for an n-truncated uni-
verse univalent for (n−1)-types to be able to contain a code
for a (smaller) universe of the same kind, and at this point
we may as well consider a hierarchy of universes.

We use categories with families (cwfs) [15] as our notion
of model of dependent type theory. They are models of a
generalized algebraic theory [9] (as will all semantic notions
considered here). Fixing the underlying category C, we ob-
tain a category of cwf structures on C. We refer to a cwf
structure on C by its presheaf of types Ty, the presheaf Tm
of terms on its category of elements

∫

Ty left implicit.
LetT stand for a choice of type formers, specified by a col-

lection of rules that are generally natural in the context (one
way to ensure this naturality is by demanding that these
rules be interpretable in presheaves over the category of
contexts and substitutions [5, 8]). Type formers can be stan-
dard type formers such as dependent sums, dependent prod-
ucts, or identity types, but also “axioms” such as function
extensionality. As before, we have categories of cwfs with
type formers T as well as cwf structures with type formers T
on a fixed category C.

4 For example, univalence for 0-types is sufficient to show that the circle S 1

is a proper 1-type. We consider an n-type proper if it is not an (n − 1)-type.

Definition 4.2 ([4, Definition 2.4]). A cwf hierarchy Tywith
type formers T on a category C is a sequential diagram

Ty0
// Ty1

// . . .

of cwf structures with type formersT on C.

Note that the lifting maps Tyi → Tyi+1 preserve type for-
mers T . As before, cwf hierarchies with type formers T as-
semble into a category.

Definition 4.3 ([4, Definition 2.5]). A model of Martin-Löf
type theory with type formers T is a category C with a cwf
hierarchy Ty with type formers T on C together with, for
each i , a global sectionUi with an isomorphism Eli : Tmi+1(Γ,Ui ) ≃

Tyi (Γ) natural in Γ ∈ C.

In all uses of the above definition, we will implicitly as-
sume that T contains at least dependent sums, dependent
products, identity types, and finite coproducts. This makes
available basic concepts of homotopy type theory such as be-
ingn-truncated (for an external numbern).WewriteMLTTT
for the category such models, and MLTTT (C) if we wish to
fix the underlying category. We say that C is n-truncated
(where n ≥ −2) if all A ∈ Tyi (Γ) are n-truncated, naturally
in Γ ∈ C, for all i . As a type former (an axiom), we denote it
Tr(n).

We call Ui the i-th universe of C. Note that, in contrast
to our internal reasoning, we explicitly reference the decod-
ing natural transformation Eli . Given a generic propertyP of
types (such as beingn-truncated) forming an internal propo-
sition, we say that C satisfies univalence for P if the universe
Ui is P-univalent for all i in the sense of what follows Def-
inition 2.2. We add a subscript UA(n) to MLTTT to indicate
restriction to models with univalence for n-types.
Let T be a collection of type formers. Given C ∈ MLTTT

and i ≥ 0, the type forming operations contained in T can
be encoded as internal operations on the universe Ui . As-
sume that these internal operations restrict to the subuni-
verse U≤ni of n-types. For well-behaved T , it is possible to
find a globalUi -indexed container C of size i + 1 such that
for any family S overU≤ni , a lift of the given internal oper-
ations onU≤ni to

∑

(X :U≤ni )
S(X ) corresponds to aC-algebra

structure on S . Lastly, assume thatC retainsn-truncatedness
in the sense of Definition 3.6. If all of this is the case, natu-
rally in C , we say thatT is n-benign.



• Unit type:

S = 1,

t(•) = 1,

Pos(A, x ,y) = 0.

• Dependent sums:

S =
∑

(A:U≤n )A→U
≤n
,

t(A,B) =
∑

(a:A) B(a),

Pos(A,B) = 1 + A,

s((A,B), inl(•)) = A,

s((A,B), inr(a)) = B(a).

• Dependent products:

S =
∑

(A:U≤n )A→ U
≤n
,

t(A,B) =
∏

(a:A) B(a),

Pos(A,B) = 1 +A,

s((A,B), inl(•)) = A,

s((A,B), inr(a)) = B(a).

• Identity types:

S =
∑

(A:U≤n )A ×A,

t(A, x ,y) = A(x ,y),

Pos(A, x ,y) = 1,

s((A, x ,y), •) = A.

• Empty type:

S = 1,

t(•) = 0,

Pos(A, x ,y) = 0.

• Binary coproducts:

S = U≤n ×U≤n ,

t(A,B) = A + B,

Pos(A,B) = 1 + 1,

s((A,B), inl(•)) = A,

s((A,B), inr(•)) = B.

Figure 2.U≤n-indexed containers for basic type formers. The specifying data is given in a slightly alternate form: a type of
shapes S , a target function t : S → U≤ni , a family of positions Pos over S , and a source function s :

∏

s :S Pos(s) → U
≤n
i . This

corresponds to a polynomial functorU≤n ← S → P →U≤n with middle arrow a fibration. The actual indexed container is
obtained by taking fibers using the identity type.

Example 4.4. The basic type formers we implicitly require
for a model of Martin-Löf type theory are n-benign for any
n ≥ 0. The associated U≤ni -indexed containers are listed
in Figure 2 (with the size index i omitted). Retention of n-
truncatedness in the sense of Definition 3.6 follows the scheme
of Example 3.7.

Example 4.5. Any type former that only has term forming
operations is automatically n-benign. In the first place, this
applies to axiom-style type formers such as function exten-
sionality.

We are now ready to state the main result.

Theorem 4.6. Let n ≥ 0 and T be an n-benign choice of
type formers, including function extensionality. Let (C, Ty) be
a model of Martin-Löf type theory with type formersT that is
univalent for (n−1)-types. Then there is an n-truncated model
Ty′ of Martin-Löf type theory with type formersT on C that is
univalent for (n − 1)-types. Furthermore, there is a morphism
Ty′→ Ty of cwf hierarchies with type formers T on C.

Proof. Given a cwf structure Ty on a category C, note that a
further cwf structure Ty′ together with a morphism Ty′ →

Ty corresponds up to isomorphism to just a presheaf Ty′ of
types with a natural transformation Ty′ → Ty.5 The terms
of Ty′ are inherited (up to isomorphism) from those of Ty
since terms correspond to sections of context projections
and Ty′ → Ty should preserve context extension. Abstractly
speaking, the forgetful functor from cwf structures on C to
discrete fibrations on C is itself a discrete fibration.

5This is immediate when switching from cwfs to the equivalent notion of
categories with attributes.

Let us further assume that Ty implements some type type
formers T . To interpret T in Ty′ such that Ty′ → Ty pre-
serves T , we only have to interpret the actual type form-
ing operations of T in Ty′ such that they are preserved by
Ty′ → Ty; the term forming operations of T will then be
uniquely inherited from Ty.
Let us now return to the situation of Theorem 4.6. The

type forming operations of the type formers T in (C, Tyi )
can be encoded as internal operations on the universe Ui .6

Since T is n-benign, these internal operations further re-
strict to the subuniverse U≤ni of n-types. We now wish to
define a global type Vi of size i + 1 with a map Vi → U

≤n
i .

Restricting Eli along this map, we can see Vi as a universe.
Defining Ty′i (Γ) = Tm(Γ,Vi) with Ty′i → Tyi induced by
Vi → U≤ni , we then obtain the cwf structure Ty′i with a
map Ty′i → Tyi . Interpreting T in Ty′i compatible with Tyi
will follow from a (strict) lift of the internal type formation
operations from U≤ni to Vi . Finally, everything needs to be
natural in i ∈ ω.
Let us start with the base i = 0. We will define V0 ≡def

∑

(X :U≤n0 )
inV0 for a family inV0 overU

≤n
0 , with V0 →U

≤n
0

the first projection. Using that T is n-benign, we have a
U≤n0 -indexed container C0 such that a lift of the internal
formations operations fromU≤n0 to V0 corresponds to a C0-
algebra structure on inV0. We now follow Section 3 for the
construction of inV0 fromC0; this means inV0 is the typen−1-

propositional indexedW-typeW
typen−1
C0

as per Subappendix B.5.
In particular, we obtain aC0-algebra structure on inV0. Note

6Note that this is only a bijective correspondence if we have the judgmental
η-law for dependent products, but this is not required here.
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that V0 is univalent for (n − 1)-types by Lemma 3.9 and n-
truncated by Theorem 3.13.
For general i , we let C ′i be the coproduct of the U≤ni -

indexed container Ci given fromT being n-benign with the
indexed container with shapes 0 ≤ j < i , with indexing of
j being Vj (lifted to Tyi ), and no positions. We then define
inVi fromC ′i as before. This guarantees that there are codes
for the universes below i in Vi .
To make Ty′ into a cwf hierarchy and Ty′ → Ty into a

morphism of cwf hierachies, we need to construct, for every
i ≥ 0, a dotted morphism making the naturality square

Ty′i
//

��

Tyi

��

Ty′i+1
// Tyi+1

of presheaves of types commute. This amounts to defining
internal Vi → Vi+1 making the square

Vi //

��

Ui

li�

��

Vi+1 // Ui+1

commute strictly. In turns, this corresponds to an internal
function

inVi (X ) → inVi+1(li�(X )) (6)

for X : U≤ni . We define this by recursion for inVi , noting
that inVi+1 restricted along li� carries aC ′i -algebra structure,
forgetting the code for the i-th universe in its C ′i+1-algebra
structure.
It remains to check that themap Ty′i → Ty′o+1 respects the

type forming operations ofT . This follows from (6) commut-
ing strictly withCi -algebra structures. This follows from the
judgmental β-law of the higher inductive family inVi .7

It remains to check that Ty′ has universes as required by
Definition 4.3. Indeed, the i-th universe U ′i is simply given
by Vi itself, with El′i the identity isomorphism. �

Corollary 4.7. Relative to Martin-Löf type theory with func-
tion extensionality and univalence for (n − 1)-types (and any
further n-benign type formers), if the addition of pushouts and
propositionally truncated indexed W-types is consistent, then
it is consistent to assume that all types are n-truncated.

Proof. Given a model for the former theory, we obtain a
model (on the same category) of the latter theory by The-
orem 4.6. By construction, the empty type is inhabited in
this model exactly if it is inhabited in the old model. �

Corollary 4.8. In Martin-Löf type theory with function ex-
tensionality and univalence for (n− 1)-types (and any further

7 This is the only place in our entire construction where judgmental β -
laws for higher inductive types are needed. One might well regard it as an
artifact of our universe hierarchy setup.

n-benign type formers implemented by a known model of ho-
motopy type theory), it is consistent to assume that all types
n-truncated.

Proof. Apply Corollary 4.7 to a model of homotopy type
theory such as simplicial sets or cubical sets that supports
higher inductive families. �

5 A Cubical Type Theory with UIP,
Propositional Extensionality, and
Homotopy Canonicity

In [14] the authors establish the homotopy canonicity prop-
erty for a cubical type theory without judgmental equations
for the box filling operations. Here we will follow that proof
to prove homotopy canonicity for a cubical type theorywith
an axiomatic UIP principle and propositional extensionality
given by a modified Glue-type. To keep this section brief,
we closely follow their notation.

5.1 0-truncated Cubical Cwf

We take the definition of cubical cwf from [14] and adapt
it by adding a new trunc operation and an extra argument
to Glue-types. The definition is internal to the category of
cubical sets of [11]. Aminor difference to [14], following the
previous section, we only require a sequential diagram of
Tyi presheaves, without topmost Ty, and we do not require
the lifting map Tyi → Tyi+1 to be mono.
Given A : Tyi (Γ), we define isProp(A) and isSet(A) in

Tyi (Γ) using the Path-type former.

• Glue types.GivenA : Tyi (Γ),Ap : Elem(Γ, isProp(A)),
φ : F,T : [φ] → Tyi (Γ), and e : Elem(Γ, Equiv(T �,A)),
we have the glueingGlue(A,Ap ,φ,T , e) in Tyi (Γ), equal
toT � on φ. We also have glue(a, t), unglue, and their
equations as described in [14, Sec. 1.3].
• 0-truncation operation. Given A in Tyi (Γ) we have
trunc(A) in Elem(Γ, isSet(A)). No equations are required
other than stability under substitution.

5.2 Standard Model

We now work in the category of cubical sets of [11]. It sat-
isfies the assumptions listed at the top of [14, Section 2.2],
so we have a hierarchy of universes of fibrant types Ufib

i , de-
fined from a cumulative hierarchy of universes of presheaves
Ui for i ∈ {0, 1, . . . ,ω}. Using it as a model of cubical type
theory with uniformly indexed higher inductive types, we
replay the construction from Section 3 and obtain a family
inV : (Ufib

i )
≤0 → Ufib

i+1. Then we take

Vi ≡
∑

(A:(Ufib
i )
≤0) inV(A) : U

fib
i+1

with ElVi : V→ (U
fib
i )
≤0.

Just as [14, Section 2.3] defines the standard model as an
internal cwf from the universes Ufib

i , we define the standard
model from the universes Vi :



• Con is the category with objects in Uω and functions
between them as morphism,
• the types of size i over Γ : Uω are maps Γ → Vi ,
• the elements of A : Γ → Vi are Π(ρ : Γ).ElVi (Aρ).

We will often omit the use of ElVi to lighten the notational
burden.
Type formers Π, Σ,N, Path and universes are given by in-

cluding a code for them in the container (S, Pos) for Vi . The
filling operation is derived from the one forUfib

i .Glue-types
are handled below.

5.2.1 A Code for Glue in Vi . One would think that inV
might need an explicit constructor for Glue. However, the
path constructor ua of inV suffices to derive one, given Glue

for Ufib and fibrancy of inV.
Given Γ : Uω ,A : Γ → Vi ,Ap : Π(ρ : Γ).isProp(Aρ), φ : F,

T : [φ] → Γ → Vi and e : [φ] → Equiv(T�,A), we wish to
define Glue(A,Ap ,φ,T , e) : Γ → Vi . We take

Glue(A,Ap ,φ,T , e) ρ ≡def (G,wG )

whereG = Glue(ElV(Aρ),φ, ElV◦(T ρ), e ρ) : Ufib
i , and given

wA ≡ Aρ.2 and wT ≡ λo.T o ρ.2, we obtain wGlue by first
transportingwA : inV(ElV(Aρ)) tow ′G : inV(G) by the canon-
ical path between the two indices, and then composing un-
der [φ]with a path betweenw ′G andwT built by ua. The lat-
ter is possible because, assuming [φ], both w ′G and wT are
codes for ElV (T � ρ), which is propositional by Ap ρ. Note
that with this correction Glue(A,Ap ,φ,T , e) ≡ T � when
[φ] ≡ ⊤. One then checks that the code so defined com-
mutes with the lifting maps Vi → Vi+1.

5.3 Sconing Model

Given a cubical cwfM (denoted by Con, Tyi , Elem, . . .), we
want to define a new cubical cwfM∗, (denoted byCon∗, Ty∗i ,
Elem∗, . . .) as the Arting glueing of M along an internal
global sections functor |−|. We assumeM size-compatible
with the universes Ui as in [14, Sec. 3]. In [14], the functor
|−| targets the standardmodel directly, given that Elem(1,A)
is a fibrant type. In our case, we have to include a code for
it in inVi , as in extending the container (S, Pos), as follows:

• given A : Tyi (1), a constructor ⌈A⌉ : inVi (Elem(1,A)).

Note that both Tyi (1) and Elem(1,A) are 0-truncated, be-
cause the trunc operation implies isSet(Elem(1,A)) for any
A in Tyj (1), and Tyi (1) itself is equivalent to Elem(1,Ui ).
This makes sure that the extended container still preserves
0-truncatedness.
For the definition of natural numbers inM∗, we will also

need a code for the type family N′ : Elem(1,N) → Ufib
0

defined in [14, Appendix B]:

• given n : Elem(1,N), a constructor N′(n) : inV0(N
′ n)

whereN′ n can be shown to be 0-truncated byCorollary 3.14.
The functor |−| is then given on contexts, types, and ele-

ments ofM like so:

• |Γ | ≡def HomM(1, Γ),
• |A| ρ ≡def (Elem(1,A), ⌈Aρ⌉),
• |a | ρ ≡def aρ.

We now define the sconing modelM∗, starting with the
cwf components.

• A context (Γ, Γ′) : Con∗ consists of Γ : Con inM and
a family Γ

′ : |Γ | → Uω .
• A type (A,A′) : Ty∗i (Γ, Γ

′) consists of a type A : Tyi (Γ)
inM and a family

A′ : Π(ρ : |Γ |)(ρ ′ : Γ′ ρ) → |A| ρ → Vi

of proof-relevant predicates over it.
• An element (a,a′) : Elem∗((Γ, Γ′), (A,A′)) consists of
an element a : Elem(Γ,A) inM and

a′ : Π(ρ : |Γ |)(ρ ′ : Γ′ ρ) → A(ρ, ρ ′,aρ).

We observe that this definitions differs from the one given
in Coquand et al. [14] only by the use ofVi in place ofUfib

i to
define Ty∗i . As such we will not repeat here the details about
the rest of the cwf structure or the shared type formers and
operations, and instead discuss only Glue∗ and tr∗.

5.3.1 Glue-types.

Lemma 5.1. Let (A,A′) in Ty∗i (Γ, Γ
′). The following state-

ments are logically equivalent, naturally in (Γ, Γ′):

Elem∗((Γ, Γ′), isProp∗(A,A′)) (7)

Elem(Γ, isProp(A))

× Π(ρ : |Γ |)(ρ ′ : Γ′ ρ).isProp(Σ(a : |A| ρ).A′(ρ, ρ ′a))
(8)

Elem(Γ, isProp(A))

× Π(ρ : |Γ |)(ρ ′ : Γ′ ρ)(a : |A| ρ).isProp(A′(ρ, ρ ′a))
(9)

Proof. Given (7),we haveAp : Elem(Γ, isProp(A)) and a proof
that one can fill lines in A′ over lines produced by |Ap |; that
is enough to fill lines in the Σ-type in (8). From there, we de-
rive (9): since |A| ρ is propositional, any path from a to a is
constant. Going back to (7) requires only to contract a path
in |A| ρ. �

Let (A,A′) in Ty∗i (Γ, Γ
′), (Ap ,A

′
p ) in Elem

∗((Γ, Γ′), isProp∗(A,A′)),
φ in F, 〈T ,T ′〉 in [φ] → Ty∗i (Γ, Γ

′), and 〈e, e ′〉 in
Elem∗((Γ, Γ′), Equiv∗((T �,T ′ �), (A,A′))).We follow the recipe
of [14, Sec. 3.2.6] and define

Glue∗((A,A′), (Ap ,A
′
p ),φ, 〈T ,T

′〉, 〈e, e ′〉)

as (Glue(A,Ap ,φ,T , e),G
′) where G ′ ρ ρ ′ (glue(a, t)) is de-

fined as theGlue-type inVi betweenA′ ρ ρ ′ a andT ′ � ρ ρ ′ (t �)

alongφ. In our casewe also have to provide a proof of isProp(A′ ρ ρ ′ a),
which we obtain from (Ap ,A

′
p ) by applying Lemma 5.1, go-

ing from (7) to (9).
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5.3.2 trunc-operation.

Lemma 5.2. Let (A,A′) : Ty∗i (Γ, Γ
′). The following state-

ments are logically equivalent, naturally in (Γ, Γ′):

Elem∗((Γ, Γ′), isSet∗(A,A′)) (10)

Elem(Γ, isSet(A))

× Π(ρ : |Γ |)(ρ ′ : Γ′ ρ).isSet(Σ(a : |A| ρ).A′(ρ, ρ ′a))
(11)

Elem(Γ, isSet(A))

× Π(ρ : |Γ |)(ρ ′ : Γ′ ρ)(a : |A| ρ).isSet(A′(ρ, ρ ′a))
(12)

Proof. This follows the same strategy as Lemma 5.1, except
this time filling and contracting squares rather than lines.

�

Let (A,A′) : Ty∗i (Γ, Γ
′). We define

trunc∗(A,A′) : Elem∗((Γ, Γ′), isSet∗(A,A))

by applying Lemma 5.2 in the direction from (10) to (12). to
the pair of trunc(A) and trunc′ where

trunc′ ρ ρ ′ a : isSet(ElVi (A
′(ρ, ρ ′a)))

is given by ElVi (A
′(ρ, ρ ′a)) : (Ufib

i )
≤0.

Given the above constructions, one mechanically verifies
the necessary laws to obtain the following statement.

Theorem 5.3 (Sconing). Given any 0-truncated cubical cwf
M that is size-compatible in the sense of [14, Sec. 3], the scon-
ingM∗ is a 0-truncated cubical cwf with operations defined as
above. We further have a morphismM∗ →M of 0-truncated
cubical cwfs given by the first projection. �

We state homotopy canonicity with reference to the ini-
tial 0-truncated cubical cwf I, whose existence and size-
compatibility is justified as in [14, Sec. 4]. The proof of the
theorem also follows the argument given in that section.

Theorem 5.4 (Homotopy canonicity). In the internal lan-
guage of the cubical sets category of [11], given a closed natu-
ral n : Elem(1,N) in the initial model I, we have a numeral
k : N with p : Elem(1, Path(N,n, Sk(0))). �

6 Related Work and Conclusion

6.1 Related Work

In the realm of type theories with UIP and function exten-
sionality, XTT [33] is a non-univalent variant of CTT that
takes the extra step of making UIP hold judgmentally, in
the spirit of observational type theory (OTT) [3]. As formu-
lated XTTdoes not provide propositional extensionality and
requires a typecase operation within the theory for (strict)
canonicity. OTT does include propositional extensionality,
but only for a universe of propositions closed under a spe-
cific set of type formers that made it possible to assume judg-
mental proof irrelevance for such propositions. We conjec-
ture that by introducing UIP (or n-truncatedness) only as
a path equality we will be able to refine our theory to one

with strict canonicity without encountering similar limita-
tions. Regarding strict propositions, i.e. where any two el-
ements are stricly equal in the model, the semantics for a
univalent universe of them within the cubical sets model is
described in [12]. However the corresponding universe of
strict sets is not a strict set itself. Such semantics are used in
[18] to justify the addition of a primitive universe of strict
propositions sProp.

6.2 Conclusion

We proved consistency for a theory with n-truncatedness
and univalence for (n−1)-types.We also showed homotopy
canonicity for cubical variant of such a theory. The main
technical tool used was an n-truncated universe of n-types
that is also univalent for (n − 1)-types. We would like to
stress that such a universe can also be used directly in HoTT
with indexed higher inductive types, for applications that
do not mind the universe being limited to a fixed set of type
formers.
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A Pushouts Along Monomorphisms

In this subsection, we prove some useful statements about
pushouts along monomorphisms, in particular the fact that
n-truncatedness of objects is preserved (Proposition A.11).
We were unable to locate this statement in the higher topos
literature. We expect that in homotopy type theory, many of
these statements can also be obtained from [24] (pushouts
being an example of a non-recursive higher inductive type),
albeit under less minimalistic assumptions.
We use the language of higher categories (modelled for

example by quasicategories [20, 27]). The statements of im-
portance for themain body are about locally Cartesian closed
higher categories. In homotopy type theory, this corresponds
to the presence of identity types, dependent sums, and de-
pendent productswith function extensionality. All these state-
ments and their proofs can also be read in homotopy type
theorywith these type formers, seen as an internal language
for locally Cartesian closed higher categories (with pushout
squares treated axiomatically as in [31]). It is in this form
that they are used in the main body of the paper.
A map V → U in a higher category C is univalent if for

any mapY → X , the space of pullback squares fromY → X

toV → U is (−1)-truncated, i.e. if the objectV → U is (−1)-
truncated in the higher category C→cart of arrows and Carte-
sian morphisms.8 We note the following for locally Carte-
sian closed C.

• Given univalentV → U and an object Z , the pullback
Z ×V → Z ×U is univalent in the slice over Z . This
is a consequence of pullback pasting.

8We choose this definition as it makes sense in any higher category C.
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• The internal object of pullback squares (constructed
using exponentials) from Y → X to univalentV → U

is (−1)-truncated. To see this, one considers the space
of pullback squares from Z × Y → Z × X to V → U

for an arbitrary object Z .

Combining these observations, we may phrase univalence
via the generic case: in the slice over U , the internal object
of pullback squares from V → U to U ×V → U ×U (living
over U via the first projection) is (−1)-truncated, or equiva-
lently terminal.9 This is the univalence axiom for the “uni-
verse” U and the “universal family of elements” V → U in
homotopy type theory: given x : U , the dependent sum of
y : U and V (x) ≃ V (y) is contractible, in turn equivalent to
Definition 2.1. It also corresponds to the definition of univa-
lent family given in [17]. The connection between univalent
universes in the original sense of Voevodsky and univalent
maps in our sense was probably first recognized by Joyal.
A classifier for a collection of maps Yi → Xi for i ∈ I is a

univalent mapV → U having Yi → Xi as pullback for i ∈ I :

Yi //

��

V

��

Xi
// U .

An object X is said to be classified if the map X → 1 is clas-
sified. In homotopy type theory, a classifier for (fi )i ∈I (with
external indexing) is simply a familyV over U that satisfies
the univalence axiom and restricts (up to equivalence) to the
given families fi for i ∈ I .
As discussed in [27], classifiers are related to descent for

colimits in the sense of [30]. Here, we are interested only in
the case of pushouts. Instead of assuming blanket classifiers
for classes of “small” maps as in a higher topos, we will keep
track of which collections of maps need to have classifiers.

9 The reverse implication proceeds as follows. Given Y → X , let us show
that the space of pullback squares from Y → X to V → U is (−1)-
truncated. We may suppose that Y → X is classified byV → U via a map
X → U . The desired space is isomorphic to the space of pullback squares
over U from Y → X to U ×V → U ×U . Over U , the map Y → X is the
product of V → U with X , so this space is the hom space over U from X

to the internal object of pullback squares fromV → U toU ×V → U ×U .
The target object of this hom space was assumed terminal.

Proposition A.1 (Pushout descent from classifier). Let C
be a locally Cartesian closed higher category. Let

Y00 //

p00

��

��
❄
❄
❄
❄
❄
❄
❄

//

❄❄

Y01

p01

��

��
❄
❄
❄
❄
❄
❄
❄

Y10 //

p10

��

Y11

p11

��

❄❄

X00
//

��
❄
❄
❄
❄
❄
❄
❄

X01

��
❄
❄
❄
❄
❄
❄
❄

X10
// X11

❄❄

(13)

be a cube in C with horizontal faces pushouts and left and
back faces pullbacks (as indicated). Assume that the maps p01
and p10 have a common classifier V → U . Then the right
and front faces are pullbacks and the map p11 is classified by
V → U .

Proof. This is a standard exercise, we give the proof for com-
pleteness.
Let u : V → U be the given classifier. In C→cart, by (−1)-

truncatedness of u, we obtain a square

p00 //

��

p01

��

p10

.. u.

On codomains, we obtain an induced map

X00
//

��

X01

��

��

X10
//

..

X11

  

U .

This allows us to see the bottom face of (13) as a square in
the slice over U . Pulling back along u, we obtain a cube

Y00 //

p00

��

��
❃
❃
❃
❃
❃
❃
❃

//

❃❃

Y01

p01

��

��
❃
❃
❃
❃
❃
❃
❃

❃❃

Y10 //

p10

��

Y ′11

��

❃❃

X00
//

��
❄
❄
❄
❄
❄
❄
❄

X01

��
❄
❄
❄
❄
❄
❄
❄

X10
// X11.

❄❄

(14)



Here, the top square is a pushout since pullback alongu pre-
serves pushouts, a consequence of local Cartesian closure.
The cubes (13) and (14), seen from the top as squares in C→,
are pushouts of the same span p01 ← p00 → p10. Pushouts
are unique up to isomorphism, so the cubes are isomorphic.
As the right and front faces are pullbacks in (14), so are they
in (13). By construction, Y ′11 → X11 is classified by V → U ,
hence so is p11. �

Let us clarify the connection of Proposition A.1 to de-
scent. A finitely complete higher category C has descent for
a pushout square

X00
//

��

X01

��

X10
// X11

(15)

if the slice functor C/− from Cop to higher categories sends
it to a pullback square

C/X11
//

��

C/X10

��

C/X01
// C/X00

(morphisms are pullback functors). If this is the case, then:

• in any a cube (13) extending (15), the front and back
faces are pullbacks (as in Proposition A.1),
• if C has pushouts of pullbacks of X00 → X10, the
pushout (15) is stable under pullback.

If C has pushouts of pullbacks of X00 → X10, these condi-
tions are equivalent to descent for (15).
Note that local Cartesian closure implies stability of all

colimits, in particular pushouts, under pullback. In that case,
Proposition A.1 shows that descent for a pushout follows
from the existence of classifiers for finite collections ofmaps
and the existence of certain pushouts. However, we eschew
such a strong assumption on classifiers.
We will directly assume descent for pushouts for a track

of results (LemmaA.2, Proposition A.4, RemarkA.5, LemmaA.8,
Proposition A.10, and Remark A.12) which cannot easily
be expressed in terms of classifiers for some fixed maps or
serve as inspiration for the setting using classifiers for a re-
stricted choice of maps.
We will now prove a series of facts (some of them stan-

dard) about pushouts alongmonomorphisms, i.e. (−1)-truncated
maps. These are sometimes also called embeddings.

Lemma A.2. In a finitely complete higher category with de-
scent for pushouts, consider a pushout

A //
� _

��

C

��

B // D.

(16)

IfA→ B mono, then so isC → B and the square is a pullback.

This is standard.We give its proof so that we can translate
it to the setting with limited assumptions on classifiers.

Proof of Lemma A.2. Consider the cube

A //

��

��
❂
❂
❂
❂
❂
❂
❂

❂❂

C

��

��
❂
❂
❂
❂
❂
❂
❂

A //

��

C

��

❂❂

A //

��
❂
❂
❂
❂
❂
❂
❂ C

��
❂
❂
❂
❂
❂
❂
❂

B // D.
❂❂

(17)

It is given by the functorial action on themap of arrows from
A→ B to C → D of the “connection operation” turning an
arrow X → Y into a square

X //

��

X

��

X // Y .

The map X → Y is mono exactly if this square is a pullback.
Let us inspect the faces of (17). The bottom face is the

original pushout. The top face is a pushout and the back
face is a pullback since opposite edges are invertible. The
left face is a pullback since A → B is mono. By descent, it
follows that the right and front faces are pullbacks. From
the right face, we infer thatC → D is mono. From the front
face, we infer that (16) is a pullback. �

Let us reprove this result starting from a classifier. Note
the extended conclusion.

Lemma A.3. In a locally Cartesian closed higher category,
let A→ B be a monomorphism admitting a classifier V → U

that also classifies the terminal object. Then for any pushout

A //
� _

��

C

��

B // D,

(18)

the map C → D is mono and classified by V → U and the
square is a pullback.

Proof. We follow the proof of Lemma A.2. When it comes
to using descent in the cube (17), we apply Proposition A.1.
This uses that A→ B and C → C (a pullback of 1→ 1) are
classified by V → U and additionally gives that C → D is
classified by V → U . �

Lemma A.2 has the following interesting consequence.
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PropositionA.4. In a finitely complete higher category with
descent for pushouts, pushouts alongmonomorphisms preserve
pullbacks (assuming the involved pushouts exist).

Proof. Recall that the forgetful functor from a coslice creates
pullbacks. Consider amonomorphismA→ B and a pullback
square

C00
//

��

C01

��

C10
// C11

under A. We consider its pushout along A → B, forming a
cube

C00
//

��

��
❄
❄
❄
❄
❄
❄
❄

// C01

��

��
❄
❄
❄
❄
❄
❄
❄

D00
//

��

D01

��

❄❄

C10
//

��
❄
❄
❄
❄
❄
❄
❄

C11

��
❄
❄
❄
❄
❄
❄
❄

D10
//

❄❄

D11.

❄❄

❄❄

Our goal is to show that its front face is a pullback. By LemmaA.2,
the maps from back to front are mono. By pushout pasting,
the faces from back to front are pushouts. By Lemma A.2,
the left face is a pullback. Hence, the front face is a pullback
by descent. �

Remark A.5. Let C be a finitely complete higher category
with descent for pushouts. Given a monomorphism A→ B

having pushouts, Proposition A.4 shows that the pushout
functor C\A→ C\D is almost left exact, with only the ter-
minal object not generally being preserved. We can pass to
slices to fix this: given a pushout square as in (18), the in-
duced functor from the higher category of factorizations of
A→ C to the higher category of factorizations of B → D is
left exact.

For the following statement, note that the forgetful func-
tor from a slice higher category creates truncation levels of
maps. That is, the truncation level of a map does not change
if we view regard the map as living over different objects.

Lemma A.6. In a finitely complete higher category, let

A //

��

C

��

B // D

(19)

be a pushout stable under pullback. Amap overD isn-truncated
exactly if its pullbacks over B and C are n-truncated.

Proof. We induct on n. In the base case n = −2, this is func-
toriality of pushouts that exist. The case n ≥ −1 reduces to

the case for n − 1 since diagonals of maps are preserved by
pullbacks. �

The following lemma is a simple recognition criterion for
truncation levels of pushouts.

Lemma A.7. In a finitely complete higher category, let

A //

��

C

��

B // D

(20)

be a pushout stable under pullback. Let n ≥ −1. Then D is
n-truncated exactly if the maps

(i) B ×D B → B × B,
(ii) B ×D C → B ×C ,
(iii) C ×D C → C ×C

are (n − 1)-truncated.

Proof. D is n-truncated exactly if D → D × D is (n − 1)-
truncated. By pullback pasting, one sees that the listed maps
are the pullbacks of the diagonal D → D ×D along the map
L ×R → D ×D for all combinations of L and R being B orC
(the map (ii) appears twice). Thus, they are (n−1)-truncated
if D → D × D is (n − 1)-truncated. The reverse implication
follows from a double invocation of Lemma A.6. �

The join X ⋆ Y of objects X and Y , if it exists, is their
pushout product, seen as maps X → 1 and Y → 1, i.e. the
pushout

X × Y //

��

X

��

Y // X ⋆Y .

(21)

Lemma A.8. In a finitely complete higher category with de-
scent for pushouts, assume that the pushout (21) exists and is
stable under pullback. If X and Y are (−1)-truncated, then so
is their join X ⋆Y .

Proof. By assumption, the left and topmaps in (21) aremono.
Applying Lemma A.2 twice, the square is a pullback and the
right and bottom maps are mono. We check that X ⋆ Y is
(−1)-truncated by instantiating LemmaA.7 to the pushout (21).

• Since X → X ⋆ Y is mono, (i) is the diagonal X →
X×X . This is an equivalence sinceX is (−1)-truncated.
• Since (21) is a pullback, (ii) is an equivalence.
• The case for (iii) is analogous to the one for (i), using
that Y → X ⋆Y is mono and Y is (−1)-truncated. �

We have an analogous statement in the setting with clas-
sifiers, proved using Lemma A.3 instead of Lemma A.2.

LemmaA.9 (Propositional Join). In a locally Cartesian closed
higher category, assume objects X and Y have classifiers also
classifying the terminal object. If X and Y are (−1)-truncated,
then so is their join X ⋆Y if it exists. �



For the application of Lemma A.9 in the main body of the
paper, we note that the assumptions on classifiers are satis-
fied in homotopy type theory as soon as we have univalence
for propositions.
We finally come to the main result of this section.We first

state it using descent. In this case, it has an easier proof.

Proposition A.10. Consider a finitely complete higher cat-
egory with descent for pushouts. Let A → B be a monomor-
phism having pushouts that are stable under pullback. Con-
sider a pushout

A //

��

C

��

B // D.

(22)

If B and C are n-truncated for n ≥ 0, then so is D. This also
holds for n = −1 if we have a map B ×C → A.

Proof. We proceed by induction on n. Of note, the inductive
step will apply the claim to a slice, so the ambient category
changes within the induction. (In homotopy type theory,
this simply corresponds to a use of the induction hypoth-
esis in an extended context.)
In the base case n = −1, note that A is (−1)-truncated

sinceA→ B is mono and B is (−1)-truncated. Since we have
maps back and forth between A and B ×C and both objects
are (−1)-truncated, these maps are invertible. It follows that
the span in (22) is a product span, and the claim reduces to
Lemma A.8.
From now on, assume n ≥ 0. By Lemma A.2, the map

C → D is mono and (22) is a pullback. We check that D is
n-truncated by instantiating Lemma A.7 to the pushout (22).

• Since C → D is mono, the map (iii) is the diagonal
C → C × C . This is (n − 1)-truncated since C is n-
truncated.
• Since (22) is a pullback, the map (ii) isA→ B×C . This
factors as

A // A ×C // B ×C .

The first factor is a pullback of the diagonalC → C×C ,
which is (n − 1)-truncated since C n-truncated. The
second factor is a pullback ofA→ B, which is (n − 1)-
truncated since n ≥ 0 and A→ B is mono.

The remaining case is themap (i), i.e. showing thatB×DB →
B × B is (n − 1)-truncated. Consider the diagram producing
the diagonal of A over C:

A

��

id

  

id

��

P
p1

//

p2

��

A

��

A // C .

(23)

We see this as a square in the coslice under A. We take its
pushout along A→ B:

B

��
❃❃

❃❃
❃❃

❃❃

id

  

id

��

Q
q1

//

q2

��

B

��

B // D.

(24)

We will independently prove the following:

(i) the inner square in (24) is a pullback,
(ii) the map 〈q1,q2〉 : Q → B × B is (n − 1)-truncated.

Together, this implies the goal.
Let us prove (i). By pushout pasting, the squares

P
p1

//

��

A

��

Q
q1

// B

P
p2

//

��

A

��

Q
q2

// B

(25)

are pushouts. By Lemma A.2, the map P → Q is mono.
Again by Lemma A.2, the squares (25) are pullbacks. Apply-
ing descent in the cube connecting the inner squares in (23)
and (24), we see that the inner square in (24) is a pullback.
Let us prove (ii). Focus on the pushout square

A //

��

P

��

B // Q .

(26)

It lives in the slice over B × B via 〈q1,q2〉. The induced map
P → B × B rewrites as

P
〈p1,p2 〉

// A × A // B × B.

As in the proof of Lemma A.7, the first factor is a pullback
of the diagonal C → C × C , hence (n − 1)-truncated. The
second factor is mono, hence (n − 1)-truncated since n ≥ 0.
It follows that P is (n − 1)-truncated over B × B. Note that B
is (n − 1)-truncated over B × B by assumption.
We apply the induction hypothesis to the pushout (26) in

the slice over B × B. Note that the assumptions on descent
and the mono A→ B all descend to the slice. We have just
shown that the bottom left and top right objects of (26) are
(n − 1)-truncated over B × B. For the case n − 1 = −1, we
note that we have maps

B ×B×B P // B ×B×B (A× A) A
≃oo

over B×B where the second map inverts asA→ B is mono.
This finishes the proof of (ii). �

Wenow state the above result in terms of classifiers. Since
we only assume classifiers for (n − 1)-truncated maps, the
previous proof requires modification.
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Proposition A.11 (n-truncated Pushout Of Mono). In a lo-
cally Cartesian closed higher category, let m : A → B be a
monomorphism having pushouts. Consider a pushout

A //

m

��

C

��

B // D.

(27)

Letn ≥ 0. Assume a classifier for any finite collection of (n−1)-
truncated maps. If B and C are n-truncated, then so is D. This
also holds for n = −1 if we have a map B × C → A and a
classifier for any finite collection of monomorphisms.

Proof. The proof proceeds as for Proposition A.10, using LemmaA.9
instead of Lemma A.8 in the base case n = −1.
In the situation for n ≥ 0, we use Lemma A.3 instead of

Lemma A.2 to deduce that C → D is mono and (27) is a
pullback.
A divergence occurswhen checking the subgoals (i) and (ii).

The previous descent argument for (i) no longer works be-
cause the relevant maps in the cube considered are not (n −
1)-truncated. Instead, we are forced to prove (i) in a way
that will depend on (ii). The proof of (ii) proceeds as before,
noting that the assumptions on classifiers descend to the re-
cursive case.
Let us now prove (i). To start, we use Lemma A.3 instead

of LemmaA.2 to derive the assertions about the squares (25).
Consider the cube

P
p1

//

〈mp1,p2 〉

��

""
❉❉

❉❉
❉❉

❉❉
❉

//

❉❉

A

��

""
❉❉

❉❉
❉❉

❉❉
❉

Q
q1

//

〈q1,q2 〉

��

B

��

❉❉

B × A //

""
❊❊

❊❊
❊❊

❊❊
B ×C

""
❊❊

❊❊
❊❊

❊❊

B × B // B × D.
❊❊

(28)

The bottom face is the pullback of (27) along B → 1, hence
a pushout by local Cartesian closure. The top face is one
of the pushouts (25). To see that the back and left faces are
pullbacks, pullback paste in the diagrams

P
p1

//

〈mp1,p2 〉

��

A

��

B × A //

π2

��

B ×C

π2

��

A // C ,

P //

〈mp1,p2 〉

��

Q

〈q1,q2 〉

��

B ×A //

π2

��

B × B

π2

��

A // B;

here, the left composite square is a pullback by construc-
tion (23) and the right composite square is one of the pull-
backs (25).

We already know thatA→ B×C is (n−1)-truncated. The
map Q → B × B is (n − 1)-truncated by (ii). By assumption,
they have a common classifier. We are thus in the position
to apply Proposition A.1 to the cube (28) and deduce that its
front face is a pullback. Pasting the pullbacks

Q
q1

//

〈q1,q2 〉

��

B

��

B × B //

π2

��

B × D

π2

��

B // D,

we get (i). �

Remark A.12. Following the idea of the proof of Proposi-
tion A.11, one may strengthen also the statement of Propo-
sition A.10 by restricting descent to (n− 1)-descent (or (−1)-
descent for n = −1). Here, n-descent in a finitely complete
higher category C refers to the descent-like notion obtained
by instead considering the functor from Cop to higher cat-
egories that sends Z to the full higher subcategory of C/Z
on n-truncated objects.

RemarkA.13. It is possible to state the assumption on clas-
sifiers in Proposition A.11 in a form closer to current sys-
tems of homotopy type theory. This involves introducing a
notion of universe, i.e. fixing a (not necessarily univalent)
mapV → U whose classified maps are closed under compo-
sition and formation of diagonals and whose classified ob-
jects in any slice are closed under pushouts. One then re-
quires A,B,C to be classified by V → U and that the col-
lection of those maps classified by V → U that are (n − 1)-
truncated (or (−1)-truncated for n = −1) also admits a (uni-
valent) classifier in our sense.

Note that we are speaking here about classification in the
sense of higher categories, not strict classification by some
universe in a model of type theory. This is the essential dif-
ference to the topic of the main body of the article where
this statement is used.

For the application of Proposition A.11 in the main body
of the paper, we note that the assumptions on classifiers are
satisfied in homotopy type theory as soon as we have uni-
valence for propositions.

B Partially Propositional Indexed W-types

In this section, we develop the theory of partially proposi-
tional indexed W-types and characterize their equality. As
a warm up, we recall indexed containers, the associated no-
tion of indexed-type, and the encode-decodemethod used to
characterize their equality. The results developed here will
be used in Section 3 in the definition of an n-truncated uni-
verse of n-types that is univalent for (n − 1)-types.



We work informally in the language of homotopy type
theory. In particular, we have access to function extensional-
ity.Wewill be explicit about universes when they are needed
and what kind of univalence we require of them.
No result in this section depends on judgmental β-equality

for higher inductive types, even for point constructors. The
β-law as an internal equality will suffice. This applies to
pushouts, the higher inductive families that will constitute
partially propositional W-types, and even ordinary indexed
W-types.

B.1 Indexed Containers

Given a type I , an I -indexed container C is a pairC = (S, Pos)
of type families as follows:

• given i : I , we have a type S(i),
• given i, j : I , and s : S(i), we have a type Pos(s, j).10

Its extension is the endofunctor on families over I that sends
a family X to the family Ext(X ) given by

Ext(X )(i) =
∑

(s :S (i ))

∏

(j :I )

Pos(i, s, j) → X (j).

B.2 Indexed W-types

Fix an I -indexed containerC as above. As in [6, 21] (the for-
mer applying only to the non-indexed case), one has notions
of algebras, algebra morphisms, algebra fibrations, and alge-
bra fibration sections for C . Here and in the following, we
omit the prefix “homotopy” for all relevant notions, this be-
ing the default meaning for us.

DefinitionB.1 (IndexedW-type). AW-type for the indexed
container C is an initial C-algebra, meaning the type of al-
gebra morphisms to any algebra is contractible,

We denote a given, substitutionally stable choice of such
an object by (WC , sup), although denoting thewhole algebra
byWC . One may characterizeWC via elimination: any alge-
bra fibration overWC has an algebra section. This is known
as induction. Note that the β-law for the eliminator holds
only up to identity type.
In a framework with inductive families (with or without

judgmental β-law), one may implementWC as an inductive
family with constructor sup(s, t) :WC (i) for i : I , s : S(i), and
t :

∏

(j :I ) Pos(s, j) → WC (j); when applying t , we leave its
first argument j implicit. To keep the presentation readable,
we will informally useWC as if it was given as such an in-
ductive family and use pattern-matching-style notation for
induction; we leave the reduction to the eliminator (includ-
ing the definition of the algebra fibration corresponding to
each use of induction) to the reader.

10This is a polynomial functor I ← E → B → I with Reedy fibrant speci-
fying data. The latter means that B → I and E → B × I are fibrations.

B.3 Encode-DecodeMethod

The encode-decodemethod [25] is a generalmethod for char-
acterizing equality in a (higher) inductive type (or family)T .
In our view, it decomposes into the following three steps
(here for just a single typeT ).

1. Define a binary relation EqT of equality codes on T .
This uses double induction onT (with ultimate target
a universe) and makes use of univalence if there are
any path constructors.

2. Define an “encoding” function

T (x0, x1)
encodex0,x1

// EqT (x0, x1).
(29)

This uses induction over the given equality and single
induction on T .

3. Prove encode−1(c) for each code c : EqT (x0, x1). This is
a pair (p,q) where p : T (x0, x1) and q : encode(p) = c .
This uses double induction on T as in step 1.

Step 3 makes (29) into a retraction. Summing over x1 : T ,
the source of the retraction becomes contractible. But any
retraction with contractible source is an equivalence. By a
standard lemma about fiberwise equivalences [34, Thm4.7.7],
it follows that the original map (29) is an equivalence.

B.4 Equality in IndexedW-types

Wenow apply the encode-decodemethod fromSubsection B.3
to characterize equality in WC . Although we did not find
this in the literature, we believe it to be folklore. We have a
choice between two viable options:

• characterize equality in each fiberWC (i) for i : I ,
• characterize dependent equalitiy inWC over a given
equality in I .

We go for the second one.
For step 1, we define a type Eq(pi , x0, x1) of equality codes

between x0 :Wc (i0) and x1 :WC (i1) overpi : I (i0, i1). We pro-
ceed by double induction on x0 and x1 into a large enough
universe. For x0 ≡ sup(s0, t0) and x1 ≡ sup(s1, t1), we take
Eq(pi , x0, x1) equal to the type of pairs (ps , ct ) where:

• ps is a dependent equality in S over pi between s0 and
s1,
• ct is a dependent function, sending j : I 11,m0 : Pos(s0, j),
m1 : Pos(s1, j), and a dependent equality pm over pi
and ps betweenm0 andm1 to

ct (pm) : Eq(reflj , t0(m0), t1(m1)).

Steps 2 and 3 will establish the following statement.

Proposition B.2. Given p : I (i0, i1) with x0 : WC (i0) and
x1 :WC (i1), we have

(x0 =WC (p) x1) ≃ Eq(p, x0, x1).

11Instead of j : I , we could also quantify over j0, j1 : I with pj : I (j0, j1).
Perhaps this would be more consistent.
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Proof. For step 2, we first define encode′(x) : Eq(refli , x , x)
for i : I and x :WC (i). We proceed by induction on x , letting
x ≡ sup(s, t). We let encode′(x) be (refls ,pt ), transported
along the β-equality for Eq. Here, pt is defined by equality
induction frompt (j, reflm) ≡def encode

′(t(m)). From encode′,
we obtain

x0 =WC (pi ) x1
encodepi ,x0,x1 // Eq(pi , x0, x1)

by equality induction first on pi and then the equality be-
tween x0 and x1 in the same fiber.
For step 3, we prove encode−1pi ,x0,x1(c) for c : Eq(pi , x0, x1).

Inducting on pi , we may suppose i ≡def i0 ≡ i1 and pi ≡

refl. We induct on x0 and x1, letting x0 ≡ sup(s0, t0) and
x1 ≡ sup(s1, t1). Using the β-equality for Eq, we can reduce
to the case where c is the transport of a pair (ps , ct ) as in
step 1. Inducting on ps , we may suppose s ≡def s0 ≡ s1 and
ps ≡ refl.

Given j : I , note that the canonical map

Pos(s, j) →
∑

(m0,m1:Pos(s, j))m0 =m1

is an equivalence. Using function extensionality and equal-
ity induction, we may thus suppose that ct is obtained using
equality induction from

c ′t (m) ≡def ct (reflm) : Eq(reflj , t0(m), t1(m))

for j : I and m : Pos(s, j) in the same fashion that pt is de-
fined in the definition of encode′. By induction hypothesis,
we have encode−1

reflj ,t0(m),t1(m)
(c ′t (m)). Using function exten-

sionality and equality induction, we may thus suppose that

c ′t ≡ λj . λm. encodereflj,t0(m),t1(m)(qm(m))

for some qm(m) : t0(m) =WC (j) t1(m) depending on j : I
and m : Pos(s, j). Again using function extensionality and
equality induction, we may suppose that t ≡def t0 ≡ t1 and
qm ≡ λj . λm. reflt (m) .

Now we have c ′t ≡ λj . λm. encode′(t(m)), and thus

c ≡ (refls , ct )

≡ encode′(sup(s, t))

≡ encoderefli ,sup(s,t ),sup(s,t )(refl).

This shows encode−1pi,x0,x1(c). �

B.5 Partially Propositional IndexedW-types

Fix an I -indexed container C . In addition, fix a family P of
propositions over I .
We wish to mix the inductive construction of the indexed

W-typeWC with the propositional truncation, applied only
over indices i : I with P(i). Note that indexed W-types are
not merely fiberwise W-types. Thus, it would be wrong to
takeWC and simply conditionally truncate each fiber, Rather,
wewant to have the truncation interleaved within the induc-
tive definition.

A typeA isQ-propositional ifA is propositional assuming
Q , i.e., ifQ → isProp(A). A familyX over I is P-propositional
if X (i) is P(i)-propositional for i : I . We use analogous ter-
minology with being contractible.
AC-algebra is P-propositional if the underlying family is

P-propositional.

DefinitionB.3 (Partially propositional indexedW-type). A
partially propositional W-type for the propositional family P
and the indexed container C is an initial P-propositional C-
algebra.

We denote a given, substitutionally stable choice of such
an object by W P

C . We also call this the P-propositional in-
dexed W-type generated by by C . As before, one may char-
acterizeWC,P via elimination (i.e. induction): any P-propo-
sitional algebra fibration over W P

C has an algebra section.
Here, an algebra fibration over a P-propositional algebra is
P-propositional if the total space algebra is P-propositional.

Equivalently,W P
C is the higher inductive family [21, 26]

with point constructor sup as forWC and path constructor

tr(c, x ,y) :W P
C (i)(x ,y)

for i : I with c : P(i) and x ,y : W P
C (i). As before, we do

not assume that β-equality is judgmental. Again, to keep
the presentation readable, we will informally use induction
onW P

C using pattern-matching-style notation, leaving the
compilation to elimination with respect to P-propositional
algebra fibrations to the reader. The reasoning principle is
the same as for WC , only that we must show the target’s
fiber over i : I is propositional if P(i).
Higher inductive families have been justified in the sim-

plicial set model [26] and various cubical sets models [10,
13] of homotopy type theory. Thus, these models support
partially propositional W-types (even with judgmental β-
reduction).

B.6 Equality in Partially Propositional Indexed

W-types

We adapt the encode-decodemethod from Subsection B.3 to
characterize equality inW P

C . Large parts of the construction
will follow the technical development in Subsection B.4, so
the focus will lie on the new aspect of P-propositionality.
In step 1, we need to define codes for equality. This relies

on the following lemma.

Lemma B.4. Let U be a universe univalent for contractible
types. LetQ be proposition. Then the subtype ofU ofQ-contractible
types is Q-contractible.

Proof. IfQ holds,Q-contractibility means contractibility. So
the goal becomes: ifQ holds, the subtype ofU of contractible
types is contractible. But the latter is always contractible, us-
ing univalence. �

Given pi : I (i0, i1) with x0 : W P
c (i0) and x1 : W P

C (i1), we
define simultaneously:



• a type Eq(pi , x0, x1) of equality codes,
• a witness that Eq(pi , x0, x1) is P(i0)-contractible.12

We proceed by double elimination on x0 and x1 with tar-
get over i : I the type of P(i)-contractible types in a large
enough universeU univalent for contractible types. This is
a P-propositional algebra by Lemma B.4. For x0 ≡ sup(s0, t0)

and x1 ≡ sup(s1, t1), we take the join

Eq(pi , x0, x1) = P(i0)⋆ Eq
′(pi , (s0, t0), (s1, t1)). (30)

Here, Eq′(pi , (s0, t0), (s1, t1)) codes structural equality of the
top-level constructor applications. It is defined as the type of
pairs (ps , ct ) as in the construction of Eq in Subsection B.4,
with ct ultimately valued in Eq. The join (30) may also be
understood as a P(i0)-partial contractible truncation. In par-
ticular, it is contractible if P(i0).

Proposition B.5. Given p : I (i0, i1) with x0 : W P
C (i0) and

x1 :W P
C (i1), we have

(x0 =W P
C
(p) x1) ≃ Eq(p, x0, x1).

Proof. It remains to adapt steps 2 and 3 of the encode-decode
method.
For step 2, we first define encode′(x) : Eq(refli , x , x) for

i : I and x : WC (i). Note that the goal is contractible if
P(i). We may thus induct on x . For x ≡ sup(s, t), we define
encode′(x) = inr(. . .) where the omitted expression is as in
the constructor case for encode′ in Proposition B.2. From
encode′, obtain

x0 =W P
C
(pi )

x1
encodepi ,x0,x1

// Eq(x0, x1)

as in Proposition B.2.
For step 3, we prove encode−1pi ,x0,x1(c) for c : Eq(pi , x0, x1).

Inducting on pi , we may suppose i ≡def i0 ≡ i1 and pi ≡

refl. Note that the goal becomes contractible if P(i): source
and target of encoderefli ,x0,x1 become contractible. Thus, we
may induct on x0 and x1, letting x0 ≡ sup(s0, t0) and x1 ≡

sup(s1, t1).
Using the β-equality for Eq, we can reduce to the case

where c is the transport of an element of the join (30). We
eliminate over this element of the join. In the case for inl or
glue, we have P(i), so are done as the goal is contractible. In
the case for inr, we have that c is the transport of inr(ps , ct )
where (ps , ct ) is as in Proposition B.2. The rest of the proof
follows that proof. �

Remark B.6. An evident generaliation of partially propo-
sitional indexed W-types is partially n-truncated indexed W-
types for internal or external n ≥ −2. We expect that the
encode-decode method can also be adapted to characterize
equality in partially n-truncated indexed W-types. Instead

12Note that P (i0) ↔ P (i1) given pi : I (i0, i1).

of using the join as in Proposition B.5, one defines Eq(pi , x0, x1)
as the pushout

P(i0) × Eq
′(pi , (s0, t0), (s1, t1))

++❳❳❳
❳❳❳❳

❳❳❳

��

P(i0) × ‖Eq
′(pi , (s0, t0), (s1, t1))‖n−1

��

Eq′(pi , (s0, t0), (s1, t1))

++❳❳❳
❳❳❳❳

❳❳❳❳

Eq(pi , x0, x1).

❳❳

This is motivated by the equality in an n-truncation being
the (n − 1)-truncation of the original equality. For n = −1,
this definition reduces to Proposition B.5. For n = −2, the
definition still makes sense if we take the (−3)-truncation to
mean (−2)-truncation.
Note that there is an induced map

Eq(pi , x0, x1) → ‖Eq
′(pi , (s0, t0), (s1, t1))‖n−1. (31)

This is the pushout product of P(i0) → 1 with the map

Eq′(pi , (s0, t0), (s1, t1)) → ‖Eq
′(pi , (s0, t0), (s1, t1))‖n−1 (32)

Thus, the fiber of (31) over an element e is given by the join
of P(i0) and the fiber of (32) over e . Thus, the join still plays
a role, even though it is hidden in a different slice.
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