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Abstract
Writing concurrent programs is notoriously hard due to
scheduling non-determinism. The most common concur-
rency bugs are data races, which are accesses to a shared
resource that can be executed concurrently. Dynamic data-
race prediction is the most standard technique for detecting
data races: given an observed, data-race-free trace t , the task
is to determine whether t can be reordered to a trace t∗

that exposes a data-race. Although the problem has received
significant practical attention for over three decades, its com-
plexity has remained elusive. In this work, we address this
lacuna, identifying sources of intractability and conditions
under which the problem is efficiently solvable. Given a trace
t of size n over k threads, our main results are as follows.
First, we establish a general O(k · n2·(k−1)) upper-bound, as
well as an O(nk ) upper-bound when certain parameters of
t are constant. In addition, we show that the problem is
NP-hard and even W[1]-hard parameterized by k , and thus
unlikely to be fixed-parameter tractable. Second, we study
the problem over acyclic communication topologies, such as
server-clients hierarchies. We establish anO(k2 ·d ·n2 · logn)
upper-bound, where d is the number of shared variables ac-
cessed in t . In addition, we show that even for traces with
k = 2 threads, the problem has no O(n2−ϵ ) algorithm under
the Orthogonal Vectors conjecture. Since any trace with 2
threads defines an acyclic topology, our upper-bound for
this case is optimal wrt polynomial improvements for up to
moderate values of k and d . Finally, motivated by existing
heuristics, we study a distance-bounded version of the prob-
lem, where the task is to expose a data race by a witness
trace that is similar to t . We develop an algorithm that works
in O(n) time when certain parameters of t are constant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394783

Keywords Data Race Prediction, Complexity

1 Introduction
A concurrent program is said to have a data race if it can ex-
hibit an execution in which two conflicting accesses1 to the
same memory location are “concurrent”. Data races in con-
current programs are often symptomatic of bugs in software
like data corruption [6, 19, 26], pose challenges in defining
the semantics of programming languages, and have led to
serious problems in the past [43]; it is no surprise that data
races have been deemed pure evil [7]. Automatically finding
data races in programs remains a widely studied problem be-
cause of its critical importance in building correct concurrent
software. Data-race detection techniques can broadly be clas-
sified into static and dynamic. Given that the race-detection
problem in programs is undecidable, static race detection
approaches [25, 33] are typically conservative, produce false
alarms, and do not scale to large software. On the other hand,
since dynamic approaches [15, 23, 32, 36] have the more mod-
est goal of discovering data races by analyzing a single trace,
they are lightweight, and can often scale to production-level
software. Moreover, many dynamic approaches are sound,
i.e., do not raise false race reports. The effectiveness and
scalability of dynamic approaches has lead to many practical
advances on the topic. Despite a wide-spread interest on the
problem, characterizing its complexity has remained elusive.
Informally, the dynamic race prediction problem is the follow-
ing: given an observed trace t of a multi-threaded program,
determine if t demonstrates the presence of a data race in the
program that generates t . This means that either t has two
conflicting data accesses that are concurrent, or a different
trace resulting from scheduling the threads of t in a different
order, witnesses such a race. Additional traces that result
from alternate thread schedules are captured by the notion
of a correct reordering of t , that characterizes a set of traces
that can be exhibited by any program that can generate t ; a
precise definition of correct reordering is given in Section 2.1.
So formally, the data race prediction problem is, given a trace
t , determine if there is a correct reordering of t in which a
pair of conflicting data accesses are concurrent.

1Two accesses are conflicting if they access the same memory location, with
one of them being a write access.
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While the data race prediction problem is clearly in NP —
guess a correct reordering and check if it demonstrates a
data race — its precise complexity has not been identified.
Evidence based on prior work, suggests a belief that the prob-
lem might be NP-complete. First, related problems, like data-
race detection for programs with strong synchronization
primitives [27–29], or verifying sequential consistency [16],
are known to be NP-hard. Second, all known “complete”
algorithms run in worst-case exponential time. These ap-
proaches either rely on an explicit enumeration of all correct
reorderings [10, 37], or they are symbolic approaches that
reduce the race prediction problem to a constraint satis-
faction problem [18, 35, 41]. On the other hand, a slew of
“partial order”-based methods have been proposed, whose
goal is to predict data races in polynomial time, but at the
cost of being incomplete and failing to detect data races in
some traces. These include algorithms based on the classical
happens-before partial order [15, 21–23, 38], and those based
on newer partial orders that improve the prediction of data
races over happens-before [20, 31, 34, 40].
In this paper we study the problem of data-race prediction
from a complexity-theoretic perspective. Our goal is to un-
derstand whether the problem is intractable, the causes for
intractability, and conditions under it can can be solved ef-
ficiently. We provide partial answers to all these questions,
and in some cases characterize the tractability/intractability
landscape precisely in the form of optimality results.
Contributions. Consider an input trace t of size n over k
threads. Our main contributions are as follows. We refer to
Section 2.3 for a formal summary.
Our first result shows that the data-race prediction problem is
solvable inO(k ·n2·(k−1)) time, and can be improved toO(nk )
when certain additional parameters of t are constant. We
note that most benchmarks used in practice have a constant
number of threads [15, 20, 22, 31, 34, 40] , and in such cases
our upper-bound is polynomial.
The observation that data race predication is in polyno-
mial time for constantly many threads naturally leads to
two follow-up questions. Does the problem remain tractable
for any k? And if not, is it fixed parameter tractable (FPT)
wrt k , i.e., is there an algorithm with running time of the
form O(f (k) · nO (1))? Our second result answers both these
questions in the negative, by showing that the problem is
W[1]-hard. This formally establishes the NP-hardness of the
problem, and excludes efficient algorithms when k is even
moderately large (e.g., k = Ω(logn)).
We then investigate whether there are practically relevant
contexts where data-race prediction is more efficiently solv-
able, i.e., the degree of the polynomial is fixed and inde-
pendent of k . We consider the case of traces over acyclic
communication topologies, such as pipelines, server-clients
hierarchies and divide-and-conquer parallelism. Our third

result shows that, perhaps surprisingly, over such topologies
data-race prediction can be solved inO(k2 ·d ·n2 · logn) time,
where d is the total number of synchronization variables
(locks) and global memory locations.
In practice, the size n of the trace is by far the dominating
parameter, while k and d are many orders of magnitude
smaller. Hence, given the above upper-bound, the relevant
question is whether the complexity on n can be improved
further. Our fourth result shows that this is unlikely: we
show that, under the Orthogonal Vectors conjecture, there
is no O(n2−ϵ ) algorithm even for traces restricted to only
2 threads. As any trace with 2 threads induces an acyclic
topology, our upper-bound is (conditionally) optimal wrt
polynomial improvements.
Finally, the majority of practical data-race prediction heuris-
tics search for a data race witness among correct reorderings
that are very similar to the observed trace t , i.e., by only
attempting a few event reorderings on t . Motivated by these
approaches, we investigate the complexity of a distance-
bounded version of data-race predication, where the goal is
to expose a data race by only looking at correct reorderings
of t that are a small distance away. Here, distance between
traces is measured by the number of critical sections and
write events whose order is reversed from t . Our fifth re-
sult is a linear-time (and thus, optimal) algorithm for this
problem, when certain parameters of the trace t are constant.
This result gives a solid basis for the principled development
of fast heuristics for dynamic data-race prediction.
Technical contributions. Towards our main results, we make
several technical contributions that might be of independent
interest. We summarize some of them below.
1. We improve the lower-bound of the well-known problem

on verifying sequential consistency with read-mapping
(VSC-rm) [16] from the long-lasting NP-hardness to
W[1]-hard.

2. We show that VSC-rm can be solved efficiently on tree
communication topologies of any number of threads,
which improves a recent result of [31] for only 2 threads,
as well as a result of [9] for more than 2 threads.

3. The first challenge in data-race prediction given a trace
t is to choose the set X of events of t over which to
attempt to construct a correct reordering. Identifying
such choices for X is a significant challenge [18, 31, 34].
We establish non-trivial upper-bounds on the number of
choices for X , and show that they are constantly many
when certain parameters of t are constant.

4. Particularly for tree communication topologies, we show
that a single choice for such X suffices.

Finally, we note that our notion of a predictable data race in
a trace t requires as a witness a reordering t∗ of t in which
every read event reads from the same write event as in t . This
guarantees that t∗ is valid in any program that produced t .
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More permissive reorderings, e.g., requiring that every read
event reads the same value, are also possible, and can capture
potentially more races. Our notion of witness reflects the
most common practice in race-detection literature, where
trace logging typically does not track the values.
Related Work. Antoni Mazurkiewicz [1, 24] used the no-
tion of traces to mathematically model executions of concur-
rent programs. Bertoni et. al. [4] studied various language-
theoretic questions about Mazurkiewicz traces. The folklore
results about the NP-hardness of race detection are often at-
tributed to Netzer and Miller [27–29]. However, the problem
considered in their work differs in significant ways from the
problem of data-race prediction. First, the notion of feasible
executions in [27] (the counterpart of the notion of correct
reorderings) requires that any two conflicting events be or-
dered in the same way as the observed execution, and hence,
are less permissive. Next, the NP-hardness arises from the use
of complex synchronization primitives like wait and signal,
which are more powerful than the primitives we study here
(release/acquire of locks and read/write of registers). The
results due to Netzer and Miller, thus, do not apply to the
problem of data-race prediction. Gibbons and Korach [16]
establish NP-hardness for a closely related problem in dis-
tributed computing — verifying sequential consistency with
a read mapping (VSC-rm). Yet again, the problem is different
than the problem of race prediction. Complexity theoretic
investigations have also been undertaken for other problems
in distributed computing like linearizability [13, 16, 17], se-
rializability [30] and transactional consistency [5]. Hence,
although there have been many theoretical results on related
problems in concurrency, none of them addresses dynamic
data-race prediction. Our work fills this gap.
Some proofs are relegated to the appendix.

2 Preliminaries
2.1 Model

General notation. Given a natural number k , let [k] =
{1, . . . ,k}. Given a function f : X → Y , we let dom(f ) = X
and img(f ) = Y . Given two functions f ,д, we write f ⊆ д
to denote that dom(f ) ⊆ dom(д) and for every x ∈ dom(f )
we have f (x) = д(x). Given a set X ′ ⊆ dom(f ), we denote
by f |X ′ the function with dom(f |X ′) = X ′ and f |X ′ ⊆ f .
Concurrent program. We consider a shared-memory con-
current program P that consists of k threads {pi }i ∈[k ], under
sequential consistency semantics [39]. For simplicity of pre-
sentation we assume no thread is created dynamically and
the set {pi }i ∈[k] is known a-priori. Communication between
threads occurs over a set of global variables G, and synchro-
nization over a set of locks L such that G ∩ L = ∅. We let
V = G ∪ L be the set of all variables of P. Each thread is
deterministic, and performs a sequence of operations. We are

only interested in the operations that access a global variable
or a lock, which are called events. In particular, the allowed
events are the following.
1. Given a global variable x ∈ G, a thread can either write

to x via an event w(x) or read from x via an event r(x).
2. Given a lock ℓ ∈ L, a thread can either acquire ℓ via an

event acq(ℓ) or release ℓ via an event rel(ℓ).
Each event is atomic, represented by a tuple (a,b, c,d), where
1. a ∈ {w, r, acq, rel} represents the type of the event (i.e.,

write, read, lock-acquire or lock-release event),
2. b represents the variable or lock that the event accesses,
3. c is the thread of the event, and
4. d is a unique identifier of the event.
Given an event e , we let loc(e) denote the global variable
or lock that e accesses. We occasionally write e(x) to de-
note an event e with loc(e) = x , while the thread and event
id is often implied by the context. We denote byWp (resp.
Rp , LA

p , LR
p ) the set of all write (resp. read, lock-acquire,

lock-release) events that can be performed by thread p. We
let Ep =Wp ∪ Rp ∪ LA

p ∪ LR
p . We denote by E = ⋃

p Ep ,
W =

⋃
pWp , R =

⋃
p Rp , LA =

⋃
p LA

p , LR =
⋃

p LR
p

the events, write, read, lock-acquire and lock-release events
of the program P, respectively. Given an event e ∈ E, we
denote by p(e) the thread of e . Finally, given a set of events
X ⊆ E, we denote byR(X ) (resp.,W(X ),LA(X ),LR (X )) the
set of read (resp., write, lock-acquire, lock-release) events
of X . For succinctness, we letWR(X ) = W(X ) ∪ R(X ),
RL(X ) = R(X ) ∪ LR (X ) andWL(X ) = W(X ) ∪ LA(X ).
The semantics of P are the standard for sequential consis-
tency [39].
Conflicting events. Given two distinct events e1, e2 ∈ E,
we say that e1 and e2 are conflicting, denoted by e1 Z e2, if
(i) loc(e1) = loc(e2) (i.e., both events access the same global
variable or the same lock) and (ii) {e1, e2} ∩ W , ∅ or
{e1, e2} ∩ LA , ∅ i.e., at least one of them is either a write
event or a lock-acquire event. We extend the notion of con-
flict to sets of events in the natural way: two sets of events
X1,X2 ⊆ E are called conflicting, denoted by X1 Z X2 if
∃(e1, e2) ∈ (X1 × X2) such that e1 Z e2.
Event sequences. Let t be a sequence of events. We de-
note by E(t) the set of events, by L(t) the set of locks, and
by G(t) the set of global variables in t . We letW(t) (resp.,
R(t), LA(t), LR (t)) denote the setW(E(t)) (resp., R(E(t)),
LA(E(t)), LR (E(t))), i.e., it is the set of write (resp., read,
lock-acquire, lock-release) events of t . Given two distinct
events e1, e2 ∈ E(t), we say that e1 is earlier than e2 in t , de-
noted by e1 <t e2 iff e1 appears before e2 in t . We say that e1
is thread-ordered earlier than e2, denoted e1 <TO(t ) e2, when
e1 <t e2 and p(e1) = p(e2). For events e1, e2 ∈ E(t), we say
e1 ≤t e2 (resp. e1 ≤TO(t ) e2) if either e1 = e2 or e1 <t e2 (resp.
e1 <TO(t ) e2). We will often use <TO (resp. ≤TO) in place of

3
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<TO(t ) (resp. ≤TO(t )) when the trace t is clear from context.
Given a set of events X ⊆ E, we denote by t |X the projection
of t onto X . Given a thread pi , we let t |pi = t |Epi . Given two
sequences t1, t2, we denote by t1 ◦ t2 their concatenation.
Lock events. Given a sequence of events t and a lock-
acquire event acq ∈ LA(t), we denote by matcht (acq) the
earliest lock-release event rel ∈ LR (t) such that rel Z acq
and acq <TO rel, and let matcht (acq) = ⊥ if no such lock-
release event exists. If matcht (acq) , ⊥, we require that
p(acq) = p(matcht (acq)), i.e., the two lock events belong
to the same thread. Similarly, given a lock-release event
rel ∈ LR (t), we denote by matcht (rel) the latest acquire
event acq ∈ LA(t) such that matcht (acq) = rel and require
that such a lock-acquire event always exists. Given a lock-
acquire event acq, the critical section CSt (acq) is the set of
events e such that (i) acq <TO e and (ii) if matcht (acq) , ⊥,
then e <TO matcht (acq). For simplicity of presentation,
we assume that locks are not re-entrant. That is, for any
two lock-acquire events acq1, acq2 with acq1 Z acq2 and
acq1 <TO acq2, we must have matcht (acq1) <TO acq2.
The lock-nesting depth of t is the maximum number ℓ such
that there exist distinct lock-acquire events {acqi }ℓi=1 with
(i) acq1 <TO acq2 <TO · · · <TO acqℓ , and (ii) for all i ∈ [ℓ], if
matcht (acqi ) ∈ E(t) then acqℓ <TO matcht (acqi ).
Traces and reads-from functions. An event sequence t is
called a trace if for any two lock-acquire events acq1, acq2 ∈
LA(t), if loc(acq1) = loc(acq2) and acq1 <t acq2, then
rel1 = matcht (acq1) ∈ LR (t) and rel1 <t acq2. A trace there-
fore ensures that locks obey mutual exclusion, i.e., critical
sections over the same lock cannot overlap.
Given a trace t , we define its reads-from function RFt :
R(t) → W(t) as follows: RFt (r) = w iff w <t r and ∀w′ ∈
W(t) with w Z w′, we have w′ <t r ⇒ w′ <t w. That
is, RFt maps every read event r to the write event w that r
observes in t . For simplicity, we assume that t starts with a
write event to every location, hence RFt is well-defined. For
notational convenience, we extend the reads-from function
RFt to lock-release events, such that, for any lock-release
event rel ∈ LR (t), we have RFt (rel) = matcht (rel), i.e., rel
observes its matching lock acquire event.
Correct reordering, enabled events and predictable
data races. A trace t∗ is a correct reordering of trace t if
(i) E(t∗) ⊆ E(t), (ii) for every thread pi , we have that t∗ |pi
is a prefix of t |pi , and (iii) RFt ∗ ⊆ RFt , i.e., the reads-from
functions of t∗ and t agree on their common read and lock-re-
lease events. Given a trace t , an event e ∈ E(t) and a correct
reordering t∗ of t , we say that e is enabled in t∗ if e < E(t∗)
and for every e ′ ∈ E(t) such that e ′ <TO e , we have that
e ′ ∈ E(t∗). Given two conflicting events e1, e2 ∈ E(t) with
loc(e1) = loc(e2) ∈ G, we say the pair (e1, e2) is a predictable
data race of trace t if there is a correct reordering t∗ of t such
that both e1 and e2 are enabled in t∗. Finally, we say t has

a predictable data race if there is a pair (e1, e2) which is a
predictable data race of t .
Note that predictability of a race is defined with respect to a
correct reordering in which every read event observes the
same write event. This requirement guarantees that the cor-
rect reordering is a valid trace of any concurrent program
that produced the initial trace. Hence, every such program
is racy. More permissive notions of predictability can also
be defined, e.g., by requiring that, in a correct reordering,
every read event reads the same value (possibly from a dif-
ferent write event). This alternative definition would cap-
ture potentially more predictable races. Our definition of
correct reorderings reflects the most common practice in
race-detection literature, where trace logging typically does
not track the values [20, 22, 31, 34, 40].
The communication topology. The trace t naturally in-
duces a communication topology graph G = (V ,E) where
(i) V = {pi }i and (ii) E = {(pi ,pj ) | i , j and E(pi ) Z E(pj )}.
In words, we have one node in G per thread, and there is an
edge between two distinct nodes if the corresponding threads
execute conflicting events (note that G is undirected). For
simplicity, we assume that G is connected. In later sections,
we will make a distinction between tree topologies (i.e., that
do not contain cycles) and general topologies (that might
contain cycles). Common examples of tree topologies include
stars (e.g., server-clients), pipelines, divide-and-conquer par-
allelism, and the special case of two threads.

2.2 Problem Statement

In the dynamic data-race prediction problem, we are given
an observed trace t , and the task is to identify whether t
has a predictable data race. In this work we focus on the
following decision problem — given a trace t and two (read
or write) conflicting events e1, e2 ∈ E(t), the task is to de-
cide whether (e1, e2) is a predictable data race of t . Clearly,
having established the complexity of the decision problem,
the general problem can be solved by answering the deci-
sion problem for allO(n2) pairs of conflicting variable access
events of t . In the other direction, as the following lemma
observes, detecting whether t has some predictable data race
is no easier than detecting whether a given event pair of t
constitutes a predictable data race. We refer to Appendix A
for the proof.
Lemma2.1. Given a trace t of lengthn and two events e1, e2 ∈
E(t), we can construct a trace t ′ in O(n) time so that t ′ has a
predictable data race iff (e1, e2) is a predictable data race of t .

To make the presentation simpler, we assume w.l.o.g that
there are no open critical sections in t , i.e., every lock-
acquire event acq is followed by a matching lock-release
event matcht (acq). Motivated by practical applications, we
also study the complexity of dynamic data-race prediction
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parameterized by a notion of distance between the input
trace t and the witness t∗ that reveals the data race.
Trace distances. Consider a trace t and a correct reordering
t ′ of t . The set of reversals between t and t ′ is defined as

Rv(t , t ′) ={(w1,w2) ∈ WL(t ′) ×WL(t ′) |
w1 Z w2 and w1 <t w2 and w2 <t ′ w1} .

In words, Rv(t , t ′) contains the pairs of conflicting write
events or lock-acquire events, the order of which has been
reversed in t ′ when compared to t . The distance of t ′ from t is
defined as δ (t , t ′) = | Rv(t , t ′)|. Our notion of distance, thus,
only counts the number of reversals of conflicting write or
lock-acquire events instead of counting reversals over all
events (or even conflicting write-read events).
Distance-bounded dynamic data race prediction. Con-
sider a trace t and two events e1, e2 of t . Given an integer
ℓ ≥ 0, the ℓ-distance-bounded dynamic data-race prediction
problem is the promise problem2 that allows for any answer
(True/False) if (e1, e2) is a predictable data race of t and every
witness correct reordering t∗ is such that δ (t , t∗) > ℓ.

2.3 Summary of Main Results

Here we state the main results of this work, and present the
technical details in the later parts of the paper.

2.3.1 The General Case

First, we study the complexity of the problem with respect
to various parameters of the input trace. These parameters
are the number of threads, the number of variables, the lock-
nesting depth, as well as the lock-dependence factor, which,
intuitively, measures the amount of data flow between criti-
cal sections. In the following, <TRF (formal definition in Sec-
tion 3), is the smallest partial order that contains <TO, and
also orders read events after their corresponding observed
write event

(
i.e., RF(r) <TRF r for every r ∈ RL(E(t))

)
.

The lock-dependence factor. The lock-dependence graph
of a trace t is the graph Gt = (Vt ,Et ) defined as follows.
1. The set of vertices is Vt = LA(t), i.e., it is the set of

lock-acquire events of t .
2. The set of edges is such that (acq1, acq2) ∈ Et if

(i) acq1 ≮TRF acq2, (ii) acq1 <TRF matcht (acq2), and
(iii) matcht (acq1) ≮TRF matcht (acq2).

Given a lock-acquire event acq ∈ Vt , let Aacq be the set of
lock-acquire events that can reach acq in Gt . We define the
lock dependence factor of t as maxacq∈Vt |Aacq |. We show the
following theorem.

2 The promise problem ([14]) given languages LTrue and LFalse is to design
an algorithmA such thatA(x ) = True for every x ∈ LTrue,A(x ) = False for
every x ∈ LFalse, and all for all other inputs x < LTrue ∪ LFalse, the output
A(x ) of the algorithm is allowed to be any of True or False.

Theorem 2.2. Consider a trace t of length n, k threads, lock-
nesting depth γ , and lock-dependence factor ζ . The dynamic
data-race prediction problem on t can be solved in O(α · β)
time, where α = min(n,k · γ · ζ )k−2 and β = k · nk .

In particular, the problem is polynomial-time solvable for
a fixed number of threads k . In practice, the parameters k ,
γ and ζ behave as constants, and in such cases our upper-
bound becomes O(nk ). Theorem 2.2 naturally leads to two
questions, namely (i) whether there is a polynomial-time
algorithm for any k , and (ii) if not, whether the problem is
FPT with respect to the parameter k , i.e., can be solved in
O(f (k) ·nO (1)) time, for some function f . Question (ii) is very
relevant, as typically k is several orders of magnitude smaller
than n. We complement Theorem 2.3 with the following
lower-bound, which answers both questions in negative.
Theorem 2.3. The dynamic data-race prediction problem is
W[1]-hard parameterized by the number of threads.

2.3.2 Tree Communication Topologies

Next, we study the problem for tree communication topolo-
gies, such as pipelines and server-clients architectures. We
show the following theorem.
Theorem 2.4. Let t be a trace over a tree communication
topology with n events, k threads and d variables. The dynamic
data-race prediction problem for t can be solved in O(k2 · d ·
n2 · logn) time.

Perhaps surprisingly, in sharp contrast to Theorem 2.3, for
tree topologies there exists an efficient algorithm where the
degree of the polynomial is fixed and does not depend on
any input parameter (e.g., number of threads). Note that the
dominating factor in this complexity is n2, while k and d
are typically much smaller. Hence, the relevant theoretical
question is whether the dependency on n can be improved
further. We show that this is unlikely, by complementing
Theorem 2.4 with the following conditional lower-bound,
based on the Orthogonal Vectors conjecture [8].
Theorem 2.5. Let t be a trace with n events, k ≥ 2 threads
and d ≥ 9 shared global variables with at least one lock. There
is no algorithm that solves the decision problem of dynamic
data-race prediction for t in timeO(n2−ϵ ), for any ϵ > 0, unless
the Orthogonal Vectors conjecture fails.

Since k = 2 implies a tree communication topology, the
result of Theorem 2.4 is conditionally optimal, up-to poly-
logarithmic factors, for a reasonable number of threads and
variables (e.g., when k,d = logO (1)(n)).

2.3.3 Witnesses in Small Distance

Finally, we study the problem in more practical settings,
namely, when (i) the number of threads, lock-nesting depth,
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lock-dependence factor of t are bounded, and (ii) we are
searching for a witness at a small distance from t .
Theorem 2.6. Fix a reversal bound ℓ ≥ 0. Consider a trace t
of length n and constant number of threads, lock-nesting depth
and lock-dependence factor. The ℓ-distance-bounded dynamic
data-race prediction problem for t can be solved in O(n) time.

3 Trace Ideals
3.1 Partial Orders

Partially ordered sets. A partially ordered set (or poset) is
a pair (X , P) where X is a set of (write, read, lock-acquire,
lock-release) events and P is a reflexive, antisymmetric and
transitive relation over X . We will often write e1 ≤P e2 to
denote (e1, e2) ∈ P . Given two events e1, e2 ∈ X we write
e1 <P e2 to denote that e1 ≤P e2 and e1 , e2, and write
e1 ≪P e2 to denote that e1 <P e2 and there exists no event e
such that e1 <P e <P e2. Given two distinct events e1, e2 ∈ X ,
we say that e1 and e2 are unordered by P , denoted by e1 ∥P e2,
if neither e1 <P e2 nor e2 <P e1. We call an event e ∈ X
maximal if there exists no e ′ ∈ X such that e <P e ′. Given a
set Y ⊆ X , we denote by P |Y the projection of P on Y , i.e., we
have P |Y ⊆ Y × Y , and for all e1, e2 ∈ Y , we have e1 ≤P |Y e2
iff e1 ≤P e2. Given two posets (X , P) and (X ,Q), we say that
the partial order Q refines P , denoted by Q ⊑ P , if for every
two events e1, e2 ∈ X , if e1 ≤P e2 then e1 ≤Q e2. If Q refines
P , we say that P is weaker than Q . We denote by Q ⊏ P the
fact thatQ ⊑ P and P ̸⊑ Q . A linearization of (X , P) is a total
order over X that refines P . An order ideal (or simply ideal)
of a poset (X , P) is subset Y ⊆ X such that for every two
events e1 ∈ Y and e2 ∈ X with e2 ≤P e1, we have e2 ∈ Y . An
event e is executable in ideal Y if Y ∪ {e} is also an ideal of
(X , P). The number of threads and variables of a poset (X , P)
is the number of threads and variables of the events of X .
Partially ordered sets with reads-from functions. A
poset with a reads-from function (or rf-poset) is a tuple
(X , P ,RF) where (i) RF: RL(X ) →WL(X ) is a reads-from
function such that for all r ∈ RL(X ), we have RF(r) ∈ W(X )
iff r ∈ R(X ), and (ii) (X , P) is a poset where for all r ∈ RL(X )
we have RF(r) <P r. Notation from posets is naturally lifted
to rf-posets, e.g., an ideal of P is an ideal of (X , P).
Thread-reads-from order and trace ideals. Given a trace
t , the thread-reads-from order TRF(t) (or simply TRF when
t is clear from context) is the weakest partial order over the
set E(t) such that (i) TRF ⊑ TO, and (ii) (E(t), TRF,RFt ) is
an rf-poset. In particular, TRF is the transitive closure of(
TO ∪ {RFt (r) < r | r ∈ R(t)}

)
. A trace ideal of t is an ideal

X of the poset (E(t), TRF). We say an event e ∈ E(t) \ X is
enabled in X if for every e ′ <TO e , we have e ′ ∈ X . We call X
lock-feasible if for every two lock-acquire events acq1, acq2 ∈
LA(X ) with acq1 Z acq2, we have matcht (acqi ) ∈ X for
some i ∈ [2]. We callX feasible if it is lock-feasible, and there
exists a partial order P over X such that (i) P ⊑ TRF|X and

(ii) for every pair of lock-acquire events acq1, acq2 ∈ LA(X )
with acq1 Z acq2, and matcht (acq1) < X , we have rel2 <P
acq1, where rel2 = matcht (acq2). If X is feasible, we define
the canonical rf-poset of X as (X ,Q,RFt |X ), where Q is the
weakest among all such partial orders P . It is easy to see
that Q is well-defined, i.e., there exists at most one weakest
partial order among all such partial orders P .
The realizability problem of feasible trace ideals. The
realizability problem for an rf-poset P = (X , P ,RF) asks
whether there exists a linearization t∗ of P such that RFt ∗ =
RF. Given a trace t and a feasible trace ideal X of t , the
realizability problem for X is the realizability problem of
the canonical rf-poset (X , P ,RF) of X . The following remark
relates the decision problem of dynamic race prediction in t
with the realizability of trace ideals of t .

Remark 1. If t∗ is a witness of the realizability of X , then t∗

is a correct reordering of t . Two conflicting events e1, e2 ∈ E(t)
are a predictable data race of t iff there exists a realizable trace
ideal X of t such that e1, e2 are enabled in X .

Read pairs and triplets. For notational convenience, we
introduce the notion of read pairs and read triplets. Given an
rf-poset P = (X , P ,RF), a read pair (or pair for short) of P is
a pair (w, r) such that r ∈ RL(X ) and w = RF(r) (note that
w ∈ X ). A read triplet (or triplet for short) is a triplet (w, r,w′)
such that (i) (w, r) is a pair of P, (ii) w′ ∈ X , and (iii) w′ , w
and r Z w′. We denote by Pairs(P) and Triplets(P) the set
of pairs and triplets of P, respectively.
Closed rf-posets. We call an rf-poset P = (X , P ,RF) closed
if for every triplet (w, r,w′) ∈ Triplets(P), we have (i) if
w′ <P r then w′ <P w, and (ii) if w <P w′ then r <P
w′. Given, an rf-poset P = (X , P ,RF), the closure of P is
an rf-poset Q = (X ,Q,RF) where Q is the weakest partial
order over X such that Q ⊑ P and Q is closed. If no such
Q exists, we let the closure of P be ⊥. The closure is well-
defined [31]. The associated Closure problem is, given an
rf-poset P, decide whether the closure of P is not ⊥.

Remark 2. An rf-poset is realizable only if its closure exists
and is realizable.

3.2 Bounds on the Number of Feasible Trace Ideals

Remark 1 suggests that the dynamic data-race prediction
problem for a trace t is reducible to deciding whether t has
some realizable trace ideal. In general, if t has length n and k
threads, there exist nk possible trace ideals to test for realiz-
ability. Here we derive another upper-bound on the number
of such ideals that are sufficient to test, based on the number
of threads of t , its lock-nesting depth and its lock-dependence
factor. These parameters typically behave as constants in
practice, and thus understanding the complexity of dynamic
data race prediction in terms of these parameters is crucial.
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Causal cones. Given an event e ∈ E(t), the causal cone
Conet (e) of e ∈ E(t) is the smallest trace ideal X of t so that
e is enabled in X . In words, we construct Conet (e) by taking
the TRF-downwards closure of the thread-local predecessor
e ′ of e (i.e., e ′ ≪TO e). Given a non-empty set of events
S ⊆ E(t), we define the causal cone of S as Conet (S) =⋃

e ∈S Conet (e); notice that Conet (S) is a trace ideal.
Candidate ideal set. Given a set of events X , we denote
by OpenAcqs(X ) the set of lock-acquire events acq such
that matcht (acq) < X . Given two events e1, e2 ∈ E(t), the
candidate ideal set CISt (e1, e2) of e1, e2 is the smallest set of
trace ideals of t such that the following hold.
1. Conet ({e1, e2}) ∈ CISt (e1, e2).
2. Let Y ∈ CISt (e1, e2), acq ∈ OpenAcqs(Y ), rel =

matcht (acq), and Y ′ = Conet (Y ∪ {rel}) ∪ {rel}. If
e1, e2 < Y

′, then Y ′ ∈ CISt (e1, e2).
In light of Remark 1, we will decide whether (e1, e2) is a
predictable data race by deciding the realizability of ideals
in the candidate ideal set. Item 2 states that, as long as there
is some ideal Y in the candidate ideal set such that Y leaves
some critical section open, we construct another ideal Y ′ ⊃
Y by choosing one such open critical section and closing
it, and add Y ′ in the candidate set as well. Intuitively, the
open critical section of Y might deem Y not realizable, while
closing that critical section might makeY ′ realizable. Clearly,
if e1 ∈ Y ′ or e2 ∈ Y ′, then the realizability of Y ′ does not
imply a data race on e1, e2 as one of the two events is not
enabled in Y ′ (Remark 1). As the following lemma shows, in
order to decide whether (e1, e2) is a predictable data race of t ,
it suffices to test for realizability all the ideals in CISt (e1, e2).
Lemma 3.1. (e1, e2) is a predictable data race of t iff there
exists a realizable ideal X ∈ CISt (e1, e2) such that e1, e2 < X .

The following lemma gives an upper-bound on |CISt (e1, e2)|,
i.e., on the number of ideals we need to test for realizability.
Lemma 3.2. We have |CISt (e1, e2)| ≤ min(n,α)k−2, where
α = k ·γ ·ζ , and k is the number of threads,γ is the lock-nesting
depth, and ζ is the lock-dependence factor of t .

4 The General Case
In this section we address the general case of dynamic data-
race prediction. The section is organized in two parts, which
present the formal details of Theorem 2.2 and Theorem 2.3.

4.1 Upper Bound

In this section we establish Theorem 2.2. Recall that, by
Lemma 3.1, the problem is reducible to detecting a realizable
rf-poset in the candidate ideal set of the two events that are
tested for a data-race. Rf-poset realizability is known to be
NP-complete [16], and solvable in polynomial time when the
number of threads is bounded [2]. Here we establish more

precise upper-bounds, based on the number of threads. In
particular, we show the following.
Lemma 4.1. Rf-poset realizability can be solved in O(k · nk )
time for an rf-poset of size n and k threads.

Frontiers and extensions. Let P = (X , P ,RF) be an rf-
poset, and consider an idealY ofP. The frontier ofY , denoted
FrontierP(Y), is the set of pairs (w, r) ∈ Pairs(P) such that
w ∈ Y and r < Y . An event e executable in Y is said to
extend Y if for every triplet (w, r, e) ∈ Triplets(P), we have
(w, r) < FrontierP(Y). In this case, we say that Y ∪ {e} is an
extension of Y via e .
Ideal graphs and canonical traces. Let P = (X , P ,RF) be
an rf-poset. The ideal graph of P, denoted GP = (VP ,EP) is
a directed graph defined as follows.
1. VP is the set of ideals of P.
2. We have (Y1,Y2) ∈ EP iff Y2 is an extension of Y1.
The ideal tree of P, denoted TP = (IP ,RP) is a (arbitrary)
spanning tree ofGP when restricted to nodes reachable from
∅. We let ∅ be the root of TP . Given an ideal Y ∈ IP , we
define the canonical trace tY of Y inductively, as follows. If
Y = ∅ then tY = ϵ . Otherwise, Y has a parent Y ′ in TP
such that Y = Y ′ ∪ {e} for some event e ∈ X . We define
tY = tY ′ ◦ e . Lemma 4.1 relies on the following lemmas. We
refer to Appendix C.1 for the proofs.
Lemma 4.2. We have X ∈ IP iff P is realizable.

Lemma 4.3. The ideal graph GP has O(nk ) nodes.

Proof of Theorem 2.2. Consider a trace t and two conflicting
events e1, e2 ∈ WR(t). By Lemma 3.1, to decide whether
(e1, e2) is a predictable data race of t , it suffices to iterate
over all feasible trace ideals X in the candidate ideal set
CISt (e1, e2), and test whether X is realizable. By Lemma 3.2,
we have |CISt (e1, e2)| = O(α), where α = min(n,k ·γ · ζ )k−2.
Finally, due to Lemma 4.1, the realizability of every such
ideal can be performed in O(k · nk ) = O(β) time. □

4.2 Hardness of Data Race Prediction

Here we establish that the problem of dynamic data-race
prediction is W[1]-hard when parameterized by the number
of threads k . Our proof is established in two steps. In the
first step, we show the following lemma.
Lemma 4.4. Rf-poset realizability parameterized by the num-
ber of threads k is W[1]-hard.

Rf-poset realizability is known to be NP-hard [16, Theo-
rem 4.1], and Lemma 4.4 strengthens that result by showing
that the problem is even unlikely to be FPT. In the second
step, we show how the class of W[1]-hard instances of in
Lemma 4.4 can be reduced to dynamic data-race prediction.
Hardness of rf-poset realizability. Our reduction is from
the INDEPENDENT-SET(c) problem, which takes as input
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an undirected graph G = (V ,E) and asks whether G has an
independent set of size c . INDEPENDENT-SET(c) parame-
terized by c is one of the canonical W[1]-hard problems [12].
Given an input G = (V ,E) of INDEPENDENT-SET(c) with
n = |V |, we construct an rf-poset PG = (X , P ,RF) of size
O(c · n) and O(c) threads such that PG is realizable iff G has
an independent set of size c . We assumewlog that every node
in G has at least one neighbor, otherwise, we can remove all
s such nodes and solve the problem for parameter c ′ = c − s .
The rf-poset PG consists of k = 2 · c + 2 total orders (Xi ,τi ).
Figure 1 provides an illustration. In high level, for each i ∈ [c],
τi and τc+i are used to encode the i-th copy of G, whereas
the last two total orders are auxiliary. Superscripts on the
events and/or their variables refer to the node of G that is
encoded by those events. Below we describe the events and
certain orderings between them. The partial order P is the
transitive closure of these orderings.
1. For i = 2 · c + 1, τi consists of a single event τi = w(x).
2. For i = 2 · c + 2, we have τi = σ ◦ σ, where

σ = r(s1), . . . , r(sc ), acq(ℓ1), . . . , acq(ℓc ) and
σ= r(x), rel(ℓc ), . . . , rel(ℓ1) .

3. For each i ∈ [c], we have τi = τ 1i ◦ τ 2i ◦ . . . ◦ τni , where
each τ ji encodes node j ofG and is defined as follows. Let
τ ji = σ j

i ◦ σji , where

σ j
i = acqi (ℓ{j,l1 }), . . . , acqi (ℓ{j,lm }) and

σji = reli (ℓ{j,lm }), . . . , reli (ℓ{j,l1 })

where l1, . . . , lm are the neighbors of j in G. For each
j ∈ [n] \ {1,n}, the sequence τ ji is identical to τ ji , with
the addition that the innermost critical section (i.e., be-
tween acqi (ℓ{j,lm }) and reli (ℓ{j,lm })) contains the se-
quence w(y ji ), r(z

j
i ). The sequence τ 1i is defined similarly,

except that the innermost critical section contains the
sequence w(si ), r(z1i ). Finally, the sequence τni is defined
similarly, except that the innermost critical section con-
tains the sequence w(yni ), ri (x).

4. For each i ∈ [c], we have τc+i = τ 1c+i ◦ τ 2c+i ◦ . . . ◦ τn−1c+i ,
where τ jc+i = acqj (ℓi ),w(z ji ), r(y

j+1
i ), rel

j (ℓi ).
Note that every memory location is written exactly once,
hence the reads-from function RF is defined implicitly. In
addition, for every read event r, we have RF(r) <P r, as well
as r(x) <P ri (x) for each i ∈ [c].
Correctness. We now sketch the correctness of the construc-
tion, while we refer to Appendix C.2 for the proof. Assume
that P is realizable by a witness t . We say that r(x) sepa-
rates a critical section in t if the lock-acquire (resp., lock-
release) event of that critical section appears before (resp.,
after) r(x) in t . The construction guarantees that, for each
i ∈ [c], r(x) separates the critical sections of τi that encode
some node li of G. By construction, these critical sections

are on locks ℓ{li ,v } , where v ranges over the neighbors of li
in G. Hence, for any i ′ , i , the node li′ cannot be a neigh-
bor of li , as this would imply that both critical sections on
lock ℓ{li ,li′ } are opened before r(x) and closed after r(x) in t ,
which clearly violates lock semantics. Thus, an independent
set A = {l1, . . . , lc } ofG is formed by taking each li to be the
node of G, the critical sections of which belong to thread τi
and are separated by r(x) in t . On the other hand, if G has
an independent set A = {l1, . . . , lc }, a witness t that realizes
P can be constructed by separating the critical sections of
the node li in τi , for each i ∈ [c].
Hardness of dynamic data-race prediction. Finally, we
turn our attention to the hardness of dynamic data-race
prediction. Consider the INDEPENDENT-SET(c) problem
on a graph G and the associated rf-poset PG = (X , P ,RF)
defined above. We construct a trace t with E(t) = X and
RFt = RF such that (w(x), r(x)) is a predictable data-race of t
iff PG is realizable. In particular, t consists of 2 · c + 2 threads
pi , one for each total order τi of PG . We obtain t as

t = τ2·c+1 ◦ t1 ◦ . . . ◦ tc ◦ τ2·c+2 ,

where each ti is an appropriate interleaving of the total or-
ders τi and τc+i that respects the reads-from function RF.
In Appendix C.2, we conclude the proof of Theorem 2.3 by
showing thatG has an independent set of size c iff (w(x), r(x))
is a predictable data-race of t .

Remark 3. It is known that INDEPENDENT-SET(c) cannot
be solved in f (c) · no(c) time under ETH [11]. As our reduction
to rf-poset realizability and dynamic data-race prediction uses
k = O(c) threads, each of these problems does not have a
f (k) · no(k)-time algorithm under ETH.

5 Tree Communication Topologies
In this section we focus on the case where the input trace t
constitutes a tree communication topology. The section is
organized in two parts, which present the formal details of
Theorem 2.4 and Theorem 2.5.

5.1 An Efficient Algorithm for Tree Topologies

In this section we present the formal details of Theorem 2.4.
Recall that the Theorem 2.2 states an O(α · β) upper-bound
for dynamic data-race prediction, where β is the complexity
of deciding rf-poset realizability, and α is an upper-bound
on the number of candidate ideals whose realizability we
need to check. For tree communication topologies, we obtain
Theorem 2.4: (i) we show an improved upper-bound β on
the complexity of the realizability of trace ideals over tree
topologies, and (ii) we show that it suffices to check the
realizability of a single trace ideal (i.e., α = 1). We start with
point (i), and then proceed with (ii).

8



LICS ’20, July 8–11, 2020, Saarbrücken, Germany
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Figure 1. Illustration of the o-poset PG given a graph G and independent-set size c = 2. Edges represent orderings in P .

Tree-inducible rf-posets. Let (X , P) be a poset where X ⊆
E(t). We call (X , P) tree-inducible ifX can be partitioned into
k sets {Xi }1≤i≤k such that the following conditions hold.
1. The graph T = ([k], {(i, j) |Xi Z X j }) is a tree.
2. P |Xi is a total order for each i ∈ [k].
3. For every node ℓ ∈ [k] such that ℓ is an internal node

in T and for every two connected components C1, C2 of
T that are created after removing ℓ from T , we have the
following. Consider two nodes i ∈ C1 and j ∈ C2 and
two events e1 ∈ Xi and e2 ∈ X j such that e1 <P e2, there
exists some event e ∈ Xℓ such that e1 <P e <P e2.

We call an rf-poset (X , P ,RF) tree-inducible if (X , P) is tree-
inducible. The insight is that traces from tree communication
topologies yield tree-inducible trace ideals. Our motivation
behind tree inducibility comes from the following lemma.
Lemma 5.1. Rf-poset realizability of tree-inducible rf-posets
can be solved in O(k2 · d · n2 · logn) time, for an rf-poset of
size n, k threads and d variables.

The proof of Lemma 5.1 is in two steps. Recall the definition
of closed rf-posets from Section 3.1. First, we show that a tree-
inducible, closed rf-poset is realizable (Lemma 5.2). Second,
we show that the closure of a tree-inducible rf-poset is also
tree-inducible (Lemma 5.3).
Lemma 5.2. Every closed, tree-inducible rf-poset is realizable.

Indeed, consider a tree-inducible, closed rf-poset P =

(X , P ,RF). The witness t realizing P is obtained in two steps.
1. We construct a poset (X ,Q) with Q ⊑ P as follows. Ini-

tially, we let Q be identical to P . Let P be tree-inducible
to a tree T = ([k], {(i, j) |Xi Z X j }). We traverse T top-
down, and for every node i and child j of i , for every two

events e1 ∈ Xi and e2 ∈ X j with e1 Z e2 and e2 ≮P e1,
we order e1 <Q e2. Finally, we transitively close Q .

2. We construct t by linearizing (X ,Q) arbitrarily.
In Appendix D.1 we show that t is well-defined and realizes
P. The next lemma shows that tree-inducibility is preserved
under taking closures (if the closure exists).

Lemma 5.3. Consider an rf-poset P = (X , P ,RF) and let
Q = (X ,Q,RF) be the closure of P. If P is tree-inducible then
Q is also tree-inducible.

Since, by Remark 2, an rf-poset is realizable only if its closure
exists and is realizable, Lemma 5.2 and Lemma 5.3 allow
to decide the realizability of an rf-poset by computing its
closure. The complexity of the algorithm comes from the
complexity of deciding whether the closure exists. We refer
to Appendix D.1 for the full proof of Lemma 5.1.
Recall that Lemma 3.2 provides an upper-bound on the num-
ber of trace ideals of t that we need to examine for realizabil-
ity in order to decide data-race prediction. We now proceed
with point (ii) towards Theorem 2.4, i.e., we show that for
tree communication topologies, a single ideal suffices. Our
proof is based on the notion of lock causal cones below.
Lock causal cones. Consider a trace t that defines a tree
communication topology Gt = (Vt ,Et ). Given an event e ∈
E(t) the lock causal cone LConet (e) of e is the set X defined
by the following process. Consider that Gt is rooted in p(e).
1. Initially X contains all predecessors of e in (E(t), TO).

We perform a top-down traversal of Gt , and consider a
current thread p1 visited by the traversal.

2. Let p2 be the parent of p1 in the traversal tree, and e2 be
the unique maximal event in (X |p2, TO), i.e., e2 is the last
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event of thread p2 that appears in X . We insert in X all
events e1 ∈ E(t)|p1 such that e1 <TRF e2.

3. While there exists some lock-acquire event acq1 ∈ X |p1
and there exists another lock-acquire event acq2 ∈
OpenAcqs(X ) with acq1 Z acq2 and p(acq2) = p2, we in-
sert in X all predecessors of rel1 in (E(t), TO) (including
rel1), where rel1 = matcht (acq1).

Observe that, by construction, LConet (e) is a lock-feasible
trace ideal of t . In addition, for any two events e1, e2 ∈ E(t),
the set LConet (e1) ∪ LConet (e2) is an ideal of t , though not
necessarily lock-feasible. Our motivation behind lock causal
cones comes from the following lemma. Intuitively, we can
decide a predictable data-race by deciding the realizability
of the ideal that is the union of the two lock-causal cones.
Lemma 5.4. LetX = LConet (e1)∪LConet (e2). We have that
(e1, e2) is a predictable data race of t iff (i) {e1, e2} ∩ X = ∅,
and (ii) X is a realizable trace ideal of t .

The (⇐) direction of the lemma is straightforward. We refer
to Appendix D.1 for the (⇒) direction. Finally, Theorem 2.4
follows immediately from Lemma 5.1 and Lemma 5.4.

Proof of Theorem 2.4. By Lemma 5.4, we have that (e1, e2) is
a predictable data race of t iff {e1, e2} ∩ X = ∅ and X is
realizable. By Lemma 5.1, deciding the realizability of X is
done inO(k2 ·d ·n2 ·logn) time. The desired result follows. □

5.2 A Lower Bound for Two Threads

In this section we prove a conditional quadratic lower bound
for dynamic data-race prediction for two threads. Our proof
is via a reduction from the Orthogonal Vectors problem.
To make it conceptually simpler, we present our reduction
in two steps. First, we show a fine-grained reduction from
Orthogonal Vectors to the realizability of an rf-poset with
2 threads and 7 variables. Afterwards, we show how the
realizability problem for the rf-posets of the first step can
be reduced to the decision problem of dynamic data race
prediction with 2 threads, 9 variables and 1 lock.
The Orthogonal Vectors problem (OV). An instance of
Orthogonal Vectors consists of two sets A,B, where each set
contains n/2 binary vectors in D dimensions. The task is to
determine whether there exists a pair of vectors (a,b) ∈ A×B
that is orthogonal, i.e., for all i ∈ [D] we have a[i] · b[i] = 0.
There exist algorithms that solve the problem in O(n2 · D)
andO(2D ·n) time, simply by computing the inner product of
each pair (a,b) ∈ A×B and following a classic Four-Russians
technique, respectively. It is conjectured that there is no truly
sub-quadratic algorithm for OV [8].

Conjecture 5.5 (Orthogonal Vectors). There is no algorithm
for OV that operates in O(n2−ϵ · DO (1)) time, for any ϵ > 0.

It is also known that SETH implies the OV conjecture [42].
We first relate OV with rf-poset realizability.

Lemma 5.6. Rf-poset realizability for an rf-poset with 2
threads and 7 variables has no O(n2−ϵ )-time algorithm for
any ϵ > 0, under the Orthogonal Vectors conjecture.

Reduction from OV to rf-poset realizability. For a fine-
grained reduction from OV to rf-poset realizability, con-
sider an OV instance (A,B), where A = (aj )1≤j≤n/2, B =
(bl )1≤l ≤n/2, and each aj ,bl ∈ {0, 1}D . We will construct an
rf-poset P = (X , P ,RF) with 2 threads and 7 variables such
that the closure ofP exists iff there exists a pair of orthogonal
vectors (a,b) ∈ A×B. Since 2 threads define a tree-inducible
rf-poset, Remark 2 and Lemma 5.2 imply that P is realiz-
able iff OV has a positive answer. The set X consists of two
disjoint sets XA,XB , so that each is totally ordered in P . For
ease of presentation, we denote by τA,τB the linear orders
(XA, P |XA) and (XB , P |XB ), respectively. To develop some
insight, we start with a high-level view of the construction,
and then proceed with the details.
Overview of the construction. The linear orders τA and τB
encode the vectors of A and B, respectively. Each of τA and
τB consists ofn/2 segments, so that the i-th (resp. (n/2−i+1)-
th) segment of τA (resp. τB ) encodes the contents of the i-th
vector of A (resp., B). The two total orders are constructed
with a closure computation in mind, which inserts event
orderings in P one-by-one. In high-level, an ordering e1 < e2
encodes the test of whether the bits in a specific coordinate
i of two vectors aj ∈ A and bl ∈ B have product 0. If yes,
and moreover, i < D, then the closure conditions enforce
a new ordering e ′1 < e ′2, which encodes the test of the bits
in coordinate i + 1. Otherwise i = D, and the closure has
been computed and an orthogonal pair has been found. On
the other hand, if the bits in coordinate i have product 1,
the two current vectors are not orthogonal, and the closure
conditions enforce a new ordering e ′′1 < e ′′2 , which encodes
the test of the first coordinate of the next pair of vectors. The
above is achieved using 7 variables {xi }i ∈[7].
Formal construction. We now present the formal details of
the construction (illustrated in Figure 2). The construction
creates various events which have the form eaj and ebl when
they are used at the vector level, and have the form e

aj
i and

ebli , where i ∈ [D], when they are used at the coordinate
level. As a general rule, for each j, l ∈ [n/2 − 1], we have
eaj <τA eaj+1 and ebl+1 <τB ebl , both for events at the vector
and at the coordinate level. At the coordinate level, we also
have eaji+1 <τA e

aj
i and ebli+1 <τB ebli . For succinctness, we

often write e1, e2 < e3 to denote e1 < e3 and e2 < e3. We next
describe the events and orderings between them. The partial
order P is the transitive closure of these orderings.
Events on x1 and x2. For every vector aj ∈ A and coordinate
i ∈ [D], we create three events waj

i (x1), w
aj
i (x2) and raji (x2).

We make RF(raji (x2)) = waj
i (x2), and order

waj
i (x1),w

aj
i (x2) <τA raji (x2) . (1)

10
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τA τB

a1 =

[
0
1

]

a2 =

[
1
0

]

b2 =

[
0
1

]
← Coordinate 1
← Coordinate 2

b1 =

[
1
1

]

wa12 (x1)

wa12 (x2)

wa12 (x3)

wa12 (x6)

ra12 (x2)

wa11 (x2)

wa11 (x1)

ra11 (x6)

wa1 (x4)

wa1 (x5)
ra11 (x2)

wa1 (x7)

ra1 (x5)

wa22 (x2)

wa22 (x1)

wa22 (x3)

wa22 (x6)

ra22 (x2)

wa21 (x1)

wa21 (x2)

ra21 (x6)

ra2 (x7)

wa2 (x4)
ra21 (x2)

wb22 (x2)

wb22 (x1)

wb22 (x3)

rb22 (x1)

wb22 (x6)

wb21 (x1)

wb21 (x2)

rb21 (x3)

wb2 (x4)
rb21 (x1)

wb2 (x5)

wb12 (x1)

wb12 (x2)

wb12 (x3)

rb12 (x1)

wb12 (x6)

wb11 (x1)

wb11 (x2)

rb11 (x3)

wb1 (x7)

rb1 (x4)
rb11 (x1)

Figure 2. Illustration of the reduction of an OV instance
(A = {a1,a2},B = {b1,b2}) to the Closure problem of an P.

For every vector bl ∈ B and coordinate i ∈ [D], we
create three events wbl

i (x1), r
bl
i (x1) and wbl

i (x2). We make
RF(rbli (x1)) = wbl

i (x1), and order

wbl
i (x1),w

bl
i (x2) <τB rbli (x1) . (2)

In addition, we order

waj
i (x2) <τA waj

i (x1) iff aj [i] = 1 and

wbl
i (x1) <τB wbl

i (x2) iff bl [i] = 1 . (3)

Observe that if aj [i] · bl [i] = 1, and if we order waj
i (x1) <

wbl
i (x1) then transitively waj

i (x2) < wbl
i (x2) and hence by

closure raji (x2) < wbl
i (x2).

Events on x3. Let i ∈ [D − 1] be a coordinate. For every vector
aj ∈ A, we create an event waj

i+1(x3), and order

waj
i+1(x1),w

aj
i+1(x2) <τA waj

i+1(x3) <τA waj
i (x1),w

aj
i (x2) . (4)

For every vector bl ∈ B, we create two events wbl
i+1(x3) and

rbli (x3), and make RF(rbli (x3)) = wbl
i+1(x3). We order

wbl
i+1(x1),w

bl
i+1(x2) <τB wbl

i+1(x3) <τB rbli+1(x1) and

wbl
i (x1),w

bl
i (x2) <τB rbli (x3) <τB rbli (x1) . (5)

Observe that if we orderwaj
i (x1) < wbl

i (x1) then we also have
waj
i+1(x3) < rbli (x3), hence by closurew

aj
i+1(x3) < wbl

i+1(x3) and
thus waj

i+1(x1) < rbli (x1).
Events on x6. For every coordinate i ∈ [D − 1], we do as fol-
lows. For every vector aj ∈ A, we create two events w

aj
i+1(x6)

and raji (x6), and make RF(raji (x6)) = waj
i+1(x6). We order

waj
i+1(x3) <τA waj

i+1(x6) <τA raji+1(x2) and
waj
i (x1),w

aj
i (x2) <τA raji (x6) <τA raji (x2) . (6)

For every vector bl ∈ B, we create one event wbl
i+1(x6), and

order
rbli+1(x1) <τB wbl

i+1(x6) <τB wbl
i (x1),w

bl
i (x2) . (7)

Observe that if we order raji+1(x2) < wbl
i+1(x2) , since

wbl
i+1(x2) <τB rbli+1(x1), we also have waj

i+1(x6) < wbl
i+1(x6),

hence by closure raji (x6) < wbl
i+1(x6) and thus waj

i (x2) <
wbl
i (x2).

Events on x4. For every vector aj ∈ A, we create one event
waj (x4), and order

raj1 (x6) <τA waj (x4) <τA raj1 (x2) . (8)
For every vector bl ∈ B, with l ∈ [n/2 − 1], we create
two events wbl+1 (x4) and rbl (x4), and make RF(rbl (x4)) =
wbl+1 (x4). We order

rbl1 (x3) <τB rbl (x4) <τB rbl1 (x1) and

rbl+11 (x3) <τB wbl+1 (x4) <τB rbl+11 (x1) . (9)

Observe that if we order raj1 (x2) < wbl
1 (x2) then we also have

waj (x4) < rbl (x4) (since wbl
1 (x2) <τB rbl1 (x3) by Eq. (5)) and

thus by closure waj (x4) < wbl+1 (x4).
Events on x5 and x7. For every vector aj ∈ A, with j ∈
[n/2−1], we create two eventswaj (x5) and raj (x5), and make
RF(raj (x5)) = waj (x5). We also create two eventswaj (x7) and
raj+1 (x7), and make RF(raj+1 (x7)) = waj (x7). We order
waj (x4) <τA waj (x5) <τA raj1 (x2) <τA waj (x7) <τA raj (x5) and
raj+11 (x6) <τA raj+1 (x7) <τA waj+1 (x4) . (10)

We also create two events wbn/2 (x5) and wb1 (x7), and order

r
bn/2
1 (x1) <τB wbn/2 (x5) <τB w

bn/2−1
D (x1),w

bn/2−1
D (x2) and

rb11 (x3) <τB wb1 (x7) <τB rb1 (x4) . (11)

Observe that if we order raj1 (x2) < w
bn/2
1 (x2) then we also

have waj (x5) < wbn/2 (x5) (since w
bn/2
1 (x2) <τB r

bn/2
1 (x1) by a
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previous item) and thus by closure raj (x5) < wbn/2 (x5). But
then also waj (x7) < wb1 (x7) (since wbn/2 (x5) <τB wb1 (x7))
and thus by closure raj+1 (x7) < wb1 (x7).
Final orderings. Finally, we order

wbn/2 (x5) <τB w
bn/2−1
D (x1),w

bn/2−1
D (x2) . (12)

For each j ∈ [n/2 − 1], we order
raj (x5) <τA waj+1

D (x1),w
aj+1
D (x2) .

For each j ∈ [n/2 − 2], we order

rbj+1 (x1) <τB wbj
D (x1),w

bj
D (x2) . (13)

We make two orderings across τA and τB , namely

wa1
1 (x1) <P rb11 (x1) and w

bn/2
1 (x2) <P r

an/2
1 (x2) . (14)

Correctness. Observe that we have used 7 variables, while
|XA | + |XB | = O(n · D), and the reduction can be easily com-
puted in linear time. We refer to Appendix D.2 for the full
proofs of the correctness of the above construction. This
concludes Lemma 5.6, as any algorithm for rf-poset real-
izability on the above instances that runs in O((n · D)2−ϵ )
time also solves OV in O(n2−ϵ · DO (1)) time. Although the
full proof is rather technical, the correctness is conceptually
straightforward. We illustrate the key idea on the example of
Figure 2, where we perform closure operations by inserting
new orderings in a partial order <.
By construction, we have wa1

1 (x1) < rb11 (x1), which signifies
testing the first coordinate of vectors a1 and b1. Note that
a1[1] · b1[1] = 1, for which our encoding guarantees that
eventually ra11 (x2) < wb1

1 (x2). Indeed, since w
a1
1 (x1) < rb11 (x1),

by closure we also havewa1
1 (x1) < wb1

1 (x1). In turn, this leads
to wa1

1 (x2) < wb1
1 (x2), and by closure, we also have ra11 (x2) <

wb1
1 (x2). This leads to wa1 (x4) < rb1 (x4), and by closure, we

havewa1 (x4) < wb2 (x4). This last ordering leads towa1
1 (x1) <

rb21 (x1), which signifies testing the first coordinate of vectors
a1 and b2, i.e., moving with the next vector of B.
The process for a1 and b2 is similar to a1 and b1, as the two
vectors are found not orthogonal already in the first coordi-
nate. As previously, we eventually arrive at ra11 (x2) < wb2

1 (x2).
Note that this leads to wa1 (x5) < wb2 (x5), and by closure,
we have ra1 (x5) < wb2 (x5). In turn, this leads to wa1 (x7) <
wb1 (x7), and by closure, we have ra2 (x7) < wb1 (x7). This last
ordering leads to wa2

1 (x1) < rb11 (x1), which signifies testing
the first coordinate of vectors a2 and b1, i.e., moving with
the next vector of A and the first vector of B.
The process for a2 and b1 is initially different than before,
as a2[1] · b1[1] = 0, i.e., the test on the first coordinate does
not deem a2 and b1 not orthogonal. By closure, the ordering
wa2

1 (x1) < rb11 (x1) leads to wa2
1 (x1) < wb1

1 (x1). This leads to
wa2
2 (x3) < rb11 (x3), and by closure, we havew

a2
2 (x3) < wb1

2 (x3).
This leads to wa2

2 (x1) < rb12 (x1), which signifies testing the

second coordinate of vectors a2 and b1. As a2[2] · b2[2] = 1,
the two vectors are discovered as non-orthogonal, which
is captured by an eventual ordering ra22 (x2) < wb1

2 (x2). This
ordering which witnesses non-orthogonality is propagated
downwards to the first coordinate, i.e., ra21 (x2) < wb1

1 (x2).
This propagation is made by events on variable x6. Indeed,
first note that, as ra22 (x2) < wb1

2 (x2), we also have wa2
2 (x6) <

wb1
2 (x6), and by closure, we have ra21 (x6) < wb1

2 (x6). This
leads to wa2

1 (x2) < wb1
1 (x2), and by closure, r

a2
1 (x2) < wb1

1 (x2),
whichmarks the two vectors as non-orthogonal. This leads to
wa2 (x4) < rb1 (x4), and by closure, we havewa2 (x4) < wb2 (x4).
This last ordering leads to wa2

1 (x1) < rb21 (x1), which signifies
testing the first coordinate of vectors a2 and b2, i.e., moving
with the next vector of B.
The process for a2 and b2 is initially similar to the previous
case, as a2[1] · b2[1] = 0. However, because we also have
a2[2] · b2[2] = 0, we will not order ra22 (x2) < wb2

2 (x2), and
the closure will terminate after ordering wa2

2 (x1) < wb2
2 (x1).

Since no cyclical orderings were introduce, the closure of P
exists, and by Lemma 5.2,P is realizable. Finally, observe that
if we eventually had ra21 (x2) < wb2

1 (x2) (signifying thata2 and
b2 are not orthogonal, hence there is no orthogonal pair in
A×B), this would create a cycle with the orderingwb2

1 (x2) <P
ra21 (x2), and by Remark 2, P would not be realizable.
Reduction to dynamic data-race prediction. Consider
an instance of the rf-poset P = (X , P ,RF) constructed in
the above reduction, and we construct a trace t and two
events e1, e2 ∈ E(t) such that P is realizable iff (e1, e2) is a
predictable data race of t . The trace t consists of two threads
pA,pB and two local traces τ ′A and τ ′B such that τ ′A and τ ′B
contain the events of pA and pB , respectively. Each of τ ′A and
τ ′B is identical to τA and τB of P, respectively, with some
additional events inserted in it. In particular, besides the vari-
ables xi , i ∈ [7] that appear in the events of X , we introduce
one variable y and one lock ℓ. For the event set, we have

E(t) =X ∪ {w(y), r(y)} ∪ {acqA(ℓ), relA(ℓ)}∪
{acqB (ℓ), relB (ℓ)} ∪ {w(z), r(z)} .

The local traces τ ′A and τ ′B are constructed as follows.
1. For τ ′A, we insert an empty critical section

acqA(ℓ), relA(ℓ) right after wa1
1 (x1). Additionally,

we insert the read event r(y) right before ran/21 (x2), and
the event r(z) as the last event of τ ′A.

2. For τ ′B , we insert thewrite eventw(y) right afterw
bn/2
1 (x2).

Additionally, we insert w(z) right after rb11 (x1), and sur-
round these two events with acqB (ℓ), relB (ℓ).

Finally, we obtain t as t = τ ′B ◦τ ′A, i.e., the two local traces are
executed sequentially and there is no context switching. The
task is to decide whether (w(z), r(z)) is a predictable data
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race of t . We refer to Appendix D.2 for the correctness of the
construction, which concludes Theorem 2.5.

6 Witnesses in Small Distance
The results in the previous sections neglect information pro-
vided by the input trace t about constructing a correct re-
ordering that witnesses the data race. Indeed, our hardness
results show that, in the worst case, the orderings in t pro-
vide no help. However, in practice when a data race exists,
a witness trace t∗ can be constructed that is similar to t . In
fact, virtually all practical techniques predict data races by
constructing t∗ to be very similar to t (e.g., [15, 20, 31, 34, 40]).
The distance-bounded realizability problem of feasi-
ble trace ideals. Given a natural number ℓ, a trace t and a
feasible trace ideal X of t , the solution to the ℓ-distance-
bounded realizability problem is False if X is not realiz-
able, True if there is a witness t∗ that realizes X such that
δ (t , t∗) ≤ ℓ, and can be any answer (True/False) ifX is realiz-
able but anywitness t∗ that realizesX is such that δ (t , t∗) > ℓ.
We remark that this formulation is that of a promise prob-
lem [14]. We are interested in the case where ℓ = O(1).
There exists a straightforward algorithm that operates in
O(|X |2·ℓ) time. The algorithm iterates over all possible sub-
sets of pairs of conflicting write and lock-acquire events that
have size at most ℓ, and tries all possible combinations of
conflicting-write reversals in that set. Theorem 2.6 is based
on the following lemma, which states that the problem can
be solved much faster when k is also constant.

Lemma 6.1. Consider a natural number ℓ, a trace t over n
events and k threads, and a feasible trace ideal X of t . The
ℓ-distance-bounded realizability problem for X can be solved
in O(kℓ+O (1) · n) time.

Proof of Theorem 2.6. By Lemma 6.1, given a trace ideal X of
t , we can solve the ℓ-distance-bounded realizability problem
forX inO(n) time. The proof then follows by Lemma 3.1 and
Lemma 3.2, as to decide whether (e1, e2) is a predictable data
race of t , it suffices to examine O(1) trace ideals of t . □

In the remaining of this section we prove Lemma 6.1. We
first define the notion of read extensions of graphs. After-
wards, we present the algorithm for the lemma, and show
its correctness and complexity.
Read extensions.Consider a digraphG = (X ,E)whereX is
a set of events. Given two events e1, e2 ∈ G , we write e1 ⇝ e2
to denote that e2 is reachable from e1. We callG write-ordered
if for every two distinct conflicting write or lock-acquire
events w1,w2 ∈ WL(X ), we have w1 ⇝ w2 or w2 ⇝ w1
in G. Given an acyclic write-ordered graph G1 = (X ,E1),
the read extension of G1 is the digraph G2 = (X ,E2) where

E2 = E1∪A∪B, where the setsA and B are defined as follows.

A ={(r,w) ∈ RL(X ) ×WL(X ) | r Z w and (RFt (r),w) ∈ E1} ,
B ={(w, r) ∈ WL(X ) × RL(X ) | r Z w and (w,RFt (r)) ∈ E1} .

A fast algorithm for distance-bounded rf-poset realiz-
ability. Let P = (X , P ,RF) be the canonical rf-poset of X ,
and the task is to decide the realizability ofP with ℓ reversals.
We describe a recursive algorithm for solving the problem
for some rf-poset Q = (X ,Q,RF) with ℓ′ reversals, for some
ℓ′ ≤ ℓ, where initially Q = P and ℓ′ = ℓ.
Algorithm and correctness. Consider the set

C ={(w1,w2) ∈ WL(X ) ×WL(X ) |w1 Z w2 and
w1 ∥Q w2 and w1 <t w2} .

We construct a graphG1 = (X ,E1), where E1 = (TRF|X ) ∪C .
Note that G1 is write-ordered. If it is acyclic, we construct
the read extensionG2 ofG1. Observe that ifG2 is acyclic then
any linearization t∗ ofG realizes Q, hence we are done. Now
consider that either G1 or G2 is not acyclic, and let G = G1
if G1 is not acyclic, otherwise G = G2. Given a cycle C of G,
represented as a collection of edges, define the set of cross-
edges of C as C \Q . Note that, since there are k threads, G
has a cycle with ≤ k cross edges. In addition, any trace t∗
that realizes Q must linearize an rf-poset (X ,Qa ,RF) where
a = (e1, e2) ranges over the cross-edges of C. In particular,
we take Qa = Q ∪ {b}, where

b =


(e2, e1), if a ∈ WL(X ) ×WL(X )
(RF(e2), e1), if a ∈ WL(X ) × RL(X )
(e2,RF(e1)), if a ∈ RL(X ) ×WL(X ) .

Observe that any such choice of b reverses the order of two
conflicting write events or lock-acquire events in t . Since
there are ≤ k cross edges in C, there are ≤ k such choices for
Qa . Repeating the same process recursively for the rf-poset
(X ,Qa ,RF) for ℓ′ − 1 levels solves the ℓ′-distance-bounded
realizability problem for Q. Since initially ℓ′ = ℓ and Q = P ,
this process solves the same problem for P and thus for X .
Complexity. The recursion tree above has branching ≤ k
and depth ≤ ℓ, hence there will be at most kℓ recursive
instances. In Appendix E, we provide some lower-level algo-
rithmic details which show that each instance can be solved
inO(kO (1)·n) time. Themain idea is that each of the graphsG1
andG2 have a sparse transitive reduction [3] of sizeO(k · n),
and thus each graph can be analyzed in O(k · n) time.

7 Conclusion
In this work, we have studied the complexity of dynamic
data-race prediction, and have drawn a rich complexity land-
scape depending on various parameters of the input trace.
Our main results indicate that the problem is in polynomial
time when the number of threads is bounded, however, it is
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unlikely to be FPT wrt this parameter. On the other hand,
we have shown that the problem can be solved in, essen-
tially, quadratic time, when the communication topology is
acyclic. We have also proved a quadratic lower bound for
this case, which shows that our algorithm for tree communi-
cation topologies is optimal. Finally, motivated by practical
techniques, we have shown that a distance-bounded version
of data-race prediction can be solved in linear time under
mild assumptions on the input parameters.
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A Details of Section 2
In this section we provide the proof of Lemma 2.1.

Lemma2.1. Given a trace t of lengthn and two events e1, e2 ∈
E(t), we can construct a trace t ′ in O(n) time so that t ′ has a
predictable data race iff (e1, e2) is a predictable data race of t .

Proof. We outline the construction of t ′. We introduce two
locks ℓ1, ℓ2, and for each i ∈ [2], we surround ei with the lock
ℓi , i.e., we replace ei with acq(ℓi ), ei , rel(ℓi ). For every other
event e ∈ E(t) ∩WR(E(t)) \ {e1, e2}, we replace e with the
following sequence

acq(ℓ1), acq(ℓ2), e, rel(ℓ2), rel(ℓ1) .

Observe that the resulting sequence t ′ is a valid trace. It is
easy to see that (e1, e2) can be the only predictable data race
of t ′, and any correct reordering of t that witnesses the data
race (e1, e2) can be transformed to a correct reordering of t ′
that witnesses the same data race, and vice versa.
The desired result follows. □

B Details of Section 3
Here we prove Lemma 3.1 and Lemma 3.2.

Lemma 3.1. (e1, e2) is a predictable data race of t iff there
exists a realizable ideal X ∈ CISt (e1, e2) such that e1, e2 < X .

Proof. The (⇐) direction of the statement is straightforward,
and here we focus on the (⇒) direction. Let t∗ be a correct
reordering that witnesses (e1, e2), and X ∗ = E(t∗). We show
that there exists an ideal X ∈ CISt (e1, e2) such that (i) X ⊆
X ∗, and (ii) OpenAcqs(X ) ⊆ OpenAcqs(X ∗). Observe that
the two conditions imply the lemma: (i) since X ⊆ X ∗, we
have that e1, e2 < X , while both events are enabled in X , and
(ii) since X ⊆ X ∗ and OpenAcqs(X ) ⊆ OpenAcqs(X ∗), we
have that t∗ |X is a correct reordering of t , and hence X is
realizable.
Consider any idealY ∈ CISt (e1, e2) such thatY ⊆ X ∗. Clearly,
at least one such Y exists, by taking Y = Conet ({e1, e2}) and
noticing that Y ⊆ X ∗. If OpenAcqs(Y ) ⊈ OpenAcqs(X ∗),
there exists some lock-acquire event acq ∈ OpenAcqs(Y )
such that rel ∈ X ∗, where rel = matcht (acq). But then Y ′ ∈
CISt (e1, e2), where Y ′ = Y ∪ Conet ({rel}) ∪ {rel}. Note that
Y ′ ⊆ X ∗, and repeat the process for Y = Y ′. Since Y ⊂ Y ′,
this process can be repeated at most n times, thus at some
point we have chosen an ideal Y ∈ CISt (e1, e2) with the
desired properties of X .
The desired result follows. □

Lemma 3.2. We have |CISt (e1, e2)| ≤ min(n,α)k−2, where
α = k ·γ ·ζ , and k is the number of threads,γ is the lock-nesting
depth, and ζ is the lock-dependence factor of t .

Proof. Let Z = CISt (e1, e2) and X = Conet ({e1, e2}). For
an ideal Y ∈ Z \ {X }, let relY be the lock-release event
that lead to Y ∈ Z according to Item 2 of the definition of
CISt (e1, e2), and acqY = matcht (relY ). In addition, we call
the ideal Y ′ ∈ Z with acqY ∈ OpenAcqs(Y ′) that lead to
adding Y ∈ Z the parent of Y . We define inductivelyAX = ∅,
and AY = AY ′ ∪ {acqY }, where Y ′ is the parent of Y . Note
that every ideal Y ∈ Z is uniquely characterized by AY .
LetGt be the lock-dependence graph of t . We show by induc-
tion that for every Y ∈ Z \ {X } there exists a lock-acquire
event acq ∈ OpenAcqs(X ) such that acq is reachable from
acqY inGt . LetY1 be the smallest (wrt set inclusion) ancestor
of Y such that acqY ∈ OpenAcqs(Y1). The statement holds
if Y1 = X , by taking acq = acqY . Otherwise, let Y2 the par-
ent of Y1, and we have acqY1 ∈ OpenAcqs(Y2). Note that
(i) acqY ≮TRF acqY1 (since acqY < Y2), (ii) acqY <TRF relY1
(since acqY ∈ Conet (relY1 )), and (iii) relY ≮TRF relY1 (since
relY < Y1). It follows that (acqY , acqY1 ) is an edge in Gt . By
the induction hypothesis, we have that there exists some
lock-acquire event acq ∈ OpenAcqs(X ) that is reachable
from acqY1 in Gt . Hence acq is reachable by acqY in Gt , as
desired.
Now, let A =

⋃
Y ∈Z AY , and by the previous paragraph,

for every lock-acquire event acq′ ∈ A, there exists a lock-
acquire event acq ∈ OpenAcqs(X ) that is reachable from
acq′ inGt . Hence, |A| ≤ OpenAcqs(X ) · ζ . In addition, since
there are k threads and the lock-nesting depth is γ , we have
|OpenAcqs(X )| ≤ k · γ , thus |A| ≤ k · γ · ζ = α . Moreover,
we trivially have |A| ≤ n.
Finally, since (i) we have k threads, and (ii) in each ideal
Y ∈ Z the events e1 and e2 are enabled, we have |Z | ≤
|A|k−2 ≤ min(n,α)k−2 such ideals.
The desired result follows. □

C Details of Section 4
C.1 Details of Section 4.1

Here we provide formal proofs to Lemma 4.2, Lemma 4.3
and, using these, Lemma 4.1.

Lemma 4.2. We have X ∈ IP iff P is realizable.

Proof. We prove each direction separately.
(⇒). We prove by induction that every canonical trace tY of
TP realizes Y . The statement clearly holds if Y = ϵ . Other-
wise, let tY = tY ′◦e , i.e.,Y is the extension ofY ′ by the event e ,
and by the induction hypothesis we have that tY ′ realizes Y ′.
The statement clearly holds if e ∈ WL(t), so we focus on the
case where e ∈ RL(t). Consider the pair (w, e) ∈ Pairs(X ),
and note that w <TRF e and thus w ∈ Y ′. It remains to ar-
gue that for every triplet (w, e,w′) ∈ Triplets(P), if w′ ∈ Y ′
then w′ <tY ′ w. Assume towards contradiction otherwise,
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thus there exist two ancestors Y1,Y2 ∈ VT
P of Y ′ such that

(i) Y2 = Y1 ∪ {w′} and (ii) w ∈ Y1. In that case we have
(w, r) ∈ FrontierP(Y1), hence w′ could not have been exe-
cutable in Y1, a contradiction.
(⇐). Let t∗ be a witness trace that realizes P. We argue that
for every prefix t ′ of t∗, there exists a nodeX ′ ∈ IP such that
X ′ = E(t ′). The proof is by induction on the prefixes t ′. The
statement clearly holds if t ′ = ϵ , by takingX ′ to be the root of
TP . Otherwise, let t ′ = t ′′, e , for some event e ∈ X , and by the
induction hypothesis, there exists X ′′ ∈ IP such that X ′′ =
E(t ′′). It suffices to argue that e extends X ′′. The statement
is trivial if e ∈ RL(X ), hence we focus on the case where
e ∈ WL(X ). It suffices to argue that for every pair (w, r) ∈
FrontierP(X′′) we have (w, r, e) < Triplets(P). Consider any
such triplet, and since t∗ is a witness of the realizability
of X , we have r ∈ E(t∗). By the induction hypothesis, we
have w ∈ E(t ′′) and r < E(t ′′). But then RFt ∗ (r) , w, a
contradiction.
The desired result follows. □

Lemma 4.3. The ideal graph GP has O(nk ) nodes.

Proof. The statement follows directly from the definition of
poset ideals and the fact that the poset (X , P) has width at
most k . □

We are now ready to prove Lemma 4.1.

Lemma 4.1. Rf-poset realizability can be solved in O(k · nk )
time for an rf-poset of size n and k threads.

Proof. Consider an rf-poset P of size n, k threads and d vari-
ables. By Lemma 4.2, to decide the realizability ofP it suffices
to construct the ideal graphGP and test whetherX ∈ VP . By
Lemma 4.3, GP has O(nk ) nodes, and since P has k threads,
there each node of GX has ≤ k outgoing edges. Hence GX
can be constructed in O(k · nk ) = O(β) time.
The desired result follows. □

C.2 Details of Section 4.2

Here we prove formally Lemma 4.4 and, using this, Theo-
rem 2.3.

Lemma 4.4. Rf-poset realizability parameterized by the num-
ber of threads k is W[1]-hard.

Proof. We show thatPG is realizable iffG has an independent
set of size c . We prove each direction separately.
(⇒) Let t be a trace that realizes PG . For each i ∈ [c], let
mi be the maximum integer j such that the event r(z ji ) has a
predecessor ei in τi with ei <t r(x). Note that for each such
i we have w(si ) <t r(x), and since w(si ) is the predecessor
of r(z1i ) in τi , the index mi is well-defined. We argue that
A = {li }i ∈[c] is an independent set of G, where li = mi if

r(x) <t r(zmi
i ) and li = mi + 1 otherwise. We note that in

the second case, li = n, as, otherwise, we would also have
acqli (ℓi ) <t r(x), and since r(x) is protected by lock ℓi , we
would also have that relli (ℓi ) <t r(x). But then, w(y

l1+1
1 ) <t

r(x), which would contradict our choice ofmi .
Indeed, consider any distinct i1, i2 ∈ [c] and any neighbor
v1 and v2 ofmi1 andmi2 , respectively. Note that our choice
of A = {li }i ∈[c] implies that both acqi1 (ℓ{li1,v1 }) <t r(x) and
acqi2 (ℓ{li2,v2 }) <t r(x). It suffices to argue that both r(x) <t
reli1 (ℓ{li1,v1 }) and r(x) <t reli2 (ℓ{li2,v2 }), as then we have that
(li1 , li2 ) < E, which concludes that A is an independent set of
G.
Assume towards contradiction that reli1 (ℓ{li1,v1 }) <t r(x).
Clearly li1 < n, as r(x) <P reli1 (ℓ{n,v1 }). But then,
acqli1 (ℓi1 ) <t reli1 (ℓ{li1,v1 }) and thus acqli1 (ℓi1 ) <t r(x).
Since r(x) appears in a critical section on lock ℓi1 , we have
relli1 (ℓ1) <t r(x). But then ei1 <t r(x), where ei1 is the prede-
cessor of r(zl1+1i ) in τi1 , which contradicts our definition of
l1. Hence, r(x) <t reli1 (ℓ{li1,v1 }), reli2 (ℓ{li2,v2 }), and thus A is
an independent set of G.
(⇐) Let A be an independent set ofG of size c , and l1, . . . , lc
some arbitrary ordering of A. For each i ∈ [c] let Yi be the
following events of threads i and c + i .
1. All strict predecessors of ei in τi , where ei = r(zlii ) if

li < n and ei = ri (x) otherwise.
2. If li > 1, all predecessors of relli−1(ℓi ) in τc+i (including

relli−1(ℓi )).
For each i ∈ [c], let

Zi = {e ∈ Yi | ∃acq ∈ OpenAcqs(Yi ) s.t. acq ≤P e} ,
i.e., Zi contains all events of τi and τc+i that succeed some
lock-acquire event that is open in Yi . We argue that for any
two distinct i1, i2 ∈ [c], any two lock-acquire events acq1 ∈
Zi1 and acq2 ∈ Zi2 access a different lock. Note that the
statement follows easily if one acq1 or acq2 belongs to τc+i ,
for some i ∈ [c], as the locks accessed by each such total
ordered are only also accessed by τ2·c+2. Hence, we focus on
the case where each of acq1 and acq2 belong to τi , for some
i ∈ [c]. Assume towards contradiction otherwise, hence
there exist distinct i1, i2 ∈ [c] such that (i) acqi1 (ℓ{li1,li2 }) ∈
Zi1 and acqi2 (ℓ{li1,li2 }) ∈ Zi2 , while (ii) reli1 (ℓ{li1,li2 }) < Zi1
and reli2 (ℓ{li1,li2 }) < Zi2 It follows that (li1 , li2 ) ∈ E, which
contradicts the fact that A is an independent set of G.
We now construct a trace t that realizes PG in five phases,
where initially, we have t = ϵ .
1. Phase 1: For each i ∈ [c], we linearize the partial order

P |(Yi \ Zi ) arbitrarily, and append it to t .
2. Phase 2: For each i ∈ [c], we linearize the partial order

P |Zi arbitrarily, and append it to t .
3. Phase 3: We append to t the sequence t1 ◦ w(x), r(x) ◦ t2,

where t1 and t2 are sequences over the events of τ2·c+2,
17
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as follows.

t1 = r(s1), . . . , r(sc ), acq(ℓ1), . . . acq(ℓc ) and
t2 = rel(ℓc ), . . . , rel(ℓ1)

4. Phase 4: For each i ∈ [c], we linearize the partial order
P |(Si \ Yi ), where Si is the smallest ideal of (X , P) that
contains the matching lock-release events of all lock-
acquire events that are open in Yi

5. Phase 5: For each i ∈ [c]we linearize P over the remaining
events of τi and τc+i arbitrarily, and append them to t .

Finally, we argue that t is a valid witness trace. It is straight-
forward to verify that t is a linearization of P . Moreover,
since every memory location is written exactly once in X ,
for every read event r ∈ R(X ) we have RFt (r) = RF(r). It
remains to argue that t respects the critical sections of PG .
Observe that the only phase in which we interleave open crit-
ical sections between total orders τi that access the same lock
is in Phase 2. However, as we have shown, for every two dis-
tinct i1, i2 ∈ [c], any two lock-acquire events acq1 ∈ Zi1 and
acq2 ∈ Zi2 access a different lock. It follows that t respects
the critical sections of PG .
The desired result follows. □

We are now ready to prove Theorem 2.3.

Theorem 2.3. The dynamic data-race prediction problem is
W[1]-hard parameterized by the number of threads.

Proof. We show that (w(x), r(x)) is a predictable data race of
t iff PG is realizable. If PG is realizable, then (w(x), r(x)) is a
predictable data-race of t witnessed by the witness t∗ of the
realizability of PG , as constructed in the proof of Lemma 4.4
(direction⇐), restricted to the events {e ∈ X : e <t ∗ w(x)}.
For the inverse direction, let t∗ be a correct reordering of
t that witnesses the data race (w(x), r(x)). We construct a
trace t ′ that realizes PG as

t ′ = t∗ ◦ w(x), r(x), rel(ℓc ), . . . , rel(ℓ1) ◦ t4 ◦ t5 ,
where t4 and t5 are analogous to the linearizations in phase 4
and Phase 5, respectively, of the construction in the proof of
Lemma 4.4. In particular, let t ′′ be the prefix of t ′ until the
event rel(ℓ1).
1. We construct t4 as follows. For each i ∈ [c], we lin-

earize the set Si \ E(t ′′) and append it to t4, where Si
is the smallest ideal ofX that contains the matching lock-
release events of all lock-acquire events that are open in
t ′′. It is easy to see that each Si contains the event ri (x),
hence t ′ respects the orderings r(x) <P ri (x). Indeed, as
RF(ri (x)) = w(x) and w(x) < t∗, we have that ri (x) < t∗,
and hence by definition, ri (x) ∈ Si .

2. We construct t5 as follows. For each i ∈ [c] we linearize
the remaining events ofτi and τc+i arbitrarily, and append
them to t5.

The correctness is established similarly to the proof of
Lemma 4.4.
The desired result follows. □

D Details of Section 5
D.1 Details of Section 5.1

Herewe provide details of Section 5.1.We start with the proof
of Lemma 5.2. First, consider the construction of witness
trace t , by linearizing the poset (X ,Q). We have the following
lemma, which states that (X ,Q) is well-defined.
Lemma D.1. (X ,Q) is a poset.

Proof. Assume towards contradiction otherwise. Consider
the process in whichwe insert the orderings inQ in sequence,
and examine the first pair of conflicting events (e1, e2) such
that we try to order e1 <Q e2 whereas it already holds that
e2 <Q e1. For j ∈ [2], let i j be such that ej ∈ Xi j , and it
follows that i1 is the parent of i2 in T . Observe that, by the
construction of Q , we have e1 ∥P e2. Consider the sequence
of orderings

e2 = e1 ≪Q e2 ≪Q . . . ≪Q eℓ = e1

that witnesses (transitively) that e2 <Q e1. Since P is tree-
inducible, there exists some j ∈ [ℓ] such that e j ∈ Xi1 and
e2 <P e j . SinceXi1 is totally ordered in P , the events e j and e1
are ordered in P . Clearly e1 <P e j , otherwise we would have
e2 <P e1. But then we already have e j <Q e1, and hence a
cycle already exists inQ , contradicting our assumption about
(e1, e2) being the first pair where a cycle is encountered. The
desired result follows. □

As the above lemma establishes that t is well-defined, we
can prove Lemma 5.2 by showing that t is a witness of the
realizability of P.

Lemma 5.2. Every closed, tree-inducible rf-poset is realizable.

Proof. Consider any triplet (w, r,w′) ∈ Triplets(P) and we
argue that (i) w <t r and (ii) if w <t w′ then r <t w′.
For (i), by the definition of rf-posets, we have w <P r and
thus w <t r. We now turn our attention to (ii). If w′ ∦P r
or w′ ∦P w, since P is closed, we have either w′ <P w
or r <P w′, and hence w′ <Q w or r <Q w′. Since t is
a linearization of Q , the first case leads to a contradiction,
whereas the second case leads to r <t w′, as desired. Now
assume that w′ ∥P r and w′ ∥P w, and let i ∈ [k] be such that
r ∈ Xi . Since P is tree-inducible, it follows that w ∈ Xi and
w′ ∈ X j for some i , j, and such that (i, j) is an edge of T .
Since w <t w′, we have w <Q w′, and thus, by construction,
t j is a child of i inT . Again, by construction, we have r <Q w.
Since t is a linearization of Q , we have that RFt (r) , w′.
The desired result follows. □

18



LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Next, we prove Lemma 5.3, which states that tree-inducibility
is preserved under taking closures.

Lemma 5.3. Consider an rf-poset P = (X , P ,RF) and let
Q = (X ,Q,RF) be the closure of P. If P is tree-inducible then
Q is also tree-inducible.

Proof. Let T = ([k], {(i, j) |Xi Z X j }) be a rooted tree such
that P is tree-inducible to T , and we argue that Q is also
tree-inducible to T . Since Q ⊑ P , clearly the condition 1
and condition 2 of tree-inducibility are met. Condition 3
follows from the fact that (i) Q is the transitive closure of
P ∪ Q ′, where Q ′ is a relation between conflicting events,
and (ii) since T is a tree, for any two conflicting events e1, e2
we have either e1, e2 ∈ Xi for some i ∈ [k], or e1 ∈ Xi and
e2 ∈ X j for some i, j ∈ [k] such that (i, j) is an edge of T .
The desired result follows. □

Now we can conclude the proof of Lemma 5.1, which is
step (i) towards the proof of Theorem 2.4.

Lemma 5.1. Rf-poset realizability of tree-inducible rf-posets
can be solved in O(k2 · d · n2 · logn) time, for an rf-poset of
size n, k threads and d variables.

Proof. Consider a tree-inducible rf-poset P. In O(k2 · d ·
n2 · logn) time, we can decide whether the closure of P =
(X , P ,RF) exists [31]. By Remark 2, if the closure does not
exist, P is not realizable. On the other hand, if the closure
exists, denote it by Q = (X ,Q,RF). By Lemma 5.3, Q is tree-
inducible, and by Lemma 5.2, it is realizable by a witness t∗.
Since Q ⊑ P , we have that t∗ ⊑ P , and thus t∗ also realizes
P.
The desired result follows. □

Wenow turn our attention to Lemma 5.4 which forms step (ii)
towards Theorem 2.4. We start with the following lemma,
which, in high level, guarantees that if t∗ is a trace in which
e is enabled, then t∗ |LConet (e) also has this property.
Lemma D.2. Let X = LConet (e), and t∗ be any correct re-
ordering of t in which e is enabled. The following assertions
hold.

1. X ⊆ E(t∗).
2. Consider any thread p1 , p(e), and thread p2 such that

(i)X |p1 , ∅, and (ii) p2 is a parent of p1 in the tree topology
Gt rooted at p(e). Let e2 be the unique maximal event of
X |p2 in t∗, and e1 any event inX |p1. We have that e1 <t ∗ e2.

Proof. The proof is by induction on the steps of the process
that constructs LConet (e). Clearly, both statements hold af-
ter Item 1 of the process has been executed. Similarly, both
statements hold easily after each time Item 2 of the pro-
cess has been executed. We now proceed with Item 3 of the
process. For each i ∈ [2], consider the lock-acquire events

acqi ∈ X as identified in this step, and reli = matcht (acqi ).
Observe that e2 appears in the critical section of acq2, while
by the induction hypothesis, we have acq1, acq2 ∈ E(t∗). We
distinguish the step that led to acq1 ∈ X .
Step 2. Then acq1 <TRF e2, and thus (i) all predecessors of

rel1 (including rel1) appear in t∗, and (ii) rel1 <t∗ acq2,
hence rel1 <t ∗ e2, and thus e1 <t ∗ e2 for all predecessors
of rel1 inserted to X .

Step 3. For each i ∈ [2], consider the lock-acquire events
acq′i as identified in that step, and rel′i = matcht (acq′i ).
Note that acq1 <TO rel′1, and since, by the induction
hypothesis, we have rel′1 <t ∗ e2, we obtain acq1 <t ∗ e2.
Thus, again, (i) all predecessors of rel1 (including rel1)
appear in t∗, and (ii) rel1 <t∗ acq2, hence rel1 <t ∗ e2, and
thus e1 <t ∗ e2 for all predecessors of rel1 inserted to X .

The desired result follows. □

Next we have a technical lemma, which will allow us to
conclude that if (e1, e2) is a predictable data race of t , the
ideal LConet (e1) ∪ LConet (e2) is lock-feasible.
Lemma D.3. For any two conflicting events e1, e2, consider
the set X = LConet (e1) ∪ LConet (e2). For any two conflicting
events e ′1, e

′
2 ∈ X such that p(e ′i ) , p(e1) for each i ∈ [2], we

have that e ′1, e
′
2 ∈ LConet (ei ), for some i ∈ [2].

Proof. We assume that p(e1) , p(e2), as the statement clearly
holds otherwise. Assume w.l.o.g. that e ′i ∈ LConet (ei ) for
each i ∈ [2], and consider the treeT = ([k], {(i, j) | E(t)|pi Z
E(t)|pj }). Let i1, i2, i ′1, i ′2 ∈ [k] be such that p(e1) = pi1 ,
p(e2) = pi2 , p(e ′1) = pi′1 and p(e ′2) = pi′2 , and since e1 Z e2,
we have that (i1, i2) is an edge of T . Consider the two com-
ponents C1,C2 that are created in T by removing the edge
(i1, i2), such that i1 ∈ C1 and i2 ∈ C2. Since e ′1 Z e ′2 and
i ′1, i
′
2 , i1, we have that i ′1, i ′2 ∈ C1 or i ′1, i ′2 ∈ C2. We only

consider i ′1, i ′2 ∈ C2, as the other case is similar.
Since e ′1 ∈ LConet (e1), there exists event e ∈ LConet (e1)
such that p(e) = pi2 and either e ′1 = e or e ′1 ∈ LConet (e).
If e <TO e2, then LConet (e) ⊆ LConet (e2) and thus
e ′1 ∈ LConet (e2). Otherwise, e2 ∈ LConet (e1), hence
LConet (e2) ⊆ LConet (e1) and thus e ′2 ∈ LConet (e1).
The desired result follows. □

We are now ready to prove Lemma 5.4.

Lemma 5.4. LetX = LConet (e1)∪LConet (e2). We have that
(e1, e2) is a predictable data race of t iff (i) {e1, e2} ∩ X = ∅,
and (ii) X is a realizable trace ideal of t .

Proof. For the (⇐) direction, notice that e1 and e2 are enabled
in X , and since X is realizable, we have that (e1, e2) is a
predictable data race of t . We now focus on the (⇒) direction.
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Let t∗ be a witness of the data race (e1, e2). As e1 and e2 are
enabled in t∗, we have {e1, e2} ∩ E(t∗) = ∅. By Lemma D.2,
we have X ⊆ E(t∗), and thus {e1, e2} ∩ X = ∅.
We now argue that t ′ = t∗ |X realizes X . Since X ⊆
E(t∗) and X is a trace ideal, it only remains to show that
t ′ respects the critical sections. Consider any two lock-
acquire events acq1, acq2 ∈ X such that acq1 Z acq2
and acq1 <t ∗ acq2, and we argue that rel1 ∈ X . where
rel1 = matcht (acq1). Let Y = E(t)|{p(e1), p(e2)}, and ob-
serve that X |{p(e1), p(e2)} = Y , thus the statement is true
if {p(acq1), p(acq2)} ⊆ {p(e1), p(e2)}. Otherwise, we have
p(acqj ) , p(ei ) for some i ∈ [2] and each j ∈ [2]. By
Lemma D.3, we have that acq1, acq2 ∈ LConet (el ) for some
l ∈ [2]. Assume towards contradiction that rel1 < X . By the
definition of LConet (el ), we have that p(acq1) is a parent
of p(acq2) in the tree Gt rooted at p(el ). By Lemma D.2, we
have acq2 <t ∗ e , where e is the last event of X |p(acq1) in t∗.
Note that e belongs to the critical section of acq1, hence we
must have acq2 <t ∗ acq1, a contradiction.
The desired result follows. □

D.2 Details of Section 5.2

Here we provide the proof of Lemma 5.6. We first develop
some helpful notation.
Given integers j, l ∈ [n/2], we denote by X l

j the events of XA

and XB that correspond to vectors aj and bl , that is, events
that have superscript aj orbl , with the following exception: if
the observation RF(r) of a read event r is not in X l

j then r is
also not in X l

j . The notation carries over to partial orders Q l
j

and reads-from functions RFlj . We also use inequalities for
the subscripts and superscripts of X (e.g., X ≤n/2j ) to denote
events that corresponds to vectors aj′ and bl ′ for j ′ and l ′

that satisfy the inequalities.
Consider a partial order Q ′ over a subset Y ⊆ X such that
Q ′ ⊑ τA |Y and Q ′ ⊑ τB |Y . Given two events e1, e2 ∈ Y such
that {e1, e2} ⊈ XA and {e1, e2} ⊈ XB (i.e., the events belong
to different sets among XA and XB ) we say that a Q ′ has a
cross edge e1 <Q ′ e2 to mean that it has the ordering e1 <Q ′ e2
and the orderings that are introduced transitively through it.
Before the final proof of Lemma 5.6, we present some techni-
cal, but conceptually simple, lemmas. Consider the two total
orders τA and τB without any cross edges. The first lemma
reasons at the coordinate level of two vectors aj and bl . It
states that if we start with a cross edge waj

1 (x1) < rbl1 (x1), the
closure rules eventually lead to an ordering raj1 (x2) < wbl

1 (x2)
iff aj and bl are not orthogonal.

Lemma D.4. For any j, l ∈ [n/2], consider the rf-poset Qlj =
(X l

j ,Q
l
j ,RFlj ), where Q l

j has a single cross edge waj
1 (x1) <Q j

i

rbl1 (x1). Let Slj = (X l
j , S

l
j ,RFlj ) be the closure of Qlj . We have

raj1 (x2) <S lj w
bl
1 (x2) iff aj and bl are not orthogonal.

Proof (sketch). First, observe that since waj
1 (x1) <Q l

j
rbl1 (x1),

by closure, we will have waj
1 (x1) <S lj wbl

1 (x1). By a simple
induction on the events on variables x1 and x3, we have that
waj
i (x1) <S lj w

bl
i (x1) for each i ∈ [D]. In turn, one of these

orderings leads to waj
i (x2) <S lj w

bl
i (x2) and thus raji (x2) <S lj

wbl
i (x2) iff aj [i]·bl [i] = 1. By a simple induction on the events

on variables x2 and x6, we have that r
aj
1 (x2) <S lj w

bl
1 (x2) iff

aj and bl are not orthogonal. □

The next lemma reasons at the vector B level. Consider any
fixed j ∈ [n/2]. The lemma states that if we order wa1

1 (x1) <
rb11 (x1), if aj is not orthogonal to bl ′ for any l ′ ≤ n/2 − 1,
the closure rules eventually lead to waj

1 (x1) < r
bn/2
1 (x1). On

the other hand, if there exists a smallest l1 such that aj is
orthogonal to bl1 , the closure rules will stop inserting cross
edges between events of vectors aj and all bl ′ , for l ′ ≥ l1 + 1.
Lemma D.5. For any j ∈ [n/2] and l ≤ n/2 − 1, consider
the rf-poset Q≤l+1j = (X ≤l+1j ,Q ≤l+1j ,RF≤l+1j ), where Q ≤l+1j

has a single cross edge waj
1 (x1) <Q≤l+1j

rb11 (x1). Let S≤l+1j =

(X ≤l+1j , S ≤l+1j ,RF≤l+1j ) be the closure of Q≤l+1j . The following
assertions hold.

1. If aj is not orthogonal to bl ′ for any l ′ ∈ [l], then
waj
1 (x1) <S≤l+1j

rbl+11 (x1).
2. If aj is orthogonal to bl ′ , for some l ′ ∈ [l], then there are no

cross edges in (X l1+1≤l ′≤l+1
j , S l1+1≤l

′≤l+1
j ), where l1 is the

smallest l ′ such that aj is orthogonal to bl ′ .

Proof (sketch). The proof is by induction on l . For the base
case (l = 1), consider the rf-poset Q1

j , and by Lemma D.4,
we have raj1 (x2) <S1

j
wb1

1 (x2) iff aj and b1 are not orthog-
onal. Observe that if raj1 (x2) <S1

j
wb1

1 (x2), we also have
raj1 (x2) <S≤2j wb1

1 (x2), and thuswaj (x4) <S≤2j rb1 (x4). Then, by
closure we have waj (x4) <S≤2j wb2 (x4) and thus transitively
waj
2 (x1) <S≤2j rb21 (x1). On the other hand, it can be easily seen

that if raj1 (x2) ≮S1
j
wb1
1 (x2) then the cross edges in (X ≤2j , S

≤2
j )

are precisely the cross edges in (X ≤1j , S
≤1
j ), and thus there

are no cross edges in (X 2
j , S

2
j ).

Now assume that the claim holds for l , and we argue that it
holds for l+1. By the induction hypothesis, we have that if aj
is not orthogonal to bl ′ for any l ′ ∈ [l], then waj

1 (x1) <S≤l+1j

rbl+11 (x1) and thus waj
1 (x1) <S≤l+2j

rbl+11 (x1). A similar analysis
to the base case shows that if aj is not orthogonal to bl+1
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then waj
1 (x1) <S≤l+2j

rbl+21 (x1). On the other hand, if aj is
orthogonal tobl+1, it can be easily seen that the cross edges in
(X ≤l+2j , S ≤l+2j ) are precisely the cross edges in (X ≤l+1j , S ≤l+1j ),
and thus there are no cross edges in (X l1+1

j , S l1+1j ), where
l1 = l + 1. Finally, if aj is orthogonal to bl ′ for some l ′ ∈ [l],
the statement follows easily by the induction hypothesis.
The desired result follows. □

The next lemma reasons at the vector A level. The lemma
states that if we order wa1

1 (x1) < rb11 (x1), if aj′ is not orthogo-
nal to bl ′ for any j ′ ≤ n/2 − 1 and l ′ ≤ n/2, the closure rules
eventually lead to wan/2

1 (x1) < r
bn/2
1 (x1). On the other hand,

if there exists a smallest j1 such that aj1 is orthogonal to bl ′ ,
for some l ′ ∈ [n/2], the closure rules will stop inserting cross
edges between events of all vectors aj′ and all vectors bl , for
j ′ ≥ j1 + 1 and l ∈ [n/2].
Lemma D.6. For any j ∈ [n/2 − 1], consider the rf-
poset Q≤n/2≤j+1 = (X

≤n/2
≤j+1 ,Q

≤n/2
≤j+1 ,RF

≤n/2
≤j+1), where Q ≤n/2≤j+1 has

a single cross edge wa1
1 (x1) <Q≤n/2≤j+1

rb11 (x1). Let S
≤n/2
≤j+1 =

(X ≤n/2≤j+1 , S
≤n/2
≤j+1 ,RF

≤n/2
≤j+1) be the closure of Q

≤n/2
≤j+1 . The following

assertions hold.

1. If aj′ is not orthogonal to bl ′ for any j ′ ∈ [j] and l ′ ∈ [n/2],
then waj+1

1 (x1) <S≤n/2≤j+1
wb1
1 (x1).

2. If aj′ is orthogonal to bl ′ for some j ′ ∈ [j] and l ′ ∈ [n/2],
then there are no cross edges in (X ≤n/2j1+1≤j′≤j+1, S

≤n/2
j1+1≤j′≤j+1),

where j1 is the smallest j ′ such that aj′ is orthogonal to bl ′ ,
for some l ′ ∈ [n/2].

Proof (sketch). The proof is by induction on j. For the
base case (j = 1), consider the rf-poset Q≤n/21 =

(X ≤n/21 ,Q ≤n/21 ,RF≤n/21 ), and by Lemma D.5, we have that
if a1 is not orthogonal to bl ′ for any l ′ ∈ [n/2 − 1],
then waj

1 (x1) <S≤n/2j
r
bn/2
1 (x1). Consider the rf-poset Qn/21 ,

and by Lemma D.4, we have ra11 (x2) <Sn/21
w
bn/2
1 (x2) iff a1

and bn/2 are not orthogonal. Observe that if ra11 (x2) <Sn/21

w
bn/2
1 (x2), we also have ra11 (x2) <S≤n/21

w
bn/2
1 (x2), and thus

ra11 (x2) <S≤n/2≤2
w
bn/2
1 (x2), hence, transitively, wa1 (x5) <S≤n/2≤2

wbn/2 (x5). Hence, by closure, we have ra1 (x5) <S≤n/2≤2
wbn/2 (x5)

and thus transitively wa1 (x7) <S≤n/2≤2
wbn/2 (x7). Then, by clo-

sure we have ra2 (x7) <S≤n/2≤2
wbn/2 (x7) and thus transitively

wa2
1 (x1) <S≤n/2≤2

rb11 (x1). On the other hand, it can be easily

seen that if ra11 (x2) ≮Sn/21
r
bn/2
1 (x2) then the cross edges in

(X ≤n/2≤2 , S
≤n/2
≤2 ) are precisely the cross edges in (X

≤n/2
1 , S ≤n/21 ),

and thus there are no cross edges in (X ≤n/22 , S ≤n/22 ).

Now assume that the claim holds for j, and we argue that it
holds for j + 1. By the induction hypothesis, we have that if
aj′ is not orthogonal tobl ′ for any j ′ ∈ [j] and l ′ ∈ [n/2], then
raj+11 (x2) <S≤n/2≤j+1

wb1
1 (x2) and thus raj+11 (x2) <S≤n/2≤j+2

wb1
1 (x2). A

similar analysis to the base case shows that if aj+1 is not
orthogonal to bl ′ for any l ′ ∈ [n/2], then raj+21 (x2) <S≤n/2≤j+2

wb1
1 (x2). On the other hand, if aj+1 is orthogonal to some bl ′ ,

it can be easily seen that the cross edges in (X ≤n/2≤j+2 , S
n/2
≤j+2) are

precisely the cross edges in (X ≤n/2≤j+1 , S
n/2
≤j+1). Thus, there are

no cross edges in (X ≤n/2j1+1 , S
≤n/2
j1+1 ), where j1 = j ′ + 1. Finally,

if aj′ is orthogonal to bl ′ for some j ′ ∈ [j] and l ′ ∈ [n/2], the
statement follows easily.
The desired result follows. □

We next have three lemmas that each is symmetric to
Lemma D.4, Item 2 of Lemma D.5, and Item 2 of Lemma D.6,
respectively. The proof of each lemma is analogous to its
symmetric lemma, and is omitted here.
Lemma D.7. For any j, l ∈ [n/2], consider the rf-poset Q

l
j =

(X l
j ,Q

l
j ,RFlj ), where Q

l
j has a single cross edge wbl

1 (x2) <Q j
i

raj1 (x2). Let S
l
j = (X l

j , S
l
j ,RFlj ) be the closure of Q

l
j . We have

rbl1 (x1) <S lj w
aj
1 (x1) iff aj and bl are not orthogonal.

Lemma D.8. For any j ∈ [n/2] and l ≥ 2, consider the
rf-poset Q

≥l−1
j = (X ≥l−1j ,Q

≥l−1
j ,RF≥l−1j ), where Q ≥l−1j has

a single cross edge w
bn/2
l (x2) <Q≥l−1j

raj1 (x2). Let S
≥l−1
j =

(X ≥l−1j , S
≥l−1
j ,RF≥l−1j ) be the closure of Q

≥l−1
j . If aj is orthog-

onal to bl ′ , for some l ′ ∈ [l], then there are no cross edges in
(X l2−1≥l ′≥l−1

j , S l2−1≥l
′≥l−1

j ), where l2 is the largest l ′ such that
aj is orthogonal to bl2 .

Lemma D.9. For any j ≥ 2 with j > 1, consider the rf-
poset Q

≥1
≥j−1 = (X ≥1≥j−1,Q

≥1
≥j−1,RF≥1≥j−1), where Q

≥1
≥j−1 has a

single cross edge w
bn/2
1 (x2) <Q≥1≥j−1 r

an/2
1 (x2). Let S

≥1
≥j−1 =

(X ≥1≥j−1, S
≥1
≥j−1,RF≥1≥j−1) be the closure of Q

≥1
≥j−1. If aj′ is orthog-

onal to bl ′ for some j ′ ∈ [j] and l ′ ∈ [n/2], then there are
no cross edges in (X ≥1j2−1≥j′≥j−1, S

≥1
j2−1≥j′≥j−1), where j2 is the

largest j ′ such that aj′ is orthogonal to bl ′ , for some l ′ ∈ [n/2].

Using Lemma D.4, Lemma D.5, Lemma D.6 we can now prove
Lemma 5.6.
Lemma 5.6. Rf-poset realizability for an rf-poset with 2
threads and 7 variables has no O(n2−ϵ )-time algorithm for
any ϵ > 0, under the Orthogonal Vectors conjecture.

Proof. We show that P is realizable iff there exist j, l ∈ [n/2]
such that aj is orthogonal to bl . We prove each direction
separately.
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(⇒). Since P is realizable, by Remark 2, we have that the
closure of P exists. Let K = (X ,K ,RF) be the closure of
P. Let Q = (X ,Q,RF) where Q has a single cross edge
wa1

1 (x1) <Q rb11 (x1), and S = (X , S,RF) be the closure
of Q. Note that P ⊑ Q and thus K ⊑ S , and we have
that wan/2

1 (x2) ≮S r
bn/2
1 (x2). If w

an/2
1 (x1) <S w

bn/2
1 (x1), by

Lemma D.4, we have that an/2 is orthogonal to bn/2. Other-
wise, if wan/2

1 (x1) <S rb11 (x1), by Item 1 of Lemma D.5, we
have that an/2 is orthogonal to bl , for some l ∈ [n/2]. Finally,
if wan/2

1 (x1) ≮S rb11 (x1), by Item 1 of Lemma D.6, we have
that aj is orthogonal to bl , for some j ≤ n/2−1 and l ∈ [n/2].
(⇐). Let Q = (X ,Q,RF) where Q has a single cross edge
wa1

1 (x1) <Q≤n/2≤j+1
rb11 (x1), and Q = (X ,Q,RF) where Q has a

single cross edge wbn/2
1 (x2) <Q r

an/2
1 (x2). Let S = (X , S,RF)

and S = (X , S,RF) be the closures of Q and Q, respectively.
We argue that (X , S ∪ S) is a poset. Note that this implies the
lemma, as (X , S ∪ S,RF) is the closure of P.
Let (j1, l1) (resp., (j2, l2)) be the lexicographically smallest
(resp., largest) pair of integers in [n/2] × [n/2] such that
aj1 is orthogonal to bl1 (resp., aj2 is orthogonal to bl2 ). We
assume wlog that j1 = j2 = j and l1 = l2 = l , as in any other
case, the relation S ∪ S is strictly smaller. First, assume that
(X l

j , S
l
j ∪S

l
j ) is a poset. By Item 2 of Lemma D.5, we have that

there are no cross edges in Sl+1≤l
′≤n/2

l , while by Lemma D.8,

we have that there are no cross edges in S
l−1≥l ′≥1
j . Similarly,

by Item 2 of Lemma D.6, we have that there are no cross
edges in S≤n/2j+1≤j′ , while by Lemma D.9, we have that there

are no cross edges in S
≥1
j−1≥j′ . It follows that (X , S ∪ S) is a

poset.

It remains to argue that (X l
j , S

l
j ∪ S

l
j ) is a poset. The relation

S lj ∪ S
l
j is the transitive closure of a relation that consists of

the total orders tA |X l
j and tB |X l

j , together with the following
relations, for each i ∈ [D].
waj
i (x1) <S lj w

bl
i (x1) and waj

i (x3) <S lj w
bl
i (x3) and

wbl
i (x2) <S lj w

aj
i (x2) and wbl

i (x6) <S lj w
aj
i (x6)

It is straightforward to verify that if S lj ∪ S
l
j has a cycle then,

for some i ∈ [D], we have
waj
i (x2) <τA waj

i (x1) and wbl
i (x1) <τB wbl

i (x2) .
Thus by construction, aj [i] = 1 and bl [i] = 1, which contra-
dicts the fact that aj is orthogonal to bl .
The desired result follows. □

Finally, we are ready to prove Theorem 2.5.
Theorem 2.5. Let t be a trace with n events, k ≥ 2 threads
and d ≥ 9 shared global variables with at least one lock. There

is no algorithm that solves the decision problem of dynamic
data-race prediction for t in timeO(n2−ϵ ), for any ϵ > 0, unless
the Orthogonal Vectors conjecture fails.

Proof. We complete the proof of Theorem 2.5 by showing
that, in the above construction, P has a closure iff (w(z), r(z))
is a data race of t , witnessed by a correct reordering t∗. Ob-
serve that Q has 2 threads, and is thus tree-inducible. Due
to Lemma 5.2, it suffices to show that P is realizable iff
(w(z), r(z)) is a data race of t .
(⇒). Assume that P is realizable and t ′ is a witness trace.
We construct the correct reordering t∗ as follows. We have
E(t∗) = E(t) \ {rel2(ℓ),w(z), r(z)}. We make t∗ identical to
t ′, i.e., t∗ |X = t ′. For the events E(t∗) \ X , we make (i)
w(y) appear right after wbn/2

1 (x2), (ii) r(y) appear right be-
fore ran/21 (x2), (iii) acqA(ℓ), relA(ℓ) appear right after wa1 (x1),
and (iv) acqB (ℓ) appear last in t∗. Observe that t∗ is a correct
reordering in which w(z) and r(z) are enabled, hence t∗ is a
witness of the data race (w(z), r(z)).
(⇐). Assume that (w(z), r(z)) is a predictable data race of t ,
and let t∗ be a correct reordering of t witnessing the data
race. We construct a trace t ′ as t ′ = t∗ |X , and argue that t ′
realizes P. Clearly RFt ′ = RF. To see that t ′ is a linearization
of (X , P), it suffices to argue that

w
bn/2
1 (x2) <t ′ r

an/2
1 (x2) and wa1

1 (x1) <t ′ r
b1
1 (x1)

The first ordering follows from the fact that

w
bn/2
1 (x2) <t ∗ w(y) <t ∗ ry <t ∗ r

an/2
1 (x2) .

For the second ordering, observe that E(t∗) = E(t) \
{rel2(ℓ),w(z), r(z)}. Hence,

wa1 (x1) <t ∗ rel1(ℓ) <t ∗ acq2(ℓ) <t ∗ rb1a (x1) .

The desired result follows. □

E Details of Section 6
In this section we present the full proof of Lemma 6.1.

Lemma 6.1. Consider a natural number ℓ, a trace t over n
events and k threads, and a feasible trace ideal X of t . The
ℓ-distance-bounded realizability problem for X can be solved
in O(kℓ+O (1) · n) time.

Proof. Let P = (X , P ,RF) be the canonical rf-poset of X , and
the task is to decide the realizability of P with ℓ reversals.
We describe a recursive algorithm for solving the problem
for some rf-poset Q = (X ,Q,RF) with ℓ′ reversals, for some
ℓ′ ≤ ℓ, where initiallyQ = P and ℓ′ = ℓ. We first give a high-
level description and argue about its correctness. Afterwards,
we describe some low-level details that allow us to reason
about the complexity.
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Algorithm and correctness. Consider the set

C ={(w1,w2) ∈ WL(X ) ×WL(X ) : w1 Z w2 and
w1 ∥Q w2 and w1 <t w2} .

We construct a graphG1 = (X ,E1), where E1 = (TRF|X ) ∪C .
Note that G1 is write-ordered. If it is acyclic, we construct
the read extension G2 of G1. Observe that if G2 is acyclic
then any linearization t∗ of G realizes Q, hence we are done.
Now consider that either G1 or G2 is not acyclic, and let
G = G1 if G1 is not acyclic, otherwise G = G2. Given a cycle
C of G, represented as a collection of edges, define the set
of cross-edges of C as C \ Q . Observe that since there are
k threads, G has a cycle with ≤ k cross edges. Indeed, if
there are more than k cross edges in C, then there are two
cross edges that go out of two nodes that belong to the same
thread and hence are connected by a path in G. Then, we
can simply remove one of these edges andG will still have a
cycle. Hence, we can repeat this process until we end up with
a cycle that has ≤ k cross edges. In addition, any trace t∗
that realizes Q must linearize an rf-poset (X ,Qa ,RF) where
a = (e1, e2) ranges over the cross-edges of C. In particular,
we take Qa = Q ∪ {b}, where

b =


(e2, e1), if a ∈ WL(X ) ×WL(X )
(RF(e2), e1), if a ∈ WL(X ) × RL(X )
(e2,RF(e1)), if a ∈ RL(X ) ×WL(X ) .

Observe that any such choice of b reverses the order of two
conflicting write events or lock-acquire events in t . Since
there are ≤ k cross edges in C, there are ≤ k such choices for
Qa . Repeating the same process recursively for the rf-poset
(X ,Qa ,RF) for ℓ′ − 1 levels solves the ℓ′-distance-bounded
realizability problem for Q. Since initially ℓ′ = ℓ and Q = P ,
this process solves the same problem for P and thus for X .
Complexity. The recursion tree above has branching ≤ k and
depth ≤ ℓ, hence there will be at most kℓ recursive instances.
We now provide some lower-level algorithmic details which
show that each instance can be solved in O(kO (1) · n) time.
The main idea is that each of the graphs G1 and G2 have a
sparse transitive reduction [3] of size O(k · n), and thus we
can represent G1 and G2 with few edges.
For the graph G1, we construct a sparse graph G ′1 that pre-
serves the reachability relationships of G1 as follows. We
traverse the trace t top-down. For the current event w such
thatw ∈ WL(X ), for every i ∈ [k], letw1 be the last event of
thread i which precedes w in t , and such that w1 ∈ WL(X )
andw Z w1. Letw′1 be the last event of t such thatw′1 ≤TO w1
and w ≮Q w′1 (note that possibly w′1 = w1). If such w′1 exists,
since X is an ideal, we have w′1 ∈ X . We introduce the edge
w′1 → w in G ′1.
Similarly, for the graph G2, we construct a sparse graph G ′2
that preserves the reachability relationships ofG2 as follows.
We iterate over all read and lock-release events r ∈ X . For

each such r and thread i ∈ [k], we insert two edges (w2, r) and
(r,w3) in G ′2, where w2 (resp., w3) is the latest predecessor
(resp., earliest successor) of RF(r) in thread i that conflicts
with r.
We now argue that all eventsw1,w′1,w2 andw3 above can be
identified in O(n) total time. For every i ∈ [k] and memory
location x , we construct a total order τ xi of all write events
or lock-acquire events on location x of thread pi . Clearly all
such total orders can be constructed in O(n) time.
1. Events w1: as we traverse t top-down, we simply remem-

ber for each memory location x , the last write event or
lock-acquire event on location x for each thread. Hence,
the total time for identifying all such events is O(n).

2. Events w′1: Given the event w1 on memory location x ,
we simply traverse the total order τ xi from w′1 backwards
until we find either (i) an event w′1 with the desired prop-
erties, or (ii) an event w′′1 that has been examined before
when inserting edges to thread pi . In the first case, we
simply add the edge (w′1 → w) as described above. In
the second case we do nothing, as the desired order-
ing is already present due to transitivity through a write
eventw′ of thread pi that has been examined before (thus
w′ <TO w). Hence, every event in every total order τ xi is
examined O(1) times, thus the total time for identifying
all w′1 events is O(n).

3. Events w2 and w3: after we have constructed G ′1, each
pair of such events can be retrieved fromG ′1 inO(1) time.
Hence the total time for identifying all such events is
O(n).

Finally, the above process creates graphsG ′1 andG ′2 that have
O(kO (1) · n) edges. Detecting a cycle C′ in either G ′1 or G ′2 is
done by a simple DFS, which takes linear time in the number
of edges. Converting C′ to a cycle C such that C has at most
k cross edges can be done in O(|C′ |) = O(kO (1) · n) time, by
removing multiple edges whose endpoints are TO-ordered.
The desired result follows. □
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