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Abstract. We show that a history-based variant of alternating bisim-
ulation with imperfect information allows it to be related to a variant
of Alternating-time Temporal Logic (ATL) with imperfect information
by a full Hennessy-Milner theorem. The variant of ATL we consider has
a common knowledge semantics, which requires that the uniform strat-
egy available for a coalition to accomplish some goal must be common
knowledge inside the coalition, while other semantic variants of ATL with
imperfect information do not accomodate a Hennessy-Milner theorem.
We also show that the existence of a history-based alternating bisimu-
lation between two finite Concurrent Game Structures with imperfect
information (iCGS) is undecidable.

1 Introduction

Alternating-time Temporal Logic (ATL) [3] is a powerful logic for specifying
strategic abilities of individual agents and coalitions in multi-agent game struc-
tures. Crucially, ATL has been extended to games of imperfect information [17]
with various flavors related to the agents’ knowledge of the existence of strate-
gies for accomplishing the coalition’s goals [2, 8, 9]. In this contribution, we focus
on the common knowledge (ck) interpretation of ATL under imperfect informa-
tion, which was first put forward in [17], along with its objective and subjective
interpretations. However, differently from the latter, to the best of our knowl-
edge, the ck interpretation has nowhere else been considered in the literature.
Nonetheless, the ck interpretation allows us to prove a Hennessy-Milner theorem
for ATL under imperfect information for the memoryful notion of bisimulation
we introduce in this paper. This result is in marked contrast with the situation
for the other interpretations, which do not enjoy the Hennessy-Milner property
[16].

The literature on bisimulations for modal logics is extensive, an in-depth
survey of model equivalences for various temporal logics appears in [15]. The
landscape for logics of strategic abilities, including ATL, is comparatively more
sparse. A proof of the Hennessy-Milner property for ATL∗ with perfect infor-
mation was already given in the paper introducing alternating bisimulations
[4]. Since then, there have been numerous attempts to extend bisimulations to
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more expressive languages (including Strategy Logic recently [7]), as well as to
contexts of imperfect information [1, 10, 5]. In [10, 18] non-local model equiv-
alences for ATL with imperfect information have been put forward. However,
these works do not deal with the imperfect information/perfect recall setting
here considered, nor do they provide a local account of bisimulations. Further,
in [5] the authors consider a memoryless notion of bisimulation for ATL, un-
der imperfect information. Unfortunately, their definition does not allow for the
Hennessy-Milner property. We also note the results from [11] which show that
ATL with imperfect information is incompatible in expressive power when com-
pared with the modal-epistemic µ-calculus, contrary to what is known for the
perfect information case. The present contribution extends the notion of alter-
nating bisimulation to the setting of imperfect information and perfect recall so
that it satisfies the Hennessy-Milner property: two game structures are bisimilar
iff they satisfy the same formulas in ATL.

The classic proof for Hennessy-Milner type properties typically uses bisim-
ulation games played between Spoiler and Duplicator. These bisimulation
games are turn-based, perfect information, safety games (in regards of Duplica-

tor’s objective) played on a tree whose nodes are labeled with pairs of states (or
histories, in case of a memoryful semantics) of the two game structures checked
for bisimulation. Hence, such games are determined, and determinacy plays a
crucial role since, when there is no bisimulation between the two structures, the
bisimulation game cannot be won by Duplicator, and hence Spoiler has a
winning strategy, which is then used for exhibiting a formula that is satisfied in
one structure but not in the other.

The extension of this proof technique to ATL with imperfect information
has to cope with the fact that any notion of bisimulation has to account for the
fact that coalitions have to choose action profiles in indistinguishable states in a
“uniform” way: agents that do not distinguish between two states must choose
the same actions in both. Uniformity entails a slightly more involved notion of
bisimulation which utilizes strategy simulators [5]. Then, any bisimulation game
has to encode these strategy simulators, in the sense that Duplicator is given
the choice of a uniform strategy in some common-knowledge neighbourhood in
one of the game structures and the Spoiler has to reply with a uniform strategy
in the related common-knowledge neighbourhood of the other game structure.

The problem raised by this generalization is that positions in a bisimulation
game are normally labeled with histories, not common-knowledge neighbour-
hoods, as bisimulations relate the former, not the latter. So, we need both a
Spoiler and a Duplicator who have imperfect information at each position
of the bisimulation game. On the other hand, as it is the case with bisimula-
tions for the perfect information case, for each choice of strategies in the two
structures, the outcomes of one strategy have to be related with the outcomes
of the other strategy. But this requires both Spoiler and Duplicator to be
perfectly-informed !

The solution we propose is a 4-player bisimulation game played between
the Spoiler coalition {I-Spoil, P-Spoil} and the Duplicator coalition {I-



Dupl, P-Dupl}, where both I-players have imperfect information, while both
P-players have perfect information. We show that such a game can be won by
the Duplicator coalition if and only if there exists a bisimulation between the
two game structures.

Further, we provide a Gale-Stewart type determinacy theorem [14] for the
bisimulation game, showing that exactly one of the two coalitions has a winning
joint strategy. The key point is that, when Duplicator does not have a winning
strategy, the strategic choices for I-Spoil can be defined in a uniform way that
is only based on I-Spoil’s observations. To the best of our knowledge, this is
the first example of a class of multi-player, imperfect information, zero-sum
(reachability) games played over infinite trees that are determined. Note that,
for technical reasons, our Hennessy-Milner theorem only holds for ATL with the
“yesterday” modality Y.

Moreover, we analyse the problem of checking the existence of a bisimulation
between two given game structures. We show that this problem is undecidable
in general by building on the undecidability of the model-checking problem for
ATL with imperfect information and perfect recall. More specifically, given a
Turing machine M , we build a game structure in which a two-agent coalition
has a strategy for avoiding an error state if and only if M halts when starting
with an empty tape. We then build a second, unrelated, simple game structure
in which the same coalition always has an avoiding strategy. Finally, we prove
that the two structures are bisimilar if and only if M halts.

Scheme of the paper. In Sec. 2 we recall the syntax and semantics of
ATL according to various flavors of imperfect information (and perfect recall).
Sec. 3 extends the bisimulation in [5] to the case of perfect recall, and shows that
bisimilar game structures satisfy the same formulas in ATL. Then, in Sec. 4 we
introduce our variant of bisimulation games, for which we prove that the Dupli-

cator coalition has a winning strategy if and only if there exists a bisimulation
between the two given game structures. In Sec. 5 we prove the Gale-Stewart
determinacy theorem for our bisimulation games, which allows us to prove the
Hennessy-Milner theorem. Finally, in Sec. 6 we show that checking the existence
of a bisimulation between two given game structures is undecidable in general.

2 ATL with Imperfect Information

In this section we present the syntax and semantics of the Alternating-time
Temporal Logic ATL∗ [3]. In the rest of the paper we assume a set AP of atomic
propositions (or atoms) and a set Ag of agents.

Definition 1 (ATL∗). History formulas φ and path formulas ψ in ATL∗ are
defined by the following BNF, where p ∈ AP and A ⊆ Ag:

φ ∶∶= p ∣ ¬φ ∣ φ→ φ ∣ ⟨⟨A⟩⟩ψ

ψ ∶∶= φ ∣ ¬ψ ∣ ψ → ψ ∣Xψ ∣Yψ ∣ ψUψ

The formulas in ATL∗ are all and only the history formulas.



The ATL∗ operator ⟨⟨A⟩⟩ intuitively means that ‘the agents in coalition A

have a (collective) strategy to achieve . . . ’, where the goals are LTL formulas
built by using operators ‘next’ X and ‘until’ U . We define A-formulas as the
formulas in ATL∗ in which A is the only coalition appearing in ATL∗ modalities.

Notice that we talk about history formulas, rather than state formulas as
customary, as such formulas will be interpreted on histories rather than states
as per perfect recall.

We provide ATL∗ with both the objective and subjective variants [17] of the
history-based semantics with imperfect information and perfect recall, as well as
a novel interpretation based on common knowledge [13].

Definition 2 (iCGS). Given sets AP of atoms and Ag of agents, a concurrent
game structure with imperfect information, or iCGS, is a tuple G = ⟨Ag,S, s0,Act,
{∼i}i∈Ag, d,→, π⟩ where

– S is a non-empty set of states and s0 ∈ S is the initial state of G.
– Act is a finite non-empty set of actions. A tuple a⃗ = (ai)i∈Ag ∈ Act

Ag is called
a joint action.

– For every agent i ∈ Ag, ∼i is an equivalence relation on S, called the indis-
tinguishability relation for agent i.

– d ∶ Ag × S → (2Act ∖ {∅}) is the protocol function, satisfying the property
that, for all states s, s′ ∈ S and any agent i, s ∼i s′ implies d(i, s) = d(i, s′).
That is, the same (non-empty) set of actions is available to agent i in indis-
tinguishable states.

– →⊆ S × ActAg × S is the transition relation such that, for every state s ∈ S
and joint action a⃗ ∈ ActAg, (s, a⃗, s′) ∈→ for some state s′ ∈ S iff ai ∈ d(i, s)

for every agent i ∈ Ag. We normally write s
a⃗
Ð→ r for (s, a⃗, r) ∈→.

– π ∶ S → 2AP is the state-labeling function.

Runs. Given an iCGS G, a run is a finite or infinite sequence ρ = s0a⃗0s1 . . . in

((S ⋅ActAg)∗ ⋅ S) ∪ (S ⋅ActAg)ω such that for every j ≥ 0, sj
a⃗j

Ð→ sj+1. Given a
run ρ = s0a⃗0s1 . . . and j ≥ 0, ρ[j] denotes the j + 1-th state sj in the sequence
and ρ[j, k] denotes the sequence of states from the j + 1-th state to the k + 1-th
state; while ρ≥j (or ρ[≥ j]) denotes run sja⃗jsj+1 . . . starting from ρ[j], and ρ≤j
(or ρ[≤ j]) denotes run s0a⃗0s1 . . . a⃗j−1sj . Further, with acti(h,m) we denote the
m-th action of agent i in history h.

We call finite runs histories, denote them as h ∈ H , their length as ∣h∣ ∈ N,
and their last element h∣h∣−1 as last(h); whereas infinite runs are called paths
and denoted as λ,λ′ ∈ P . We denote the set of all histories (resp. paths) in an
iCGS G as Hist(G) (resp. Path(G)). Notice that states are instances of histories
of length 1. Accordingly, several notions defined below for histories can also by
applied to states. Finally, we write h ⪯ ρ to say that h is the prefix of ρ, that is
h = ρ[≤ ∣h∣].

For a coalition A ⊆ Ag of agents, a joint A-action denotes a tuple a⃗A =
(ai)i∈A ∈ ActA of actions, one for each agent in A. For coalitions A ⊆ B ⊆ Ag of
agents, a joint A-action a⃗A is extended by a joint B-action b⃗B, denoted a⃗A ⊑ b⃗B,



if for every i ∈ A, ai = bi. Also, a joint A-action a⃗A is enabled at state s ∈ S if for
every agent i ∈ A, ai ∈ d(i, s).

Epistemic neighbourhoods. We extend the indistinguishability relations ∼i, for
i ∈ Ag, to histories in a synchronous, point-wise manner: h ∼i h′ iff ∣h∣ = ∣h′∣ and
for all m ≤ ∣h∣, hm ∼i h′m and acti(h,m) = acti(h′,m).

Given a coalition A ⊆ Ag of agents, the collective knowledge relation ∼EA is
defined as ⋃i∈A ∼i, while the common knowledge relation ∼CA is the transitive
closure (⋃i∈A ∼i)+ of ∼EA. Then, C

G
A(h) = {h′ ∈ H ∣ h′ ∼CA h} is the common

knowledge neighbourhood (CKN) of history h for coalition A in the iCGS G. We
will omit the superscript G whenever it is clear from the context.

Uniform strategies. We introduce a notion of strategy for the interpretation of
⟨⟨A⟩⟩ modalities.

Definition 3 (Strategy). A (uniform, memoryfull) strategy for an agent i ∈
Ag is a function σ ∶ H → Act that is compatible with d and ∼i, that is, for all
histories h,h′ ∈H, σ(h) ∈ d(i, last(h)) and h ∼i h′ implies σ(h) = σ(h′).

We denote by ΣR the set of all memoryfull uniform strategies.
A strategy for a coalition A of agents is a set σA = {σa ∣ a ∈ A} of strategies,

one for each agent in A. Given coalitions A ⊆ B ⊆ Ag, a strategy σA for coalition
A, a state s ∈ S, and a joint B-action b⃗B ∈ ActB that is enabled at s, we say that
b⃗B is compatible with σA (in s) whenever σA(s) ⊑ b⃗B. For states s, s′ ∈ S and

strategy σA, we write s
σA(s)
ÐÐÐ→ r if s

a⃗
Ð→ r for some joint action a⃗ ∈ ActAg that is

compatible with σA.
We define three notions of outcome of strategy σA at history h, corresponding

to the objective, subjective, and common knowledge interpretation of alternating-
time operators. Fix a history h and a strategy σA for coalition A.

1. The set of objective outcomes of σA at h is defined as outobj(h,σA) = {λ ∈
P ∣ λ≤∣h∣ = h and for all j ≥ ∣h∣, λ[j] σA(λ≤j)

ÐÐÐÐ→ λ[j + 1]}.
2. The set of subjective outcomes of σA at h is defined as outsubj(h,σA) =
⋃i∈A,h′∼ih

outobj(h′, σA).
3. The set of common knowledge (ck) outcomes of σA at h is defined as outck(h,
σA) =⋃h′∈CA(h)

outobj(h′, σA).
Intuitively, objective outcomes are paths beginning with the current his-

tory h and consistent with the current joint strategy σA; whereas subjective
(resp. common knowledge) outcomes are paths beginning with some history h′

indistinguishable from h according to collective (resp. common) knowledge (as
well as consistent with σA). Again, notions of outcomes from states can be ob-
tained from the definitions above, as states are a particular type of histories.

Definition 4. Given an iCGS G, a history formula φ, path formula ψ, and
m ∈ N, the subjective (resp. objective, common knowledge) satisfaction of φ
at history h and of ψ in path λ, denoted (G, h) ⊧x φ and (G, λ,m) ⊧x ψ for



x ∈ {subj, obj, ck}, is defined recursively as follows (clauses for Boolean operators
are immediate and thus omitted):

(G, h) ⊧x p iff p ∈ π(last(h))
(G, h) ⊧x ⟨⟨A⟩⟩ψ iff for some σA ∈ ΣR,

for all λ ∈ outx(h,σA), (G, λ, ∣h∣) ⊧x ψ

(G, λ,m) ⊧x φ iff (G, λ≤m) ⊧x φ

(G, λ,m) ⊧x Xψ iff (G, λ,m + 1) ⊧x ψ

(G, λ,m) ⊧x Yψ iff m ≥ 1 and (G, λ,m − 1) ⊧x ψ

(G, λ,m) ⊧x ψUψ
′

iff for some j ≥m, (G, λ, j) ⊧x ψ
′
, and

for all k,m ≤ k < j implies (G, λ, k) ⊧x ψ

Remark 1. The individual and common knowledge operators Ki and CA of epis-
temic logic [13] can be added to the syntax of ATL∗ with the following (memo-
ryful) interpretation:

(G, h) ⊧x Kiφ iff for all h′ ∼i h, (G, h′) ⊧x φ
(G, h) ⊧x CAφ iff for all h′ ∈ CA(h), (G, h′) ⊧x φ

Withnin the subjective or the common knowledge interpretation of ATL∗, the
individual knowledge operator becomes a derived operator, as we have (G, h) ⊧x
Kiφ iff (G, h) ⊧x ⟨⟨i⟩⟩φUφ for both x ∈ {subj, ck}. It is known that there exists
no such definition for the knowledge operators in ATL∗ within the objective
interpretation. Furthermore, and only for the case of the common knowledge
interpretation, we may similarly derive the common knowledge operator as well:
(G, h) ⊧ck CAφ iff (G, h) ⊧ck ⟨⟨A⟩⟩φUφ.
Example 1. We describe a coordination scenario comprising of two agents, 1 and
2, who have to agree on a meeting. But 1 does not know where she is, in Paris
or London, and therefore which is the time zone, while 2 does not know if it is
winter time or summer time. Agent 1 can choose either go to the meeting (g)
or wait one hour (w) whereas 2 can choose either to go at 3pm (3) or at 4pm
(4), local time. Now suppose it is 3pm GMT. In London, in the winter (s2) 1
and 2 coordinate if 1 goes to the meeting and 2 goes at 3pm local time. They
also meet if 1 waits one hour and 2 goes at 4pm. All other combined actions are
unsuccessful. Analogously for Paris in the winter (s1), and London in the summer
(s3). The iCGS G depicted in Fig. 1 shows the described scenario. Since 1 and 2
have partial observability, 1 (resp. 2) cannot distinguish between states s2 and
s1 (resp. s3). After the initial choice, 1 and 2 stay indefinitely in either s4 or s5.
Finally, we use two atoms, to denote success (s) and failure (f), respectively.

As an example of specification in ATL∗, consider formula ϕ = ⟨⟨{1,2}⟩⟩Xs.
This formula can be read as: 1 and 2 have a joint strategy to meet. Note that ϕ is
true in both s1 and s3 when considering the subjective interpretation. However,
is the truth of ϕ in s1 and s3 justified from point of view of the rational be-
haviour of 1 and 2? Specifically, since ϕ is true in s1 according to the subjective
interpretation, both 1 and 2 know that they have a successful strategy, which
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1 2

Fig. 1. The meeting scenario in Example 1.

consists in playing action g for 1 and action 4 for 2. But for this strategy to
be successful (i.e., satisfying Xs for all outcomes) it assumes that 2 is playing
action 3 in s2: is such an assumption rationally justified? Notice that in s2, 2
considers state s3 epistemically possible, and in s3 the joint action (g,3) leads to
failure. Hence, it does not appear to be rational for 2 to play 3 in s2. Ever more
so that, by playing 4 in s2 and s3, 2 can coordinate with 1 to achieve success.
This example shows a scenario where, even though both agents know that their
strategies are successful in principle, they do not necessarily coordinate, as they
do not know that the other agent knows her strategy to be successful. Indeed, we
have that in both s1 and s2 formula ϕ is false according to the common knowl-
edge interpretation. So, it is not the case that they have common knowledge of
their strategies being successful.

3 Alternating Bisimulations

In this section we introduce a notion of bisimulation suitable for concurrent game
structures with imperfect information. In particular, we show that it preserves
the satisfaction of formulas in ATL∗, when interpreted under imperfect informa-
tion and perfect recall. Firstly, we present several auxiliary notions. Hereafter
G = ⟨Ag,S, s0,Act,{∼i}i∈Ag, d,→, π⟩ and G′ = ⟨Ag,S′, s′0,Act′,{∼′i}i∈Ag, d

′,→′, π′⟩
are two iCGS defined on the same set Ag of agents, with histories h ∈ Hist(G)
and h′ ∈Hist(G′).

Partial strategies. A partial (uniform, memoryful) strategy for agent i ∈ Ag is a
partial function σ ∶ H ⇀ Act such that for each h,h′ ∈ H , σ(h) ∈ d(i, last(h)),
and h ∼i h′ implies σ(h) = σ(h′). We denote the domain of partial strategy σ
as dom(σ). Given a coalition A ⊆ Ag, a partial strategy for A is a tuple (σi)i∈A
of partial strategies, one for each agent i ∈ A. The set of partial strategies for A
is denoted as PStrA. Given a set Q ⊆ H of histories and coalition A ⊆ Ag, we
denote by PStrA(Q) the set of partial strategies whose domain is Q:

PStrA(Q) = {(σi)i∈A ∈ PStrA ∣ dom(σi) = Q for all i ∈ A}



Additionally, given a (total or partial) strategy σA and a history h ∈ dom(σA),
define the set of successors of h by σ as

succ(h,σA) = {hαs ∣ α∈ActAg with σA(h) ⊑ α and h
α
Ð→ s}

Further, we set succ(σA) = ⋃h∈dom(σA) succ(h,σA).
Definition 5 (Strategy simulators). Given a coalition A ⊆ Ag, an A-strategy
simulator (or simply strategy simulator, when A is understood from the context)
is a family ST = (STCA(h),CA(h′))h∈Hist(G),h′∈Hist(G′)

of mappings STCA(h),CA(h′) ∶

PStrA(CA(h)) → PStrA(CA(h′)) such that for all histories h, k ∈ Hist(G) and
h′, k′ ∈Hist(G′),

if CA(h) = CA(k) and C′A(h′) = C′A(k′)
then STCA(h),C′A(h

′) = STCA(k),C′A(k
′) (1)

Hereafter, we simplify the notation by writing ST (σ) instead of the cumber-
some STCA(h),CA(h′)(σ), whenever h and h′ are clear from the context and
σ ∈ PStr(CA(h)).

We can now introduce the notion of (bi)simulation for iCGS.

Definition 6 (Memoryful Simulation). Let A ⊆ Ag be a coalition of agents.
A relation ⇛A⊆Hist(G)×Hist(G′) is a simulation for A iff there exists a strategy
simulator ST such that for any two histories h ∈Hist(G), h′ ∈ Hist(G′), h⇛A h′

implies the following:

1. π(last(h)) = π′(last(h′));
2. For every i ∈ A and k′ ∈ Hist(G′), if h′ ∼′i k′ then for some k ∈ Hist(G),

h ∼i k and k⇛A k′.
3. For every pair of histories k ∈ CA(h) and k′ ∈ C′A(h′) with k⇛A k

′, for every
partial strategy σA∈PStrA(CA(h)) and every history l′ ∈ succ(k′, ST (σA)),
there exist a history l ∈ succ(k,σA) such that l⇛A l

′.

A relation ⇚⇛A is a bisimulation iff both ⇚⇛A and its converse ⇚⇛
−1
A =

{(h′, h) ∣ h⇚⇛A h′} are simulations.

We also extend (bi)-simulation to paths λ ∈ Path(G), λ′ ∈ Path(G′), by
denoting λ⇛A λ′ iff for all j ≥ 0, λ≤j ⇛A λ′≤j .

The main result of this section, Theorem 1, shows that bisimilar iCGS satisfy
the same formulas in ATL∗ under imperfect information and perfect recall. To
prove this result, we need the following auxiliary lemma:

Lemma 1. If h ⇛A h′ then for every strategy σA, there exists a strategy σ′A
such that

(∗) for every path λ′ ∈ outx(h′, σ′A), for x ∈ {subj, obj, ck}, there exists a path
λ ∈ outx(h,σA) such that λ⇛A λ

′.

Proof. First, notice that point 3 in Def. 6 can be rewritten as:



3̂. For all histories k ∈ CA(h) and k′ ∈ C′A(h′) such that k ⇛A k′, for all
partial strategies σA ∈ PStrA(CA(h)), there exists a mapping ρσA,k,k′ ∶

succ(k′, ST (σA))→ succ(k,σA) such that for all histories l′∈succ(k′, ST (σA)),
ρσA,k,k′(l′)⇛A l′.

in which the mapping ρσA,k,k′ represents the skolemization, in the original point
3, of the existential quantifier over l ∈ succ(k,σA), seen as a unary function
on l′ ∈ succ(k′, ST (σA)) indexed by σA ∈ PStrA(CA(h)), k ∈ CA(h) and k′ ∈
C′A(h′).

We now define the sequence (domn(σA))n∈N, of sets of histories in G such that
k ∈ domn(σA) iff k can be reached in at most n steps from CA(h) by applying
actions compatible with strategy σA. Formally, dom0(σA) = CA(h) and

domn+1(σA) = domn(σA) ∪ ⋃
k∈domn(σA)

{CA(l) ∣ l ∈ succ(k,σA)}

Also, we denote by σn
A the partial strategy resulting from restricting σA to

domn(σA).
We then define inductively a sequence (σn

A)n∈N of partial strategies in G′ such
that dom(σn

A) ⊆ dom(σn+1
A ) for every n ∈ N, and, at the same time, a sequence

of mappings θnA ∶ dom(σn
A)→ domn(σA), satisfying the following property:

θn+1A (k′) ∈ succ(θnA(k′≤∣k′ ∣−1), σA) (2)

The sequences (σn
A)n∈N and (θnA)n∈N are defined as follows:

1. dom(σ0

A) = C
′
A(h

′);
dom(σn+1

A ) = dom(σn
A) ∪ ⋃{succ(k

′, σn
A) ∣ k

′ ∈ dom(σn
A)}.

2. For all k′ ∈ dom(σ0

A), σ0

A(k′) = ST (σ0

A)(k′).
3. For all k′ ∈ C′A(h′), we fix a unique k ∈ CA(h) such that k ⇛A k′ (which

exists by point 2 in Def. 6), and define θ0A(k′) = k.
4. For all k′ ∈ dom(σn+1

A ), let l′ = k′≤∣k′ ∣−1. Then, we set θn+1A (k′) = ρσA,θn
A
(l′),l′(k′).

5. For all k′ ∈ dom(σn+1
A ),

σn+1
A (k′) = (STCA(θn

A
(k′)),C′

A
(k′))(σA CA(θn

A
(k′))
)(k′).

We prove property (2) above, as well as the following: for every k′ ∈ dom(σn
A),

θnA(k′)⇛A k′ (∗) θnA(k′) ∈ domn(σA) (∗∗)
Property (∗) holds by definition, since ρσA,θn

A
(l′),l′(k′) ⇛A k′. Property (2)

and (∗∗) can be proved by induction on n = ∣k′∣ − ∣h′∣, by observing that (∗∗)
holds for n = 0; if (2) holds for n+1 then (∗∗) holds for n+1 too; and finally, (2)
is an immediate consequence of the definition of θnA, property (∗∗) Def. 6. Note
that property (∗∗) ensures that indeed θnA ∶ dom(σn

A)→ domn(σA) as desired.
The ”limit” of the sequence of strategies (σn

A)n∈N is still a partial strategy
and the domain of each σn

A might not be closed under the common knowledge
indistinguishability relation ∼CA. So, we extend first the domain of each σn

A to one
which is closed under ∼CA in G′, by constructing the sequence of partial strategies

(σ̂n
A)n∈N and the sequence of mappings θ̂nA ∶ dom(σ̂n

A) → domn(σA), as follows:



1. dom(σ̂0

A) = dom(σ0

A) = C′A(h′);
dom(σ̂n+1

A ) = dom(σn
A) ∪⋃{C′A(l′) ∣ ∃k′ ∈ dom(σ̂n

A)
with l ∈ succ(k′, σn

A) ∩C′A(k′)}.
2. For all k′ ∈ dom(σ̂0

A), σ̂0

A(k′) = ST (σ0

A)(k′).
3. For all k′ ∈ C′A(h′), θ̂0A(k′) = θ0A(k′).
4. For all k′ ∈ dom(σ̂n+1

A ), let l′ = k′≤∣k′ ∣−1. Then, we set θ̂n+1A (k′) = ρσA,θn
A
(l′),l′(k′).

5. For all k′ ∈ dom(σ̂n+1
A ),

σ̂n+1
A (k′) = (STCA(θn

A
(k′)),C′

A
(k′))(σA CA(θn

A
(k′))
)(k′).

We observe that properties (∗) and (∗∗) still hold for σ̂n
A and θ̂nA, though

property (2) does not in general. In this way we get that dom(σ̂n
A) ⊇ dom(σn

A)
and for every k′ ∈ dom(σn

A), n ∈ N, σ̂n
A(k′) = σn

A(k′). As a result, the “limit”

partial strategy σ̂A = ⋃
n∈N

σ̂n
A defined as σ̂A(k′) = σ̂∣k

′ ∣−∣h′∣
A (k′) is also uniform and

its domain dom(σ̂A) is closed under ∼CA. We then transform it into a (total) uni-
form strategy σ′A by imposing a fixed action a0 ∈ Act wherever σ̂n

A is undefined,
that is, σ′A(k′) = σ̂A(k′) for k′ ∈ dom(σ̂A) and σ′A(k′) = a0 otherwise.

Finally, to prove property (∗) for the common knowledge semantics, consider

a path λ′ ∈ outG
′

ck
(h′, σ′A) and the sequence (θnA(λ′≤∣h′ ∣+n))n∈N of histories in G.

By construction, θn+1A (λ′≤∣h′∣+n+1) ∈ succ(θnA(λ′≤∣h′∣+n), σA) and θnA(λ′≤∣h′∣+n) ⇛A

λ′≤∣h′ ∣+n, which means that this sequence of histories is in fact a path λ in G
which is compatible with σA and satisfies λ⇛A λ′, which ends the proof.

By using Lemma 1 we are finally able to prove the main preservation result
of this paper.

Theorem 1. Let h ∈ Hist(G) and h′ ∈Hist(G′) be histories such that h⇚⇛A h′,
and λ ∈ Path(G) and λ′ ∈ Path(G′) be paths such that λ⇚⇛A λ′. Then, for every
history A-formula φ, path A-formula ψ, m ∈ N, and x ∈ {subj, obj, ck},

(G, h) ⊧x φ iff (G′, h′) ⊧x φ
(G, λ,m) ⊧x ψ iff (G′, λ′,m) ⊧x ψ

Proof. The proof is by mutual induction on the structure of φ and ψ.
The case for propositional atoms is immediate as for x ∈ {subj, obj, ck},

(G, h)⊧xp iff p∈π(last(h)), iff p∈π′(last(h′)) by item 1 in Def. 6, iff (G′, h′) ⊧x p.
The inductive cases for propositional connectives are also immediate.

For ψ = φ, suppose that (G, λ,m) ⊧x ψ, that is, (G, λ≤m) ⊧x φ. By assump-
tion, λ≤m ⇚⇛A λ′≤m as well, and by induction hypothesis (G′, λ′≤m) ⊧x φ. Thus,
(G′, λ′,m) ⊧x ψ.

For ψ =Xψ′, suppose that (G, λ,m + 1) ⊧x ψ′. By the induction hypothesis,
(G′, λ′,m+1) ⊧x ψ′. Thus, (G′, λ′,m) ⊧x ψ. The inductive cases for ψ =Yψ′ and
ψ = ψ′Uψ′′ is similar.

Finally, for φ = ⟨⟨A⟩⟩ψ, (G, h) ⊧x φ iff for some strategy σA, for all λ ∈
outGx(h,σA), (G, λ, ∣h∣) ⊧x ψ. By Lemma. 1, there exists stategy σ′A s.t. for all



λ′ ∈ outG
′

x (h′, σ′A), there exists λ ∈ outGx(h,σA) s.t. λ⇚⇛A λ′. Since ∣h∣ = ∣h′∣, by
the induction hypothesis (G, λ, ∣h∣) ⊧x ψ iff (G′, λ′, ∣h′∣) ⊧x ψ. Hence, (G′, h′) ⊧x
φ.

4 Bisimulations Games

In this section we introduce bisimulation games played on two iCGS and we
prove that the existence of a winning strategy for the Duplicator coalition is
equivalent to the existence of a bisimulation between the iCGS.

Definition 7 (Bisimulation Game). Given iCGSs G and G′, defined on the
same sets Ag of agents and AP of atoms, a relation R ⊆ Hist(G) ×Hist(G′),
and a pair (h0, h′0) ∈Hist(G)×Hist(G′) of histories, we define the bisimulation
game B(G,G′,R,h0, h′0) as a turn-based game of imperfect information between
four players: P-Dupl,P-Spoil, called P-players, and I-Dupl, I-Spoil, called
I-players, organized in two coalitions: the Duplicator coalition {P-Dupl, I-
Dupl} and the Spoiler coaltion {P-Spoil, I-Spoil}, with both P-players hav-
ing perfect information while both I-players have the same imperfect informa-
tion.

At a higher-level, the bisimulation game is a turn-based game in which the I-
players are in charge of defining the strategy simulators, in the sense that I-Spoil
chooses a partial strategy for A over some common knowledge neighbourhood in
one of the game structures, and I-Dupl responds with an appropriate partial
strategy for A in the other game structure. Then the perfectly-informed players
come into play, by appropriately defining mappings between histories compatible
with the chosen strategies, which represent ”skolemizations” of conditions (2)
and (3) in Def. 6.

The necessity for I-Spoil and I-Dupl to only have imperfect information
comes from the fact that the same strategy profile has to be chosen by both players
at positions which belong to the same common knowledge neighborhood in both
game structures, since perfect information might be used by each player to trick
the other player by choosing a strategy which is not uniform for some agent in
coalition A.

More formally, the game proceeds as follows:

0. The positions of the game form a labeled tree, denoted T (B), with the root
position labeled (h0, h′0). The rest of positions and their labels are given below.

1. Each position (h,h′) where π(h) ≠ π′(h′) or (h,h′) /∈ R is winning for the
Spoiler coalition.

2. Each position labeled (h,h′) ∈ Hist(G) ×Hist(G′) belongs to I-Spoil, and
both I-players receive observation CA(h) ×C′A(h′). In each such position I-

Spoil may choose between two types of transitions:

(a) For each σA ∈ PStr(CA(h)), a transition to a successor (of the current
position in the tree) labeled (h,h′, σA, L).

(b) For each σ′A ∈PStr(C′A(h′)) a transition to a successor labeled (h,h′, σ′A,R).



3. Each position (h,h′, σA, L) belongs to I-Dupl and both I-players observe σA.
I-Dupl may choose, for each σ′A ∈ PStr(C′A(h′)), a transition to a successor
labeled (h,h′,
σA, σ

′
A, L).

4. Each position (h,h′, σ′A,R) belongs to I-Dupl and both I-players observe σ′A.
I-Dupl may choose, for each σA ∈ PStr(CA(h)), a transition to a successor
labeled (h,h′,
σA, σ

′
A,R).

5. Each position (h,h′, σA, σ′A, L) belongs to P-Spoil and P-Spoil may choose,
for each k′ ∈ C′A(h′), a transition to a successor labeled (h,h′, σA, σ′A, k′, L).
In all positions at points 5-12, both I-players observe CA(h) ×C′A(h′)

6. Each position (h,h′, σA, σ′A,R) belongs to P-Spoil, and P-Spoil may choose,
for each k ∈ CA(h), a transition to a successor labeled (h,h′, σA, σ′A, k,R).

7. Each position (h,h′, σA, σ′A, k′, L) belongs to P-Dupl, and P-Dupl may
choose, for each k ∈ CA(h), a transition to a successor labeled (h,h′, σA, σ′A,
k, k′, L).

8. Each position (h,h′, σA, σ′A, k,R) belongs to P-Dupl, and P-Dupl may
choose, for each k′ ∈ C′A(h′), a transition to a successor labeled (h,h′, σA, σ′A,
k, k′,R).

9. Each position (h,h′, σA, σ′A, k, k′, L) belongs to P-Spoil, This position is
winning for the Spoiler coalition if π(k) ≠ π′(k′) or (k, k′) /∈ R. In this
position P-Spoil may choose, for each l′ ∈ succ(k′, σ′A), a transition to a
successor labeled (h,h′, σA, σ′A, k, k′, l′, L).

10. Each position (h,h′, σA, σ′A, k, k′,R) belongs to P-Spoil, This position is
winning for the Spoiler coalition if π(k) ≠ π′(k′) or (k, k′) /∈ R. In this
position P-Spoil may choose, for each l ∈ succ(k,σA), a transition to a
successor labeled (h,h′, σA, σ′A, k, k′, l,R).

11. Each position (h,h′, σA, σ′A, k, k′, l′, L) belongs to P-Dupl, and P-Dupl may
choose, for each l ∈ succ(k,σA), a transition to a successor labeled (l, l′) from
where Rule 1 above applies.

12. Each position (h,h′, σA, σ′A, k, k′, l,R) belongs to P-Dupl, and P-Dupl may
choose, for each l′ ∈ succ(k′, σ′A), a transition to a successor labeled (l, l′)
from where Rule 1 above applies.

In the sequel, given a position p ∈ T (B), we denote Obs(p) the set of posi-
tions which give the same observation as p to any of the I-players. Also, the set
of strategies for the Duplicator (resp. Spoiler) coalition is denoted ΣDupl

(resp. ΣSpoil). Further, the set of positions which are compatible with a strategy
σ ∈ ΣDupl ∪ΣSpoil is denoted Comp(σ). Finally, for each position p we denote
lab(p) its label, as per Def. 7 of bisimulation game.

Next, we prove that bisimulation relations and bisimulation games are equiv-
alent characterisations of iCGS. To this end, given a history h0 ∈ Hist(G), we
define the pointed iCGS G(h0) in which the initial state is h0 and the transitions
are modified accordingly.

Theorem 2. For any A-bisimulation relation R between G(h0) and G′(h0) the
Duplicator coalition has a strategy to win the bisimulation game B(G,G′,R,h0,h′0).



Conversely, if the Duplicator coalition has a joint strategy σD to win the
game B(G,G′,R,h0, h′0), then there exists an A-bisimulation ⇚⇛A with ⇚⇛A⊆
R ∩ {(h,h′) ∣ (h,h′) ∈ out(ph0,h

′

0
, σD)}, where ph0,h

′

0
is the initial position of the

bisimulation game B(G,G′,R,h0, h′0).
Proof. We prove this theorem by double inclusion.
⇒ Suppose that ⇚⇛A is an A-bisimulation. For convenience, we utilize, as

in the proof of Lemma 1, the restated variant (3̂) of point (3) in Def. 6 of A-
simulations, which assumes a mapping ρσA,k,k′ ∶ succ(k′, ST (σA))→ succ(k,σA)
that ensures that for any l′ ∈ succ(k′, ST (σA)), we have ρσA,k,k′(l′) ⇚⇛A l′.
Since ⇚⇛A is also a reverse simulation, we symmetrically consider ρ′σ′

A
,k,k′ ∶

succ(k,ST ′(σ′A)) → succ(k′, σ′A) s.t. ρ′σ′
A
,k,k′(l′)⇚⇛A l for any l∈succ(k,ST ′(σ′A)).

Similarly, we restate point (2) in Def. 6 in functional terms:

2̂ For for each σA ∈ PStr(CA(h)) there exists a mapping θ←σA
∶ C′A(h′)→ CA(h)

such that for any i ∈ A, if k′
1
∼′i k

′
2
then θ←σA

(k′
1
) ∼i θ←σA

(k′
2
).

To see that this formulation is equivalent to item (2) in Def. 6, note first that this

point restates as the first-order formula ϕ = ∀k′ ∈ Hist(G′)∃k ∈ Hist(G)(h′ ∼′i
k′ → h ∼i k∧k⇛A k′). This formula is equivalent to ∀σA.(ϕ∧σA ∈ PStr(CA(h)))
by the Universal Generalization Rule since σA is not free in ϕ. Then θ←σA

∶

C′A(h′) → CA(h) corresponds to the skolemization of ∃k ∈ Hist(G) (seen as a
unary function indexed by σA).

By symmetry, for each σ′A ∈ PStr(C′A(h′)) we denote θ→σ′
A
∶ CA(h)→ C′A(h′)

the reverse mapping, which exists since ⇚⇛A is also a (reverse) simulation be-
tween G′ and G.

Then, we define the strategy profile (σID, σPD) for theDuplicator coalition
as follows: for any position p,

1. If lab(p) = (h,h′, σA, L) then σID(p) = ST (σA), and if lab(p) = (h,h′, σ′A,R)
then σID(p) = ST ′(σ′A).

2. If lab(p) = (h,h′, σA, σ′A, k′, L) then σPD(p) = θ←σA
(k′), and if lab(p)=(h,h′,

σA, σ
′
A, k,R) then σPD(p)=θ→σ′

A
(k).

3. If lab(p) = (h,h′, σA, σ′A, k, k′, l′, L) then σPD(p) = ρσA,k,k′(l′) and if lab(p) =
(h,h′, σA, σ′A, k, k′, l,R)
then σPD(p) = ρ′σ′

A
,k,k′(l).

Since ⇚⇛A is an A-bisimulation and ST , ST ′ are strategy simulators that
do not depend on h or h′, strategy σID is uniform, that is, for all positions p, p′

belonging to I-Dupl and this player receives the same sequence of observations
along the history that leads to p and the history that leads to p′, we must have
σID(p) = σID(p′). Then, all the runs that are compatible with the strategy
profile σD never reach a position (h,h′) where Spoiler wins:

a. For lab(p) = (h,h′, σA, σ′A, k′, L), lab(succ(p, σD)) = (h,h′, σA, σ′A, θ←σA
(k′), k′,

L). But θ←σA
(k′)⇛A k by point (2̂) for Def. 6, which implies that succ(p, σD)



is not winning for Spoiler. A similar argument holds for lab(p) = (h,h′, σA,
σ′A, k,R).

b. For lab(p)=(h,h′, σA, σ′A, k, k′, l′, L), lab(succ(p, σD))
=(h,h′, σA, σ′A, k, k′, ρσA,k,k′(l′), l′, L). But ρσA,k,k′(l′)
⇛A l′ by point (3̂) for Def. 6, which implies that succ(p,
σD) is not winning for Spoiler. A similar argument holds for lab(p) =
(h,h′, σA, σ′A, k, k′, l,R).

⇐ Suppose now that we have a winning joint strategy σD = (σID, σPD) for
the Duplicator coalition. Then, for each position p that is consistent with σD,
with label lab(p) = (h,h′) ∈Hist(G) ×Hist(G′), we set h⇚⇛σD

A h′.

The strategy simulators are then defined as follows: for each h ⇚⇛
σD

A h′

with (h,h′) = lab(p) for some position p in the bisimulation game, and each
σA ∈ PStr(CA(h)), note first that we have a I-Spoil transition to a position
p1σA

labeled (h,h′, σA, L) and then a I-Dupl transition to a position p2σA
labeled

(h,h′, σA, σID(p1σA
), L). Then, we set STCA(h),C′A(h

′)(σA) = σID(p1σA
). Note that

this definition is independent of the choice of p since, by construction, all po-
sitions p with lab(p) = lab(p) are indistinguishable for I-Dupl, as he observes
only CA(h) × C′A(h′) and σA. Hence, σID(p1σA

) = σID(p1σA
), where p1σA

is the
position resulting by I-Spoil choosing σA in position p. This ensures that ST is
indeed a strategy simulator according to Equation (1).

Furthermore, the mappings θ←σA
are defined as follows: given position p with

lab(p) = (h,h′) as above, then for each σA ∈ PStr(CA(h)), denote first p1σA

the position resulting from I-Spoil executing transition σA; further denote p
2

σA

the position which belongs to P-Spoil after P-Dupl executes action σD(p1σA
).

Note then that, in position p2σA
, for each k′ ∈ C′A(h′), P-Spoil has a move to

a position p3σA,k′ which is labeled (h,h′, σA, σID(p1σA
), k′, L) which belongs to

P-Dupl. Then we define θ←σA
(k′) = σPD(p3σA,k′).

This definition is dependent on the choice of the starting position p, but this
is not an issue for our definition of⇚⇛σD

A
since there is no requirement for build-

ing the maximal bisimulation associated with a bisimulation game. Note further
that this definition, together with the fact that σD is winning and hence posi-
tion p4σA,k′ = succ(p3σA,k′ , σPD(p3σA,k′)) is not winning for the Spoiler coalition,
implies that π(θ←σA

(k′)) = π′(k′) and further ensures that θ←σA
(k′) satisfies the

restated point (2̂) for Def. 6.

Finally, by proceeding from position p4σA,k′ , which again belongs to P-Spoil,

for each P-Spoil’s choice of some history l′ ∈ succ(k′, σID(p1σA
)), the game

proceeds to a position p5σA,k′,l′ that belongs to P-Dupl and is labeled with lab(
p5σA,k′,l′)=(h,h′, σA, σID(p1σA

), σPD(p3σA,k′), k′, l′, L). We then define ρσA,θ←σA
(k′),k′

(l′) = σPD(p5σA,k′,l′). Also note that this definition is dependent on the choice of
the initial position p with no loss of generality, and the fact that σD is winning
ensures that the position resulting from p5σA,k′,l′ by P-Dupl’s choice and labeled

(σPD(p5σA,k′,l′ , l
′), is not winning for Spoiler. In particular, π(p5σA,k′,l′) = π′(l′)

and ρσA,θ←σA
(k′),k′ satisfies the restated point (3̂) for Def. 6.
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Fig. 2. Counterexample for the Hennessy-Milner property for the subjective and ob-
jective semantics.

Similar considerations give us the definitions for θ→σ′
A

and ρ′σ′
A
,k,k′ for each

σ′A ∈ PStr(C′A(h′)), k′ ∈C′A(h′) and k ∈CA(h) with k ⇚⇛A k′. This completes
the proof of Theorem 2.

We conclude this section with some immediate properties about our bisimu-
lation games and bisimulation relations.

Proposition 1. 1. The set of bisimulations associated with the same strategy
simulator forms a complete lattice w.r.t. set inclusion.

2. If two iCGS G and G′ are bisimilar, then the Duplicator coalition has
a winning strategy in the bisimulation game B(G,G′, T ot) where Tot is the
total relation Hist(G)×Hist(G′).
The second claim follows by observing that if the Duplicator coalition

has a strategy to win a bisimulation game B(R) = B(G,G′, h0, h′0,R) for some
R, then they also have a strategy to win the bisimulation game B(Tot) =
B(G,G′, h0, h′0, T ot), and the construction in Theorem 2 can be used to show
that the bisimulation associated with B(R) is included in the bisimulation as-
sociated with B(Tot). Hence, this latter is maximal w.r.t. all bisimulations that
share the strategy simulator constructed as in Theorem 2.

5 The Hennessy-Milner Property

We now show that the notion of bisimulation introduced in Sec. 3 enjoys the
Hennessy-Milner property. To this end, we need to define A-equivalence between
iCGS. Specifically, given iCGS G and G′ with histories h0 ∈ Hist(G) and h′0 ∈
Hist(G′), we say that the pointed iCGS G(h0) and G′(h′0), having h0 and h′

0
as

respective initial histories, areA-equivalent iff for everyA-formula φ, (G, h0) ⊧x φ
iff (G′, h′0) ⊧x φ.
Theorem 3. The notion of bisimulation in Def. 6 enjoys the Hennessy-Milner
property, that is, the pointed iCGS G(h0) and G′(h′0) are A-equivalent for the
common knowledge semantics if and only if they are A-bisimilar.

Before proving Theorem 3, as a counterexample for the subjective and ob-
jective semantics, we recall the example used in [6] depicted in Figure 2. In each



state agent 1 can execute actions {a, b, c} while agent 2 can execute {x, y, z}.
The transitions shown lead to q⊺ and q′⊺, while the omitted transitions lead to
q� and q

′
�, respectively. We can check that states qi and q

′
j , with i, j ∈ {1,2,3,4},

are {1,2}-equivalent, and it holds the same also for states q� (resp., q⊺) and
q′� (resp., q′⊺). Therefore, G1 and G2 are {1,2}-equivalent, i.e., they satisfy the
same {1,2}-formulas in ATL∗. However, there is no {1,2}-bisimulation between
the two iCGS. In particular, for any i, j ∈ {1,2,3,4}, state qi cannot be {1,2}-
bisimilar with any state q′j .

The lack of a bisimulation between the two structures in Fig. 2 follows by
observing that the Spoiler coalition wins the appropriate bisimulation game,
since in the initial position (q1, q′1), I-Spoil may choose strategy σ which pro-
duces action tuple (a,x) in each state in C{1,2}(q1) = {q1, q2, q3, q4}. If I-Dupl

responds with strategy σ′(q′
1
) = σ′(q′

2
) = σ′(q′

3
) = σ′(q4) = (a,x), then P-Spoil

will choose state q′4, and P-Dupl has no good choice of some state in G1 whose
successor by σ is labeled ¬p, which is the label of the successor of q′

4
by σ′.

Similar situations occur for all the other choices by I-Dupl.

To prove Theorem 3, we actually prove the following Gale-Stewart-type the-
orem for the bisimulation games introduced in Def. 7:

Theorem 4 (Gale-Stewart theorem for bisimulation games). Each bisim-
ulation game is determined: either the Duplicator coalition or the Spoiler

coalition wins the game.

Proof. We follow the pattern of Gale-Stewart games by proving first that, at
positions where one coalition does not have a winning strategy, the other one has
a “defensive” strategy, and then showing that any defensive strategy is winning.

Formally, a defensive strategy for the Spoiler coalition in the bisimulation
game is a joint strategy σS = (σIS , σPS) such that, for any position p of the game
which is compatible with σD, Duplicator does not have a winning strategy
starting from the set of positions that have the same observability as p and are
compatible with σS . Defensive strategies for Duplicator are defined similarly.

We then have:

Lemma 2. If Duplicator coalition does not have a winning strategy, then
Spoiler coalition has a defensive strategy.

The proof of this claim works similarly to the classical case [14], by building
the defensive strategy by induction on the level of the position in the tree of
positions of the bisimulation game, such that, at each position belonging to
P-Spoil or I-Spoil, we identify one “defensive” action for these agent. The
difficulty is to build a uniform strategy for I-Spoil, i.e., at two positions with
identical observations for I-Spoil, her actions are identical.

The argument is similar for the base case and the inductive cases, and starts

by assuming the following: for some position p with lab(p) = (h,h′), the Spoiler
coalition does not have a defensive strategy from Obs(p), but neither Dupli-

cator has a winning strategy from Obs(p). Therefore the following property,



which formalizes the lack of a defensive strategy w.r.t. L-transitions (i.e. steps
2.a, 3, 5, 7, 9 and 11) in the bisimulation game, holds:

∀p1 ∈ Obs(p) ∀σ ∈ PStr(CA(lab(p1)))
∃σ′σ,p1

∈ PStr(C′A(lab2(p1))) ∀k′ ∈ C′A(lab2(p1))
∃kσ,p1,k′ , ∈ CA(lab1(p1)) ∀l′ ∈ succ(k′, σ′σ,p1

)
∃lσ,p1,k′,l′ ∈ succ(kσ,p1,k′ , σ) ∃σD =(σID, σPD)∈ΣDupl

with σD winning from position (lσ,p1,k′,l′ , l
′) (3)

Note that a similar property holds w.r.t. R-transitions.
Notice that, by default, nothing excludes having some p1, p2 ∈ Obs(p) such

that, for some, σ ∈ PStr(CA(lab1(p))), σ′σ,p1
≠ σ′σ,p2

. But I-Dupl can choose the
same σ′σ,p and P-Dupl can then choose lσ,p,k′,l′ at all positions p1 ∈ Obs(p),
because choices of k′ for P-Dupl in Formula 3 are quantified over the whole
C′A(lab2(p1)) = C′A(lab2(p)). In other words, because I-Dupl’s choice of σ′σ,p
combined with P-Dupl choice of lσ,p,k′,l′ are ”defensive” at position p, they are
”defensive” at any other position p1 ∈ Obs(p). This way, I-Dupl’s choice can be
made uniform w.r.t. her observations, which gives a winning strategy for the
Duplicator coalition at p, fact which contradicts the initial assumption.

Formally, from any position p1 ∈ Obs(p), the following strategy for Dupli-

cator coalition is winning:

– Denote p1σ the successor of p1 after I-Spoil chooses σ. Then I-Dupl chooses
σ′σ,p at p1σ.

– Denote the resulting position p1σ,σ′σ,p
. Denote further by p1σ,σ′σ,p,k

′ the suc-

cessor of p1σ,σ′σ,p
after P-Spoil has chosen k′ ∈C′A(lab2(p)). Then P-Dupl

chooses kσ,p,k′ ∈ CA(lab1(p)) at p1σ,σ′σ,p,k
′ .

– Denote the resulting position pσ,σ′σ,p,kσ,p,k′
. Also denote p1σ,σ′σ,p,k

′,kσ,p,k′ ,l
′ the

successor of p1σ,σ′σ,p,kσ,p,k′
after P-Spoil chooses l′ ∈ succ(k′, σ′σ,p). Then P-

Dupl chooses lσ,p,k′,l′ ∈succ(kσ,p,k′ , σ) at p1σ,σ′σ,p,k
′,kσ,p,k′ ,l

′ .

Formula 3 implies that from the resulting position, which is labeled (lσ,p,k′,l′ ,
l′), the Duplicator coalition has a winning strategy. Hence, we have a winning
strategy for theDuplicator coalition from Obs(p), which contradicts the initial
assumption.

As a result, the Spoiler coalition must have a defensive strategy from
Obs(p), which can be built by negating Formula 3, after which the construction
continues by induction on the observation class of the resulting positions labeled
(lσ,p,k′,l′ , l′). A similar argument shows that, when Spoiler coalition does not
have a winning strategy, Duplicator coalition has a defensive strategy.

It remains to show that a defensive strategy for Duplicator is winning.
This follows by observing that any infinite path in T (B) which is compatible
with a defensive strategy for Duplicator must not pass through a position
which is winning for Spoiler, hence is an infinite path which is winning for
Duplicator, which ends the proof.



We can now proceed with the proof of Theorem 3.

Proof. Theorem 3 Assume that there exists no bisimulation between G and G′

which, by Proposition 1, means that in the bisimulation game B(G,G′, s0, s′0, T ot)
the Duplicator coalition has no winning strategy. By the determinacy theo-
rem, the Spoiler coalition has a winning strategy σS = (σIS , σPS). Since each
position in the bisimulation game has a finite number of successors, as a con-
sequence of König’s Lemma, there exists a finite set PσS

of winning positions
for Spoiler such that all runs compatible with σS pass through one position of
PσS

.
Pick then a position p labeled (h,h′) such that, on all runs starting from

p and compatible with σS , the first position labeled with some (l, l′) occurring
on the run after p is a winning position for Spoiler. Note that the following
property, formalizing the fact that σS is winning, holds:

∃σ∈PStr(CA(h))∀σ′∈PStr(C′A(h′)) ∃k′σ′ ∈C′A(h′) ∀k ∈CA(h)
(π(k) = π′(k′σ′) → ∃l′σ′,k′

σ′
,k ∈succ(k′, σ′)

∀l∈succ(k,σ) π(l)≠π(l′σ′,k′
σ′

,k)) (4)

where σ=σIS(p), k′σ′ =σPS(p1), p1 is the successor of p after I-Spoil chooses σ
and P-Dupl answers with σ′, and l′σ′,k′

σ′
,k =σPS(p2) where p2 is the successor

of p1 after P-Spoil chooses k′ and P-Dupl answers with k. Note that the
implication with premise π(k) = π′(k′σ′) is needed since P-Dupl’s choices with
π(k)≠π′(k′σ′) are immediately winning for Spoiler, and then there is no need
to proceed with steps 11-12 corresponding with the successors of k and k′.

So, if we define the formula

ϕ(PσS
)=⟨⟨A⟩⟩X( ⋀

σ′∈PStr(C′
A
(h′))

(Yπ′(k′σ′) → ⋁
k∈CA(h)

¬π′(l′σ′,k′
σ′

,k))) (5)

then Formula 4 implies that (G, h) ⊧ck ϕ(PσS
) but, on the other hand, (G′, h′) /⊧ck

ϕ(PσS
).

To see this, note that, in ϕ(PσS
) the coalition operator ⟨⟨A⟩⟩ encodes ∃σ ∈

PStr(CA(h)) in 4. Further, the conjunction indexed by σ′ in 5 corresponds to
the universal quantifier on σ′ in 4. The k′σ′ in 5 represents the skolemization of
the existential quantification over k′σ′ in 4. The last disjunction in 5 corresponds
with the existential quantification over k in 4. The existential quantification over
l′σ′,k′

σ′
,k in 4 is encoded in 5 by its skolemization, denoted l′σ′,k′

σ′
,k too. Finally,

the universal quantifier over l ∈ succ(k,σ) in 4 and the last property connecting
l to l′σ′,k′

σ′
,k is encoded in 5 by ¬π′(l′σ′,k′

σ′
,k).

The yesterday operator Y is needed because we must encode the part of 4
referring to π(k), which refers to the current position. Unfortunately, a formula
like ⟨⟨A⟩⟩(π(k) →Xψ) which would simulate more easily the implication π(k) =
π′(k′σ′) → ∃l′σ′,k′

σ′
,k ∈succ(k′, σ′) . . . from 4 would not be ATL but rather ATL∗.

But, in order to correctly simulate quantifier order from 4, in 5 π(k) must lie



within the scope of ⟨⟨A⟩⟩X , which refers to the positions one time step after the
current position. Hence, in the scope of ⟨⟨A⟩⟩X we need to recover the value of
π(k) at the previous position, hence we utilize Y . We believe Y might not be
needed for the full ATL∗, a topic for further research.

The proof can then be completed by induction as follows: we modify the
bisimulation game by appending a new winning condition for Spoiler: all posi-
tions in Obs(p) are labeled as winning, with the formula ϕ witnessing this. The
set of atomic propositions for both iCGS is augmented with pϕ and, for each
(h,h′) labeling a position p1 ∈ Obs(p), we augment π(h) with pϕ while π′(h′) is
left unchanged. This provides us with a new bisimulation game in which (the ap-
propriately updated) strategy profile σS is still a winning strategy for Spoiler,
there is a strictly smaller set of positions P ′σS

which are winning for Spoiler,
and all runs compatible with σS pass through one position of P ′σS

.
The argument ends when we obtain some Pm

σS
for which Obs(Pm

σS
) is a sin-

gleton, which means that (h0, h′0) ∈ Pm
σS

. Then the formula ϕ(Pm
σS
) built as in

Equation 5 is the witness that (G, h0) is not A-equivalent with (G′, h′0).

6 Undecidability Result

In this section we show that deciding the existence of bisimulations between
iCGS is undecidable in general. We state immediately the main result of this
section.

Theorem 5. The problem of checking whether two CGS G1 and G2 defined on
the same set Ag of agents are A-bisimilar, for some set A ⊆ Ag of agents, is
undecidable.

The proof of Theorem 5 can be outlined as follows: given any deterministic
Turing Machine, by building on [12] we construct a 3-agent iCGS which has the
property that two agents (call them 1 and 2) have a winning strategy to avoid
an error state if and only if the TM never stops when starting with an empty
tape. We note that this strategy, when it exists, is unique. Then, we construct a
second 3-agent “simple” iCGS in which there exists a unique strategy for agents
1 and 2 (without memory) for avoiding an error state. Finally, we prove that
these two iCGS are bisimilar if and only if the TM never stops when starting
with an empty tape, which is sufficient to derive the undecidability of the former
problem.

We start with the construction of the second iCGS, which is depicted in
Figure 3. Note that the transitions only represent the actions of agents 1 and 2,
agent 3’s role is to ”solve nondeterminism” in states sinit, sgen and str. First of
all, we prove the following lemma.

Lemma 3. In the iCGS depicted in Figure 3 there exists a unique strategy for
agents 1 and 2 to avoid state serr.

Proof. Note that, in all the states except s1amb and s2amb, coalition {1,2} must
play (ok, ok) to avoid serr. To further understand why 1 and 2 need to play



the same action in the remaining two states, consider history h = sinit
ok,ok
ÐÐÐ→

sgen
ok,ok
ÐÐÐ→ str

ok,ok
ÐÐÐ→ s2amb. Note that if we have h ∼1 h′ (and h ≠ h′), then h′ =

sinit
ok,ok
ÐÐÐ→ sgen

ok,ok
ÐÐÐ→ s1amb

a1,a2

ÐÐÐ→ s1namb. So, for any joint strategy σ = (σ1, σ2)
for 1 and 2, ensuring serr ∉ succ(h′, σ1(h′)) requires that σ1(h′) = ok, which also
implies that σ1(h) = ok by 1-uniformity of σ. A similar argument shows that

h ∼2 h′′ (and h ≠ h′′) implies that h′′ = sinit
ok,ok
ÐÐÐ→ sgen

ok,ok
ÐÐÐ→ str

ok,ok
ÐÐÐ→ sgen, and

since the only way to ensure serr ∉ succ(h′′, σ2(h′′)) is by choosing σ2(h′′) = ok,
we must also have σ2(h) = ok.

sgen

samb
1

sinits′init

slb

s′lb

str

samb
2

snamb
2snamb

1

serr

ok, ok

∗

ok, ok

∗

ok, okok, ok

∗
ok, ok

∗

ok, ok

∗

ok, ok

#

ok, ok

∗
ok, ok

#

∗
ok, ok

∗

ok, ok

Fig. 3. The iCGS GS, where ∗ = ¬ok, ok ∣ ok,¬ok ∣ ¬ok,¬ok and # = ¬ok, ok ∣ ok,¬ok ∣
¬ok,¬ok ∣ ok, ok. The indistinguishability relation for player 1 has three classes: sgen,
serr, and sset, where sset = S ∖{sgen, serr}. The indistinguishability relation for player
2 has three classes: str, serr, and s

′
set, where s

′
set = S ∖ {str, serr}.

By generalizing these observations, a strategy that avoids the error state for
all outcomes can only be constructed if in every history h ending in s1amb the
joint action is (ok, ok). This is because:
1. if h ∼1 h′ and last(h′) = s2namb, then in s2namb the only “good” transition for

agent 1 is ok, and
2. if h ∼2 h′′ and last(h′′) ∈ {sgen, s1namb}, then in both these states the only

“good” transition for agent 2 is ok too.

A similar remark holds for histories ending in the other “ambiguous” state, s2amb.
So there is only one joint uniform strategy for {1,2} that avoids serr, which is
choosing (ok, ok) at every history.

We now turn to the construction of the first iCGS, which is adapted from
[12]. We give the construction for a simple deterministic TM M = ⟨Q, Γ, δ⟩ with
states Q = {q0, q1, q2} and tape symbols Γ = {B,a}, whose transition function δ
is in Table 1.



δ B a

q0 (q1, a,R) (q1,B,R)
q1 (q2, a,R) (q0,B,L)
q2 (q0,B,L) (q2, a,R)

Table 1. Transitions of the TM M .

The purpose of this construction is that the given TM never halts on an
empty tape if and only if coalition {1,2} has a strategy which simulates the
run of the TM on the levels of the tree of runs compatible with the strategy.
The simulation of the Turing machine, depicted in Fig. 5, satisfies the following
properties:
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(q2, q0,L), i

i, (q0, q1,R)
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+
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Fig. 4. The iCGS GM , where ∗ = i, q0 ∣ (q1, q0,L), i ∣ (q2, q0,L), i, # = i, (q1, q2,R) ∣
i, (q2, q2,R), + represents all the possible combination of actions less the tuples al-
ready displayed, and any represents all the possible combinations of actions. Note
that, all the missing transitions go to the error state. The indistinguishability relation
for player 1 has three classes: sgen, serr, and sset, where sset = S ∖ {sgen, serr}. The
indistinguishability relation for player 2 has three classes: str, serr, and s′set, where
s′set = S ∖ {str, serr}.

1. Every run ρ starting with sinit( i,i
Ð→ sgen

i,i
Ð→ str)n i,i

Ð→ sgen
i,i
Ð→ sB, simulates

the evolution of the contents of the n-th cell on the tape. We call such runs
as (1, n)-runs and denote them ρ(1,n). Formally, for each k ≥ n, depending
on the k-th configuration of the TM:
(a) If the R/W head points to cell n that holds symbol x, the TM is in state

q, and the transition table gives δ(q, x)=(r, y,R) (i.e. an R-move of the
head), then

ρ(1,n)[2k + 2,2k + 4] = sq,x
(q,r,R),i
ÐÐÐÐÐ→ s0y

i,i
Ð→ s1y



ρ(1,n+1)[2k+2,2k+4] = s1z
i,i
Ð→ s0z

i,(q,r,R)
ÐÐÐÐÐ→ sr,z, for some z ∈Γ representing

the contents of tape cell (n+1) in configuration k.
(b) On the other hand, if the transition table gives δ(q, x)

=(r, y,L) (i.e. an L-move of the head), then

ρ(1,n)[2k + 2,2k + 4] = sq,x
i,(q,r,L)
ÐÐÐÐ→ s0y

i,i
Ð→ s1y

ρ(1,n−1)[2k + 2,2k + 4] = s1z
i,i
Ð→ s0z

(q,r,L),i
ÐÐÐÐ→ sr,z, for some z ∈ Γ .

(c) Otherwise (i.e., the R/W head is not pointing cells n − 1 to n + 1),

ρ(1,n)[2k,2k + 2] = s1z
i,i
Ð→ s0z

i,i
Ð→ s1z where z is the contents of cell n

in configuration k.

Note that two steps are needed along each run to encode the transition of
the R/W head from cell n to cell (n+1) for an R-move, or to cell (n−1) for
a L-move.

2. Every run ρ starting with sinit( i,i
Ð→ sgen

i,i
Ð→ str)n i,i

Ð→ s1tr, simulates a move
of the R/W head between the (n− 1)-th and the n-th cell, (which we call in
the sequel the n-th frontier), for n ≥ 1. We call such runs as (2, n)-runs and
denote them ρ(2,n). Formally, for every k ≥ n, depending on the transition
between the k-th and the (k + 1)-th configuration of the TM:

(a) If the R/W head moves from the n-th cell to the (n−1)-th by executing
δ(q, x) = (r, y,L), then
ρ(2,n)[2k+3,2k+5] = s1tr

i,(q,r,L)
ÐÐÐÐ→ sq,r,L

(q,r,L),i
ÐÐÐÐ→ s1tr.

(b) If the R/W head moves from the (n − 1)-th cell to the n-th by execut-

ing transition δ(q, x) = (r, y,R), then ρ(2,n)[2k+3,2k+5] = s1tr
(q,r,R),i
ÐÐÐÐÐ→

sq,r,R
i,(q,r,R)
ÐÐÐÐÐ→ s1tr.

(c) Otherwise, ρ(2,n)[2k+3,2k+5] = s1tr
i,i
Ð→ s0tr

i,i
Ð→ s1tr.

Finally, run ρ0 = sinit
i,i
Ð→ s′init

i,i
Ð→ slb

i,(q0)
ÐÐÐ→ s′lb(

i,i
Ð→ s′lb)

ω
simulates the “left

bound” of the tape and the start of the TM with the R/W head on the initial
state q0. Let GR denote the set {ρ0} ∪ {ρ(1,n), ρ(2,n) ∣ n ∈ N} of “good” runs ,
and σwin the unique strategy for agents 1 and 2 that simulates the infinite run
of the TM, when it exists.

In what follows, we group states of GM in five sets:

1. S0

namb = {sinit, s′init, slb, s′lb}.
2. S1

namb = {sq,z ∣ q ∈ Q and z ∈ Γ} ∪ {s1�, s1B, s1a}.
3. S1

amb = {s0a, s0B , s2�}.
4. S2

namb = {s1tr, s3�}.
5. S2

amb = {sq,r,x ∣ q, r∈Q,x∈{R,L}}∪{s4�, s0tr}.

We also call states in Samb = S
1

amb∪S
2

amb as “ambiguous” and in Snamb = S∖Samb

“nonambiguous”. Note that, in each nonambiguous state, all outgoing transitions
which avoir serr are labeled with a unique tuple of actions, while all ambiguous
states do not have transitions leading to serr.
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Fig. 5. Simulating three computation steps of the Turing machine in Table 1.

Before defining the actual bisimulation between GM and GS , note that runs
that “deviate” from runs in GR (and therefore associated with a “wrong” strat-
egy that cannot avoid serr) contain either a transition from a nonambiguous
state to serr, or a transition from an ambiguous state which is not consistent
with the TM computation, as explain below.

The line of reasoning guaranteeing that every strategy σ consistent with a
run which “deviates” from a run in GR will not be able to avoid serr is similar to
the proof of Lemma 3 above. Assume that there exists a single partial strategy,
defined on Hist≤i(GM), which avoids serr and all histories compatible with this
strategy are prefixes of length ≤ n of runs in GR. Note first that each such history
ending in states in Snamb can only be completed with a transition that simulates
correctly the unique run up to level i+1.



To see what happens with the other type of histories, consider some history

h = ρ(1,n)[≤ i] a1,a2

ÐÐÐ→ s with h[i] /∈ Snamb. Note then that if h ∼1 h′ then h′[≤
i] ⪯ ρ(2,n) and h′[i] ∈ Snamb is a nonambiguous state. Therefore, there exists a

unique h′[i] a1,b2
ÐÐÐ→ s′, and, moreover, this transition has to correctly simulate the

n-th frontier at level i+ 1. It then follows that a1 is the “good” decision agent 1
has to make to correctly simulate the TM run on h. A similar argument holds
for h′′ ∼2 h by noting that h′′[≤ i] ⪯ ρ(2,n−1). Also similar arguments hold if we
start with h ⪯ ρ(2,n).

Finally, the bisimulation relation between GM and GS is guided by the intu-
ition that histories ending in nonambiguous states S1

namb resp. S2

namb, ”behave
similarly” with histories ending in s1namb, resp. s

2

namb, while histories ending in
ambiguous states S1

amb, resp. S
2

namb behave similarly with histories ending in
s1amb, resp. s

2

amb.
Specifically, for every h ∈ Hist(GM) with h ≺ ρ(1,n) and h /≺ ρ(2,n), we set

h⇚⇛1,2 χ for χ defined as follows:

1. χ[i] = h[i] if h[i] ∈ S0

namb ∪ {serr}.
2. χ[i] = s1amb if h[i] ∈ S1

amb.
3. χ[i] = s1namb if h[i] ∈ S1

namb.
4. For y ∈ {1,2}, acty(χ, i) = ok if and only if acty(h, i) is the “correct” action

executed by agent y for simulating the contents of the n-th cell at level i
along ρ(1,n).

Similarly, for every h ∈ Hist(GM) with h ≺ ρ(2,n) and h /≺ ρ(1,n+1), we set
h⇚⇛1,2 χ for χ defined as follows:

1. χ[i] = s2amb if h[i] ∈ S2

amb.
2. χ[i]=s2namb if h[i]∈S2

namb.
3. For y ∈ {1,2}, acty(χ, i) = ok if and only if acty(h, i) is the “correct” action

executed by agent y for simulating the n-th frontier at level i along ρ(2,n).

Note that ⇚⇛1,2 is in fact functional.
The strategy simulator ST can be constructed using the functional rela-

tion ⇚⇛1,2 as follows: for any joint strategy σ and any history h ∈ Hist(GM)
compatible with σ, take the unique χh ∈ Hist(GS) with h ⇚⇛1,2 χh and de-
fine the partial strategy τσ with τσ(χh[< ∣χh∣]) = act(χh, ∣ < χh∣). Then note
that, whenever we have two different joint strategies σ1 and σ2 which share
some compatible histories, then for any h compatible with both we have that

τσ
1(χh[< ∣χh∣]) = τσ2(χh[∣<χh∣]). This means that the following definition cor-

rectly constructs a strategy simulator: for each h ∈Hist(GM), each partial strat-
egy σ ∈ PStr(CA(h)), h′ ∈ CA(h) and for each joint strategy σ with σ

CA(h)
= σ,

ST (σ)(h) = τσ(χh[< ∣χh∣])
because, as noted above, different τσ agree on the same χh, so the choice of σ is
not important as long as it is compatible with h.

The inverse strategy simulator can be chosen as any inverse function of ST ,
i.e. any function ST ′ with ST ○ ST ′ being the identity function.



Hence ⇚⇛1,2 is indeed an {1,2}-bisimulation with ST and ST ′ strategy sim-
ulators, if and only if M never stops when starting with an empty tape, which
ends the proof of the undecidability theorem.

7 Conclusions and Future Work

In this paper we advanced the state of the art in the model theory of logics for
strategic reasoning in multi-agent systems. Specifically, in Sec. 2 we considered
the common knowledge interpretation of the Alternating-time Temporal Logic
ATL under the assumption of imperfect information (and perfect recall), which
has so far received little attention in the literature. For this context of imperfect
information, we introduced a novel notion of alternating bisimulation in Sec. 3
and were able to prove the preservation of ATL formulas in bisimilar iCGS (The-
orem 1). Further, in order to show that the common knowledge interpretation
enjoys the Hennessy-Milner property, in Sec. 4 we introduced an imperfect infor-
mation variant bisimulation games and showed that the Duplicator coalition
has a winning strategy if and only if there exists a bisimulation between the two
given iCGS (Theorem 2). Finally, in Sec. 5 we proved the Gale-Stewart deter-
minacy Theorem 4, which allows us to prove the Hennessy-Milner Theorem 3.
We also provided counterexamples to the Hennessy-Milner property for the ob-
jective and subjective interpretation of ATL. To conclude, in Sec. 6 we showed
that checking the existence of an alternating bisimulation between two iCGS is
undecidable in general (Theorem 5).

We note that our Hennessy-Milner theorem utilizes the ”yesterday” modality
for technical reasons. As noted in the proof of Theorem 3, Formula 4 might be
encoded with an ATL∗ formula which does not utilize Y. The translation of this
theorem to the full ATL∗ is left for future research.

As another direction for future research, we plan to investigate under which
conditions our Gale-Stewart-type theorem can be generalized to a full determi-
nacy theorem for multi-agent games.
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