
ar
X

iv
:2

00
7.

00
16

7v
1 

 [
cs

.L
O

] 
 1

 J
ul

 2
02

0

THE INTEGERS AS A HIGHER INDUCTIVE TYPE

THORSTEN ALTENKIRCH AND LUIS SCOCCOLA

Abstract. We consider the problem of defining the integers in Homotopy Type Theory
(HoTT). We can define the type of integers as signed natural numbers (i.e., using a
coproduct), but its induction principle is very inconvenient to work with, since it leads
to an explosion of cases. An alternative is to use set-quotients, but here we need to use
set-truncation to avoid non-trivial higher equalities. This results in a recursion principle
that only allows us to define function into sets (types satisfying UIP). In this paper
we consider higher inductive types using either a small universe or bi-invertible maps.
These types represent integers without explicit set-truncation that are equivalent to the
usual coproduct representation. This is an interesting example since it shows how some
coherence problems can be handled in HoTT. We discuss some open questions triggered
by this work. The proofs have been formally verified using cubical Agda.

1. Introduction

How to define the integers in Homotopy Type Theory? This can sound like a trivial
question. The first answer is as signed natural numbers:

Definition 1.1. Let Zw be the inductive type generated by the following constructors:

– 0 : Zw

– strpos : N → Zw

– strneg : N → Zw

However, this type is very inconvenient in practice because it creates a lot of unnecessary
case distinctions. Nuo [Li15] tried to prove distributivity of multiplication over addition,
which resulted in a lot of cases. It is like working with normal forms only, when working
with λ-terms.

Nuo shows that it is much better to work with a quotient type, representing integers
as differences of natural numbers. That is, we define Zq = N × N/ ∼ where (x+, x−) ∼
(y+, y−) is defined as x+ + y− = y+ + x− 1. However, this is not the end of the story.
Here we use set-quotients, which can be implemented as a higher inductive type with a
set-truncation constructor [Uni13, Section 6.10]. However, the set-truncation constructor
implies that using its recursion principle we can only define functions into sets, which
seems to be an unreasonable limitation when working in HoTT. For example, in the proof
that the loop space of the circle is isomorphic to the integers [RLS13], we must map from
the integers to the loop space of the circle, when we do not yet know that this will end up
being a set.

We would like to have a definition of the integers which is convenient to work with (i.e.,
does not reduce them to normal forms) but which is not forced to be set-truncated by a
set-truncation constructor. Paolo Capriotti suggested the following definition:

1This is actually the definition in [Uni13].

1

http://arxiv.org/abs/2007.00167v1


Definition 1.2. Let Zh be the higher inductive type with the following constructors:

– 0 : Zh;
– succ : Zh → Zh;
– pred : Zh → Zh;
– sec : (z : Zh) → pred(succ(z)) = z;
– ret : (z : Zh) → succ(pred(z)) = z;
– coh : (z : Zh) → apsucc(sec(z)) = ret(succ(z)).

We add succ and pred as constructors, but then we postulate that they are inverse to
each other using sec and ret. At this point we could add a set-truncation but then we
would suffer from the same shortcoming as the definition using a set-quotient. However,
we can add just one coherence condition coh which should look familiar to anybody who
has read the HoTT book: indeed the constructors pred, sec, ret, and coh exactly say that
succ is a half-adjoint equivalence [Uni13, Section 4.2]. More precisely, sec postulates that
succ is a section, ret postulates that succ is a retraction, and coh represents the triangle
identity in the definition of half-adjoint equivalence.

The question that now remains is the following. Is Zh a correct definition of the integers,
in particular is it a set with decidable equality? The strategy to prove this is to define
a normalisation function into the signed integers, Zw, and show that this normalisation
function, together with the obvious embedding of Zw into Zh, forms an equivalence. It
turns out that this is actually quite hard to prove, due to the presence of higher equalities,
and nobody has so far been able to formally verify this.

In this paper, we follow the same idea but use a simpler definition of equivalence,
namely bi-invertible maps [Uni13, Section 4.3]:

Definition 1.3. Let Zb be the higher inductive type with the following constructors:

– 0 : Zb;
– succ : Zb → Zb;
– pred1 : Zb → Zb;
– pred2 : Zb → Zb;
– sec : (z : Zb) → pred1(succ(z)) = z;
– ret : (z : Zb) → succ(pred2(z)) = z;

In this case we postulate that succ has a left inverse, given by pred1 and sec, and a right
inverse, given by pred2 and ret. The reason why Zb is simpler than Zh is because it only
has 0- and 1-dimensional constructors. The higher coherence coh is not needed in this
case for the same reason that a 2-dimensional constructor is not needed in the definition
of bi-invertible map: having two, a priory, unrelated inverses makes the type of witnesses
that a certain map is bi-invertible a proposition ([Uni13, Theorem 4.3.2]).

For this definition we can give a complete proof that Zb is equivalent to Zw, which has
been formalized in cubical Agda. We remark that this has previously been verified by
Evan Cavallo [Cav18] in RedTT [red19]. However, our approach to prove the equivalence
is more general. Our main result is Theorem 2.4, which says that only the components
witnessing the preservation of 0 and succ are relevant when comparing morphisms out of
Zb.

Another presentation of the integers follows from directly implementing the idea that
the integers can be specified as the initial type with an inhabitant and an equivalence:

2



– 0 : ZU ;
– s : ZU = ZU .

The problem is that this is not a standard definition of a higher inductive type because we
state an equality of the type itself. However, this can be fixed by using a small universe:

Definition 1.4. Define U : U and El : U → U inductively with the constructors:

– z : U ;
– q : z = z;
– 0 : El(z)

Now, let ZU :≡ El(z).

While we can show that this is a set without using set-truncation, its recursion principle
isn’t directly amenable to recursive definitions of functions because even succ is not a
constructor. On the other hand the fact that the integers are the loop space of the circle
is a rather easy consequence of this definition.

The definition of the integers is also closely related to the free group, indeed as suggested
in [KA18] we can define the free group over a type A by simply parametrizing all the
constructors but 0:

Definition 1.5. Given A : U , define F(A) inductively with the constructors:

– 0 : F(A);
– succ : A→ F(A) → F(A);
– pred1 : A→ F(A) → F(A);
– pred2 : A→ F(A) → F(A);
– sec : (a : A) → (z : F(A)) → pred1(a, succ(a, z)) = z;
– ret : (a : A) → (z : F(A)) → succ(a, pred2(a, z)) = z;

The integers arise as the special case Z = F(1). However, the normal forms get a bit
more complicated because we must allow alternating sequences of succ and pred but only
for different a : A. This means that a normalisation function is only definable for sets
a : A with a decidable equality. The general problem of whether F(A) is a set, if A is, is
still open — in [KA18] it is shown to be the case, if we 1-truncate the HIT.

The problem of defining the integers with convenient constructors, and adding only the
right coherences to make it a set, can be seen as a simple instance of a more general class
of coherence problems in HoTT. Another example that we have in mind is the intrinsic
definition of the syntax of type theory as the initial category with families as developed
in [AK16]. If we carry out this definition in HoTT, we need to set-truncate the syntax,
but this stops us from interpreting the syntax in the standard model formed by sets. We
hope that also in this case we can add the correct coherence laws and show that they are
sufficient to deduce that the initial algebra is a set.

1.1. Contributions. We show that the definitions of the signed integers, Zw, the def-
inition of the integers as a higher inductive type using bi-invertible maps, Zb, and the
definition using a higher inductive-inductive type with a mini universe, ZU , are all equiv-
alent (Theorem 4.7).

For Zb we establish some useful principles such as a recursion principle (Proposition 2.1)
which only uses one predecessor, and an induction principle which says that to prove a
predicate (i.e., a family of propositions), you only need to prove closure under 0, succ,
and pred1 (Proposition 2.2). This is sufficient to verify all algebraic properties of the

3



integers, e.g., that the integers form a commutative ring. We have formalized [AS19] the
constructions using cubical Agda [AMV19].

When formalizing the constructions involving Zb we developed the theory of bi-invertible
maps in cubical Agda, which wasn’t available. In particular, we prove that bi-invertible
maps are equivalent to contractible-fibers maps [Uni13, Section 4.4], and the principle of
equivalence induction for bi-invertible maps.

1.2. Related work. The claim that Zh is a set can be found in [AP18] but the proof was
flawed: it relies on the assumption that we can ignore propositional parts of an algebra
for a certain signature when constructing algebra morphisms, which is not the case in
general (Example 6.1). Cavallo [Cav18] verified that Zb ≃ Zw in RedTT. Higher inductive
representations of the integers are discussed in [BGvdW17] and it is shown there that Zh

without the last constructor is not a set. [Kv19] also discuss [AP18] and note that it is
a corollary of their higher Seifert-van Kampen theorem — however, they derive it from
initiality not from the induction principle.

1.3. Background. We use Homotopy Type Theory as presented in the book [Uni13]. We
adopt the following notational conventions.

If two terms a and b are definitionally equal, we write a ≡ b, and we reserve a = b to
denote the type of propositional equalities between a and b.

Given a type A : U and a type family P : A → U , we write the corresponding Π-type
as (a : A) → P (a), and the corresponding Σ-type as (a : A)× P (a).

Given a type A : U , a type family P : A→ U , an equality e : a = b in A, and p : P (a),
we denote the coercion of p along e by e∗(p) : P (b). This is defined by induction on e.

A type is contractible if it has exactly one inhabitant. That is, given a type A : U ,
we define isContr(A) :≡ (a0 : A) × ((a : A) → a = a0). A type is a proposition if any two
inhabitants are equal. That is, given a type A : U , we define isProp(A) :≡ (a, b : A) →

a = b, [Uni13, Definition 3.3.1]. A type is a set if it satisfies UIP. That is, given a type
A : U , we define isSet(A) :≡ (a, b : A) → (p, q : a = b) → p = q, [Uni13, Definition 3.1.1].

An equivalence between types A and B is a map f : A→ B together with a proof that
(b : B) → isContr((a : A) × f(a) = b). The type of equivalences between A and B is
denoted by A ≃ B.

The general syntax of Higher Inductive Inductive Types (HIITs) is specified in [KK19],
where also the types of the eliminators are derived. In the informal exposition, and in the
formalisation, we use the cubical approach to path algebra introduced in [LB15].

For the formalisation we use cubical Agda [AMV19] which is based on the cubical type
theory of [CCHM18]. The development of HIITs in Agda is based on [CHM18].

2. Representing Z using bi-invertible maps

The type N of natural numbers is usually defined as the inductive type generated by
an inhabitant 0 : N and an endomap succ : N → N. In this section, we define the integers
Zb in a similar way. The idea is to give constructors that guarantee that we have 0 : Zb,
succ : Zb → Zb, and that succ is an equivalence using bi-invertible maps, see Definition 1.3.
To make it easy to work with this definition, we prove three theorems that let us: map
out of Zb (Proposition 2.1), prove properties about Zb (Proposition 2.2), and recognise
when two maps out of Zb are equal (Theorem 2.4).

4



f(succ(pred1(x))) g(succ(pred1(x)))

s(p(f(x))) s(p(g(x)))

f(x) g(x)

f(x) g(x)

apf (sec(x))

r(succ(pred
1
(x)))

apg(sec(x))

apsucc(appred1 (r(x)))

sec(g(x))
r(x)

r(x)

sec(f(x))

Figure 1. Cube needed for lemma 2.6

The result about mapping out of Zb is very simple, and follows immediately from the
recursion principle of Zb.

Proposition 2.1 (recZsimp). Given a type T with an inhabitant t : T and two maps

f : T → T , g : T → T , such that g is a left and right inverse of f , we get a map

r : Zb → T such that r(0) ≡ t and r(succ(z)) ≡ f(r(z)), definitionally.

The next result is only slightly more involved.

Proposition 2.2 (indZsimp). Given a type family P : Zb → U such that (z : Zb) →

isProp(P (z)), if we have P (0), (z : Zb) → P (z) → P (succ(z)), and (z : Zb) → P (z) →

P (pred1(z)), then it follows that (z : Zb) → P (z).

Proof. We use the induction principle of Zb. The main idea is that we do not have to check
any coherences, since we are proving a proposition. Concretely, this means that we only
have to provide inhabitants for the following types: P (0), (z : Zb) → P (z) → P (succ(z)),
(z : Zb) → P (z) → P (pred1(z)), and (z : Zb) → P (z) → P (pred2(z)). For the first
three we just use the assumptions. For the fourth one, we make use of the fact that,
for every z : Zb, there is an equality pred1(z) = pred2(z). This is because pred2(z) =
pred1(succ(pred2(z))) = pred1(z) using sec and then ret. �

The result that allows us to compare maps out of Zb is considerably more complicated
to prove. In order to explain its proof, we need to talk about bi-invertible maps.

Definition 2.3. A map between types f : A → B is a bi-invertible map if there exist
g, h : B → A, and homotopies s : g ◦ f = idA and r : f ◦ h = idB.

The type of bi-invertible structures on such a map f is denoted by isBiInv(f). The type
(f : A→ B)× isBiInv(f) is denoted by A ≃b B.

Whenever we have f : A ≃b B, we will abuse notation, and write f : A → B for the
underlying function of the bi-invertible map f .

Notice that the constructors succ, pred1, pred2, sec, and ret form a bi-invertible map.
Suppose given a type T with an inhabitant t : T and a bi-invertible map s : T ≃b T . The
recursion principle of Zb gives us recZb

(T, t, s) : Zb → T . Now, assume given another map
f : Zb → T . What do we have to check to be able to conclude that f = recZb

(T, t, s)?
The following theorem gives a simple answer to the question and is the main focus of

this section.
5



Theorem 2.4 (uniquenessZ). Given a type T , an inhabitant t : T , a bi-invertible map

s : T ≃b T , and a map f : Zb → T , if f(0) = t and s ◦ f = f ◦ succ then f = recZb
(T, t, s).

In order to prove Theorem 2.4 we must study the preservation of bi-invertible maps,
which we introduce next.

Fix types A,B,A′, B′ : U , bi-invertible maps e : A ≃b B and e′ : A′
≃b B

′, and maps
α : A→ A′ and β : B → B′:

A B

A′ B′.

e

α
e′

β

We now define what it means for α and β to respect e and e′. By a slight abuse of notation,
let the bi-invertible maps e and e′ be given by (e, g, h, s, r) and (e′, g′, h′, s′, r′).

Definition 2.5. We define the type prBiInv(e, e′, α, β) as the iterated Σ-type with the
following fields:

– (preservation of e) pe : e
′
◦ α = β ◦ e;

– (preservation of g) pg : g
′
◦ β = α ◦ g;

– (preservation of h) ph : h′ ◦ β = α ◦ h;
– (preservation of s) ps : (a : A) → s′(α(a)) = apg′(pea) pg(e(a)) apα(s(a));
– (preservation of r) pr : (b : B) → r′(β(b)) = ape′(phb) pe(h(b)) apβ(r(a)).

The next proposition follows from the initiality of Zb, although it is a bit involved to
prove formally using the constructors and the induction principle.

Proposition 2.6 (uniqueness). Suppose given a type T with an inhabitant t : T , a bi-

invertible map s : T ≃b T , and a map f : Zb → T . If f(0) = t and prBiInv(succ, s, f, f),
then f = recZb

(T, t, s).

Proof. We write g for recZb
(T, t, s). By function extensionality, it is enough to construct

a term r : Πx:Zb
f(x) = g(x). We do this using the induction principle. The case for

0 follows directly from the assumption f(0) = t, and r(succ(x)) = aps(g(x)) and the
corresponding equalities for pred1 and pred2 follow directly from the assumption that f
respect the bi-invertible maps succ and s.

It remains to check the cases of sec and ret. Since these are symmetric, we only describe
the case of sec. In this case, we have to provide a filler for the following square of equalities:

f(succ(pred1(x))) g(succ(pred1(x)))

f(x) g(x).

apf (sec(x))

r(succ(pred
1
(x)))

apg(sec(x))

r(x)

This filler can be obtained by filling the cube in figure 1, as follows. All the sides apart
from the square in question can be filled using the fact that f preserves the bi-invertible
maps, and simple path algebra, so we can conclude the proof using the Kan filling property
of cubes: any open box can be filled. �

Given a type A : U , let idA : A→ A be the identity function. We have idbA : isBiInv(idA),
so we can define a map toBiInv : A = B → A ≃b B by path induction, sending refl : A = A

6



to idbA. By [Uni13, Corollary 4.3.3] and the univalence axiom, the map toBiInv is an
equivalence. Let toEq : A ≃b B → A = B be its inverse.

From this we can derive the principle of (based) equivalence induction, which we now
state.

Lemma 2.7 (BiInduction). Fix a type A : U and a type family P : (B : U) → A ≃b

B → U . If we have P0 : P (A, idA, idbA), then we have (B : U) → (e : A ≃b B) → P (B, e).

Proof. This is proven by path induction, after translating bi-invertible maps to equalities,
using toEq and toBiInv. �

Using equivalence induction, and singleton elimination, one can finally prove that a
map between types together with bi-invertible maps that respects the maps, automatically
respects the bi-invertible structure.

Lemma 2.8. The type prBiInv(e, e′, α, β) is equivalent to the type e′ ◦ α = β ◦ e.

Proof. We use equivalence induction (Lemma 2.7) for e and e′ and then observe that the
type

prBiInv((id, idb), (id, idb), α, β)

is equivalent to the type of equalities α = β. �

Proof of Theorem 2.4. The theorem is a corollary of Proposition 2.6 and Lemma 2.8. �

One should notice that Lemma 2.8 can be proven directly, avoiding the usage of the
univalence axiom (which was used to prove that toBiInv is an equivalence). The reason
why we don’t do this, is because the path algebra involved in proving Lemma 2.8 directly
is non-trivial.

3. Z is a set

In this section we relate Zb with the usual definition of the integers as signed natural
numbers, which we call Zw. We show that Zb ≃ Zw, and since we already know that Zw

is a set, we deduce that Zb is a set too.

Definition 3.1. Let Zw be the inductive type with the following constructors:

– 0 : Zw

– strpos : N → Zw

– strneg : N → Zw

Theorem 3.2 (ZisZ). We have an equivalence Zb ≃ Zw.

Proof. On the one hand, one can define succw : Zw → Zw by induction, by mapping:

– 0 7→ strpos(0);
– strpos(n) 7→ strpos(succ(n));
– strneg(0) 7→ 0;
– strneg(succ(n)) 7→ strneg(n).

Similarly one defines predw. The fact that predw provides a left and right inverse for succw
is straightforward. So, by Proposition 2.1 we get a map nf : Zb → Zw. On the other hand,
it is easy to construct a map i : Zw → Zb by induction.

Induction on Zw shows that nf ◦ i = idZw . The hard part is to show that i ◦ nf = idZb
.

This is where Theorem 2.4 comes in handy. Theorem 2.4 implies that it is enough to check
7



that (i ◦ nf)(0) = 0 and that succ ◦ (i ◦ nf) = (i ◦ nf) ◦ succ, and this follows directly by
construction. �

4. Representing Z using a universe

In this section we give another definition of the integers, denoted by ZU , which allows
one to easily prove that they are the initial type together with an inhabitant and an
equality from the type to itself.

To make sense of initiality, we first define the type of Z-algebras and of Z-algebra
morphisms.

Definition 4.1. A Z-algebra is a type T : U together with an inhabitant t : T , and an
equality e : T = T . We denote such a Z-algebra as (T, t, e), or T if the rest of the structure
can be inferred from the context.

Definition 4.2. A morphism of Z-algebras from (T, t, e) to (T ′, t′, e′) is given by a map
f : T → T ′, together with an equality f(t) = t′, and a proof that e∗(f) = e′

∗
(f). We

denote the type of morphisms of Z-algebras between T and T ′ by T →Z T
′.

We are interested in initial Z-algebras.

Definition 4.3. A initial Z-algebra is a Z-algebra (T, t, e) such that for any other Z-
algebra (T ′, t′, e′) the type T →Z T

′ is contractible.

See Definition 1.4 for the definition of the initial Z-algebra using a mini universe2. Then
define an interpretation function El : U → U , as the higher inductive family with only one
constructor 0 : El(z). Define the type ZU :≡ El(z). The type ZU has the structure of a
Z-algebra, since we have 0 : ZU and s :≡ apEl(q) : ZU = ZU . The following result follows
by a routine application of the induction principle of ZU .

Theorem 4.4 (ZisInitial). The Z-algebra ZU is initial. �

In particular, we have.

Proposition 4.5. Given a type T with an inhabitant t : T and an equality e : T = T , we
get a morphism of Z-algebras ZU → T . �

Again, comparing maps out of ZU is easy, thanks to the following theorem.

Theorem 4.6. Given a type T , an inhabitant t : T , an equality e : T = T , and a map

f : ZU → T , if f(0) = t and e∗ ◦ f = f ◦ s∗ then f = recZU
(T, t, e). �

Analogously to the case of Zb, this is proven by combining the initiality of ZU with the
fact that to preserve an equality in the universe e : T = T , it is enough to commute with
its corresponding coercion function e∗ : T → T .

Following the argument given in Section 3, one deduces the following.

Theorem 4.7. There is an equivalence ZU ≃ Zw. �

We omit the proof since it is basically the same as the construction presented in [RLS13]
when proving that the integers are the loop space of the circle.

Indeed, the mini universe U is nothing but the higher inductive type presentation of
the circle S1 of [Uni13, Section 6.1], so that (z = z) ≡ ΩS1. Moreover, the type family El

is equivalent to the path space fibration of the circle, in the following sense.

2This is inspired by Zongpu Xie’s proposal how to represent HIITs in Agda [Kap19].

8



Theorem 4.8 (ElisPath). For every u : U we have ed(u) : El(u) ≃ (z = u).

Proof. We construct a map ed(u) : El(u) → (z = u) using induction on U and mapping
0 : El(z) to reflz, To construct a map going the other way, we use path induction and map
reflz to 0. It is then straightforward to see that these maps give an equivalence as in the
statement. �

As a corollary, we obtain the well-known equivalence between the loop space of the
circle and the integers.

Corollary 4.9. We have an equivalence ΩS1
≃ Zw. �

This suggests that alternatively one could view the representation of the integers as a
universe as an inductive-inductive presentation of the circle equipped with a family that
has a point in the fiber over the base point.

5. Formalization in cubical Agda

We formally checked the results of this paper [AS19] using cubical Agda [AMV19].
There are two differences between the informal presentation in the paper and the for-
malisation. The first one is that the presentation in the paper is done using book-HoTT
[Uni13], whereas the formalisation is done using a cubical type theory. In this case, this
difference is not important, since it is easy to translate the formalized arguments to book-
HoTT.

The real difference is in the definition of higher inductive types. In the paper we define
higher inductive types as initial algebras for a certain signature (Section 1.3). In the
formalisation, we use higher inductive types as implemented in cubical Agda, which are
based on [CHM18]. Although it is natural to assume that the Agda higher inductive type
should be initial in the sense of Section 1.3, proving this fact is actually one of the main
difficulties in the formalisation (Proposition 2.6).

In proving the results of Section 2, we developed the theory of bi-invertible maps in
cubical Agda, which wasn’t available. We prove that the type of bi-invertible maps between
A and B is equivalent to the type of equivalences between A and B, and the principle of
bi-invertible induction.

6. Open questions

Preservation of properties. The key result in the above discussion is Lemma 2.8, which
can be reformulated as follows. Let T, T ′ : U , s : T → T , s′ : T ′

→ T ′, φ : isBiInv(s), and
φ′ : isBiInv(s′). We can define the following two types of morphisms between T and T ′:

Mapend(T, T
′) :≡ (f : T → T ′)× (s′ ◦ f = f ◦ s)

MapbiInv(T, T
′) :≡ (f : T → T ′)× prBiInv(s, s′, f, f).

Informally, Mapend(T, T
′) is the type of maps that respect the endomorphism, andMapbiInv(T, T

′)
is the type of maps that respect the endomorphism and the proof that the endomorphism
is a bi-invertible map.

We have a forgetful map MapbiInv(T, T
′) → Mapend(T, T

′), and what Lemma 2.8 says is
that this map is an equivalence.

There is something special about the type family isBiInv : (A → B) → U , and that is
that it is valued in propositions. One might wonder if Lemma 2.8 is a general principle, in

9



the following sense. Say that we have a signature S for a type of algebras, and we extend
it to a signature S′, such that the fields we added take values in propositions. In the
above example S corresponds to (T : U)(f : T → T ) and S′ corresponds to the extension
(T : U)(f : T → T )(φ : isBiInv(s)). As usual, given S′-algebras T, T ′, we have a forgetful
map MapS′(T, T ′) → MapS(T, T

′). Is this map an equivalence in general?
The following example, suggested by Paolo Capriotti, shows that this is not necessarily

the case.

Example 6.1. Consider S, the signature (T : U)(o : T → T → T ), and S′, the extension

(T : U)(o : T → T → T )(tr : isSet(T ))

(e : T ) (u : (t : T ) → o(t, e) = t× o(e, t) = t) .

The S-algebras are the types with a binary operation, and the S′-algebras are the sets
with a binary operation with a distinguished element that is a left and right unit.

The extension S′ is propositional. This is because being a set is a proposition ([Uni13,
Theorem 7.1.10]), so tr inhabits a proposition, two left and right units must necessarily
coincide, so e inhabits a proposition (assuming u), and the identity types of a set are
propositions and these are closed under pi-types ([Uni13, Theorem 7.1.9]), so u inhabits
a proposition (assuming tr).

Let us see that for S′-algebras T, T ′ the forgetful map MapS′(T, T ′) → MapS(T, T
′)

is not an equivalence in general. Let T be (N,+, φ, 0, ψ), where φ is a proof that the
natural numbers form a set, and ψ is a proof that 0 is a left and right unit for +. Let T ′

be (bool,∨, φ′,⊥, ψ′), where φ′ is a proof that the booleans form a set, and φ is a proof
that ⊥ is a left and right unit for ∨. Then we have λn.⊤ : N → bool. This map clearly
respects the operations, so we get an inhabitant of MapS(T, T

′). But this morphism does
not respect the units, so it cannot come from a morphism in MapS′(T, T ′).

This discussion leaves open an interesting question.

Question 6.2. Given a signature S and a propositional extension S′, are there useful
necessary and sufficient conditions for the forgetful map MapS′(T, T ′) → MapS(T, T

′) to
be an equivalence for every pair of S′-algebras T and T ′?

Initiality of HIITs. Our original goal was to complete the conjectured result from
[AP18] and formally verify that Zh is a set. Using the strategy from this paper this
is fairly straightforward: we can show that the natural notion of morphism of Zh-algebras
satisfies a principle analogous to Lemma 2.8, and hence that Zh is a set. When attempting
to formalize this construction we hit an unexpected problem: it turns out that it is rather
difficult to verify that the higher inductive type defining Zh is initial in its corresponding
wild category of algebras. Specifically, the proof seems to require the construction of a filler
for a 4-dimensional cube which is rather laborious. In [KKA19] it is shown that for QIITs
(i.e., set-truncated HIITs) elimination and initiality are equivalent, but the extension to
higher dimensional HIITs seems non-trivial. In particular it may require developing the
higher order categorical structure of the category of algebras.
Acknowledgements. The first author would like to thank Paolo Capriotti, Nicolai Kraus
and Gun Pinyo for many interesting discussions on the subject of this paper. Both authors
would like to thank Christian Sattler for comments and useful discussions. The work by
and with Ambrus Kaposi and András Kovács plays an important role in particular in
connection with the open questions triggered by this paper.

10



References

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. SIGPLAN Not., 51(1):18–29, January 2016.

[AMV19] Andreas Abel, Anders Mörtberg, and Andrea Vezzosi. Cubical agda: A dependently typed
programming language with univalence and higher inductive types. To appear in ICFP, 2019.

[AP18] Thorsten Altenkirch and Gun Pinyo. Integers as a higher inductive type. TYPES, 2018.
[AS19] Thorsten Altenkirch and Luis Scoccola. Implementation of the integers as a higher inductive

type. https://github.com/LuisScoccola/integers-as-HITs, 2019.
[BGvdW17] Henning Basold, Herman Geuvers, and Niels van der Weide. Higher inductive types in pro-

gramming. J. UCS, 23:63–88, 2017.
[Cav18] Evan Cavallo. biinv-int. https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red,

2018.
[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:

A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st Inter-
national Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical
type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 255–264, New York, NY, USA, 2018. ACM.

[KA18] Nicolai Kraus and Thorsten Altenkirch. Free higher groups in homotopy type theory. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 599–608, 2018.

[Kap19] Ambrus Kaposi. Separate definition of constructors? Agda mailing ist, May 2019.
[KK19] Ambrus Kaposi and András Kovács. Signatures and induction principles for higher inductive-

inductive types. CoRR, abs/1902.00297, 2019.
[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-

inductive types. PACMPL, 3(POPL):2:1–2:24, 2019.
[Kv19] Nicolai Kraus and Jacob von Raumer. Path spaces of higher inductive types in homotopy type

theory. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–13, 2019.

[LB15] D. R. Licata and G. Brunerie. A cubical approach to synthetic homotopy theory. In 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 92–103, 2015.

[Li15] Nuo Li. Quotient types in type theory. PhD thesis, University of Nottingham, 2015.
[red19] Redtt. https://github.com/RedPRL/redtt , 2019.
[RLS13] Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the circle in

homotopy type theory. pages 223–232, 06 2013.
[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. Institute for Advanced Study, Princeton, NJ, 2013.

11

https://github.com/LuisScoccola/integers-as-HITs
https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
https://github.com/RedPRL/redtt

	1. Introduction
	1.1. Contributions
	1.2. Related work
	1.3. Background

	2. Representing Z using bi-invertible maps
	3. Z is a set
	4. Representing Z using a universe
	5. Formalization in cubical Agda
	6. Open questions
	Preservation of properties
	Initiality of HIITs

	References

