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Fig. 1. A pair of non-isomorphic expansions of an odd 2-meager multipede by a constant (shoe).

Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in

fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic

minor condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of

the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog

already for the CSPs of first-order reducts of (Q; <); such CSPs are called temporal CSPs and are of fundamental

importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal

CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or

without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of

the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for

temporal CSPs.
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1 INTRODUCTION

The quest for finding a logic capturing Ptime is an ongoing challenge in the field of finite model

theory originally motivated by questions from database theory [38]. Ever since its proposal, most

candidates are based on various extensions of fixed-point logic (FP), for example by counting or by

rank operators. Though not a candidate for capturing Ptime, Datalog is perhaps the most studied

fragment of FP. Datalog is particularly well-suited for formulating various algorithms for solving

constraint satisfaction problems (CSPs); examples of famous algorithms that can be formulated

in Datalog are the arc consistency procedure and the path consistency procedure. In general, the

expressive power of FP is limited as it fails to express counting properties of finite structures such

as even cardinality. However, the combination of a mechanism for iteration and a mechanism for

counting provided by fixed-point logic with counting (FPC) is strong enough to express most known

algorithmic techniques leading to polynomial-time procedures [26, 37]. In fact, all known decision

problems for finite structures that provably separate FPC from Ptime are at least as hard as deciding

solvability of systems of equations over a fixed non-trivial finite Abelian group [56]. If we extend

FPC further by the mod-2 rank operator [37], we obtain the logic FPR2 which is known to capture

Ptime for CSPs of two-element structures [58]. Extending FPC by a single rank operator modulo a

fixed prime number is not sufficient for expressing the solvability of equations modulo a different

prime number [34, 37]. Instead, one typically considers the extension FPR by rank operators modulo

every prime number. This logic is currently one of the two leading candidates for capturing Ptime

for finite-domain CSPs, the other being choiceless polynomial time (CPT). Outside of the scope
of CSPs, the logic FPR has already been eliminated as a candidate and replaced with the more

expressive extension FPR
∗
by the uniform rank operator [37]. It has recently been announced [49]
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that the satisfiability of mod-2
𝑖
equations where 𝑖 is a part of the input, a problem that is clearly

in Ptime, is not even expressible in FPR
∗
. However, the results in [49] have no consequences for

finite-domain CSPs in the standard setting of structures with a finite relational signature.
The first inexpressibility result for FPC is due to Cai, Fürer, and Immerman for systems of

equations over Z2 [23]. In 2009, this result was extended to arbitrary non-trivial finite Abelian

groups by Atserias, Bulatov, and Dawar [2]; their work was formulated purely in the framework

of CSPs. At around the same time, Barto and Kozik [6] settled the closely related bounded width

conjecture of Larose and Zádori [47]. A combination of both works together with results from

[44, 50] yields the following theorem.

Theorem 1.1. For a finite structure B, the following seven statements are equivalent.
(1) CSP(B) is expressible in Datalog [6].
(2) CSP(B) is expressible in FP [2].
(3) CSP(B) is expressible in FPC [2].
(4) B does not pp-construct equations over any non-trivial finite Abelian group [46, 47].
(5) B does not pp-construct equations over Z𝑝 for any prime 𝑝 ≥ 2 [7, 59].
(6) B has weak near-unanimity polymorphisms for all but finitely many arities [50].
(7) B has weak near-unanimity polymorphisms 𝑓 , 𝑔 that satisfy 𝑔(𝑥, 𝑥,𝑦) ≈ 𝑓 (𝑥, 𝑥, 𝑥,𝑦) [44].
(8) B has (𝑛 + 3)-polymorphisms for some 𝑛 [53].

In particular, Datalog, FP, and FPC are equally expressive when it comes to finite-domain CSPs.

This observation raises the question whether the above-mentioned fragments and extensions of FP

might collapse on CSPs in general. In fact, this question was already answered negatively in 2007

by Bodirsky and Kára in their investigation of the CSPs of first-order reducts of (Q; <), also known
as (infinite-domain) temporal CSPs [14]; the decision problem CSP(Q; Rmin), where

Rmin B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑦 < 𝑥 ∨ 𝑧 < 𝑥},
is provably not solvable by any Datalog program [15] but it is expressible in FP, as we will see

later. Since every CSP represents a class of finite structures whose complement is closed under

homomorphisms, this simultaneously yields an alternative proof of a result from [28] stating that

the homomorphism preservation theorem fails for FP.

Several famous NP-hard problems such as the Betweenness problem or the Cyclic Ordering
problem are temporal CSPs. Temporal CSPs have been studied for example in artificial intelligence

[52], scheduling [15], and approximation [40]. Random instances of temporal CSPs have been

studied in [33]. Temporal CSPs fall into the larger class of CSPs of reducts of finitely bounded
homogeneous structures. It is an open problem whether all CSPs of reducts of finitely bounded

homogeneous structures have a complexity dichotomy in the sense that they are in P or NP-complete

(Conjecture 8.1). In this class, temporal CSPs play a particular role since they are among the few

known cases where the important technique of reducing infinite-domain CSPs to finite-domain

CSPs from [16] fails to provide any polynomial-time tractability results.

1.1 Contributions

We present a complete classification of temporal CSPs that can be solved in Datalog, FP, FPC, or

FPR2. The classification leads to the following sequence of inclusions for temporal CSPs:

Datalog ⊊ FP = FPC ⊊ FPR2 .

Our results show that the expressibility of temporal CSPs in these logics can be characterised in

terms of avoiding pp-constructibility of certain structures, namely (Q; Rmin), (Q; X) where
X B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑥 = 𝑦 < 𝑧 ∨ 𝑦 = 𝑧 < 𝑥 ∨ 𝑧 = 𝑥 < 𝑦},
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and ({0, 1}; 1IN3) where
1IN3 B {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Theorem 1.2. Let B be a temporal structure. The following are equivalent:

(1) CSP(B) is expressible in Datalog.
(2) B does not pp-construct ({0, 1}; 1IN3) and (Q; Rmin).
(3) B is preserved by ll and dual ll, or by a constant operation.

Theorem 1.3. Let B be a temporal structure. The following are equivalent:

(1) CSP(B) is expressible in FP.
(2) CSP(B) is expressible in FPC.
(3) B does not pp-construct ({0, 1}; 1IN3) and (Q; X).
(4) B is preserved by min, mi, ll, the dual of one of these operations, or by a constant operation.

Theorem 1.4. Let B be a temporal structure. The following are equivalent:

(1) CSP(B) is expressible in FPR2.
(2) B does not pp-construct ({0, 1}; 1IN3).
(3) B is preserved by mx, min, mi, ll, the dual of one of these operations, or by a constant operation.

As a byproduct of our classification we get that all polynomial-time algorithms for temporal CSPs

from [14] can be implemented in FPR2. Our results also show that every temporal CSP of a structure

that pp-constructs (Q; X) but not ({0, 1}; 1IN3) is solvable in polynomial time, is not expressible

in FPC, and cannot encode systems of equations over any non-trivial finite Abelian group. Such

temporal CSPs are equivalent to the following decision problem under Datalog-reductions:

3-Ord-Xor-Sat
INPUT: A finite homogeneous system of mod-2 equations of length 3.

QUESTION: Does every non-empty subset 𝐸 of the equations have a solution where at least one

variable in an equation from 𝐸 denotes the value 1?

As we will see, there exists a straightforward FP-reduction from 3-Ord-Xor-Sat to satisfiability

of mod-2 equations. However, it is unclear whether there exists an FP-reduction in the opposite

direction. In our inexpressibility result for 3-Ord-Xor-Sat, we use a Datalog-reduction from satisfia-

bility of mod-2 equations restricted to those systems which have at most one solution. We have

eliminated the following candidates for general algebraic criteria for expressibility of CSPs in FP

motivated by the articles [2], [16], and [6], respectively.

Theorem 1.5. CSP(Q; X) is inexpressible in FPC, but

(1) (Q; X) does not pp-construct equations over any non-trivial finite Abelian group,
(2) (Q; X) has pseudo-WNU polymorphisms 𝑓 , 𝑔 that satisfy 𝑔(𝑥, 𝑥,𝑦) ≈ 𝑓 (𝑥, 𝑥, 𝑥,𝑦),
(3) (Q; X) has a 𝑘-ary pseudo-WNU polymorphism for all but finitely many 𝑘 ∈ N.

We have good news and bad news regarding the existence of general algebraic criteria for

expressibility of CSPs in fragments and/or extensions of FP. The bad news is that there is no Maltsev

condition that would capture expressibility of temporal CSPs in Datalog (see Theorem 1.6) which

carries over to CSPs of reducts of finitely bounded homogeneous structures and more generally to

CSPs of 𝜔-categorical templates.

Theorem 1.6. There is no condition preserved by uniformly continuous clone homomorphisms that
would capture the expressibility of temporal CSPs in Datalog.
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This is particularly striking because𝜔-categorical CSPs are otherwisewell-behavedwhen it comes

to expressibility in Datalog—every 𝜔-categorical CSP expressible in Datalog admits a canonical
Datalog program [12]. The good news is that the expressibility in FP for finite-domain and temporal

CSPs can be characterised by universal-algebraic minor conditions. We introduce a family E𝑘,𝑛 of

minor conditions that are similar to the dissected weak near-unanimity identities from [5, 32].

Theorem 1.7. Let B be a finite structure or a temporal structure. The following are equivalent.
(1) CSP(B) is expressible in FP / FPC.
(2) Pol(B) satisfies E𝑘,𝑘+1 for all but finitely many 𝑘 ∈ N.
The polymorphism clone of every first-order reduct of a finitely bounded homogeneous structure

known to the authors satisfies E𝑘,𝑘+1 for all but finitely many 𝑘 if and only if its CSP is in FP / FPC.

This includes in particular all CSPs that are in the complexity class AC0: all of these CSPs can be

expressed as CSPs of reducts of finitely bounded homogeneous structures, by a combination of

results of Rossman [57], Cherlin, Shelah, and Shi [25], and Hubička and Nešetřil [42] (see [10],

Section 5.6.1), and their polymorphism clones satisfy E𝑘,𝑘+1 for all but finitely many 𝑘 . To prove

that the polymorphism clone of a given temporal structure does or does not satisfy E𝑘,𝑘+1 we apply
a new general characterisation of the satisfaction of minor conditions in polymorphism clones of

𝜔-categorical structures (Theorem 7.12).

1.2 Outline of the article

In Section 2, we introduce various basic concepts from algebra and logic as well as some specific

ones for temporal CSPs. In Section 3, we start discussing the descriptive complexity of temporal

CSPs by expressing some particularly chosen tractable temporal CSPs in FP. In Section 4, we

continue the discussion by showing that CSP(Q; X) is inexpressible in FPC but expressible in FPR2.

At this point we have enough information so that in Section 5 we can classify the temporal CSPs

which are expressible in FP / FPC and the temporal CSP which are expressible in FPR2. In Section 6

we classify the temporal CSPs which are expressible in Datalog. In Section 7 we provide results

regarding algebraic criteria for expressibility of finitely bounded homogeneous CSPs in Datalog

and in FP based on our investigation of temporal CSPs.

2 PRELIMINARIES

The set {1, . . . , 𝑛} is denoted by [𝑛]. The set of rational numbers is denoted by Q, and the set of

positive rational numbers by Q>0.

We use the bar notation for tuples; for a tuple 𝑡 indexed by a set 𝐼 , the value of 𝑡 at the position

𝑖 ∈ 𝐼 is denoted by 𝑡 [𝑖]. For a function 𝑓 : 𝐴𝑛 → 𝐵 (𝑛 ≥ 1) and 𝑘-tuples 𝑡1, . . . , 𝑡𝑛 ∈ 𝐴𝑘
, we sometimes

use 𝑓 (𝑡1, . . . , 𝑡𝑛) as a shortcut for the 𝑘-tuple (𝑓 (𝑡1[1], . . . 𝑡𝑛 [1]), . . . , 𝑓 (𝑡1[𝑘], . . . , 𝑡𝑛 [𝑘])). This is usually
called the component-wise action of 𝑓 on 𝐴𝑘

[4].

2.1 Structures and first-order logic

A (relational) signature 𝜏 is a set of relation symbols, each 𝑅 ∈ 𝜏 with an associated natural number

ar(𝑅) called arity. A (relational) 𝜏-structure A consists of a set 𝐴 (the domain) together with the

relations 𝑅A ⊆ 𝐴𝑘
for each relation symbol 𝑅 ∈ 𝜏 with arity 𝑘 . We often describe structures by

listing their domain and relations, that is, we write A = (𝐴;𝑅A
1
, . . . ). We sometimes identify relation

symbols with the relations interpreting them, but only when it improves readability of the text. An

expansion of A is a 𝜎-structure B with 𝐴 = 𝐵 such that 𝜏 ⊆ 𝜎 , 𝑅B = 𝑅A
for each relation symbol

𝑅 ∈ 𝜏 . Conversely, we call A a reduct of B. We write (A, 𝑅) for the expansion of A by the relation 𝑅

over 𝐴. In the context of relational structures, we reserve the notion of a constant for singleton
unary relations. A constant symbol is then a symbol of such a relation.
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A homomorphism ℎ : A → B for 𝜏-structures A,B is a mapping ℎ : 𝐴 → 𝐵 that preserves each
relation ofA, that is, if 𝑡 ∈ 𝑅A

for some𝑘-ary relation symbol𝑅 ∈ 𝜏 , thenℎ(𝑡) ∈ 𝑅B
. WewriteA→ B

if A maps homomorphically to B and A ↛ B otherwise. We say that A and B are homomorphically
equivalent if A→ B and B→ A. An endomorphism is a homomorphism from A to A. The set of
all endomorphisms of A is denoted by End(A). We call a homomorphism ℎ : A → B strong if it

additionally satisfies the following condition: for every 𝑘-ary relation symbol 𝑅 ∈ 𝜏 and 𝑡 ∈ 𝐴𝑘

we have ℎ(𝑡) ∈ 𝑅B
only if 𝑡 ∈ 𝑅A. An embedding is an injective strong homomorphism. We write

A ↩→ B if A embeds to B. A substructure of A is a structure B over 𝐵 ⊆ 𝐴 such that the inclusion

map 𝑖 : 𝐵 → 𝐴 is an embedding. An isomorphism is a surjective embedding. Two structures A and

B are isomorphic if there exists an isomorphism from A to B. An automorphism is an isomorphism

from A to A. The set of all automorphisms of A, denoted by Aut(A), forms a permutation group
w.r.t. the map composition [41]. The orbit of a tuple 𝑡 ∈ 𝐴𝑘

under the component-wise action of

Aut(A) on 𝐴𝑘
is the set {𝑔(𝑡) | 𝑔 ∈ Aut(A)}.

An 𝑛-ary polymorphism of a relational structure A is a mapping 𝑓 : 𝐴𝑛 → 𝐴 such that, for every

𝑘-ary relation symbol 𝑅 ∈ 𝜏 and tuples 𝑡1, . . . , 𝑡𝑛 ∈ 𝑅A
, we have 𝑓 (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅A

. We say that 𝑓

preserves A to indicate that 𝑓 is a polymorphism of A. We might also say that an operation preserves
a relation 𝑅 over 𝐴 if it is a polymorphism of (𝐴;𝑅).

We assume that the reader is familiar with classical first-order logic (FO); we allow the first-order

formulas 𝑥 = 𝑦 and⊥. The positive quantifier-free fragment of FO is abbreviated by pqf. A first-order

𝜏-formula 𝜙 is primitive positive (pp) if it is of the form ∃𝑥1, . . . , 𝑥𝑚 (𝜙1 ∧ · · · ∧𝜙𝑛), where each 𝜙𝑖 is
atomic, that is, of the form ⊥, 𝑥𝑖 = 𝑥 𝑗 , or 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖ℓ ) for some 𝑅 ∈ 𝜏 . Note that if𝜓1, . . . ,𝜓𝑛 are

primitive positive formulas, then ∃𝑥1, . . . , 𝑥𝑚 (𝜓1 ∧ · · · ∧𝜓𝑛) can be re-written into an equivalent

primitive positive formula, so we sometimes treat such formulas as primitive positive formulas as

well. If A is a 𝜏-structure and 𝜙 (𝑥1, . . . , 𝑥𝑛) is a 𝜏-formula with free variables 𝑥1, . . . , 𝑥𝑛 , then the

relation {𝑡 ∈ 𝐴𝑛 | A |= 𝜙 (𝑡)} is called the relation defined by 𝜙 in A, and denoted by 𝜙A
. If Θ is a

set of 𝜏-formulas, we say that an 𝑛-ary relation has a Θ-definition in A if it is of the form 𝜙A
for

some 𝜙 ∈ Θ. When we work with tuples 𝑡 in a relation defined by a formula 𝜙 (𝑥1, . . . , 𝑥𝑛), then we

sometimes refer to the entries of 𝑡 through the free variables of 𝜙 , and write 𝑡 [𝑥𝑖] instead of 𝑡 [𝑖].

Proposition 2.1 (e.g. [10]). Let A be a relational structure and 𝑅 a relation over 𝐴.

(1) If 𝑅 has a first-order definition in A, then it is preserved by all automorphisms of A.
(2) If 𝑅 has a primitive positive definition in A, then it is preserved by all polymorphisms of A.

The main tool for complexity analysis of CSPs is the concept of primitive positive constructions
(see Theorem 2.7).

Definition 2.2 ([8]). Let A and B be relational structures with signatures 𝜏 and 𝜎 , respectively. We

say that B is a (𝑑-dimensional) pp-power of A if 𝐵 = 𝐴𝑑
for some 𝑑 ≥ 1 and, for every 𝑅 ∈ 𝜏 , the

relation {(𝑡1[1], . . . , 𝑡1[𝑑], . . . , 𝑡𝑛 [1], . . . , 𝑡𝑛 [𝑑]) ∈ 𝐴𝑛 ·𝑑 | (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅B} has a pp-definition in A. We

say that B is pp-constructible from A if B is homomorphically equivalent to a pp-power of A. If B is

a 1-dimensional pp-power of A, then we say that B is pp-definable in A.

Primitive positive constructibility, seen as a binary relation, is transitive [8].

A structure is 𝜔-categorical if its first-order theory has exactly one countable model up to

isomorphism. The theorem of Engeler, Ryll-Nardzewski, and Svenonius (Theorem 6.3.1 in [41])

asserts that the following statements are equivalent for a countably infinite structure A with

countable signature:

• A is 𝜔-categorical.

• Every relation over 𝐴 preserved by all automorphisms of A has a first-order definition in A.
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• For every 𝑘 ≥ 1, there are finitely many orbits of 𝑘-tuples under the component-wise action

of Aut(A) on 𝐴𝑘
.

A structure A is homogeneous if every isomorphism between finite substructures of A extends to

an automorphism of A. If the signature of A is finite, then A is homogeneous if and only if A is

𝜔-categorical and admits quantifier-elimination [41]. A structure A is finitely bounded if there is a

universal first-order sentence 𝜙 such that a finite structure embeds into A if and only if it satisfies

𝜙 . The standard example of a finitely bounded homogeneous structure is (Q; <) [16].

2.2 Finite variable logics and counting

We denote the fragment of FO in which every formula uses only the variables 𝑥1, . . . , 𝑥𝑘 by L𝑘
, and

its existential positive fragment by ∃+L𝑘
. By FOC we denote the extension of FO by the counting

quantifiers ∃𝑖 . If A is a 𝜏-structure and 𝜙 a 𝜏-formula with a free variable 𝑥 , then A |= ∃𝑖𝑥 . 𝜙 (𝑥) if
and only if there exist 𝑖 distinct 𝑎 ∈ 𝐴 such that A |= 𝜙 (𝑎). While FOC is not more expressive than

FO, the presence of counting quantifiers might affect the number of variables that are necessary

to define a particular relation. The 𝑘-variable fragment of FOC is denoted by C𝑘 . The infinitary
logic L𝑘

∞𝜔 extends L𝑘
with infinite disjunctions and conjunctions. The extension of L𝑘

∞𝜔 by the

counting quantifiers ∃𝑖 is denoted by C𝑘∞𝜔 , and C𝜔∞𝜔 stands for

⋃
𝑘∈N C𝑘∞𝜔 .

We understand the notion of a logic as defined in [38]. Given two 𝜏-structures A and B and a

logic L, we write A ≡L B to indicate that a 𝜏-sentence from L holds in A if and only if it holds in

B, and we write A⇒L B to indicate that every 𝜏-sentence from L which is true in A is also true

in B. By definition, the relation A⇒L B is reflexive and transitive, and A ≡L B is an equivalence

relation. The relations⇒∃+L𝑘 and ≡C𝑘 have well-known characterizations in terms of two-player

pebble games;⇒∃+L𝑘 is characterized by the existential 𝑘-pebble game, and ≡C𝑘 is characterized

by the bijective 𝑘-pebble game. See, e.g., [3] for details about the approach to these relations via

model-theoretic games. Here we only give a brief definition.

For 𝜏-structures A and B and 𝑌 ⊆ 𝐴, a map 𝑓 : 𝑌 → 𝐵 is called a partial homomorphism
(isomorphism) if it is a homomorphism (an embedding) from the substructure of A on 𝑌 to B. Both
the existential and the bijective game are played on an ordered pair of 𝜏-structures (A,B) by two

players, Spoiler and Duplicator, using 𝑘 pairs of pebbles (𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘 ). In the existential

𝑘-pebble game, in each move, Spoiler chooses 𝑖 ∈ [𝑘] and places the pebble 𝑎𝑖 (which might or

might not already be on an element of A) on any element of A. Duplicator has to respond by placing
the pebble 𝑏𝑖 on an element of B. If at any point, the partial map specified by the pairs of pebbles

placed on the board is not a partial homomorphism from A to B, then the game is over and Spoiler

wins the game. In the bijective 𝑘-pebble game, in each move, Spoiler chooses 𝑖 ∈ [𝑘]. Duplicator
has to respond by selecting a bijection 𝑓 : 𝐴→ 𝐵 with 𝑓 (𝑎 𝑗 ) = 𝑏 𝑗 for all 𝑗 ∈ [𝑘] \ {𝑖} such that the

pair (𝑎 𝑗 , 𝑏 𝑗 ) is already placed on the board. Then Spoiler places the pebble 𝑎𝑖 on any element of A
and the pebble 𝑏𝑖 on its image under 𝑓 . If at any point, the partial map specified by the pairs of

pebbles placed on the board is not a partial isomorphism from A to B, then the game is over and

Spoiler wins the game. In both games, Duplicator wins if the game continues forever.

2.3 Fixed-point logics

Inflationary fixed-point logic (IFP) is defined by adding formation rules to FO whose semantics is

defined with inflationary fixed-points of arbitrary operators, and least fixed-point logic (LFP) is

defined by adding formation rules to FO whose semantics is defined using least fixed-points of

monotone operators. The logics LFP and IFP are equivalent in the sense that they define the same

relations over the class of all structures [45]. For this reason, they are both commonly referred to

as FP (see, e.g., [3]). Datalog is usually understood as the existential positive fragment of LFP (see
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[28]). The existential positive fragments of LFP and IFP are equivalent, because the fixed-point

operator induced by a formula from either of the fragments is monotone, which implies that its

least and inflationary fixed-point coincide (see Proposition 10.3 in [48]). This means that we can

informally identify Datalog with the existential positive fragment of FP. For the definitions of the

counting extensions IFPC and LFPC we refer the reader to [35]. One important detail is that the

equivalence LFP ≡ IFP extends to LFPC ≡ IFPC (see p. 189 in [35]). Again, we refer to both counting

extensions simply as FPC. It is worth mentioning that the extension of Datalog with counting is

also equivalent to FPC [36]. All we need to know about FPC in the present article is Theorem 2.3.

Theorem 2.3 (Immerman and Lander [26]). For every FPC 𝜏-sentence 𝜙 , there exists 𝑘 ∈ N such
that, for all finite 𝜏-structures A and B, if A ≡C𝑘 B, then A |= 𝜙 if and only if B |= 𝜙 .

This result follows from the fact that for every FPC formula 𝜙 there exists 𝑘 such that, on structures

with at most 𝑛 elements, 𝜙 is equivalent to a formula of C𝑘 whose quantifier depth is bounded by a

polynomial function of 𝑛 [26]. Moreover, every formula of FPC is equivalent to a formula of C𝑘∞𝜔
for some 𝑘 , that is, FPC forms a fragment of the infinitary logic C𝜔∞𝜔 (Corollary 4.20 in [55]).

The logic FPR2 extends FPC by the mod-2 rank operator making it the most expressive logic

explicitly treated in this article. It adds an additional logical constructor that can be used to form

a rank term [rk𝑥,𝑦𝜙 (𝑥,𝑦) mod 2] from a given formula 𝜙 (𝑥,𝑦). The value of [rk𝑥,𝑦𝜙 (𝑥,𝑦) mod 2]
in an input structure A is the rank of a {0, 1}-matrix specified by 𝜙 (𝑥,𝑦) through its evaluation

in A. For instance, [rk𝑥,𝑦 (𝑥 = 𝑦) ∧𝜓 (𝑥) mod 2] computes in an input structure A the number of

elements 𝑎 ∈ 𝐴 such that A |= 𝜓 (𝑎) for a given formula𝜓 (𝑥) [27]. The satisfiability of a suitably

encoded system of mod-2 equations𝑀𝑥 = 𝑣 can be tested in FPR2 by comparing the rank of𝑀 with

the rank of the extension of𝑀 by 𝑣 as a last column. A thorough definition of FPR2 can be found in

[27, 37]; our version below is rather simplified, e.g., we disallow the use of ≤ for comparison of

numeric terms, and also the use of free variables over the numerical sort.

Let 𝑆 be a finite set. A fixed-point of an operator 𝐹 : Pow(𝑆) → Pow(𝑆) is an element𝑈 ∈ Pow(𝑆)
with 𝑈 = 𝐹 (𝑈 ). A fixed-point 𝑈 of 𝐹 is called inflationary if it is the limit of the sequence

𝑈𝑖+1 B 𝑈𝑖 ∪ 𝐹 (𝑈𝑖 ) with𝑈0 = ∅ in which case we write𝑈 = Ifp(𝐹 ), and deflationary if it is the limit

of the sequence 𝑈𝑖+1 B 𝑈𝑖 ∩ 𝐹 (𝑈𝑖 ) with 𝑈0 = 𝑆 in which case we write 𝑈 = Dfp(𝐹 ). The members

of either of the sequences are called the stages of the induction. Clearly, Ifp(𝐹 ) and Dfp(𝐹 ) exist
and are unique for every such operator 𝐹 .

Let 𝜏 be a relational signature. The set of inflationary fixed-point (IFP) formulas over 𝜏 is defined

inductively as follows. Every atomic 𝜏-formula is an IFP 𝜏-formula and formulas built from IFP

𝜏-formulas using the usual first-order constructors are again IFP 𝜏-formulas. If 𝜙 (𝑥,𝑦) is an IFP

(𝜏 ∪ {𝑅})-formula for some relation symbol 𝑅 ∉ 𝜏 of arity 𝑘 , 𝑥 is 𝑘-ary, and 𝑦 is ℓ-ary, then [ifp𝑅,𝑥𝜙]
is an IFP 𝜏-formula with the same set of free variables. The semantics of inflationary fixed-point

logic is defined similarly as for first-order logic; we only discuss how to interpret the inflationary

fixed point constructor. Let A be a finite relational 𝜏-structure. For every 𝑐 ∈ 𝐴ℓ
, we consider the

induced operator OpA⟦𝜙 (·, 𝑐)⟧ : Pow(𝐴𝑘 ) → Pow(𝐴𝑘 ), 𝑅 ↦→ {𝑡 ∈ 𝐴𝑘 | (A, 𝑅) |= 𝜙 (𝑡, 𝑐)}. Then
A |= [ifp𝑅,𝑥𝜙] (𝑡, 𝑐) if and only if 𝑡 ∈ IfpOpA⟦𝜙 (·, 𝑐)⟧. To make our IFP formulas more readable, we

introduce the expression [dfp𝑅,𝑥𝜙] as a shortcut for the IFP formula ¬[ifp𝑅,𝑥¬𝜙𝑅/¬𝑅] where 𝜙𝑅/¬𝑅
is obtained from 𝜙 by replacing every occurrence of 𝑅 in 𝜙 with ¬𝑅. Note that 𝑡 ∈ DfpOpA⟦𝜙 (·, 𝑐)⟧
if and only if A |= [dfp𝑅,𝑥𝜙] (𝑡, 𝑐).
Finally, we present a simplified version of the mod-2 rank operator which is, nevertheless,

expressive enough for the purpose of capturing those temporal CSPs that are expressible in FPR2.

We define the set of numeric terms over 𝜏 inductively as follows. Every IFP 𝜏-formula is a numeric

term taking values in {0, 1} corresponding to its truth values when evaluated in A. Composing

numeric terms with the nullary function symbols 0, 1 and the binary function symbols +, ·, which
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have the usual interpretation over N, yields numeric terms taking values in N when evaluated in A.
Finally, if 𝑓 (𝑥,𝑦, 𝑧) is a numeric termwhere 𝑥 is 𝑘-ary,𝑦 is ℓ-ary, and 𝑧 is𝑚-ary, then [rk𝑥,𝑦 𝑓 mod 2]
is a numeric term with free variables consisting of the entries of 𝑧. We use the notation 𝑓 A for

the evaluation of a numeric term 𝑓 in A. For 𝑐 ∈ 𝐴𝑚
, we write MatA

2
⟦𝑓 (·, ·, 𝑐)⟧ for the {0, 1}-

matrix whose entry at the coordinate (𝑡, 𝑠) ∈ 𝐴𝑘 ×𝐴ℓ
is 𝑓 A (𝑡, 𝑠, 𝑐) mod 2. Then [rk𝑥,𝑦 𝑓 mod 2]A (𝑐)

denotes the rank ofMatA
2
⟦𝑓 (·, ·, 𝑐)⟧. The value for [rk𝑥,𝑦 𝑓 mod 2] is well defined because the rank

of MatA
2
⟦𝑓 (·, ·, 𝑐)⟧ does not depend on the ordering of the rows and the columns. Now we can

define the set of FPR2 𝜏-formulas. Every IFP 𝜏-formula is an FPR2 𝜏-formula. If 𝑓 (𝑥) and 𝑔(𝑦) are
numeric terms, then 𝑓 = 𝑔 is an FPR2 𝜏-formula whose free variables are the entries of 𝑥 and 𝑦. The

latter carries the obvious semantics A |= (𝑓 = 𝑔) (𝑡, 𝑠) if and only if 𝑓 A (𝑡) = 𝑔A (𝑠).
Example 2.4. The FPR2 formula

∧𝑖−1

𝑗=0
¬([rk𝑥,𝑦 (𝑥 = 𝑦) ∧𝜙 (𝑥) mod 2] = 𝑗) is equivalent to ∃𝑖𝑥 . 𝜙 (𝑥).

2.4 Logical expressibility of constraint satisfaction problems

The constraint satisfaction problem CSP(B) for a structure B with a finite relational signature 𝜏 is

the computational problem of deciding whether a given finite 𝜏-structure Amaps homomorphically

to B. By a standard result from database theory, A maps homomorphically to B if and only if the

canonical conjunctive query 𝑄A is true in B [24]; 𝑄A is the pp-sentence whose variables are the

domain elements of A and whose quantifier-free part is the conjunction of all atomic formulas that

hold in A. We might occasionally refer to the atomic subformulas of 𝑄A as constraints. We call B a

template of CSP(B). A solution for an instance A of CSP(B) is a homomorphism A→ B.
Formally, CSP(B) stands for the class of all finite 𝜏-structures that homomorphically map to

B. Following Feder and Vardi [30], we say that the CSP of a 𝜏-structure B is expressible in a logic

L if there exists a sentence in L that defines the complementary class co-CSP(B) of all finite
𝜏-structures which do not homomorphically map to B.

Example 2.5. ∃𝑧 [ifp𝑇,(𝑥,𝑦) 𝑥 < 𝑦 ∨ ∃ℎ(𝑥 < ℎ ∧𝑇 (ℎ,𝑦))] (𝑧, 𝑧) defines co-CSP(Q; <).
Naturally, showing logical inexpressibility of CSPs becomes more difficult the further we get

in the search for a logic capturing Ptime. Fortunately, inexpressibility in fixed-point logics can

often be proved by showing inexpressibility in a much stronger infinitary logic with finitely many

variables, e.g., in C𝜔∞𝜔 for FPC. In the case of FPC, we adapt the terminology from [29] and call this

proof method the unbounded counting width argument. Formally, the counting width of CSP(B) for
a 𝜏-structure B is the function that assigns to each 𝑛 ∈ N the minimum value 𝑘 for which there is a

𝜏-sentence 𝜙 in C𝑘 such that, for every 𝜏-structure A with |𝐴| ≤ 𝑛, we have A |= 𝜙 if and only if

A→ B [29]. By Theorem 2.3, if CSP(B) has unbounded counting width, then it is inexpressible in

FPC. The main tool for transferring logical (in)expressibility results for CSPs are logical reductions.

Definition 2.6 ([2]). Let 𝜎 , 𝜏 be finite relational signatures. Moreover, let Θ be a set of FPR2 𝜎-

formulas. A Θ-interpretation of 𝜏 in 𝜎 with 𝑝 parameters is a tuple I of 𝜎-formulas fromΘ consisting

of a distinguished (𝑑 + 𝑝)-ary domain formula 𝛿I (𝑥,𝑦) and, for each 𝑅 ∈ 𝜏 , an (𝑛 · 𝑑 + 𝑝)-ary
formula 𝜙I,𝑅 (𝑥1, . . . , 𝑥𝑛, 𝑦) where 𝑛 = ar(𝑅). The image of A under I with parameters 𝑐 ∈ 𝐴𝑝

is the

𝜏-structure I(A, 𝑐) with domain {𝑡 ∈ 𝐴𝑑 | A |= 𝛿I (𝑡, 𝑐)} and relations

𝑅I(A,𝑐) = {(𝑡1, . . . , 𝑡𝑛) ∈ (𝐴𝑑 )𝑛 | A |= 𝜙I,𝑅 (𝑡1, . . . , 𝑡𝑛, 𝑐)}.
LetB be a𝜎-structure andC a 𝜏-structure.WewriteCSP(B) ≤Θ CSP(C) and say thatCSP(B) reduces
to CSP(C) under Θ-reducibility if there exists a Θ-interpretation I of 𝜏 in 𝜎 with 𝑝 parameters such

that, for every finite 𝜎-structure A with |𝐴| ≥ 𝑝 , the following are equivalent:

• A→ B,
• I(A, 𝑐) → C for some injective tuple 𝑐 ∈ 𝐴𝑝

,
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• I(A, 𝑐) → C for every injective tuple 𝑐 ∈ 𝐴𝑝
.

Seen as a binary relation, Θ-reducibility is transitive if Θ is any of the standard logical fragments

or extensions of FO we have mentioned so far. The following reducibility result was obtained in [2]

for finite-domain CSPs. A close inspection of the original proof reveals that the statement holds for

infinite-domain CSPs as well.

Theorem 2.7 (Atserias, Bulatov, and Dawar [2]). Let B and C be structures with finite relational
signatures such that B is pp-constructible from C. Then CSP(B) ≤Datalog CSP(C).

It is important to note that ≤Datalog preserves the expressibility of CSPs in L for every L ∈
{Datalog, FP, FPC, FPR2}. This fact is mentioned in [2] forL = C𝜔∞𝜔 and in [1] for Datalog (referring

to the techniques in [43]); we include a short proof which uses a result from [31].

Proposition 2.8. Let B, C be structures with finite relational signatures. If CSP(B) ≤Datalog CSP(C)
and CSP(C) is expressible in L ∈ {Datalog, FP, FPC, FPR2}, then CSP(B) is expressible in L.

Proof. We only prove the statement in the case of Datalog. The remaining cases are analogous

and in fact even simpler, because FP, FPC and FPR2 allow inequalities.

Let 𝜎 be the signature of B, let 𝜏 be the signature of C, and let 𝜙C be a Datalog 𝜏-sentence

that defines co-CSP(C). Let I be an interpretation of 𝜏 in 𝜎 with 𝑝 parameters witnessing that

CSP(B) ≤Datalog CSP(C). Consider the sentence 𝜙 ′B obtained from 𝜙C by the following sequence of

syntactic replacements. First, we introduce a fresh 𝑝-tuple 𝑦 of existentially quantified variables.

Second, we replace each existentially quantified variable 𝑥𝑖 in𝜙C by a𝑑-tuple 𝑥𝑖 of fresh existentially

quantified variables and conjoin 𝜙C with the formula

∧
𝑖 𝛿I (𝑥𝑖 , 𝑦). Then, we replace each atomic

formula in 𝜙C of the form 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖𝑛 ) for 𝑅 ∈ 𝜏 by the formula 𝜙I,𝑅 (𝑥𝑖1 , . . . , 𝑥𝑖𝑛 , 𝑦); we also

readjust the arities of the auxiliary relation symbols and the amount of the first-order free variables

in each IFP subformula of 𝜙C. Finally, we conjoin the resulting formula with

∧
𝑖≠𝑗 𝑦[𝑖] ≠ 𝑦[𝑗]. Now,

for all 𝜎-structures A with |𝐴| ≥ 𝑝 , we have that A |= 𝜙 ′B if and only if I(A, 𝑐) |= 𝜙C for some

injective tuple 𝑐 ∈ 𝐴𝑝
. Since 𝜙C defines the class of all instances of CSP(C) which have no solution,

𝜙 ′B defines the class of all instances of CSP(B) with at least 𝑝 elements which have no solution.

Let 𝜙 ′′B be the disjunction of the canonical conjunctive queries for all the finitely many instances

A1, . . . ,Aℓ of CSP(B) with less than 𝑝 elements which have no solution. Then 𝜙 ′′B defines the class

of all instances of CSP(B) with less than 𝑝 elements which have no solution. Let A be a 𝜎-structure

with |𝐴| < 𝑝 . If A ↛ B, then A |= 𝑄A𝑖
for some 𝑖 ∈ [ℓ], which implies A |= 𝜙 ′′B . If A → B, then

A |̸= 𝑄A𝑖
for every 𝑖 ∈ [ℓ], otherwise A𝑖 → A for some 𝑖 ∈ [ℓ] which yields a contradiction

to A𝑖 ↛ B. Thus 𝜙 ′B ∨ 𝜙 ′′B defines co-CSP(B). We are not finished yet, because 𝜙 ′B ∨ 𝜙 ′′B is not a

valid Datalog sentence. It is, however, a valid sentence in Datalog(≠), the expansion of Datalog by

inequalities between variables. Note that, if A ↛ B and A→ A′, then A′ ↛ B, i.e., co-CSP(B) is a
class closed under homomorphisms. Thus, by Theorem 2 in [31], there exists a Datalog sentence

𝜙B that defines co-CSP(B). We conclude that CSP(B) is expressible in Datalog. □

We now introduce a formalism that simplifies the presentation of algorithms for TCSPs. For

an 𝑛-ary tuple 𝑡 and 𝐼 ⊆ [𝑛], we use the notation proj𝐼 (𝑡) for the tuple (𝑡 [𝑖1], . . . , 𝑡 [𝑖𝑚]) where
𝐼 = {𝑖1, . . . , 𝑖𝑚} with 𝑖1 < · · · < 𝑖𝑚 . The function proj𝐼 naturally extends to relations. For 𝑅 ⊆ 𝐵𝑛

and 𝐼 ⊆ [𝑛], the projection of𝑅 to 𝐼 is defined as proj𝐼 (𝑅). We call the projection proper if 𝐼 ∉ {∅, [𝑛]},
and trivial if it equals 𝐵 |𝐼 | . For 𝑅 ⊆ 𝐵𝑛 and ∼ ⊆ [𝑛]2, the contraction of 𝑅 modulo ∼, denoted by

ctrn∼ (𝑅), is defined as {𝑡 ∈ 𝑅 | 𝑡 [𝑖] = 𝑡 [𝑗] for all (𝑖, 𝑗) ∈ ∼}. Whenever it is convenient, we will

assume that the set of relations of a temporal structure is closed under projections and contractions.

Note that these relations are pp-definable in the structure, and hence adding them to the structure
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does not influence the set of polymorphisms (Proposition 2.1), and it also does not influence the

expressibility of its CSP in Datalog, FP, FPC, or FPR2 (Theorem 2.7).

Definition 2.9 (Projections and contractions). Let A be an instance of CSP(B) for a 𝜏-structure B.
The projection of A to𝑉 ⊆ 𝐴 is the 𝜏-structure proj𝑉 (A) obtained from A as follows. The domain

of proj𝑉 (A) is 𝑉 and, for 𝑅 ∈ 𝜏 , the relation 𝑅proj𝑉 (A) consists of all tuples 𝑡 for which there exists

�̃� ∈ 𝜏 such that 𝑡 ∈ proj𝐼 (�̃�A) and 𝑅B = proj𝐼 (�̃�B) where 𝐼 B {𝑖 ∈ [𝑛] | 𝑡 [𝑖] ∈ 𝑉 }.
The contraction of A modulo𝐶 ⊆ 𝐴2

is the 𝜏-structure ctrn𝐶 (A) obtained from A as follows. The

domain of ctrn𝐶 (A) is 𝐴 and, for 𝑅 ∈ 𝜏 , the relation 𝑅ctrn𝐶 (A)
consists of all tuples 𝑡 for which there

exists �̃� ∈ 𝜏 such that 𝑡 ∈ �̃�A
and 𝑅B = ctrn∼ (�̃�B) where ∼ B {(𝑖, 𝑗) ∈ [𝑛]2 | (𝑡 [𝑖], 𝑡 [𝑗]) ∈ 𝐶}.

2.5 Temporal CSPs

A structure with domain Q is called temporal if its relations are first-order definable in (Q; <). An
important observation is that if B is a temporal structure and 𝑓 is an order-preserving map between

two finite subsets of Q, then 𝑓 can be extended to an automorphism of B. This is a consequence of
Proposition 2.1 and the fact that (Q; <) is homogeneous. Relations which are first-order definable

in (Q; <) are called temporal. The dual of a temporal relation 𝑅 is defined as {−𝑡 | 𝑡 ∈ 𝑅}, where the
operation 𝑥 ↦→ −𝑥 acts component-wise. The dual of a temporal structure is the temporal structure

whose relations are precisely the duals of the relations of the original one. Every temporal structure

is homomorphically equivalent to its dual via the map 𝑥 ↦→ −𝑥 , which means that both structures

have the same CSP. The CSP of a temporal structure is called a temporal CSP (TCSP).

Definition 2.10 (Min-tuples). Themin-indicator function 𝜒 : Q𝑘 → {0, 1}𝑘 is defined by 𝜒 (𝑡)[𝑖] B 1

if and only if 𝑡 [𝑖] is a minimal entry in 𝑡 ; we call 𝜒 (𝑡) ∈ {0, 1}𝑘 the min-tuple of 𝑡 ∈ Q𝑘 . As usual, if
𝑅 ⊆ Q𝑘 , then 𝜒 (𝑅) denotes {𝜒 (𝑡) | 𝑡 ∈ 𝑅}. For 𝑡 ∈ Q𝑘 , we set argmin(𝑡) B {𝑖 ∈ [𝑘] | 𝜒 (𝑡)[𝑖] = 1}.
Definition 2.11 (Free sets). Let B be a temporal structure with signature 𝜏 and A an instance of

CSP(B). A free set ofA is a non-empty subset 𝐹 ⊆ 𝐴 such that, if𝑅 ∈ 𝜏 is𝑘-ary and 𝑠 ∈ 𝑅A
, then either

no entry of 𝑠 is contained in 𝐹 , or there exists a tuple 𝑡 ∈ 𝑅B
such that argmin(𝑡) = {𝑖 ∈ [𝑘] | 𝑠[𝑖] ∈ 𝐹 }.

If 𝑅 ∈ 𝜏 has arity 𝑘 and 𝑠 ∈ 𝐴𝑘
, we define the system of min-sets SMS𝑅 (𝑠) as the set of all

𝑀 ⊆ {𝑠[1], . . . , 𝑠[𝑘]} for which there exists 𝑡 ∈ 𝑅B
such that argmin(𝑡) = {𝑖 ∈ [𝑘] | 𝑠[𝑖] ∈ 𝑀}. For a

subset 𝑉 of {𝑠[1], . . . , 𝑠[𝑘]}, we define ↓𝑅⟦𝑉⟧(𝑠) as the set of all𝑀 ∈ SMS𝑅 (𝑠) such that𝑀 ⊆ 𝑉 , and

↑𝑅⟦𝑉⟧(𝑠) as the set of all𝑀 ∈ SMS𝑅 (𝑠) such that 𝑉 ⊆ 𝑀 .

Let B be a temporal structure. If an instance A of CSP(B) has a solution, then there must exist a

non-empty set 𝐹 ⊆ 𝐴 consisting of the elements of 𝐴 which have the minimal value in the solution.

It is easy to see that every such 𝐹 is a free set of A. However, it is not the case that the existence of a
free set guarantees the existence of a solution. For example, if B = (Q; <), then ∅ ⊊ 𝐹 ⊆ 𝐴 is a free

set of A if and only if the elements of 𝐹 do not appear in the second argument of any <-constraint

of A. But even if such 𝐹 exists, the remaining part of A might contain a directed <-cycle and thus

be unsatisfiable. Only a repeated search for free sets can guarantee the existence of a solution, and

testing containment in a free set is a decision problem in itself whose complexity depends on the

first-order definitions of the relations of B in (Q; <). This topic is covered in Section 3.

2.6 Clones and minions

An at least unary operation on a set 𝐴 is called a projection onto the 𝑖-th coordinate, and de-

noted by proj𝑖 , if it returns the 𝑖-th argument for each input value. A set of A operations over

a fixed set 𝐴 is called a clone (over 𝐴) if it contains all projections and, whenever 𝑓 ∈ A is 𝑛-

ary and 𝑔1, . . . , 𝑔𝑛 ∈ A are𝑚-ary, then 𝑓 (𝑔1, . . . , 𝑔𝑛) ∈ A , where 𝑓 (𝑔1, . . . , 𝑔𝑛) is the𝑚-ary map

(𝑥1, . . . , 𝑥𝑚) ↦→ 𝑓 (𝑔1 (𝑥1, . . . , 𝑥𝑚), . . . , 𝑔𝑛 (𝑥1, . . . , 𝑥𝑚)). The set of all polymorphisms of a relational
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structure A, denoted by Pol(A), is a clone. For instance, the clone Pol({0, 1}; 1IN3) consists of all
projection maps on {0, 1}, and is called the projection clone [21]. A minion is a set of functions with

a common domain which is closed under compositions of a single function with projections; in

particular, clones are minions. Let A and B be sets of operations over 𝐴 and 𝐵, respectively. A

map b : A → B is called

• a clone homomorphism if it preserves arities, projections, and compositions, that is,

b (𝑓 (𝑔1, . . . , 𝑔𝑛)) = b (𝑓 ) (b (𝑔1), . . . , b (𝑔𝑛))
holds for all 𝑛-ary 𝑓 and𝑚-ary 𝑔1, . . . , 𝑔𝑛 from A ,

• a minion homomorphism if it preserves arities and those compositions as above where

𝑔1, . . . , 𝑔𝑛 are projections,

• uniformly continuous if for every finite 𝐵′ ⊆ 𝐵 there exists a finite 𝐴′ ⊆ 𝐴 such that if

𝑓 , 𝑔 ∈ A of the same arity agree on 𝐴′, then b (𝑓 ) and b (𝑔) agree on 𝐵′.

The recently closed finite-domain CSPs tractability conjecture can be reformulated as follows: the

polymorphism clone of a finite structure A either admits a minion homomorphism to the projection

clone in which case CSP(A) is NP-complete, or it does not and CSP(A) is polynomial-time tractable

[8]. The former is the case if and only if A pp-constructs all finite structures. Later, we will need

the following lemma.

Lemma 2.12 ([8]). Let A and B be structures such that B is pp-constructible from A. Then there is a
minion homomorphism from Pol(A) to Pol(B).

Proof. For some 𝑑 ≥ 1, there exists a 𝑑-dimensional pp-power A′ of A and homomorphisms

ℎ′ : A′→ B and ℎ : B→ A′. Let b ′ be the map that sends 𝑓 ∈ Pol(A) to its component-wise action

on 𝐴𝑑
. By Proposition 2.1, b ′ is a clone homomorphism from Pol(A) to Pol(A′). Then it is easy to

see that b (𝑓 ) B ℎ′ ◦ b ′(𝑓 ) ◦ ℎ is a minion homomorphism from Pol(A) to Pol(B). □

2.7 Polymorphisms of temporal structures

The following notions were used in the P versus NP-complete complexity classification of TCSPs

[14]. Let min denote the binary minimum operation on Q. The dual of a 𝑘-ary operation 𝑓 on Q
is the map (𝑥1, . . . , 𝑥𝑘 ) ↦→ −𝑓 (−𝑥1, . . . ,−𝑥𝑛). Let us fix any endomorphisms 𝛼, 𝛽,𝛾 of (Q;<) such
that 𝛼 (𝑥) < 𝛽 (𝑥) < 𝛾 (𝑥) < 𝛼 (𝑥 + Y) for every 𝑥 ∈ Q and every Y ∈ Q>0. Such unary operations can

be constructed inductively, see the paragraph below Lemma 26 in [14]. Later in the article, we will

need the following observation which highlights the special properties of these endomorphisms.

Lemma 2.13. For all 𝑥,𝑦 ∈ Q, we have the following
(1) 𝛼 (𝑥) < 𝛽 (𝑦) if and only if 𝑥 ≤ 𝑦,
(2) 𝛽 (𝑥) < 𝛼 (𝑦) if and only if 𝑥 < 𝑦.

Proof of Lemma 2.13. We get (2) simply by negating (1) because 𝛼 and 𝛽 have disjoint images.

For (1), arbitrarily choose 𝑥,𝑦 ∈ Q. If 𝑥 ≤ 𝑦, then 𝛼 (𝑥) ≤ 𝛼 (𝑦) because 𝛼 is an endomorphism of

(Q; <). Moreover, 𝛼 (𝑦) < 𝛽 (𝑦) by the definition of 𝛼 and 𝛽 . Thus 𝛼 (𝑥) < 𝛽 (𝑦) in this case. If 𝑥 > 𝑦,

then 𝛼 (𝑥) > 𝛽 (𝑦) follows directly from the definition of 𝛼 and 𝛽 . □

Then mi and mx are the binary operations on Q defined by

mi(𝑥,𝑦) B


𝛼 (min(𝑥,𝑦)) if 𝑥 = 𝑦,

𝛽 (min(𝑥,𝑦)) if 𝑥 < 𝑦,

𝛾 (min(𝑥,𝑦)) if 𝑥 > 𝑦,

and mx(𝑥,𝑦) B
{
𝛼 (min(𝑥,𝑦)) if 𝑥 ≠ 𝑦,

𝛽 (min(𝑥,𝑦)) if 𝑥 = 𝑦,
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respectively. Note that the kernels of the operations mi and mx refine the kernel of the operation

min. Namely, mi(𝑥,𝑦) < mi(𝑥 ′, 𝑦 ′) if and only if

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) and −𝜒 (𝑥,𝑦) is smaller than −𝜒 (𝑥 ′, 𝑦 ′) w.r.t. the lexicographic order,

and mx(𝑥,𝑦) < mx(𝑥 ′, 𝑦 ′) if and only if

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) and 𝑥 ≠ 𝑦 while 𝑥 ′ = 𝑦 ′.

In [14], the operation mi defined exactly the opposite order on pairs (𝑥,𝑦) and (𝑦, 𝑥) for distinct
𝑥,𝑦 ∈ Q than in our case. However, it is easy to see that our version of the operation generates the

same clone. We only deviate from the original definition for cosmetic reasons which will become

clear in Definition 7.19. Let ll be an arbitrary binary operation on Q such that ll(𝑥,𝑦) < ll(𝑥 ′, 𝑦 ′) if
and only if

• 𝑥 ≤ 0 and 𝑥 < 𝑥 ′, or
• 𝑥 ≤ 0 and 𝑥 = 𝑥 ′ and 𝑦 < 𝑦 ′, or
• 𝑥, 𝑥 ′ > 0 and 𝑦 < 𝑦 ′, or
• 𝑥 > 0 and 𝑦 = 𝑦 ′ and 𝑦 < 𝑦 ′.

Theorem 2.14 (Bodirsky and Kára [14, 20]). Let B be a temporal structure. Either B is preserved by
min, mi, mx, ll, the dual of one of these operations, or a constant operation and CSP(B) is in P, or B
pp-constructs ({0, 1}; 1IN3) and CSP(B) is NP-complete.

There are two additional operations that appear in soundness proofs of algorithms for TCSPs; pp is

an arbitrary binary operation on Q that satisfies pp(𝑥,𝑦) ≤ pp(𝑥 ′, 𝑦 ′) if and only if

• 𝑥 ≤ 0 and 𝑥 ≤ 𝑥 ′, or
• 0 < 𝑥 , 0 < 𝑥 ′, and 𝑦 ≤ 𝑦 ′,

and lex is an arbitrary binary operation on Q that satisfies lex(𝑥,𝑦) < lex(𝑥 ′, 𝑦 ′) if and only if

• 𝑥 < 𝑥 ′, or
• 𝑥 = 𝑥 ′ and 𝑦 < 𝑦 ′.

If a temporal structure is preserved by min,mi, or mx, then it is preserved by pp, and if a temporal

structure is preserved by ll, then it is preserved by lex [14].

3 FIXED-POINT ALGORITHMS FOR TCSPS

In this section, we discuss the expressibility in FP for some particularly chosen TCSPs that are

provably in P. By Theorem 2.14, a TCSP is polynomial-time tractable if its template is preserved by

one of the operations min,mi,mx, or ll. In the case of min, the known algorithm from [14] can be

formulated as an FP algorithm. In the case of mi and ll, the known algorithms from [14, 15] cannot

be implemented in FP as they involve choices of arbitrary elements. We show that there exist

choiceless versions that can be turned into FP sentences. In the case of mx, the known algorithm

from [14] cannot be turned into an FP sentence because it relies on the use of linear algebra. We

show in Section 4 that, in general, the CSP of a temporal structure preserved by mx cannot be

expressed in FP but it can be expressed in the logic FPR2.

3.1 A procedure for TCSPs with a template preserved by pp

We first describe a procedure for temporal languages preserved by pp as it appears in [14], and

then the choiceless version that is necessary for the translation into an FP sentence.

Let A be an instance of CSP(B). The original procedure searches for a non-empty set 𝑆 ⊆ 𝐴 for

which there exists a solution A→ B under the assumption that the projection of A to 𝐴 \ 𝑆 has a
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solution as an instance of CSP(B). It was shown in [14] that 𝑆 has this property if it is a free set of

A, and that A ↛ B if no free set of A exists. We improve the original result by showing that the

same holds if we replace “a free set” in the statement above with “a non-empty union of free sets”.

Proposition 3.1. Let A be an instance of CSP(B) for some temporal structure B preserved by pp and
let 𝑆 a union of free sets of A. Then A has a solution if and only if proj𝐴\𝑆 (A) has a solution.
Proof. Let 𝐹1, . . . , 𝐹𝑘 be free sets of A and set 𝑆 B 𝐹1 ∪ · · · ∪ 𝐹𝑘 . Clearly, if A has a solution

then so has proj𝐴\𝑆 (A). For the converse, suppose that proj𝐴\𝑆 (A) has a solution 𝑓 . Let 𝑆 𝑗 B
𝐹 𝑗 \ (𝐹1 ∪ · · · ∪ 𝐹 𝑗−1) for every 𝑗 ∈ {1, . . . , 𝑘}. We claim that a map 𝑓 ′ : 𝐴 → Q is a solution to

A if 𝑓 ′ |𝐴\𝑆 = 𝑓 , 𝑓 ′(𝑆1) < 𝑓 ′(𝑆2) < · · · < 𝑓 ′(𝑆𝑘 ) < 𝑓 ′(𝐴 \ 𝑆), and 𝑓 ′ is constant on 𝑆𝑖 for every

𝑖 ∈ [𝑘]. To verify this, let 𝑠 be an arbitrary tuple from 𝑅A ⊆ 𝐴𝑚
such that, without loss of generality,

{𝑠[1], . . . , 𝑠[𝑚]} ∩ 𝑆 = {𝑠[1], . . . , 𝑠[ℓ]} ≠ ∅. By the definition of proj𝐴\𝑆 (A), there is a tuple 𝑡 ∈ 𝑅B
such

that 𝑡 [𝑖] = 𝑓 (𝑠[𝑖]) for every 𝑖 ∈ {ℓ +1, . . . ,𝑚}. Since 𝐹1, . . . , 𝐹𝑘 are free, there are tuples 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅B

such that, for every 𝑖 ∈ [𝑘] and every 𝑗 ∈ [𝑚], we have 𝑗 ∈ argmin(𝑡𝑖 ) if and only if 𝑠[𝑗] ∈ 𝐹𝑖 .

For every 𝑖 ∈ [𝑘] let 𝛼𝑖 ∈ Aut(Q;<) be such that 𝛼𝑖 maps the minimal entry of 𝑡𝑖 to 0. The tuple

𝑟𝑖 B pp(𝛼𝑖𝑡𝑖 , 𝑡) is contained in 𝑅B
because 𝑅B

is preserved by pp. It follows from the definition

of pp that, for all 𝑗 ∈ [𝑚], 𝑗 ∈ argmin(𝑟𝑖 ) if and only if 𝑠[𝑗] ∈ 𝐹𝑖 . Moreover, (𝑟𝑖 [ℓ + 1], . . . , 𝑟𝑖 [𝑚]) and
(𝑡 [ℓ + 1], . . . , 𝑡 [𝑚]) lie in the same orbit of Aut(Q;<). Define 𝑝𝑘 , 𝑝𝑘−1, . . . , 𝑝1 ∈ Q𝑚 in this order as

follows. Define 𝑝𝑘 B 𝑟𝑘 and, for 𝑖 ∈ {1, . . . , 𝑘 − 1}, 𝑝𝑖 B pp(𝛽𝑖𝑟𝑖 , 𝑝𝑖+1) where 𝛽𝑖 ∈ Aut(Q;<) is
chosen such that 𝛽𝑖 (𝑟𝑖 [𝑗]) = 0 for all 𝑗 ∈ argmin(𝑟𝑖 ). We verify by induction that for all 𝑖 ∈ [𝑘]
(1) 𝑝𝑖 is contained in 𝑅B

.

(2) (𝑝𝑖 [ℓ + 1], . . . , 𝑝𝑖 [𝑚]), (𝑡 [ℓ + 1], . . . , 𝑡 [𝑚]) lie in the same orbit of Aut(Q; <).
(3) 𝑗 ∈ argmin(𝑝𝑖 ) if and only if 𝑠[𝑗] ∈ 𝐹𝑖 for all 𝑗 ∈ [𝑚].
(4) 𝑝𝑖 [𝑢] = 𝑝𝑖 [𝑣] for all 𝑎 ∈ {𝑖 + 1, . . . , 𝑘} and 𝑢, 𝑣 ∈ [𝑚] such that 𝑠[𝑢], 𝑠[𝑣] ∈ 𝑆𝑎 .
(5) 𝑝𝑖 [𝑢] < 𝑝𝑖 [𝑣] for all 𝑎, 𝑏 ∈ {𝑖, 𝑖 +1, . . . , 𝑘} with 𝑎 < 𝑏 and𝑢, 𝑣 ∈ [𝑚] such that 𝑠[𝑢] ∈ 𝑆𝑎 , 𝑠[𝑣] ∈ 𝑆𝑏 .

For 𝑖 = 𝑘 , the items (1), (2), and (3) follow from the respective property of 𝑟𝑘 and items (4) and

(5) are trivial. For the induction step and 𝑖 ∈ [𝑘 − 1] we have that 𝑝𝑖 = pp(𝛽𝑖𝑟𝑖 , 𝑝𝑖+1) satisfies
items (1) and (2) because 𝑝𝑖+1 satisfies items (1) and (2) by inductive assumption. For item (3), note

that argmin(𝑝𝑖 ) = argmin(𝑟𝑖 ). Finally, if 𝑠[𝑢], 𝑠[𝑣] ∈ 𝑆𝑖+1 ∪ · · · ∪ 𝑆𝑘 , then 𝑝𝑖 [𝑢] ≤ 𝑝𝑖 [𝑣] if and only if

𝑝𝑖+1[𝑢] ≤ 𝑝𝑖+1[𝑣]. This implies items (4) and (5) by induction. Note that (𝑓 ′(𝑠[1]), . . . , 𝑓 ′(𝑠[𝑚])) lies in
the same orbit as 𝑝1 and hence is contained in 𝑅B

. □

A recursive application of Proposition 3.1 shows the soundness of our choiceless version of the

original algorithm which can be found in Figure 2. Its completeness follows from the fact that

every instance of a temporal CSP which has a solution must have a free set, namely the set of all

variables which denote the minimal value in the solution. Suitable Ptime procedures for finding

unions of free sets for TCSPs with a template preserved by min, mi, or mx exist by the results of

[14], and they generally exploit the algebraic structure of the CSP that is witnessed by one of these

operations. We revisit them in Section 3.2, Section 3.3, and Section 4.1.

Corollary 3.2. Let B be a temporal structure preserved by pp such that all proper projections of the
relations of B are trivial. Let 𝜙 (𝑥) be an FPR2 formula in the signature of B extended by a unary
symbol𝑈 such that, for every instance A of CSP(B) and every𝑈 ⊆ 𝐴, we have (A;𝑈 ) |= 𝜙 (𝑥) iff 𝑥 is
not contained in a free set of the substructure of A on𝑈 . Then A |= ∃𝑥 [dfp𝑈 ,𝑥𝜙 (𝑥)] (𝑥) iff A ↛ B.

Proof. Observe that, since all proper projections of the relations of B are trivial, for every𝑈 ⊆ 𝐴,

the following two statements are equivalent:

• 𝑥 is contained in a free set of the substructure of A on𝑈 ,

• 𝑥 is contained in a free set of the projection of A to𝑈 .
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Input: An instance A of CSP(B) for a temporal structure B
Output: true or false
while A changes do

𝑆 ← the union of all free sets of A
if 𝑆 = ∅ then

return false
else

A← proj𝐴\𝑆 A
return true

Fig. 2. A choiceless algorithm that decides whether an instance of a temporal CSP with a template preserved
by pp has a solution using an oracle for testing the containment in a free set.

Input: An instance A of CSP(B) for a temporal structure B
Output: A subset 𝐹 ⊆ 𝐴

𝐹 ← 𝐴

while 𝐹 changes do
forall 𝑠 ∈ 𝑅A do

if {𝑠[1], . . . , 𝑠[ar(𝑅)]} ∩ 𝐹 ≠ ∅ then
𝐹 ← (𝐹 \ {𝑠[1], . . . , 𝑠[ar(𝑅)]}) ∪

⋃
↓𝑅⟦{𝑠[1], . . . , 𝑠[ar(𝑅)]} ∩ 𝐹⟧(𝑠)

return 𝐹

Fig. 3. A choiceless algorithm that computes the union of all free sets for temporal CSPs with a template
preserved by the operation min.

By definition, A |= ∃𝑥 [dfp𝑈 ,𝑥𝜙 (𝑥)] (𝑥) iff 𝑥 ∈ DfpOpA⟦𝜙 (·)⟧. By the assumptions about 𝜙 and the

observation above, for every𝑈 ⊆ 𝐴,

OpA⟦𝜙 (·)⟧(𝑈 ) = {𝑥 ∈ 𝐴 | 𝑥 is not contained in a free set of proj𝑈 (A)}.

By definition, DfpOpA⟦𝜙 (·)⟧ is the limit of the sequence𝑈𝑖+1 B 𝑈𝑖 ∩OpA⟦𝜙 (·)⟧(𝑈𝑖 ) with𝑈0 B 𝐴.

Now we can easily conclude the proof of the corollary.

“⇐”: This is a direct consequence of Proposition 3.1.

“⇒”: This follows from Proposition 3.1 and the fact that the set of all elements taking the minimal

value in a solution for an instance of CSP(B) is a free set of the instance. □

3.2 An FP algorithm for TCSPs preserved by min

For TCSPs with a template preserved by min, the algorithm in Figure 3 can be used for finding the

union of all free sets due to the following lemma. It can be proved by a simple induction using

the observation that, for every 𝑠 ∈ 𝑅A
and every 𝑉 ⊆ {𝑠[1], . . . , 𝑠[ar(𝑅)]}, the set ↓𝑅⟦𝑉⟧(𝑠) is closed

under taking unions.

Lemma 3.3 ([14]). Let A be an instance of CSP(B) for a temporal structure B preserved by a binary
operation 𝑓 such that 𝑓 (0, 0) = 𝑓 (0, 𝑥) = 𝑓 (𝑥, 0) for every 𝑥 > 0. Then the set returned by the
algorithm in Figure 3 is the union of all free sets of A.
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The following lemma in combination with Theorem 2.7 shows that instead of presenting an

FP algorithm for each TCSP with a template preserved by min, it suffices to present one for

CSP(Q; R
≤
min

, <) where
R
≤
min
B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑦 ≤ 𝑥 ∨ 𝑧 ≤ 𝑥}.

Lemma 3.4. A temporal relation is preserved by min if and only if it is pp-definable in (Q; <, R≤
min
).

Remark 3.5. The importance of Lemma 3.4 lies in the fact that it presents a finite relational base for

the clone generated by Aut(Q;<) ∪ {min}. Moreover, all proper projections of the relations are

trivial. This eliminates the necessity to use projections of instances for CSPs of temporal structures

preserved by min (they can be replaced by substructures).

The following syntactic description of the temporal relations preserved by min is due to Bodirsky,

Chen, and Wrona [11].

Proposition 3.6 ([11], page 9). A temporal relation is preserved by min if and only if it can be
defined by a conjunction of formulas of the form 𝑧1 ◦1 𝑥 ∨ · · · ∨ 𝑧𝑛 ◦𝑛 𝑥 , where ◦𝑖 ∈ {<, ≤}.

Proof of Lemma 3.4. The backward implication is a direct consequence of Proposition 3.6.

For the forward implication, we show that every temporal relation defined by a formula of

the form 𝑧1 ◦1 𝑥 ∨ · · · ∨ 𝑧𝑛 ◦𝑛 𝑥 , where ◦𝑖 ∈ {<, ≤}, has a pp-definition in (Q; R
≤
min

, <). Then the

statement follows from Proposition 3.6. A pp-definition 𝜙 ′𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛) for the relation defined by

𝑧1 ≤ 𝑥 ∨ · · · ∨ 𝑧𝑛 ≤ 𝑥 can be obtained by the following simple induction.

In the base case 𝑛 = 3 we set 𝜙 ′
3
(𝑥, 𝑧1, 𝑧2) B R

≤
min
(𝑥, 𝑧1, 𝑧2).

In the induction step, we suppose that 𝑛 > 3 and that 𝜙 ′𝑛−1
is a pp-definition for the relation

defined by 𝑧1 ≤ 𝑥 ∨ · · · ∨ 𝑧𝑛−1 ≤ 𝑥 . Then

𝜙 ′𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛) B ∃ℎ
(
R
≤
min
(𝑥, 𝑧1, ℎ) ∧ 𝜙 ′𝑛−1

(ℎ, 𝑧2, . . . , 𝑧𝑛)
)

is a pp-definition of the relation defined by 𝑧1 ≤ 𝑥 ∨ · · · ∨ 𝑧𝑛 ≤ 𝑥 . Finally,

𝜙𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛) = ∃𝑧 ′1, . . . , 𝑧 ′𝑛 (𝜙 ′𝑛 (𝑥, 𝑧 ′1, . . . , 𝑧 ′𝑛) ∧
∧
𝑖∈𝐼

𝑧𝑖 < 𝑧 ′𝑖 ∧
∧
𝑖∉𝐼

𝑧 ′𝑖 = 𝑧𝑖 )

is a pp-definition of the relation defined by 𝑧1 ◦1 𝑥 ∨ · · · ∨ 𝑧𝑛 ◦𝑛 𝑥 where ◦𝑖 equals < if 𝑖 ∈ 𝐼 and ≤
otherwise. □

In the case of CSP(Q;<, R≤
min
) a procedure from [14] for finding free sets can be directly imple-

mented in FP.

Proposition 3.7. CSP(Q; <, R≤
min
) is expressible in FP.

Proof. Recall that B B (Q;<,R≤
min
) is preserved by pp. Since all proper projections of the

relations of B are trivial, B satisfies the prerequisites of Corollary 3.2. Our aim is to construct a

formula 𝜙 (𝑥) satisfying the requirements of Corollary 3.2 by rewriting the algorithm in Figure 3

in the syntax of FP. In addition to the unary fixed-point variable 𝑈 coming from Corollary 3.2,

we introduce a fresh unary fixed-point variable 𝑉 for the union 𝐹 of all free sets of the current

projection. The algorithm in Figure 3 computes 𝐹 using a deflationary induction where parts of the

domain which cannot be contained in any free set are gradually cut off. Thus, we may choose 𝜙 (𝑥)
to be of the form ¬[dfp𝑉 ,𝑥𝜓 (𝑥)] (𝑥) for some formula𝜓 (𝑥) testing whether whenever the variable

𝑥 is contained in {𝑠[1], . . . , 𝑠[ar(𝑅)]} ∩ 𝐹 for some constraint 𝑅(𝑠), then it is also contained in the
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Input: An instance A of CSP(B) for a temporal structure B
Output: A subset 𝐹 ⊆ 𝐴

𝐹 ← the empty subset of 𝐴

forall 𝑥 ∈ 𝐴 do
𝐹𝑥 ← {𝑥}
while 𝐹𝑥 changes do

forall 𝑠 ∈ 𝑅A such that {𝑠[1], . . . , 𝑠[ar(𝑅)]} ∩ 𝐹𝑥 ≠ ∅ do
if ↑𝑅⟦𝐹𝑥 ∩ {𝑠[1], . . . , 𝑠[ar(𝑅)]}⟧(𝑠) ≠ ∅ then

𝐹𝑥 ← 𝐹𝑥 ∪
⋂
↑𝑅⟦𝐹𝑥 ∩ {𝑠[1], . . . , 𝑠[ar(𝑅)]}⟧(𝑠)

else
𝐹𝑥 ← the empty subset of 𝐴

𝐹 ← 𝐹 ∪ 𝐹𝑥
return 𝐹

Fig. 4. A choiceless algorithm that computes the union of all free sets for temporal CSPs with a template
preserved by a binary operation 𝑓 such that 𝑓 (0, 0) < 𝑓 (0, 𝑥) and 𝑓 (0, 0) < 𝑓 (𝑥, 0) for every 𝑥 > 0.

largest min-set within {𝑠[1], . . . , 𝑠[ar(𝑅)]} ∩ 𝐹 . It is easy to see that⋃
↓<⟦{𝑠[1], 𝑠[2]} ∩ 𝐹⟧(𝑠) = ({𝑠[1], 𝑠[2]} ∩ 𝐹 ) \ {𝑠[2]} (1)⋃

↓
R
≤
min

⟦{𝑠[1], 𝑠[2], 𝑠[3]} ∩ 𝐹⟧(𝑠) =
{
{𝑠[1], 𝑠[2], 𝑠[3]} ∩ 𝐹 if 𝐹 ∩ {𝑠[2], 𝑠[3]} ≠ ∅
∅ otherwise.

(2)

This leads to the formula

𝜓 (𝑥) B 𝑈 (𝑥) ∧ ∀𝑦, 𝑧
(
(

(1)︷                 ︸︸                 ︷
𝑈 (𝑦) ⇒ ¬(𝑦 < 𝑥)) ∧ (

(2)︷                                                             ︸︸                                                             ︷
(𝑈 (𝑦) ∧𝑈 (𝑧)) ⇒ (𝑉 (𝑦) ∨𝑉 (𝑧) ∨ ¬R

≤
min
(𝑥,𝑦, 𝑧)))

)
.

Therefore, the statement of the proposition follows from Corollary 3.2. □

To increase readability, the formula 𝜙 (𝑥) in the proof of Proposition 3.7 can we rewritten into

the following formula, using the conversion rule from dfp to ifp:

[ifp𝑉 ,𝑥𝑈 (𝑥) ⇒ ∃𝑦, 𝑧
(
(𝑈 (𝑦) ∧ 𝑦 < 𝑥) ∨ (𝑈 (𝑦) ∧𝑈 (𝑧) ∧𝑉 (𝑦) ∧𝑉 (𝑧) ∧ R

≤
min
(𝑥,𝑦, 𝑧))

)
] (𝑥).

3.3 An FP algorithm for TCSPs preserved by mi

For TCSPs with a template preserved by mi, the algorithm in Figure 3 can be used for finding the

union of all free sets due to the following lemma. It can be proved by a simple induction using

the observation that, for every 𝑠 ∈ 𝑅A
and every 𝑉 ⊆ {𝑠[1], . . . , 𝑠[ar(𝑅)]}, the set ↑𝑅⟦𝑉⟧(𝑠) ∪ {∅} is

closed under taking intersections.

Lemma 3.8 ([14]). Let A be an instance of CSP(B) for a temporal structure B preserved by a binary
operation 𝑓 such that 𝑓 (0, 0) < 𝑓 (0, 𝑥) and 𝑓 (0, 0) < 𝑓 (𝑥, 0) for every 𝑥 > 0. Then the set returned
by the algorithm in Figure 4 is the union of all free sets of A.

The following lemma in combination with Theorem 2.7 shows that instead of presenting an

FP algorithm for each TCSP with a template preserved by mi, it suffices to present one for

CSP(Q; Rmi, Smi,≠) where
Rmi B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑦 < 𝑥 ∨ 𝑧 ≤ 𝑥} and Smi B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑥 ≠ 𝑦 ∨ 𝑧 ≤ 𝑥}.
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Lemma 3.9. A temporal relation is preserved by mi if and only if it is pp-definable in (Q; Rmi, Smi,≠).

Remark 3.10. Analogously to Lemma 3.4, Lemma 3.9 presents a finite relational base for the clone

generated by Aut(Q;<) ∪ {mi}. Moreover, all proper projections of the relations are trivial. This

eliminates the necessity to use projections of instances for CSPs of temporal structures preserved

by mi (they can be replaced by substructures).

The following syntactic description is due to Michał Wrona.

Proposition 3.11 (see, e.g., [10]). A temporal relation is preserved by mi if and only if it can be
defined as conjunction of formulas of the form

𝑧1 ≠ 𝑥 ∨ · · · ∨ 𝑧𝑛 ≠ 𝑥 ∨ 𝑦1 < 𝑥 ∨ · · · ∨ 𝑦𝑚 < 𝑥 ∨ 𝑦 ≤ 𝑥 (†)
where the last disjunct 𝑦 ≤ 𝑥 can be omitted.

Proof of Lemma 3.9. The backward direction is a direct consequence of Proposition 3.11.

For the forward direction, it suffices by Proposition 3.11 to show that every temporal relation

defined by a formula of the form (†), where the last disjunct𝑦 ≤ 𝑥 can be omitted, has a pp-definition

in (Q; Rmi, Smi,≠). We prove the statement by induction on𝑚 and 𝑛. Note that both ≤ and < have a

pp-definition in (Q; Rmi, Smi,≠). For𝑚,𝑛 ≥ 0, let 𝑅𝑚,𝑛 denote the (𝑚 + 𝑛 + 2)-ary temporal relation

defined by the formula (†), where we assume that all variables are distinct and in their respective

order 𝑥,𝑦1, . . . , 𝑦𝑚, 𝑧1, . . . , 𝑧𝑛, 𝑦.

In the base case 𝑚 + 𝑛 = 1, we set 𝜙1,0 (𝑥,𝑦1, 𝑦) = Rmi (𝑥,𝑦1, 𝑦) and 𝜙0,1 (𝑥, 𝑧1, 𝑦) = Smi (𝑥, 𝑧1, 𝑦).
The induction step is divided into three individual claims.

Claim 3.12. If 𝜙𝑚−1,0 (𝑥,𝑦1, . . . , 𝑦𝑚−1, 𝑦) is a pp-definition of 𝑅𝑚−1,0, then

𝜙𝑚,0 (𝑥,𝑦1, . . . , 𝑦𝑚, 𝑦) B ∃ℎ
(
𝜙1,0 (ℎ,𝑦𝑚, 𝑦) ∧ 𝜙𝑚−1,0 (𝑥,𝑦1, . . . , 𝑦𝑚−1, ℎ)

)
is a pp-definition of 𝑅𝑚,0.

Proof of Claim 3.12. “⇒”: Let 𝑡 ∈ 𝑅𝑚,0. We have to show that 𝑡 satisfies 𝜙𝑚,0. In case that

𝑡 [𝑥] > min(𝑡 [𝑦1
], . . . , 𝑡 [𝑦𝑚−1

]) we set ℎ B 𝑡 [𝑦]. Otherwise, 𝑡 [𝑥] > 𝑡 [𝑦𝑚] or 𝑡 [𝑥] ≥ 𝑡 [𝑦], in which case we

set ℎ B 𝑡 [𝑥].

“⇐”: Suppose for contradiction that 𝑡 ∉ 𝑅𝑚,0 satisfies 𝜙𝑚,0 and that this is witnessed by some

ℎ ∈ Q. Since 𝑡 [𝑥] ≤ min(𝑡 [𝑦1
], . . . , 𝑡 [𝑦𝑚−1

]), we must have 𝑡 [𝑥] ≥ ℎ. But since 𝑡 [𝑥] ≤ 𝑡 [𝑦𝑚] and

𝑡 [𝑥] < 𝑡 [𝑦], we get a contradiction to 𝜙1,0 (ℎ, 𝑡 [𝑦𝑚], 𝑡 [𝑦]) being satisfied. □

Claim 3.13. If 𝜙0,𝑛−1 (𝑥, 𝑧1, . . . , 𝑧𝑛−1, 𝑦) is a pp-definition of 𝑅0,𝑛−1, then

𝜙0,𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛, 𝑦) B ∃ℎ
(
𝜙0,1 (ℎ, 𝑧𝑛, 𝑦) ∧ 𝜙0,𝑛−1 (𝑥, 𝑧1, . . . , 𝑧𝑛−1, ℎ)

)
is a pp-definition of 𝑅0,𝑛 .

The proofs of this claim and the next claim are similar to the proof of the previous claim and

omitted.

Claim 3.14. Let 𝜙𝑚,0 (𝑥,𝑦1, . . . , 𝑦𝑚, 𝑦) and 𝜙0,𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛, 𝑦) be pp-definitions of 𝑅𝑚,0 and 𝑅0,𝑛 ,
respectively. Then

𝜙𝑚,𝑛 (𝑥,𝑦1, . . . , 𝑦𝑚, 𝑧1, . . . , 𝑧𝑛, 𝑦) = ∃ℎ
(
𝜙0,𝑛 (𝑥, 𝑧1, . . . , 𝑧𝑛, ℎ) ∧ 𝜙𝑚,0 (ℎ,𝑦1, . . . , 𝑦𝑚, 𝑦)

)
is a pp-definition of 𝑅𝑚,𝑛 .

This completes the proof of the lemma because the last clause𝑦 ≤ 𝑥 in (†) can be easily eliminated

using an additional existentially quantified variable and the relation <. □
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Proposition 3.15. CSP(Q; Rmi, Smi,≠) is expressible in FP.

Proof. Let B B (Q; Rmi, Smi,≠). Recall that B is preserved by pp. Since all proper projections of

the relations of B are trivial, B satisfies the prerequisites of Corollary 3.2. Our aim is to construct a

formula 𝜙 (𝑥) satisfying the requirements of Corollary 3.2 by rewriting the algorithm in Figure 4 in

the syntax of FP. In addition to the unary fixed-point variable 𝑈 coming from Corollary 3.2, we

introduce a fresh binary fixed-point variable𝑉 for the free set propagation relation {(𝑥,𝑦) | 𝑦 ∈ 𝐹𝑥 }
computed during the algorithm in Figure 3. The computation takes place through inflationary

induction where a pair (𝑥,𝑦) is added to the relation if the containment of 𝑥 in a free set implies

the containment of 𝑦. The algorithm concludes that a variable 𝑥 is contained in a free set if there

are no 𝑥1, . . . , 𝑥𝑘 ∈ 𝐹𝑥 whose containment in the same free set would lead to a contradiction. Note

that ≠ is the only relation without a constant polymorphism among the relations of B, i.e., the only
relation for which the if condition in the algorithm in Figure 4 can evaluate as false. Thus 𝜙 (𝑥)
may be chosen to be of the form

𝑈 (𝑥) ⇒ ∃𝑦, 𝑧
(
[ifp𝑉 ,𝑥,𝑦𝜓 (𝑥,𝑦)] (𝑥,𝑦) ∧ [ifp𝑉 ,𝑥,𝑧𝜓 (𝑥, 𝑧)] (𝑥, 𝑧) ∧ ≠(𝑦, 𝑧)

)
for some formula𝜓 (𝑥,𝑦) defining the (transitive) free-set propagation relation. The notation ≠(𝑦, 𝑧)
should not be confused with ¬(𝑦 = 𝑧): the former is an atomic 𝜏-formula because ≠ is part of the

signature of B, while the latter is a valid first-order formula because equality is a built-in part of

first-order logic. It is easy to see that⋂
↑

Rmi

⟦𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]}⟧(𝑠) =
{
(𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]}) ∪ {𝑠[3]} if 𝐹𝑥 ∩ {𝑠[1], 𝑠[3]} = {𝑠[1]},
𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]} otherwise,⋂

↑
Smi

⟦𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]}⟧(𝑠) =
{
(𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]}) ∪ {𝑠[3]} if 𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]} = {𝑠[1], 𝑠[2]},
𝐹𝑥 ∩ {𝑠[1], 𝑠[2], 𝑠[3]} otherwise.

This leads to the formula

𝜓 (𝑥,𝑦) B 𝑈 (𝑥) ∧𝑈 (𝑦) ∧
(
(𝑥 = 𝑦)

∨ ∃𝑎, 𝑏, 𝑐
(
𝑈 (𝑎) ∧𝑈 (𝑏) ∧𝑈 (𝑐) ∧𝑉 (𝑥, 𝑎) ∧𝑉 (𝑥, 𝑏) ∧ (Rmi (𝑎, 𝑐,𝑦) ∨ Smi (𝑎, 𝑏,𝑦))

) )
Now the statement of the proposition follows from Corollary 3.2. □

3.4 An FP algorithm for TCSPs preserved by ll

If a temporal structure B is preserved by ll, then it is also preserved by lex, but not necessarily

by pp [14]. In general, the choiceless procedure based on Proposition 3.1 is then not correct for

CSP(B). We present a modified version of this procedure, motivated by the approach of repeated

contractions from [15], and show that this version is correct for CSP(B).
Let A be an instance of CSP(B). We repeatedly simulate on A the choiceless procedure based on

Proposition 3.1 and, each time a union 𝑆 of free sets is computed, we contract in A all variables in

every free set within 𝑆 that is minimal among all existing free sets in the current projection with

respect to set inclusion. This loop terminates when a fixed-point is reached, where A no longer

changes, in which case we accept. The resulting algorithm can be found in Figure 5.

Definition 3.16. A free set (Definition 2.11) of an instance A of a temporal CSP is called inclusion-
minimal if it does not contain any other free set of A as a proper subset.

Theorem 3.17. The algorithm in Figure 5 is correct for CSPs of temporal structures preserved by ll.

Theorem 3.17 is proved using the following three lemmata. First, Lemma 3.18 explains why we

may (and in fact why we must) contract inclusion-minimal free sets.
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Lemma 3.18. Let B be a temporal structure preserved by lex and A an instance of CSP(B). Then all
variables in an inclusion-minimal free set of A denote the same value in every solution for A.

Proof. Let 𝐹 be an inclusion-minimal free set of A. Suppose that A has a solution 𝑓 . We assume

that |𝐹 | > 1; otherwise, the statement is trivial. Let 𝐹 ′ be the set of all elements from 𝐹 that denote

the minimal value in 𝑓 among all elements from 𝐹 . Suppose that 𝐹 \ 𝐹 ′ is not empty. We show that

then 𝐹 ′ is a free set that is properly contained in 𝐹 . Let 𝑅 be an arbitrary symbol from the signature

of B. We set 𝑘 B ar(𝑅). Let 𝑠 ∈ 𝑅A
be such that {𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹 ′ ≠ ∅. Without loss of generality,

let 1 ≤ 𝑘𝐹 ′ ≤ 𝑘𝐹 ≤ 𝑘 be such that {𝑠[1], . . . , 𝑠[𝑘𝐹 ′]} = {𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹 ′ and {𝑠[1], . . . , 𝑠[𝑘𝐹 ]} =

{𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹 . There exists a tuple 𝑡 ∈ 𝑅B
such that argmin(𝑡) = [𝑘𝐹 ] because 𝐹 is a free set.

Also, by the definition of 𝐹 ′, there exists a tuple 𝑡 ′ ∈ 𝑅B
such that argmin

(
(𝑡 ′[1], . . . , 𝑡 ′[𝑘𝐹 ])

)
= [𝑘𝐹 ′].

Let 𝑡 ′′ B lex(𝑡, 𝑡 ′). It is easy to see that argmin(𝑡 ′′) = [𝑘𝐹 ′]. Since 𝑠 was chosen arbitrarily, we

conclude that 𝐹 ′ is a free set, a contradiction to inclusion-minimality of 𝐹 . Thus 𝐹 ′ = 𝐹 . □

Next, Lemma 3.19 guarantees that distinct inclusion-minimal free sets are disjoint.

Lemma 3.19. Let B be a temporal structure preserved by lex, and A an instance of CSP(B). If 𝐹1, 𝐹2

are free sets of A such that 𝐹1 ∩ 𝐹2 ≠ ∅, then 𝐹1 ∩ 𝐹2 is a free set of A.

Proof. Let 𝐹1, 𝐹2 be free sets of A such that 𝐹1 ∩ 𝐹2 ≠ ∅. Let 𝑅 be a symbol from the signature of

B. We set 𝑘 B ar(𝑅). Let 𝑠 ∈ 𝑅A
be such that {𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹1 ∩ 𝐹2 ≠ ∅. Then there are tuples

𝑡1, 𝑡2 ∈ 𝑅B
such that argmin(𝑡 𝑗 ) = {𝑖 ∈ [𝑘] | 𝑠[𝑖] ∈ {𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹 } for 𝑗 ∈ [2] because 𝐹1 and 𝐹2

are both free sets. Let 𝑡 B lex(𝑡1, 𝑡2). Then argmin(𝑡 ′) = {𝑖 ∈ [𝑘] | 𝑠[𝑖] ∈ {𝑠[1], . . . , 𝑠[𝑘]} ∩ 𝐹1 ∩ 𝐹2}.
Since 𝑠 was chosen arbitrarily, we conclude that 𝐹1 ∩ 𝐹2 is a free set. □

Finally, Lemma 3.20 is an analogue to Proposition 3.1 for the operation ll instead of pp. It allows

us to recursively reduce an instance of the CSP to a smaller one, unless a certain condition involving

free sets is not met, in which case there is no solution and we may reject. The proof is quite similar

to the one of Proposition 3.1, because ll behaves similarly to the operation pp, except that ll is

injective. The injectivity of ll has several consequences which need to be handled carefully, e.g., the

fact that we can no longer work with overlapping free sets. We also need to do some bookkeeping

on the kernel of the solution.

Lemma 3.20. Let A be an instance of CSP(B) for a temporal structure B preserved by ll. Let 𝑆 be the
union of all inclusion-minimal free sets of A. Let𝐶 be a binary relation over𝐴 such that A = ctrn𝐶 (A)
and 𝐶 ∩ 𝑆2 consists of the pairs of elements contained in the same inclusion-minimal free set of A. If
proj𝐴\𝑆 (A) has a solution with kernel 𝐶 ∩ (𝐴 \ 𝑆)2, then A has a solution with kernel 𝐶 .

Proof of Lemma 3.20. Let 𝐹1, . . . , 𝐹𝑘 be the inclusion-minimal free sets of A and set 𝑆 B 𝐹1 ∪
· · ·∪𝐹𝑘 . Suppose that proj𝐴\𝑆 (A) has a solution 𝑓 : 𝐴→ Qwith ker 𝑓 = 𝐶∩(𝐴\𝑆)2. Since 𝐹1, . . . , 𝐹𝑘
are inclusion-minimal, by Lemma 3.19, we have 𝐹𝑖 ∩ 𝐹 𝑗 = ∅ for all distinct 𝑖, 𝑗 ∈ [𝑘]. Let 𝑓 ′ : 𝐴→ Q
be such that 𝑓 ′ |𝐴\𝑆 = 𝑓 , 𝑓 ′(𝐹1) < 𝑓 ′(𝐹2) < · · · < 𝑓 ′(𝐹𝑘 ) < 𝑓 ′(𝐴 \ 𝑆), and 𝑓 ′ is constant on 𝐹𝑖 for

every 𝑖 ∈ [𝑘]. We claim that 𝑓 ′ is a solution to A with ker 𝑓 ′ = 𝐶 . To verify this, let 𝑠 be an arbitrary

tuple from 𝑅A ⊆ 𝐴𝑚
such that, without loss of generality, {𝑠[1], . . . , 𝑠[𝑚]}∩𝑆 = {𝑠[1], . . . , 𝑠[ℓ]} ≠ ∅. By

the definition of proj𝐴\𝑆 (A), there is a tuple 𝑡 ∈ 𝑅B
such that 𝑡 [𝑖] = 𝑓 (𝑠[𝑖]) for every 𝑖 ∈ {ℓ+1, . . . ,𝑚}.

Since A = ctrn𝐶 (A), we have 𝑡 [𝑢] = 𝑡 [𝑣] whenever (𝑠[𝑢], 𝑠[𝑣]) ∈ 𝐶 . For 𝑢, 𝑣 ≥ ℓ + 1, we even have

𝑡 [𝑢] = 𝑡 [𝑣] if and only if (𝑠[𝑢], 𝑠[𝑣]) ∈ 𝐶 because ker 𝑓 = 𝐶∩(𝐴\𝑆)2. Since 𝐹1, . . . , 𝐹𝑘 are free sets, there

are tuples 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅B
such that, for every 𝑖 ∈ [𝑘] and every 𝑗 ∈ [𝑚], we have 𝑗 ∈ argmin(𝑡𝑖 )

if and only if 𝑠[𝑗] ∈ 𝐹𝑖 . Again, for every 𝑖 ∈ [𝑘], we have 𝑡𝑖 [𝑢] = 𝑡𝑖 [𝑣] whenever (𝑠[𝑢], 𝑠[𝑣]) ∈ 𝐶

because A = ctrn𝐶 (A). This time, we do not obtain a necessary and sufficient condition concerning

the entries with indices 𝑢, 𝑣 ≥ ℓ + 1. For every 𝑖 ∈ [𝑘], let 𝛼𝑖 ∈ Aut(Q;<) be such that 𝛼𝑖 maps
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Input: An instance A of CSP(B) for a temporal structure B
Output: true or false
𝐶 ← the empty binary relation over 𝐴

while A changes do
A′← A
while A′ changes do

forall 𝑎, 𝑏 ∈ 𝐴′ do
if 𝑎, 𝑏 are in the same inclusion-minimal free set of A′ then

𝐶 ← 𝐶 ∪ {(𝑎, 𝑏)}
𝑆 ← the union of all inclusion-minimal free sets of A′

A′← proj𝐴′\𝑆 (A′)
if 𝐴′ ≠ ∅ then

return false
else

A← ctrn𝐶 (A)
return true

Fig. 5. A choiceless algorithm for temporal CSPs with a template preserved by ll using an oracle for the
computation of inclusion-minimal free sets.

the minimal entry of 𝑡𝑖 to 0. The tuple 𝑟𝑖 B ll(𝛼𝑖𝑡𝑖 , 𝑡) is contained in 𝑅B
because 𝑅B

is preserved

by ll. It follows from the definition of ll that, for every 𝑗 ∈ [𝑚], 𝑗 ∈ argmin(𝑟𝑖 ) if and only if

𝑠[𝑗] ∈ 𝐹𝑖 . Moreover, (𝑟𝑖 [ℓ + 1], . . . , 𝑟𝑖 [𝑚]) and (𝑡 [ℓ + 1], . . . , 𝑡 [𝑚]) lie in the same orbit of Aut(Q; <), and
𝑟𝑖 [𝑢] = 𝑟𝑖 [𝑣] whenever (𝑠[𝑢], 𝑠[𝑣]) ∈ 𝐶 . Define 𝑝𝑘 , 𝑝𝑘−1, . . . , 𝑝1 ∈ Q𝑚 in this order as follows. Define

𝑝𝑘 B 𝑟𝑘 and, for 𝑖 ∈ {1, . . . , 𝑘 − 1}, 𝑝𝑖 B ll(𝛽𝑖𝑟𝑖 , 𝑝𝑖+1) where 𝛽𝑖 ∈ Aut(Q;<) is chosen such that

𝛽𝑖 (𝑟𝑖 [𝑗]) = 0 for all 𝑗 ∈ argmin(𝑟𝑖 ). We verify by induction that for all 𝑖 ∈ [𝑘]
(1) 𝑝𝑖 is contained in 𝑅B

;

(2) (𝑝𝑖 [ℓ + 1], . . . , 𝑝𝑖 [𝑚]); (𝑡 [ℓ + 1], . . . , 𝑡 [𝑚]) lie in the same orbit of Aut(Q; <);
(3) 𝑗 ∈ argmin(𝑝𝑖 ) if and only if 𝑠[𝑗] ∈ 𝐹𝑖 for all 𝑗 ∈ [𝑚];
(4) 𝑝𝑖 [𝑢] = 𝑝𝑖 [𝑣] for all 𝑎 ∈ {𝑖 + 1, . . . , 𝑘} and 𝑢, 𝑣 ∈ [𝑚] such that 𝑠[𝑢], 𝑠[𝑣] ∈ 𝑆𝑎 ;
(5) 𝑝𝑖 [𝑢] < 𝑝𝑖 [𝑣] for all 𝑎, 𝑏 ∈ {𝑖, 𝑖 + 1, . . . , 𝑘} with 𝑎 < 𝑏 and 𝑢, 𝑣 ∈ [𝑚] such that 𝑠[𝑢] ∈ 𝐹𝑎 ,

𝑠[𝑣] ∈ 𝐹𝑏 .
For 𝑖 = 𝑘 , the items (1), (2), and (3) follow from the respective property of 𝑟𝑘 and items (4) and

(5) are trivial. For the induction step and 𝑖 ∈ [𝑘 − 1] we have that 𝑝𝑖 = ll(𝛽𝑖𝑟𝑖 , 𝑝𝑖+1) satisfies items

(1) and (2) because 𝑝𝑖+1 satisfies items (1) and (2) by inductive assumption. For item (3), note that

argmin(𝑝𝑖 ) = argmin(𝑟𝑖 ). Finally, if 𝑠[𝑢], 𝑠[𝑣] ∈ 𝐹𝑖+1 ∪ · · · ∪ 𝐹𝑘 , then 𝑝𝑖 [𝑢] ≤ 𝑝𝑖 [𝑣] if and only if

𝑝𝑖+1[𝑢] ≤ 𝑝𝑖+1[𝑣]. This implies items (4) and (5) by induction. Note that (𝑠 ′(𝑠[1]), . . . , 𝑠 ′(𝑠[𝑚])) lies in
the same orbit as 𝑝1 and hence is contained in 𝑅B

. Moreover, it follows from the injectivity of ll

that 𝑝1
[𝑢] = 𝑝1

[𝑣] if and only if (𝑠[𝑢], 𝑠[𝑣]) ∈ 𝐶 . □

Proof of Theorem 3.17. Let A be an instance of CSP(B) for a temporal structure B preserved

by ll. First, suppose thatA has a solution 𝑓 . If𝐴 = ∅, then the algorithm trivially acceptsA and there

is nothing to be shown. So suppose that 𝐴 ≠ ∅. For an arbitrary ∅ ⊊ 𝐴′ ⊆ 𝐴, let A′ B proj𝐴′ (A).
By definition, 𝑓 ′ B 𝑓 |𝐴′ is a solution to A′. Let 𝐹 be the set of all elements of 𝐴′ on which 𝑓 ′ takes
the minimal value. Then clearly 𝐹 is a free set of A′. By definition, 𝐹 contains an inclusion-minimal

free set of A′ as a subset. Recall that, since B is preserved by ll, it is also preserved by lex. Thus,
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by Lemma 3.18, 𝑓 ′(𝑎) = 𝑓 ′(𝑏) whenever 𝑎 and 𝑏 are contained in the same inclusion-minimal free

set of A′. Since 𝐴′ was chosen arbitrarily, it follows by induction over the inner loop of the the

algorithm that false is not returned at the end of the inner loop, and that the relation 𝐶 computed

during the inner loop satisfies 𝐶 ⊆ ker 𝑓 . Since 𝐶 ⊆ ker 𝑓 , we have that 𝑓 is also a solution to

ctrn𝐶 (A). It now follows by induction over the outer loop of the algorithm using the argument

above for the inner loop that true is returned at the end of the outer loop.

Now suppose that A is accepted by the algorithm. Let 𝐶 be the binary relation computed during

the algorithm. Clearly, the algorithm computes the same binary relation when given ctrn𝐶 (A) as an
input, and also accepts on this input. Moreover, every solution to ctrn𝐶 (A) is also a solution to A.
Thus, it is enough to show that ctrn𝐶 (A) has a solution. Without loss of generality, we may assume

that A = ctrn𝐶 (A). The inner loop of the algorithm produces a sequence 𝐴1, . . . , 𝐴ℓ of subsets of 𝐴

where 𝐴1 B 𝐴, and for every 𝑖 < ℓ the set 𝐴𝑖+1 is the subset of 𝐴𝑖 where we remove all elements

which are contained in an inclusion-minimal free set of proj𝐴𝑖
(A). Since A is accepted, it must be

the case that 𝐴ℓ = ∅. Hence, proj𝐴ℓ
(A) trivially has a solution whose kernel is empty. Now the

existence of a solution for A follows by induction on 𝑖 ∈ [ℓ] using Lemma 3.20 with the relation

𝐶 ∩𝐴2

𝑖−1
in the induction step from 𝑖 to 𝑖 − 1. □

The following lemma in combination with Theorem 2.7 shows that instead of presenting an FP al-

gorithm for each TCSPwith a template preserved by ll, it suffices to present one forCSP(Q; Rll, Sll,≠)
where

Rll B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑦 < 𝑥 ∨ 𝑧 < 𝑥 ∨ 𝑥 = 𝑦 = 𝑧}
and Sll B {(𝑥,𝑦,𝑢, 𝑣) ∈ Q4 | 𝑥 ≠ 𝑦 ∨ 𝑢 ≤ 𝑣}.

Lemma 3.21. A temporal relation is preserved by ll if and only if it is pp-definable in (Q; Rll, Sll,≠).

Remark 3.22. Analogously to Lemma 3.4 and Lemma 3.9, Lemma 3.21 presents a finite relational

base for the clone generated by Aut(Q; <) ∪ {ll}. Moreover, all proper projections of the relations

are trivial. However, we cannot use this fact to eliminate the use of projections of instances

in the algorithm in Figure 5. The reason is that the necessary contractions of variables due to

Lemma 3.18 might introduce new tuples to relations with non-trivial projections. For example,

proj{3,4} (ctrn{(1,2) } Sll) equals ≤.

The following syntactic description is due to Bodirsky, Kára, and Mottet.

Proposition 3.23 ([10]). A temporal relation is preserved by ll if and only if it can be defined by a
conjunction of formulas of the form

𝑥1 ≠ 𝑦1 ∨ · · · ∨ 𝑥𝑚 ≠ 𝑦𝑚 ∨ 𝑧1 < 𝑧 ∨ · · · ∨ 𝑧𝑛 < 𝑧 ∨ (𝑧 = 𝑧1 = · · · = 𝑧𝑛)
where the last disjunct (𝑧 = 𝑧1 = · · · = 𝑧𝑛) can be omitted.

Proof of Lemma 3.21. The backward implication is a direct consequence of Proposition 3.23.

For the forward implication, we show that every temporal relation defined by a formula of the

form 𝑥1 ≠ 𝑦1 ∨ · · · ∨ 𝑥𝑚 ≠ 𝑦𝑚 ∨ 𝑧1 < 𝑧 ∨ · · · ∨ 𝑧𝑛 < 𝑧 ∨ (𝑧 = 𝑧1 = · · · = 𝑧𝑛), where the last disjunct
(𝑧 = 𝑧1 = · · · = 𝑧𝑛) can be omitted, has a pp-definition in (Q; Rll, Sll,≠). Then the statement follows

from Proposition 3.23. We prove the statement by induction on𝑚 and 𝑛. Note that both ≤ and <

have a pp-definition in (Q; Rll, Sll,≠). For𝑚,𝑛 ≥ 0, let 𝑅𝑚,𝑛 denote the (2𝑚 + 𝑛 + 1)-ary relation

with the syntactic definition by a single formula from Proposition 3.23 where we assume that all

variables are distinct, 𝑥1, . . . , 𝑥𝑚 refer to the odd entries among 1, . . . , 2𝑚, 𝑦1, . . . , 𝑦𝑚 refer to the

even entries among 1, . . . , 2𝑚, and 𝑧, 𝑧1, . . . , 𝑧𝑛 refer to the entries 2𝑚 + 1, . . . , 2𝑚 +𝑛 + 1. In the base
cases, we set 𝜙1,1 (𝑥1, 𝑦1, 𝑧, 𝑧1) B Sll (𝑥1, 𝑦1, 𝑧1, 𝑧) and 𝜙0,2 (𝑧, 𝑧1, 𝑧2) B Rll (𝑧, 𝑧1, 𝑧2).
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Claim 3.24. If 𝜙𝑚−1,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚−1, 𝑦𝑚−1, 𝑧, 𝑧1) is a pp-definition of 𝑅𝑚−1,1, then

𝜙𝑚,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑧, 𝑧1) B ∃𝑎, 𝑏
(
𝜙𝑚−1,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚−1, 𝑦𝑚−1, 𝑎, 𝑏)
∧ 𝜙1,1 (𝑥𝑚, 𝑦𝑚, 𝑏, 𝑎) ∧ 𝜙1,1 (𝑎, 𝑏, 𝑧, 𝑧1)

)
is a pp-definition of 𝑅𝑚,1.

Proof of Claim 3.24. “⇒”: Arbitrarily choose 𝑡 ∈ 𝑅𝑚,1. We verify that 𝑡 satisfies 𝜙𝑚,1. If 𝑡 [𝑥𝑖] ≠

𝑡 [𝑦𝑖] for some 1 ≤ 𝑖 ≤ 𝑚 − 1, then choose any 𝑏 > 𝑎. If 𝑡 [𝑥𝑚] ≠ 𝑡 [𝑦𝑚], then we pick any 𝑎, 𝑏 ∈ Q with

𝑎 > 𝑏. Otherwise, 𝑡 [𝑧] ≥ 𝑡 [𝑧1
] and we pick any 𝑎, 𝑏 ∈ Q with 𝑎 = 𝑏.

“⇐”: Suppose that 𝑡 ∉ 𝑅𝑚,1 satisfies 𝜙𝑚,1 with some witnesses 𝑎, 𝑏. Since 𝑡 [𝑥𝑖] = 𝑡 [𝑦𝑖] for every

1 ≤ 𝑖 ≤ 𝑚, we have 𝑎 ≥ 𝑏 and 𝑏 ≥ 𝑎, thus 𝑎 = 𝑏. But then 𝜙1,1 (𝑎, 𝑏, 𝑡 [𝑧], 𝑡 [𝑧1
]) cannot hold, a

contradiction. □

It is easy to see that 𝑅𝑚,0 has the pp-definition

𝜙𝑚,0 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚) = ∃𝑎, 𝑏
(
(𝑏 > 𝑎) ∧ 𝜙𝑚,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑎, 𝑏)

)
.

Claim 3.25. If 𝜙0,𝑛−1 (𝑧, 𝑧1, . . . , 𝑧𝑛−1) is a pp-definition of 𝑅0,𝑛−1, then

𝜙0,𝑛 (𝑧, 𝑧1, . . . , 𝑧𝑛) B ∃ℎ
(
𝜙0,2 (ℎ, 𝑧𝑛−1, 𝑧𝑛) ∧ 𝜙0,𝑛−1 (𝑧, 𝑧1, . . . , 𝑧𝑛−2, ℎ)

)
is a pp-definition of 𝑅0,𝑛 .

The proofs of this claim and the next claim are similar to the proof of the previous claim and

omitted.

Claim 3.26. Let 𝜙𝑚,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑧, 𝑧1) and 𝜙0,𝑛 (𝑧, 𝑧1, . . . , 𝑧𝑛) be pp-definitions of 𝑅𝑚,1 and
𝑅0,𝑛 , respectively, then

𝜙𝑚,𝑛 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑧, 𝑧1, . . . , 𝑧𝑛) B ∃ℎ
(
𝜙0,𝑛 (ℎ, 𝑧1, . . . , 𝑧𝑛) ∧ 𝜙𝑚,1 (𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚, 𝑧, ℎ)

)
is a pp-definition of 𝑅𝑚,𝑛 .

This completes the proof of the lemma because the part (𝑧 = 𝑧1 = · · · = 𝑧𝑛) in the formula from

Proposition 3.23 can be easily eliminated using an additional existentially quantified variable and

the relation <. □

In the case of CSP(Q; Rll, Sll,≠), we can use the same FP procedure for finding free sets from [14]

that we use for instances of CSP(Q; Rmi, Smi,≠).

Proposition 3.27. CSP(Q; Rll, Sll,≠) is expressible in FP.

Proof. Let B B (Q; Rll, Sll,≠), and let A be an arbitrary instance of CSP(B). Note that the

operation ll satisfies the requirements of Lemma 3.8. Thus, the algorithm in Figure 4 can be used

for computation of free sets for instances of CSP(B). Also note that the algorithm builds free sets

from singletons using only necessary conditions for containment. Thus, for every 𝑥 ∈ 𝐴, the set
𝐹𝑥 computed during the algorithm in Figure 4 is an inclusion-minimal free set iff it is non-empty

and does not contain any other non-empty set of the form 𝐹𝑦 as a proper subset. It follows that

two variables 𝑥,𝑦 ∈ 𝐴 are contained in the same inclusion-minimal free set if 𝑥 ∈ 𝐹𝑦 , 𝑦 ∈ 𝐹𝑥 , and
whenever 𝑧 ∈ 𝐹𝑥 for some 𝑧 ∈ 𝐴, then 𝑥 ∈ 𝐹𝑧 .

Now suppose that there exists an FP formula 𝜙 (𝑥,𝑦) in the signature of B extended by binary

symbols 𝐸,𝐶 such that, for every instance A of CSP(B) and all 𝐸,𝐶 ⊆ 𝐴2
, (A;𝐸,𝐶) |= 𝜙 (𝑥,𝑦) iff

𝑥,𝑦 are contained in the same inclusion-minimal free set of proj𝑈 (ctrn𝐶 (A)) where𝑈 = 𝐴 \ {𝑥 ∈
𝐴 | (𝑥, 𝑥) ∈ 𝐸}. Then, given 𝐶 as a parameter, (A;𝐶) |= [ifp𝐸,𝑥,𝑦𝜙 (𝑥,𝑦)] (𝑥,𝑦) iff 𝑥,𝑦 are contained

in the same inclusion-minimal free set at some point during the iteration of the inner loop of the
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Input: An instance A of CSP(B) for a temporal structure B
Output: A subset 𝐹 ⊆ 𝐴

𝐸 ← the empty set of mod-2 equations

forall 𝑠 ∈ 𝑅A do
forall 𝐼 ⊆ [ar(𝑅)] do

if 𝑀 ∩ {𝑠[𝑖] | 𝑖 ∈ 𝐼 } has even cardinality for every𝑀 ∈ SMS𝑅 (𝑠) then
𝐸 ← 𝐸 ∪ {∑𝑖∈𝐼 𝑠[𝑖] = 0}

𝐹 ← the empty subset of 𝐴

forall 𝑥 ∈ 𝐴 do
if 𝐸 ∪ {𝑥 = 1} has a solution over Z2 then

𝐹 ← 𝐹 ∪ {𝑥}
return 𝐹

Fig. 6. A choiceless algorithm that computes the union of all free sets for temporal CSPs with a template
preserved by mx.

algorithm in Figure 5. Consequently,A ↛ B if and only if ∃𝑥 .¬[ifp𝐶,𝑥,𝑦 [ifp𝐸,𝑥,𝑦𝜙 (𝑥,𝑦)] (𝑥,𝑦)] (𝑥, 𝑥),
by the soundness and completeness of the algorithm in Figure 5. We can obtain such a formula 𝜙

by translating the algorithm in Figure 4 into the syntax of FP and applying the reasoning from the

first paragraph of this proof:

𝜙 (𝑥,𝑦) B ¬𝐸 (𝑥, 𝑥) ∧ ¬𝐸 (𝑦,𝑦) ∧ [ifp𝑉 ,𝑥,𝑦𝜓 (𝑥,𝑦)] (𝑥,𝑦) ∧ [ifp𝑉 ,𝑦,𝑥𝜓 (𝑦, 𝑥)] (𝑦, 𝑥)
∧ ∀𝑎, 𝑏

(
( [ifp𝑉 ,𝑥,𝑎𝜓 (𝑥, 𝑎)] (𝑥, 𝑎) ∧ [ifp𝑉 ,𝑥,𝑏𝜓 (𝑥, 𝑏)] (𝑥, 𝑏)) ⇒ ¬≠(𝑎, 𝑏)

)
∧ ∀𝑧

(
[ifp𝑉 ,𝑥,𝑧𝜓 (𝑥, 𝑧)] (𝑥, 𝑧) ⇒ [ifp𝑉 ,𝑧,𝑥𝜓 (𝑧, 𝑥)] (𝑧, 𝑥)

)
where𝜓 can be defined similarly as in Proposition 3.15 except that each subformula of the form

𝑈 (𝑥) must be replaced with ¬𝐸 (𝑥, 𝑥), and taking into consideration all projections of contractions

of relations with respect to 𝐶 . □

4 A TCSP IN FPR2 WHICH IS NOT IN FP

Let X be the temporal relation as defined in the introduction. In this section, we show that CSP(Q; X)
is expressible in FPR2 (Proposition 4.11) but inexpressible in FPC (Theorem 4.23).

4.1 An FPR2 algorithm for TCSPs preserved by mx

It is straightforward to verify that the relation X is preserved by the operation mx introduced in

Section 2.7 [14]. For TCSPs with a template preserved by mx, the algorithm in Figure 6 can be

used for finding the union of all free sets due to the following lemma. It can be proved by a simple

induction using the observation that, for every 𝑠 ∈ 𝑅A
, the set SMS𝑅 (𝑠) ∪ {∅} is closed under

taking symmetric difference. Note that we can interpret every entry of 𝑠 as a {0, 1}-variable whose
value represents whether or not the entry is contained in a particular min-set. Then closure under

symmetric difference implies that SMS𝑅 (𝑠) ∪ {∅} is the solution set of a system of mod-2 equations

of the form 𝐴𝑠 = 0̄. In the algorithm in Figure 6 we simply take the largest such system.

Lemma 4.1 ([14]). Let B be a template of a temporal CSP which is preserved by mx. Let A be an
instance of CSP(B). Then the set returned by the algorithm in Figure 6 is the union of all free sets of A.

The following lemma in combination with Theorem 2.7 shows that instead of presenting an FPR2

algorithm for each TCSP with a template preserved by mx, it suffices to present one for CSP(Q; X).
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Lemma 4.2. A temporal relation is preserved by mx if and only if it has a pp-definition in (Q; X).

Remark 4.3. Analogously to Lemma 3.4, Lemma 3.9, and Lemma 3.21, Lemma 4.2 presents a finite

relational base for the clone generated by Aut(Q;<) ∪ {mx}. Moreover, all proper projections of

the relations are trivial. This eliminates the necessity to use projections of instances for CSPs of

temporal structures preserved by mx (they can be replaced by substructures).

Recall the min-indicator function 𝜒 from Definition 2.10.

Definition 4.4. For a temporal relation 𝑅, we set 𝜒
0̄
(𝑅) B 𝜒 (𝑅) ∪ {0̄}. A basic Ord-Xor relation is

a temporal relation 𝑅 for which there exists a homogeneous system 𝐴𝑥 = 0̄ of mod-2 equations

such that 𝜒
0̄
(𝑅) is the solution set of 𝐴𝑥 = 0̄, and 𝑅 contains all tuples 𝑡 ∈ Q𝑛 with 𝐴𝜒 (𝑡) = 0̄. If

the system 𝐴𝑥 = 0̄ for the relation specifying a basic Ord-Xor relation consists of a single equation∑
𝑖∈𝐼 𝑥𝑖 = 0 for 𝐼 ⊆ [𝑛], then we denote this relation by 𝑅mx

𝐼 ,𝑛
. A basic Ord-Xor formula is a {<}-

formula 𝜙 (𝑥1, . . . , 𝑥𝑛) that defines a basic Ord-Xor relation. An Ord-Xor formula is a conjunction of

basic Ord-Xor formulas.

The next lemma is a straightforward consequence of Definition 4.4.

Lemma 4.5. If {∑𝑖∈𝐼 𝑗 𝑥𝑖 = 0 | 𝑗 ∈ 𝐽 } is the homogeneous system of mod-2 equations for a basic
Ord-Xor relation 𝑅, then 𝑅 =

⋂
𝑗 ∈𝐽 𝑅

mx

𝐼 𝑗 ,𝑛
.

If a temporal relation 𝑅 is preserved by mx, then 𝜒
0̄
(𝑅) is closed under the mod-2 addition

and forms a linear subspace of {0, 1}ar(𝑅)
[14]. In general, 𝑅 does not contain all tuples over

Q whose min-tuple is contained in this subspace, e.g., the 6-ary temporal relation defined by

X(𝑥1, 𝑥2, 𝑥3) ∧ X(𝑥4, 𝑥5, 𝑥6) does not contain (0, 0, 1, 1, 1, 1). Therefore, basic Ord-Xor formulas are

not sufficient for describing all temporal relations preserved by mx. One must instead consider

general Ord-Xor formulas. The following syntactic description is due to Bodirsky, Chen, and Wrona.

Theorem 4.6 ([11], Thm. 6). A temporal relation can be defined by an Ord-Xor formula if and only
if it is preserved by mx.

Proof of Lemma 4.2. We have already mentioned that X is preserved by mx, and hence all

relations that are pp-definable in (Q; X) are preserved by mx as well. For the converse direction,

we show that 𝑅mx

𝐼 ,𝑛
has a pp-definition in (Q; X) for every integer 𝑛 > 0 and 𝐼 ⊆ [𝑛]; then the claim

follows from Theorem 4.6 together with Lemma 4.5. Note that we trivially have a pp-definition of

< in (Q; X) via 𝜙mx

{2},2 (𝑥,𝑦) B X(𝑥, 𝑥,𝑦). We first show that the relations

𝑅mx

{1},3 = Rmin = {𝑡 ∈ Q3 | 𝑡 [2] < 𝑡 [1] ∨ 𝑡 [3] < 𝑡 [1]}
and 𝑅mx

[3],4 = {𝑡 ∈ Q
4 | 𝑡 [4] < min(𝑡 [1], 𝑡 [2], 𝑡 [3]) ∨ (𝑡 [1], 𝑡 [2], 𝑡 [3]) ∈ X}

have pp-definitions in (Q; X) and then proceed with treating the other relations of the form 𝑅mx

𝐼 ,𝑛
.

Claim 4.7. The following primitive positive formula defines 𝑅mx

[3],4 in (Q; X).

𝜙mx

[3],4 (𝑥1, 𝑥2, 𝑥3, 𝑥4) B ∃𝑥 ′1, 𝑥 ′2, 𝑥 ′3, 𝑥 ′′1 , 𝑥 ′′2 , 𝑥 ′′3
(
𝑥4 < 𝑥 ′′

1
∧ 𝑥4 < 𝑥 ′′

2
∧ 𝑥4 < 𝑥 ′′

3

∧ X(𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
) ∧ X(𝑥1, 𝑥

′
1
, 𝑥 ′′

1
) ∧ X(𝑥2, 𝑥

′
2
, 𝑥 ′′

2
) ∧ X(𝑥3, 𝑥

′
3
, 𝑥 ′′

3
)
)

Proof. “⇒”: We first prove that every 𝑡 ∈ 𝑅mx

[3],4 satisfies 𝜙
mx

[3],4.

Case 1: (𝑡 [1], 𝑡 [2], 𝑡 [3]) ∈ X. We choose witnesses for the quantifier-free part of 𝜙mx

[3],4 as fol-

lows: 𝑥 ′
1
B 𝑡 [1], 𝑥 ′

2
B 𝑡 [2], 𝑥 ′

3
B 𝑡 [3], and for 𝑥 ′′

1
, 𝑥 ′′

2
, 𝑥 ′′

3
we choose values arbitrarily such that

max(𝑡 [1], 𝑡 [2], 𝑡 [3], 𝑡 [4]) < min(𝑥 ′′
1
, 𝑥 ′′

2
, 𝑥 ′′

3
). It is easy to see that this choice satisfies the quantifier-

free part of 𝜙mx

[3],4.
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Case 2: (𝑡 [1], 𝑡 [2], 𝑡 [3]) ∉ X. We have 𝑡 [4] < min(𝑡 [1], 𝑡 [2], 𝑡 [3]) by the definition of𝑅mx

[3],4. By symmetry,

it suffices consider the following three subcases.

Subcase 2.i: 𝑡 [3] < 𝑡 [2] < 𝑡 [1].We choose 𝑥 ′
1
= 𝑥 ′

2
= 𝑥 ′′

1
= 𝑥 ′′

2
= 𝑥 ′′

3
B 𝑡 [3] and 𝑥 ′

3
B 𝑡 [1].

Subcase 2.ii: 𝑡 [3] < 𝑡 [1] = 𝑡 [2].We choose the same witnesses as in the previous case.

Subcase 2.iii: 𝑡 [1] = 𝑡 [2] = 𝑡 [3]. We choose any combination of 𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
, 𝑥 ′′

1
, 𝑥 ′′

2
, 𝑥 ′′

3
that satisfies

𝑡 [4] < 𝑥 ′
1
= 𝑥 ′

2
= 𝑥 ′′

1
= 𝑥 ′′

2
< 𝑥 ′

3
= 𝑥 ′′

3
< 𝑡 [1].

In each of the subcases 2.i-iii above, our choice satisfies the quantifier-free part of 𝜙mx

[3],4.

“⇐”: Suppose for contradiction that there exists a tuple 𝑡 ∉ 𝑅mx

[3],4 that satisfies 𝜙mx

[3],4. Then

(𝑡 [1], 𝑡 [2], 𝑡 [3]) ∉ X and 𝑡 [4] ≥ min(𝑡 [1], 𝑡 [2], 𝑡 [3]). Consider the witnesses 𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
, 𝑥 ′′

1
, 𝑥 ′′

2
, 𝑥 ′′

3
for the

fact that 𝑡 satisfies 𝜙mx

[3],4. Without loss of generality, we only have the following three cases.

Case 1: 𝑡 [1] > 𝑡 [2] > 𝑡 [3]. We have 𝑥 ′
3
= 𝑡 [3] because (𝑡 [3], 𝑥 ′

3
, 𝑥 ′′

3
) ∈ X and 𝑥 ′′

3
> 𝑡 [4] ≥

min(𝑡 [1], 𝑡 [2], 𝑡 [3]) = 𝑡 [3].

Subcase 1.i: 𝑥 ′
3
> min(𝑥 ′

1
, 𝑥 ′

2
). We have 𝑥 ′

1
= 𝑥 ′

2
< 𝑥 ′

3
, because (𝑥 ′

1
, 𝑥 ′

2
, 𝑥 ′

3
) ∈ X. This implies 𝑥 ′′

1
= 𝑥 ′

1
,

because 𝑥 ′
1
< 𝑥 ′

3
= 𝑡 [3] < 𝑡 [1] and (𝑡 [1], 𝑥 ′

1
, 𝑥 ′′

1
) ∈ X. But then 𝑥 ′′

1
< 𝑡 [3] ≤ 𝑡 [4], a contradiction.

Subcase 1.ii: 𝑥 ′
3
= min(𝑥 ′

1
, 𝑥 ′

2
, 𝑥 ′

3
). Either 𝑥 ′

1
= 𝑥 ′

3
< 𝑥 ′

2
or 𝑥 ′

2
= 𝑥 ′

3
< 𝑥 ′

1
because (𝑥 ′

1
, 𝑥 ′

2
, 𝑥 ′

3
) ∈ X.

Subcase 1.ii.a: 𝑥 ′
1
= 𝑥 ′

3
. We have 𝑥 ′′

1
= 𝑥 ′

1
because 𝑥 ′

1
= 𝑥 ′

3
= 𝑡 [3] < 𝑡 [1] and (𝑡 [1], 𝑥 ′

1
, 𝑥 ′′

1
) ∈ X. But

then 𝑥 ′′
1
= 𝑡 [3] ≤ 𝑡 [4], a contradiction.

Subcase 1.ii.b: 𝑥 ′
2
= 𝑥 ′

3
. We have 𝑥 ′′

2
= 𝑥 ′

2
because 𝑥 ′

2
= 𝑥 ′

3
= 𝑡 [3] < 𝑡 [2] and (𝑡 [2], 𝑥 ′

2
, 𝑥 ′′

2
) ∈ X. But

then 𝑥 ′′
2
= 𝑡 [3] ≤ 𝑡 [4], a contradiction.

Case 2: 𝑡 [1] = 𝑡 [2] > 𝑡 [3]. We obtain a contradiction similarly as in the previous case.

Case 3: 𝑡 [1] = 𝑡 [2] = 𝑡 [3]. We must have 𝑥 ′
3
= 𝑡 [3], 𝑥 ′

2
= 𝑡 [2] and 𝑥 ′

1
= 𝑡 [1] because min(𝑥 ′′

1
, 𝑥 ′′

2
, 𝑥 ′′

3
) >

𝑡 [4] ≥ 𝑡 [1] = 𝑡 [2] = 𝑡 [3]. But then (𝑥 ′
1
, 𝑥 ′

2
, 𝑥 ′

3
) ∉ X, a contradiction.

In all three cases above, we get a contradiction which means that there is no tuple 𝑡 ∉ 𝑅mx

[3],4 that

satisfies 𝜙mx

[3],4 (𝑡 [1], 𝑡 [2], 𝑡 [3], 𝑡 [4]). □

It is easy to see that the pp-formula

𝜙mx

[2],3 (𝑥1, 𝑥2, 𝑥3) B ∃ℎ
(
𝜙mx

[3],4 (𝑥1, 𝑥2, ℎ, 𝑥3) ∧ (ℎ > 𝑥1)
)

is equivalent to (𝑥1 > 𝑥3 ∧ 𝑥2 > 𝑥3) ∨ 𝑥1 = 𝑥2.

Claim 4.8. The following pp formula defines 𝑅mx

{1},3.

𝜙mx

{1},3 (𝑥1, 𝑥2, 𝑥3) B ∃ℎ2, ℎ3

(
𝜙mx

[2],3 (𝑥1, ℎ2, 𝑥3) ∧ (ℎ2 > 𝑥2) ∧ 𝜙mx

[2],3 (𝑥1, ℎ3, 𝑥2) ∧ (ℎ3 > 𝑥3)
)

Proof. “⇒”: Suppose that 𝜙mx

{1},3 (𝑡) is true for some 𝑡 ∈ Q3
. If 𝑡 [1] ≤ 𝑡 [2] and 𝑡 [1] ≤ 𝑡 [3], then

ℎ2 = 𝑡 [1] and ℎ3 = 𝑡 [1] which contradicts ℎ2 > 𝑡 [2] and ℎ3 > 𝑡 [3]. Thus 𝑡 ∈ 𝑅mx

{1},3.

“⇐”: Suppose that 𝑡 ∈ 𝑅mx

{1},3 for some 𝑡 ∈ Q3
. Without loss of generality, 𝑡 [1] > 𝑡 [2]. Then 𝜙mx

{1},3 (𝑡)
being true is witnessed by ℎ2 B 𝑡 [1] and any ℎ3 ∈ Q that satisfies ℎ3 > max(𝑡 [2], 𝑡 [3]). □

Since we already have a pp-definition 𝜙mx

{1},3 for 𝑅
mx

{1},3, we can obtain a pp-definition 𝜙mx

{1},𝑛+1 of

𝑅mx

{1},𝑛+1 inductively as in the proof of Lemma 3.4. The challenging part is showing the pp-definability

of 𝑅mx

[𝑘 ],𝑘+1. Note that we have already covered the cases where 𝑘 ∈ [3].

Claim 4.9. For 𝑘 ≥ 4, the relation 𝑅mx

[𝑘 ],𝑘+1 can be pp-defined by

𝜙mx

[𝑘 ],𝑘+1 (𝑥1, . . . , 𝑥𝑘 , 𝑦) B ∃ℎ2, . . . , ℎ𝑘−2

(
𝜙mx

[3],4 (𝑥1, 𝑥2, ℎ2, 𝑦) ∧ 𝜙mx

[3],4 (ℎ𝑘−2, 𝑥𝑘−1, 𝑥𝑘 , 𝑦)

∧
𝑘−2∧
𝑖=3

𝜙mx

[3],4 (ℎ𝑖−1, 𝑥𝑖 , ℎ𝑖 , 𝑦)
)
.
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Proof. Suppose that 𝑡 ∈ Q𝑘+1 satisfies 𝜙mx

[𝑘 ],𝑘+1. Let ℎ2, . . . , ℎ𝑘−2 ∈ Q be witnesses of the fact that

𝑡 satisfies 𝜙mx

[𝑘 ],𝑘+1. If 𝑡 [𝑦] < 𝑚 B min(𝑡 [𝑥1
], . . . , 𝑡 [𝑥𝑘 ]) then 𝑡 ∈ 𝑅mx

[𝑘 ],𝑘+1 and we are done, so suppose

that 𝑡 [𝑦] ≥ 𝑚. Define ℎ′
2
, . . . , ℎ′

𝑘−2
∈ {0, 1} by ℎ′𝑖 B 1 if ℎ𝑖 = 𝑚 and ℎ′𝑖 B 0 otherwise. Note that

if𝑚 < min(𝑡 [𝑥1
], 𝑡 [𝑥2

], ℎ2) then 𝜒 (𝑡)[𝑥1
] = 𝜒 (𝑡)[𝑥2

] = ℎ′
2
= 0. Otherwise, if𝑚 = min(𝑡 [𝑥1

], 𝑡 [𝑥2
], ℎ2),

then exactly two out of 𝜒 (𝑡)[𝑥1
], 𝜒 (𝑡)[𝑥2

], ℎ′
2
take the value 1. The same holds for each conjunct of

𝜙mx

[𝑘 ],𝑘+1, so they imply

𝜒 (𝑡)[𝑥1
] + 𝜒 (𝑡)[𝑥2

] + ℎ′
2
= 0 mod 2,

ℎ′
𝑘−2
+ 𝜒 (𝑡)[𝑥𝑘−1

] + 𝜒 (𝑡)[𝑥𝑘 ] = 0 mod 2, and

ℎ′𝑖−1
+ 𝜒 (𝑡)[𝑥𝑖] + ℎ′𝑖 = 0 mod 2 for every 𝑖 ∈ {3, . . . , 𝑘 − 2}.

Summing all these equations we deduce that

∑𝑘
𝑖=1

𝜒 (𝑡)[𝑥𝑖] = 0 mod 2 and hence 𝑡 ∈ 𝑅mx

[𝑘 ],𝑘+1.

Conversely, suppose that 𝑡 ∈ 𝑅mx

[𝑘 ],𝑘+1. We have to show that 𝑡 satisfies 𝜙mx

[𝑘 ],𝑘+1 (𝑥1, . . . , 𝑥𝑘 , 𝑦). If
𝑡 [𝑦] < 𝑚 B min(𝑡 [𝑥1

], . . . , 𝑡 [𝑥𝑘 ]) then we set all of ℎ2, . . . , ℎ𝑘−2 to𝑚 and all conjuncts of 𝜙mx

[𝑘 ],𝑘+1 are

satisfied. We may therefore suppose in the following that 𝑡 [𝑦] ≥ 𝑚. Then it must be the case that∑𝑘
𝑖=1

𝜒 (𝑡)[𝑥𝑖] = 0 mod 2. Arbitrarily choose 𝑠 > max(𝑡 [𝑥1
], . . . , 𝑡 [𝑥𝑘 ]). Without loss of generality, we

may assume that 𝑡 [𝑥𝑘 ] ≤ · · · ≤ 𝑡 [𝑥1
]; otherwise, we simply rename the variables to achieve the

desired order. Define

ℎ2 B

{
𝑠 if 𝑡 [𝑥1

] = 𝑡 [𝑥2
],

min(𝑡 [𝑥1
], 𝑡 [𝑥2

]) otherwise,

and, for 𝑖 ∈ {3, . . . , 𝑘 − 2}, define

ℎ𝑖 B

{
𝑠 if ℎ𝑖−1 = 𝑡 [𝑥𝑖],

min(ℎ𝑖−1, 𝑡 [𝑥𝑖]) otherwise.

This clearly satisfies all conjuncts of 𝜙mx

[𝑘 ],𝑘+1 except for possibly the second. We show that our

assignment also satisfies the second conjunct. Suppose, on the contrary, that the second conjunct is

not satisfied. Since 𝑡 [𝑥𝑘 ] ≤ · · · ≤ 𝑡 [𝑥1
], by the definition of our assignment, we have 𝑡 [𝑥𝑘−1

] ≤ ℎ𝑘−2.

Since

∑𝑘
𝑖=1

𝜒 (𝑡)[𝑥𝑖] = 0 mod 2, we also have𝑚 = 𝑡 [𝑥𝑘 ] = 𝑡 [𝑥𝑘−1
]. By our assumption that the second

conjunct is not satisfied, it follows that𝑚 = 𝑡 [𝑥𝑘 ] = 𝑡 [𝑥𝑘−1
] = ℎ𝑘−2. Moreover,

(1) for every 𝑖 ∈ {3, . . . , 𝑘 − 2}, either𝑚 ≤ ℎ𝑖 = 𝑡 [𝑥𝑖] < ℎ𝑖−1 or𝑚 ≤ ℎ𝑖−1 = 𝑡 [𝑥𝑖] < ℎ𝑖 ,

(2) both options in the above item alternate for successive indices within {3, . . . , 𝑘 − 2}.
Clearly, by item (1), if ℎ𝑖 =𝑚 holds for some 𝑖 ∈ {3, . . . , 𝑘 − 2}, then 𝑡 [𝑥𝑖] =𝑚. We claim that this

is also true whenever ℎ𝑖 ≠𝑚, i.e., that 𝑡 [𝑥𝑖] =𝑚 for every 𝑖 ∈ {3, . . . , 𝑘}. The claim can be proved

by a simple induction on 𝑖 . Suppose that ℎ𝑖 ≠ 𝑚 for some 𝑖 ∈ {3, . . . , 𝑘 − 2} such that 𝑡 [𝑥𝑖′] = 𝑚

holds for every 𝑖 ′ ∈ {𝑖 + 1, . . . , 𝑘}. Then it follows from item (1) and item (2) together with ℎ𝑘−2 =𝑚

and the induction hypothesis that 𝑘 − 𝑖 is odd. Also, by the induction hypothesis,

∑𝑘
𝑗=𝑖+1 𝜒 (𝑡)[𝑥 𝑗 ]

is odd. Since

∑𝑘
𝑗=1

𝜒 (𝑡)[𝑥 𝑗 ] is even and 𝑡 [𝑥𝑘 ] ≤ · · · ≤ 𝑡 [𝑥1
], it must be the case that 𝑡 [𝑥𝑖] = 𝑚. This

finishes the proof of the claim. Since ℎ𝑘−2 = 𝑚, it follows from item (1), item (2), and our claim

that ℎ2 = 𝑚 if 𝑘 is even and ℎ2 ≠ 𝑚 if 𝑘 is odd. If 𝑘 is even, then

∑𝑘
𝑗=3

𝜒 (𝑡)[𝑥 𝑗 ] is even. Since our

assignment satisfies the first conjunct and ℎ2 =𝑚, we must have either 𝑡 [𝑥1
] =𝑚 or 𝑡 [𝑥2

] =𝑚. But

then

∑𝑘
𝑗=1

𝜒 (𝑡)[𝑥 𝑗 ] is odd, a contradiction to 𝑡 ∈ 𝑅mx

[𝑘 ],𝑘+1. If 𝑘 is odd, then

∑𝑘
𝑗=3

𝜒 (𝑡)[𝑥 𝑗 ] is odd. Since

our assignment satisfies the first conjunct and ℎ2 = 𝑚, we must have either 𝑡 [𝑥1
] = 𝑡 [𝑥2

] < ℎ2 or

ℎ2 ≤ min(𝑡 [𝑥1
], 𝑡 [𝑥2

]). But then ∑𝑘
𝑗=1

𝜒 (𝑡)[𝑥 𝑗 ] is odd, a contradiction to 𝑡 ∈ 𝑅mx

[𝑘 ],𝑘+1. Hence, also the

second conjunct is satisfied by our assignment. □

For the general case, let 𝑘 B |𝐼 |. Without loss of generality we may assume that 𝐼 = [𝑘].
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Claim 4.10. The following pp-formula defines 𝑅mx

[𝑘 ],𝑛 .

𝜙mx

[𝑘 ],𝑛 (𝑥1, . . . , 𝑥𝑛) B ∃ℎ
(
𝜙mx

[𝑘 ],𝑘+1 (𝑥1, . . . , 𝑥𝑘 , ℎ) ∧ 𝜙mx

{1},𝑛+1 (ℎ, 𝑥1, . . . , 𝑥𝑛)
)

Proof. “⇒”: Let 𝑡 ∈ 𝑅mx

[𝑘 ],𝑛 . If
∑𝑘

𝑖=1
𝜒 (𝑡)[𝑖] = 0 mod 2, then 𝜙mx

[𝑘 ],𝑘+1 (𝑡 [1], . . . , 𝑡 [𝑘], ℎ) holds for
every ℎ ∈ Q and 𝜙mx

{1},𝑛+1 (ℎ, 𝑡 [1], . . . , 𝑡 [𝑛]) holds for every ℎ ∈ Q with ℎ > min(𝑡 [𝑘 + 1], . . . , 𝑡 [𝑛]).
Otherwise, min(𝑡 [1], . . . , 𝑡 [𝑘]) > min(𝑡 [𝑘 + 1], . . . , 𝑡 [𝑛]). Let ℎ ∈ Q be such that min(𝑡 [𝑘 + 1], . . . , 𝑡 [𝑛]) <
ℎ < min(𝑡 [1], . . . , 𝑡 [𝑘]). Then ℎ is a witness that shows that 𝑡 satisfies 𝜙mx

[𝑘 ],𝑛 .

“⇐”: Let 𝑡 be an arbitrary𝑛-tuple overQ not contained in𝑅mx

[𝑘 ],𝑛 . Then
∑𝑘

𝑖=1
𝜒 (𝑡)[𝑖] ≠ 0 mod 2, and

min(𝑡 [1], . . . , 𝑡 [𝑘]) ≤ min(𝑡 [𝑘 + 1], . . . , 𝑡 [𝑛]). For every witness ℎ ∈ Q such that 𝜙mx

[𝑘 ],𝑘+1 (𝑡 [1], . . . , 𝑡 [𝑘], ℎ)
is true, we have min(𝑡 [1], . . . , 𝑡 [𝑘]) > ℎ. But then no such ℎ can witness 𝜙mx

{1},𝑛+1 (ℎ, 𝑡 [1], . . . , 𝑡 [𝑛]) being
true. Thus, 𝑡 does not satisfy 𝜙mx

[𝑘 ],𝑛 . □

This completes the proof of Lemma 4.2. □

The expressibility of CSP(Q; X) in FPR2 can be shown using the same approach as in the first

part of Section 3 via Proposition 3.1 if the suitable procedure from [14] for finding free sets can be

implemented in FPR2. This is possible by encoding systems of mod-2 equations in FPR2 similarly

as in the case of symmetric reachability in directed graphs in the paragraph above Corollary III.2.

in [27]. As usual, a solution to a homogeneous system of mod-2 equations is called trivial if all
variables take value 0, and non-trivial otherwise.

Proposition 4.11. CSP(Q; X) is expressible in FPR2.

Proof. Recall that B B (Q; X) is preserved by mx and hence also by pp. Since all proper

projections of the relations of B are trivial, B satisfies the prerequisites of Corollary 3.2. Our aim is

to construct a formula 𝜙 (𝑥) satisfying the requirements of Corollary 3.2 by rewriting the algorithm

in Figure 6 in the syntax of FPR2. In the computation of the algorithm in Figure 6, each constraint

is of the form X(𝑥,𝑦, 𝑧), and hence contributes a single equation to 𝐸, namely 𝑥 + 𝑦 + 𝑧 = 0. The

algorithm subsequently isolates those variables which denote the value 1 in some non-trivial

solution for 𝐸. Write 𝐸 as𝑀𝑥 = 𝑣 . We define two numeric terms 𝑓𝑀 and 𝑓𝑣 which encode the matrix

and the vector, respectively, of this system.

𝑓𝑀 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑥) B
(
X(𝑥1, 𝑥2, 𝑥3) ∧𝑈 (𝑥1) ∧𝑈 (𝑥2) ∧𝑈 (𝑥3) ∧ (𝑦1 = 𝑥1 ∨ 𝑦1 = 𝑥2 ∨ 𝑦1 = 𝑥3)

)
∨ (𝑥1 = 𝑥2 = 𝑥3 = 𝑦1 = 𝑥)

𝑓𝑣 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑥) B (𝑥1 = 𝑥2 = 𝑥3 = 𝑦1 = 𝑥)

LetA be an instance ofCSP(B) and𝑈 ⊆ 𝐴 arbitrary. For every 𝑥 ∈ 𝑈 , thematrixMatA
2
⟦𝑓𝑀 (·, ·, 𝑥)⟧ ∈

{0, 1}𝐴3×𝐴
contains

(1) for each constraint X(𝑥1, 𝑥2, 𝑥3) of A, where 𝑥1, 𝑥2, 𝑥3 ∈ 𝑈 , three 1s in the (𝑥1, 𝑥2, 𝑥3)-th row:

namely, in the 𝑥1-th, 𝑥2-th, and 𝑥3-th column, and

(2) a single 1 in the (𝑥, 𝑥, 𝑥)-th row: namely, in the 𝑥-th column.

We can test the solvability of𝑀𝑥 = 𝑣 in FPR2 by comparing the rank of𝑀 with the rank of (𝑀 |𝑣):
the system is satisfiable if and only if they have the same rank. The case that A contains a constraint

of the form X(𝑦,𝑦,𝑦) is treated specially; in this case, A does not have a solution (note that our

encoding of𝑀𝑥 = 𝑣 is incorrect whenever A contains such a constraint). The formula 𝜙 (𝑥) can be



On the Descriptive Complexity of Temporal Constraint Satisfaction Problems 29

defined as follows.

𝜙 (𝑥) B ∃𝑦
(
X(𝑦,𝑦,𝑦) ∨ ¬

(
[rk(𝑥1,𝑥2,𝑥3),𝑦1

𝑓𝑀 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑥) mod 2] =
[rk(𝑥1,𝑥2,𝑥3),(𝑦1,𝑦2) (𝑦2 ≠ 𝑦) · 𝑓𝑀 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑥) + (𝑦2 = 𝑦) · 𝑓 ¯𝑏 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑥) mod 2]

) )
Now the statement of the proposition follows from Corollary 3.2. □

4.2 A proof of inexpressibility in FPC

Interestingly, the inexpressibility of CSP(Q; X) in FPC cannot be shown by giving a pp-construction

of systems of mod-2 equations and utilizing the inexpressibility result of Atserias, Bulatov, and

Dawar [2] (see Corollary 7.5). For this reason we resort to the strategy of showing that CSP(Q; X)
has unbounded counting width and then applying Theorem 2.3 [29]. In Proposition 4.12, we show

that CSP(Q; X) can be reformulated as a particular decision problem for systems of equations over

Z2, where each constraint X(𝑥,𝑦, 𝑧) is viewed as the mod-2 equation 𝑥 + 𝑦 + 𝑧 = 0.

Proposition 4.12. The problem 3-Ord-Xor-Sat (defined in the introduction) and CSP(Q; X) are the
same computational problem.

Proof. The structure (Q; X) is preserved by mx. Thus, the algorithm in Figure 2 jointly with the

algorithm in Figure 6 for computing free sets is sound and complete for CSP(Q; X).
Suppose that the equations in an instance A of CSP(Q; X) form a positive instance of 3-Ord-

Xor-Sat. We show that then every projection of A has a free set. Note that all proper projections

of the relation X are trivial. Therefore, we can ignore projections of constraints in our argument.

Let 𝑆 ⊆ 𝐴 be arbitrary, and let 𝐸 be the set of all equations 𝑥 + 𝑦 + 𝑧 = 0 for 𝑥,𝑦, 𝑧 ∈ 𝐴 \ 𝑆 such

that A has the constraint X(𝑥,𝑦, 𝑧). By our assumption, 𝐸 has a solution over Z2 where at least

one variable 𝑥 denotes the value 1. This means that, given proj𝐴\𝑆 (A) as an input, the algorithm in

Figure 6 returns a non-empty set 𝐹 containing 𝑥 . Since 𝐹 is the union of all free sets for proj𝐴\𝑆 (A),
we conclude that proj𝐴\𝑆 (A) has a free set. This means that, given A as an input, the algorithm in

Figure 2 jointly with the algorithm in Figure 6 finds a free set in every step and accepts A. Since
our algorithm is correct for CSP(Q; X), we conclude that A→ (Q; X).

Conversely, suppose that A→ (Q; X). Then the algorithm described above produces a sequence

𝐴1, . . . , 𝐴ℓ of subsets of 𝐴 where 𝐴1 B 𝐴 and, for every 𝑖 < ℓ the set 𝐴𝑖+1 is the subset of 𝐴𝑖 where

we remove all elements which are contained in a free set of the substructure of A with domain

𝐴𝑖 . Moreover, A contains no mod-2 equations on variables from Aℓ . Let 𝐸 be a non-empty subset

of the equations from A and let 𝐵 be the variables that appear in the equations from 𝐸. Let 𝑖 be

maximal such that 𝐵 ⊆ 𝐴𝑖 . Then mapping all variables in 𝐵 ∩𝐴𝑖+1 to 0 and all variables in 𝐵 \𝐴𝑖+1
to 1 is a non-trivial solution to 𝐸:

• an even number of variables of each constraint is in 𝐵 \𝐴𝑖+1, by the definition of free sets;

• 𝐵 cannot be fully contained in 𝐵 \𝐴𝑖+1 because 𝐸 is non-empty;

• 𝐵 cannot be fully contained in 𝐵 ∩𝐴𝑖+1 by the maximal choice of 𝑖 . □

The satisfiability problem for systems of equations over a fixed finite Abelian group, where the

number of variables per equation is bounded by a constant, can be formulated as a finite-domain

CSP. In the present article, we only need to encode equations of the form 𝑥1 + · · · + 𝑥 𝑗 = 𝑎. For this

purpose, we can use the following mixture of definitions from [2] and [3].

Definition 4.13. Let G be a finite Abelian group and 𝑘 a natural number. Then we define EG ,𝑘

as the relational structure over the domain 𝐺 of G with the relations {𝑡 ∈ 𝐺 𝑗 | ∑𝑖∈[ 𝑗 ] 𝑡 [𝑖] = 𝑎} for
every 𝑗 ∈ [𝑘] and 𝑎 ∈ 𝐺 . Let 𝑒 be the neutral element in G , and let A be an instance of CSP(EG ,𝑘 )
for some 𝑘 . The homogeneous companion of A is obtained by moving the tuples from each 𝑗-ary

relation of A, 𝑗 ∈ [𝑘], to the unique 𝑗-ary relation 𝑅A
such that 𝑅EG ,𝑘 = {𝑡 ∈ 𝐺 𝑗 | ∑𝑖∈[ 𝑗 ] 𝑡 [𝑖] = 𝑒}.
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Every system of equations over G of the form 𝑥1 + · · · + 𝑥 𝑗 = 𝑎 with 𝑗 ∈ [𝑘] and 𝑎 ∈ 𝐺 gives

rise to a structure in the signature of EG ,𝑘 whose domain consists of the variables and whose

relations are described by the equations. Clearly, the system is satisfiable if and only if this structure

has a homomorphism to EG ,𝑘 . We use the probabilistic construction of multipedes from [9, 39]

as a black box for extracting certain homogeneous systems of mod-2 equations that represent

instances of CSP(Q; X) via Proposition 4.12. More specifically, we use the reduction from the proof

of Theorem 23 in [9] of the isomorphism problem for multipedes to the satisfiability of a system of

equations over Z2 with 3 variables per equation. The following concepts were introduced in [39];

we mostly follow the terminology in [9].

Definition 4.14. A multipede is a finite relational structureM with the signature {<, 𝐸, 𝐻 }, where
<, 𝐸 are binary symbols and𝐻 is a ternary relation symbol, such thatM satisfies the following axioms.

The domain has a partition into segments SG(M) and feet FT(M) such that <M
is a linear order on

SG(M), and 𝐸M is the graph of a surjective function sg : FT(M) → SG(M) with |sg
−1 (𝑥) | = 2 for

every 𝑥 ∈ SG(M). For every 𝑡 ∈ 𝐻M
, either the entries of 𝑡 are contained in SG(M) and 𝑡 is called a

hyperedge, or they are contained in FT(M) and 𝑡 is called a positive triple. We require that

• 𝐻M
only contains triples with pairwise distinct entries and is closed under adding triples

obtainable by permuting the entries of an already present triple;

• For every positive triple 𝑡 , the triple sg(𝑡) is a hyperedge (here sg acts component-wise);

• If 𝑠 ∈ 𝐻M
is a hyperedge, then exactly 4 triples 𝑡 with sg(𝑡) = 𝑠 are positive triples;

• For all positive triples 𝑡1, 𝑡2 ∈ sg
−1 (𝑠), the number of entries where 𝑡1 and 𝑡2 differ is even.

A multipede M is odd if for each ∅ ⊊ 𝑋 ⊆ SG(M) there is a hyperedge 𝑡 ∈ 𝐻M
such the

number of entries in 𝑡 containing an element from 𝑋 is odd. A multipede M is 𝑘-meager if for each
∅ ⊊ 𝑋 ⊆ SG(M) of size at most 2𝑘 we have |𝑋 | > |𝐻M ∩ 𝑋 3 |/3.

Remark 4.15. The relation 𝐻M
might as well be encoded using 3-element sets. And indeed, this

was the case in [9, 39]. We have adapted the definition to our setting where relations may only

contain ordered tuples. For this reason, our definition of 𝑘-meagerness differs from the original by

a factor of 6 because we must take the multiple occurrences of each hyperedge into account. These

are the only deviations from the original definition. In particular, all results from [9, 39] concerning

multipedes remain true after our modifications.

The following four statements (Proposition 4.16, Lemma 4.17, Proposition 4.18, and Lemma 4.19)

are crucial for our application of multipedes in the context of CSP(Q; X).

Proposition 4.16 ([9], Proposition 17). Let M be an odd multipede. Then Aut(M) = {id}.

Lemma 4.17 ([39], Lemma 4.5). For any 𝑘 ∈ N>0, letM be a 2𝑘-meager multipede. Let M1 and M2

be two expansions of M obtained by placing a constant on the two different feet of one particular
segment, respectively. Then M1 ≡C𝑘 M2. The statement even holds for expansions of M1 and M2 by
constants for all segments.

The above lemma is stated in [39] using the C𝑘∞𝜔 -equivalence instead. However, it is well-known
that for finite 𝜏-structures A and B, we have A ≡C𝑘∞𝜔 B if and only if A ≡C𝑘 B [36].

Proposition 4.18 ([9], Proposition 18). For any integer𝑘 > 0, there exists an odd𝑘-meager multipede.

Let M be a multipede and let 𝐴 be the incidence matrix of the hyperedges on the segments,

i.e., the value of 𝐴 at the coordinate (𝑡, 𝑠) ∈ (𝐻M ∩ SG(M)3) × SG(M) equals 1 if 𝑠 is one of the

entries in 𝑡 and 0 otherwise. Note that 𝐴 has exactly three non-zero entries per row. Let A be the



On the Descriptive Complexity of Temporal Constraint Satisfaction Problems 31

system 𝐴𝑥 = 0̄ viewed as an instance of CSP(EZ2,3). For all 𝑋 ⊆ 𝑌 ⊆ SG(M), we define the maps

𝑓𝑋,𝑌 : 𝑌 ∪ sg
−1 (𝑌 ) → 𝑀 and

˜𝑓𝑋,𝑌 : 𝑌 → {0, 1} as follows:

𝑓𝑋,𝑌 (𝑥) B
{
𝑦 if sg

−1 (𝑠) = {𝑥,𝑦} for some 𝑠 ∈ 𝑋,
𝑥 otherwise,

and
˜𝑓𝑋,𝑌 (𝑥) B

{
1 if 𝑠 ∈ 𝑋,
0 otherwise.

Lemma 4.19 (cf. [9], the proof of Theorem 23). For every 𝑋 ⊆ 𝑌 ⊆ SG(M), the following are
equivalent:
(1) 𝑓𝑋,𝑌 is a partial isomorphism from M to M;
(2) ˜𝑓𝑋,𝑌 is a partial homomorphism from A to EZ2,3.

Proof. Clearly, 𝑓𝑋,𝑌 preserves <M ∩𝑌 2
and also the set of all hyperedges whose entries are in 𝑌 .

Hence, (1) holds iff 𝑓𝑋,𝑌 preserves the set of all positive triples whose entries are in sg
−1 (𝑌 ). Note that,

for a hyperedge 𝑠 , 𝑓𝑋,𝑌 preserves the set of all positive triples whose entries are in sg
−1 (𝑠[1], 𝑠[2], 𝑠[3])

iff the number of entries of 𝑠 contained in𝑋 is even, i.e., iff
˜𝑓𝑋,𝑌 (𝑠[1])+ ˜𝑓𝑋,𝑌 (𝑠[2])+ ˜𝑓𝑋,𝑌 (𝑠[3]) = 0 mod 2.

This is true for every hyperedge with entries in 𝑌 if and only if (2) holds. □

Example 4.20. We now describe the multipedeM from Figure 1 in detail. We have that SG(M) = Z9,

FT(M) = Z9 × Z2, <
M
is the linear order 0 < · · · < 8, and 𝐸M = {(𝑡, 𝑠) ∈ (Z9 × Z2) × Z9 | 𝑡 [1] = 𝑠}.

Moreover, we have the following set of hyperedges:

𝐻M ∩ SG(M)3 = {𝑠 ∈ Z3

9
| there are 𝑖, 𝑗, 𝑘 ∈ [3] such that 𝑠[𝑖] = 𝑠[𝑗] + 2 and 𝑠[𝑗] = 𝑠[𝑘] + 3 mod 9},

and the following set of positive triples:

𝐻M ∩ FT(M)3 = {(𝑡1, 𝑡2, 𝑡3) ∈ (Z9 × Z2)3 | (𝑡1[1], 𝑡2[1], 𝑡3[1]) ∈ 𝐻M ∩ SG(M)3

and 𝑡1[2] + 𝑡2[2] + 𝑡3[2] = 1 mod 2}.
Note that the hyperedges do not overlap on more than one segment, because the minimal

distances between two entries of an hyperedge are 2, 3, or 4 mod 9. This directly implies that both

multipedes are 2-meager. Using Gaussian elimination, one can check that the system of mod-2

equations 𝐴𝑥 = 0̄, where 𝐴 is the incidence matrix of the hyperedges on the segments, only admits

the trivial solution. We claim that from this fact it follows thatM is odd. Otherwise, suppose that

there exists a non-empty subset 𝑋 of the hyperedges witnessing that this is not the case. Then

𝐴𝑥 = 0̄ is satisfied by the non-trivial assignment that maps 𝑥 [𝑠] to 1 if and only if 𝑠 ∈ 𝑋 , which
yields a contradiction. Thus, by Proposition 4.16 and Lemma 4.19, the expansions M1 and M2 of M
obtained by placing a constant on the two different feet of the segment 0 are not isomorphic.

Keeping the construction above Lemma 4.19 in mind, we can derive the following statement

about systems of mod-2 equations.

Proposition 4.21. For every 𝑘 ≥ 3, there exist instances A1 and A2 of CSP(EZ2,3) such that
(1) A1 and A2 have the same homogeneous companion which only has the trivial solution,
(2) A1 has no solution and A2 has a solution,
(3) A1 ≡C𝑘 A2.

Our proof strategy for Proposition 4.21 is as follows. We first use multipedes to construct

instances A′
1
and A′

2
of CSP(EZ2,3) that satisfy item (1) and (2) of the statement. Then we use the

following construction of Atserias and Dawar [3] to transform them into instances A1 and A2

that additionally satisfy item (3) of the statement. For an instance A of CSP(EZ2,3), let 𝐺 (A) be the
system that contains for each equation 𝑥1 + · · · + 𝑥 𝑗 = 𝑏 of A and all 𝑎1, . . . , 𝑎 𝑗 ∈ {0, 1} the equation

𝑥1,𝑎1
+ · · · + 𝑥 𝑗,𝑎 𝑗

= 𝑏 + 𝑎1 + · · · + 𝑎 𝑗 .
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Lemma 4.22 (Atserias and Dawar [3]). Let A be an instance of CSP(EZ2,3) and 𝑘 ≥ 3 such that
A⇒∃+L𝑘 EZ2,3. Then 𝐺 (A) ≡C𝑘 𝐺 (A0) where A0 is the homogeneous companion of A.

Proof. The statement is almost Lemma 2 in Atserias and Dawar [3] with the only difference that

they additionally assume that all constraints in the instance are imposed on three distinct variables;

however, their winning strategy for Duplicator also works in the more general setting. □

Proof of 4.21. For a given 𝑘 ≥ 3, letM be an odd 6𝑘-meager multipede whose existence follows

from Proposition 4.18. Let 𝐴𝑥 = 0̄ be the system of mod-2 equations derived from M using the

construction described in the paragraph above Lemma 4.19. It is easy to see that every automorphism

of M is of the form 𝑓𝑋,𝑌 for 𝑌 B 𝑀 and some 𝑋 ⊆ 𝑌 . Since M is odd, by Proposition 4.16, the only

automorphism of M is the identity. Therefore, by Lemma 4.19, 𝐴𝑥 = 0̄ only has the trivial solution.

This means that the inhomogeneous system obtained from 𝐴𝑥 = 0̄ by adding the equation 𝑥 [𝑠] = 1,

where 𝑠 is the first segment, has no solution. We refer to this system by A′
1
and to its homogeneous

companion by A′
2
. We clearly have A′

2
⇒∃+L𝑘 EZ2,3 because Duplicator has the trivial winning

strategy of placing all pebbles on 0 in the existential 𝑘-pebble game played on A′
2
and EZ2,3.

We claim that also A′
1
⇒∃+L𝑘 EZ2,3. We may assume that M has its signature expanded by

constant symbols for every segment (Lemma 4.17). For convenience, we fix an arbitrary linear

order on𝑀 which coincides with <M
on SG(M), and say that 𝑥 is a left foot and 𝑦 a right foot of a

segment 𝑠 with sg
−1 (𝑠) = {𝑥,𝑦} if 𝑥 is less than 𝑦 w.r.t. this order. LetM1 andM2 be the expansions

of M by a constant for the left and the right foot of the first segment, respectively. By Lemma 4.17,

we know that Duplicator has a winning strategy in the bijective 3𝑘-pebble game played on M1

andM2. We use it to construct a winning strategy for Duplicator in the existential 𝑘-pebble game

played on A′
1
and EZ2,3. Suppose that Spoiler chooses 𝑖 ∈ [𝑘] and places the pebble 𝑎𝑖 on some

𝑠 ∈ SG(M). Then we consider the situation in the bijective 3𝑘-pebble game played onM1 andM2

where Spoiler places, in three succeeding rounds, the pebble 𝑎𝑖 on the same segment 𝑠 , the pebble

𝑎𝑖+𝑘 on its left foot, and the pebble 𝑎𝑖+2𝑘 on its right foot. Since Duplicator has a winning strategy in

this game, she can always react by selecting a bijection whose restriction to the pebbled elements

is a partial isomorphism. Let 𝑓 be the last bijection selected by Duplicator during a winning play.

Since the signature contains constant symbols for every segment, it must be the case that 𝑓 (𝑠) = 𝑠 .

Consequently, 𝑓 (sg
−1 (𝑠)) = sg

−1 (𝑠). Now, if 𝑓 is the identity on sg
−1 (𝑠), then Duplicator places 𝑏𝑖

on 0 in the existential 𝑘-pebble game, otherwise on 1. Note that, if 𝑠 is the first segment, then 𝑓

cannot be the identity on sg
−1 (𝑠) due to the presence of the additional constant. Also note that the

restriction of 𝑓 to 𝑌 ∪ sg
−1 (𝑌 ), where 𝑌 is the set of pebbled segments, is of the form 𝑓𝑋,𝑌 for some

𝑋 ⊆ 𝑌 . Since 𝑓𝑋,𝑌 is a partial isomorphism and the function
˜𝑓 specified by the pebbles placed in

the existential 𝑘-pebble game is of the form
˜𝑓𝑋,𝑌 , by Lemma 4.19,

˜𝑓 is a partial homomorphism.

For 𝑖 ∈ {1, 2}, let A𝑖 be𝐺 (A′𝑖 ). Note that the homogeneous companion A of A1 and A2 is identical

and contains a copy of A′
2
with variables 𝑥𝑖,𝑎 for both upper indices 𝑎 ∈ {0, 1}. Thus, A only admits

the trivial solution, which proves item (1). Also note that A2 is satisfiable by setting every variable

𝑥𝑖,𝑎 to 𝑎, and that the unsatisfiability of A′
1
implies the unsatisfiability of A1, because the variables

of the form 𝑥𝑖,0 induce a copy of A′
1
in A1. This proves item (2). It follows from Lemma 4.22 that

A1 ≡C𝑘 A2, which proves item (3). □

Theorem 4.23. CSP(Q; X) is inexpressible in FPC.

Proof. Our strategy is to pp-define in (Q; X) a temporal structure B such that from each pair

A1 and A2 as in Proposition 4.21 we can obtain instances A′
1
and A′

2
of CSP(B) with

(1) A′
1
≡C𝑘 A′

2
,

(2) A′
1
↛ B, and A′

2
→ B.
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The signature of B is {𝑅2, . . . , 𝑅5}, and we set 𝑅B
𝑖 B 𝑅mx

[𝑖 ],𝑖 for 𝑖 ∈ {2, . . . , 5} (see Definition 4.4). By

Lemma 4.2 together with Theorem 4.6, we have that B is pp-definable in (Q; X). We now uniformly

construct A′𝑖 from A𝑖 for both 𝑖 ∈ {1, 2}. The domain of A′𝑖 is the domain of A𝑖 extended by a new

element 𝑧, and the relations of A′𝑖 are given as follows: for every (𝑥1, . . . , 𝑥 𝑗 ) ∈ 𝑅A𝑖
,

• if 𝑅EZ
2
,3 = {𝑡 ∈ {0, 1} 𝑗 | ∑𝑖∈[ 𝑗 ] 𝑡 [𝑖] = 1}, then 𝑅

A′𝑖
𝑗+1 contains the tuple (𝑥1, . . . , 𝑥 𝑗 , 𝑧), and

• if 𝑅EZ
2
,3 = {𝑡 ∈ {0, 1} 𝑗 | ∑𝑖∈[ 𝑗 ] 𝑡 [𝑖] = 0}, then 𝑅

A′𝑖
𝑗+2 contains the tuple (𝑥1, . . . , 𝑥 𝑗 , 𝑧, 𝑧).

We have A′
1
≡C𝑘 A′

2
by taking the extension of the winning strategy for Duplicator in the

bijective 𝑘-pebble game played on A1 and A2 where the new variable 𝑧 of A′
1
is always mapped to

its counterpart in A′
2
. This proves item (1).

We already know from Proposition 4.12 that CSP(Q;𝑅mx

[3],3) = CSP(Q; X) can be reformulated

as a certain decision problem for mod-2 equations which we call 3-Ord-Xor-Sat. Note that double

occurrences of variables, such as the occurrence of 𝑧 above, do matter for 3-Ord-Xor-Sat in contrast

to plain satisfiability of mod-2 equations. Also CSP(B) has a reformulation as a decision problem

for mod-2 equations where each constraint 𝑅 𝑗 (𝑥1, . . . , 𝑥 𝑗 ) for 𝑗 ∈ {2, . . . , 5} is interpreted as the

homogeneous mod-2 equation 𝑥1 + · · · +𝑥 𝑗 = 0. The reformulation is as follows and can be obtained

as in the proof of Proposition 4.12:

INPUT: A finite homogeneous system of mod-2 equations of length ℓ ∈ {2, . . . , 5}.
QUESTION: Does every non-empty subset 𝑆 of the equations have a solution where at least one

variable in an equation from 𝑆 denotes the value 1?

Note that every solution of A2 viewed as an instance of CSP(EZ2,3) extended by setting 𝑧 to

1 restricts to a non-trivial solution to every subset 𝑆 of the equations of A′
2
with respect to the

variables that appear in 𝑆 , because 𝑧 occurs in every equation of 𝑆 . We claim that the system A′
1

only admits the trivial solution. If 𝑧 assumes the value 0 in a solution of A′
1
, then this case reduces

to the homogeneous companion of A1 which has only the trivial solution. If 𝑧 assumes the value 1

in a solution of A′
1
, then this case reduces to A1 which has no solution at all. This proves item (2).

It now follows from Theorem 2.3 that CSP(B) is inexpressible in FPC. Since B has a pp-definition

in (Q; X), by Theorem 2.7 and Theorem 2.7, also CSP(Q; X) is inexpressible in FPC. □

5 CLASSIFICATION OF TCSPS IN FP

In this section we classify CSPs of temporal structures with respect to expressibility in fixed-point

logic. We start with the case of a temporal structure B that is not preserved by any operation

mentioned in Theorem 2.14. In general, it is not known whether the NP-completeness of CSP(B) is
sufficient for obtaining inexpressibility in FP. What is sufficient is the fact that B pp-constructs

({0, 1}; 1IN3).

Lemma 5.1. Let B be a relational structure that pp-constructs ({0, 1}; 1IN3). Then CSP(B) is inex-
pressible in FPC.

Proof. It is well-known that ({0, 1}; 1IN3) pp-constructs all finite structures. By the transitivity

of pp-constructability, B pp-construct the structure EZ2,3 whose CSP is inexpressible in FPC by

Theorem 10 in [2]. Thus, CSP(B) is inexpressible in FPC by Theorem 2.7. □

We show in Theorem 5.2 that the temporal structures preserved by mx for which we know that

their CSP is expressible in FP by the results in Section 3 are precisely the ones unable to pp-define

the relation X which we have studied in Section 4.

Theorem 5.2. Let B be a temporal structure preserved by mx. Then either B admits a pp-definition
of X, or one of the following is true:
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(1) B is preserved by a constant operation,
(2) B is preserved by min.

Proof. If (1) or (2) holds, then X cannot have a pp-definition in B by Proposition 2.1, because X

is neither preserved by a constant operation nor by min.

Suppose that neither (1) nor (2) holds for B, that is, B contains a relation that is not preserved by

any constant operation, and a relation that is not preserved by min. Our goal is to show that X has

a pp-definition in B. The proof strategy is as follows. We first show that temporal relations which

are preserved by mx and not preserved by a constant operation admit a pp-definition of <. Then

we analyse the behaviour of projections of temporal relations which are preserved by mx and not

preserved by min and use the pp-definability of < to pp-define 𝑋 .

We need to introduce some additional notation. Recall the definition of 𝜒
0̄
(𝑅) for a temporal

relation 𝑅 (Definition 4.4). For every 𝐼 ⊆ [𝑛], we fix an arbitrary homogeneous system𝑀𝐼 (𝑅)𝑥 = 0̄

of mod-2 equations with solution set 𝜒
0̄
(proj𝐼 (𝑅)), where the matrix𝑀𝐼 (𝑅) is in reduced row echelon

form without zero rows:
• each row contains a non-zero entry,

• the leading coefficient of each row is always strictly to the right of the leading coefficient of

the row above it,

• every leading coefficient is the only non-zero entry in its column.

We reorder the columns of𝑀𝐼 (𝑅) such that it takes the form(
𝑈𝑚 ∗

)
(3)

where 𝑈𝑚 is the𝑚 ×𝑚 unit matrix for some𝑚 ≤ 𝑛; we also write𝑚𝐼 (𝑅) for𝑚. Without loss of

generality, we may also assume that 𝐼 consists of the first |𝐼 | elements of [𝑛]. Finally, we define
supp𝐼 ,𝑖 (𝑅) B { 𝑗 ∈ [|𝐼 |] | 𝑀𝐼 (𝑅)[𝑖, 𝑗] = 1}.

Claim 5.3. Let 𝑅 be a non-empty temporal relation preserved by mx. If 𝑅 is not preserved by a constant
operation, then < has a pp-definition in (Q;𝑅).
Proof. Let 𝑛 be the arity of 𝑅 and let 𝑚 B 𝑚 [𝑛] (𝑅). Since 𝑅 is not preserved by a constant

operation, we have 1̄ ∉ 𝜒 (𝑅). This means that |supp[𝑛],𝑖 (𝑅) | is odd for some 𝑖 ≤ 𝑛 which is fixed

for the remainder of the proof. Let 𝑅′ be the contraction of 𝑅 given by the pp-definition

𝑅(𝑥1, . . . , 𝑥𝑛) ∧
∧

𝑝,𝑞∈[𝑛]\{1,...,𝑚}
𝑥𝑝 = 𝑥𝑞 .

Note that 𝑅′ is non-empty since 𝑅 contains a tuple 𝑡 which satisfies 𝜒 (𝑡)[𝑥 𝑗 ] = 1 if and only if

• 𝑗 > 𝑚, or

• 𝑗 ≤ 𝑚 and |supp[𝑛], 𝑗 (𝑅) | is even.
We claim that every 𝑡 ∈ 𝑅′ is of this form. If 𝜒 (𝑡)[𝑥 𝑗 ] = 0 for some 𝑗 > 𝑚, then 𝜒 (𝑡)[𝑥ℓ ] = 0 for every

ℓ > 𝑚 by the definition of 𝑅′, which implies that 𝜒 (𝑡)[𝑥ℓ ] = 0 for every ℓ ≤ 𝑚 by a parity argument

with the equations of𝑀[𝑛] (𝑅)𝑥 = 0̄. But then no entry can be minimal in 𝑡 , a contradiction. Hence,

𝜒 (𝑡)[𝑥ℓ ] = 1 for every ℓ > 𝑚.

For every ℓ ≤ 𝑚 we have 𝜒 (𝑡)[ℓ] = 1 if and only if |supp[𝑛],ℓ (𝑅) | is even. Since 𝑅 is non-empty,

there exists an index 𝑘 ∈ {𝑚 + 1, . . . , 𝑛}. We have 𝑡 [𝑘] < 𝑡 [𝑖] for every 𝑡 ∈ 𝑅′ due to our previous

argumentation. Hence, the relation < coincides with proj{𝑘,𝑖 } (𝑅′) and therefore has a pp-definition

in (Q;𝑅). □

Claim 5.4. Let 𝑅 be an 𝑛-ary temporal relation preserved by mx such that for every 𝐼 ⊆ [𝑛], the
set 𝜒

0̄
(proj𝐼 (𝑅)) is the solution set of a homogeneous system of mod-2 equations with at most two

variables per equation. Then 𝑅 is preserved by min.
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Proof. We show the claim by induction on 𝑛. For 𝑛 = 0, there is nothing to show. Suppose that

the statement holds for all relations with arity less than 𝑛. For every 𝐼 ⊆ [𝑛] we fix an arbitrary

homogeneous system 𝑀𝐼 (𝑅)𝑥 = 0̄ of mod-2 equations with solution set 𝜒
0̄
(proj𝐼 (𝑅)) that has at

most two variables per equation. Note that 𝜒
0̄
(proj𝐼 (𝑅)) is preserved by the mod-2 maximum

operation max. Moreover, for all 𝑠, 𝑠 ′ ∈ {0, 1} |𝐼 | we have 0̄ = max(𝑠, 𝑠 ′) if and only if 𝑠 = 𝑠 ′ = 0̄,

which means that 𝜒 (proj𝐼 (𝑅)) itself is preserved by max. Now for every pair 𝑡, 𝑡 ′ ∈ 𝑅 we want

to show that min(𝑡, 𝑡 ′) ∈ 𝑅. If min(𝑡) = min(𝑡 ′), then 𝜒 (min(𝑡, 𝑡 ′)) = max(𝜒 (𝑡), 𝜒 (𝑡 ′)) ∈ 𝜒 (𝑅). If
min(𝑡) ≠ min(𝑡 ′), then 𝜒 (min(𝑡, 𝑡 ′)) ∈ {𝜒 (𝑡), 𝜒 (𝑡 ′)} ⊆ 𝜒 (𝑅). Thus, there exists a tuple 𝑐 ∈ 𝑅 with

𝜒 (𝑐) = 𝜒 (min(𝑡, 𝑡 ′)). We set 𝐼 B argmin(𝑐). Since the statement holds for proj𝑛\𝐼 (𝑅) by induction

hypothesis and proj[𝑛]\𝐼 (min(𝑡, 𝑡 ′)) = min(proj[𝑛]\𝐼 (𝑡), proj[𝑛]\𝐼 (𝑡 ′)) ∈ proj[𝑛]\𝐼 (𝑅), there exists
𝑟 ∈ 𝑅 with proj[𝑛]\𝐼 (min(𝑡, 𝑡 ′)) = proj[𝑛]\𝐼 (𝑟 ). We can apply an automorphism to 𝑟 to obtain a

tuple 𝑟 ′ ∈ 𝑅 where all entries are positive. We can also apply an automorphism to obtain a tuple

𝑐 ′ ∈ 𝑅 so that its minimal entries 𝑖 ∈ 𝐼 are equal 0 and for every other entry 𝑖 ∈ [𝑛] \ 𝐼 it holds that
𝑐 ′[𝑖] > 𝑟 ′[𝑖]. Then mx(𝑐 ′, 𝑟 ′) yields a tuple in 𝑅 which in the same orbit as min(𝑡, 𝑡 ′). Hence, 𝑅 is

preserved by min. □

Claim 5.5. Let 𝑅 be a temporal relation preserved by mx. If 𝑅 is not preserved by min, then X has a
pp-definition in (Q; <, 𝑅).

Proof. Let 𝑛 be the arity of 𝑅. Since 𝑅 is not preserved by min, Claim 5.4 implies that there

exists 𝐼 ⊆ [𝑛] such that 𝜒
0̄
(proj𝐼 (𝑅)) is not the solution set of any homogeneous system of mod-2

equations with at most two variables per equation. Recall that 𝜒
0̄
(proj𝐼 (𝑅)) is the solution set

of a system 𝑀𝐼 (𝑅)𝑥 = 0̄ of mod-2 equations where 𝑀𝐼 (𝑅) is as in (3). Let𝑚 B 𝑚𝐼 (𝑅) and fix an

arbitrary index 𝑖 ∈ [𝑚] with |supp𝐼 ,𝑖 (𝑅) | ≥ 3. We also fix an arbitrary pair of distinct indices

𝑘, ℓ ∈ supp𝐼 ,𝑖 (𝑅) \ {𝑖}. Note that 𝑘, ℓ ∈ {𝑚 + 1, . . . , |𝐼 |} by the shape of the matrix𝑀𝐼 (𝑅). We claim

that the formula 𝜙 (𝑥𝑖 , 𝑥𝑘 , 𝑥ℓ ) obtained from the formula

𝑅(𝑥1, . . . , 𝑥𝑛) ∧
∧

𝑗 ∈𝐼\{𝑘,ℓ,1,...,𝑚}
𝑥𝑖 < 𝑥 𝑗 (4)

by existentially quantifying all variables except for 𝑥𝑖 , 𝑥𝑘 , 𝑥ℓ is a pp-definition of X.

“⇒”: Let 𝑡 ∈ X. We have to prove that 𝑡 satisfies𝜙 (𝑥𝑖 , 𝑥𝑘 , 𝑥ℓ ). First, suppose that 𝑡 [𝑥𝑖] = 𝑡 [𝑥𝑘 ] < 𝑡 [𝑥ℓ ].

Note that𝑀𝐼 (𝑅)𝑥 = 0̄ has a solution where

• 𝑥𝑘 takes value 1,

• all variables 𝑥 𝑗 such that the 𝑗-th equation contains 𝑥𝑘 are also set to 1, and

• all other variables are set to 0.

The reason is that in this way in each equation that contains 𝑥𝑘 exactly two variables are set to

1, and in each equation that does not contain 𝑘 no variable is set to 1. Hence, 𝑅 contains a tuple

𝑠 ′ such that 𝜒 (proj𝐼 (𝑠 ′)) corresponds to this solution. Note that 𝑠 ′ also satisfies (4), and that there

exists 𝛼 ′ ∈ Aut(Q; <) such that 𝑡 = (𝛼 ′𝑠 ′[𝑥𝑖], 𝛼 ′𝑠 ′[𝑥𝑘 ], 𝛼 ′𝑠 ′[𝑥ℓ ]).
The second case 𝑡 [𝑥ℓ ] < 𝑡 [𝑥𝑖] = 𝑡 [𝑥𝑘 ] can be treated analogously to the first one, using a tuple

𝑠 ′′ ∈ 𝑅 such that for all 𝑗 ∈ 𝐼

𝜒 (proj𝐼 (𝑠 ′′))[𝑥 𝑗 ] =


1 if ℓ = 𝑗,

1 if ℓ ∈ supp𝐼 , 𝑗 (𝑅),
0 otherwise,

and 𝛼 ′′ ∈ Aut(Q; <) such that 𝑡 = (𝛼 ′′𝑠 ′′[𝑥𝑖], 𝛼 ′′𝑠 ′′[𝑥𝑘 ], 𝛼 ′′𝑠 ′′[𝑥ℓ ]).
Finally, suppose that 𝑡 [𝑥𝑘 ] = 𝑡 [𝑥ℓ ] < 𝑡 [𝑥𝑖]. Let 𝑡

′
and 𝑡 ′′ be the two distinct tuples obtainable from

𝑡 through a non-trivial permutation of entries. Note that 𝑡 ′ and 𝑡 ′′ fall into the first and the second
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case, respectively, or vice versa. Let 𝑠 ′, 𝑠 ′′ and 𝛼 ′, 𝛼 ′′ be any auxiliary tuples and automorphisms

of (Q;<) obtained in the previous two cases for 𝑡 ′ and 𝑡 ′′. Then 𝑠 B mx(𝛼 ′𝑠 ′, 𝛼 ′′𝑠 ′′) ∈ 𝑅 is

a tuple that satisfies the quantifier-free part of (4), and there exists 𝛼 ∈ Aut(Q;<) such that

𝑡 = (𝛼𝑠[𝑥𝑖], 𝛼𝑠[𝑥𝑘 ], 𝛼𝑠[𝑥ℓ ]).
“⇐”: Suppose 𝑠 ∈ 𝑅 satisfies (4). We must show (proj𝐼 (𝑠)[𝑥𝑖], proj𝐼 (𝑠)[𝑥𝑘 ], proj𝐼 (𝑠)[𝑥ℓ ]) ∈ X. By

the final conjuncts of (4) all indices of minimal entries in proj𝐼 (𝑠) must be from 𝑥𝑘 , 𝑥ℓ , 𝑥1, . . . , 𝑥𝑚 .

Let 𝑗 ∈ 𝐼 be the index of a minimal entry in proj𝐼 (𝑠). First consider the case 𝑗 ∈ {𝑖, 𝑘, ℓ}. The
shape of 𝑀𝐼 (𝑅) implies that the variables of the 𝑖-th equation of 𝑀𝐼 (𝑅)𝑥 = 0̄ must come from

𝑥𝑖 , 𝑥𝑚+1, . . . ,𝑚 |𝐼 | . As mentioned, none of these variables can denote a minimal entry in proj𝐼 (𝑠)
except for 𝑥𝑖 , 𝑥𝑘 , and 𝑥ℓ . Hence, the 𝑖-th equation implies that proj𝐼 (𝑠) takes a minimal value at

exactly two of the indices {𝑖, 𝑘, ℓ}. So we conclude that (proj𝐼 (𝑠)[𝑥𝑖], proj𝐼 (𝑠)[𝑥𝑘 ], proj𝐼 (𝑠)[𝑥ℓ ]) ∈ X.

Otherwise, 𝑗 ∈ {1, . . . ,𝑚} \ {𝑖}. The shape of𝑀𝐼 (𝑅) implies that the variables of the 𝑗-th equation

of 𝑀𝐼 (𝑅)𝑥 = 0̄ must come from 𝑥 𝑗 , 𝑥𝑚+1, . . . ,𝑚 |𝐼 | . None of these variables can denote a minimal

entry in proj𝐼 (𝑠) except for 𝑥 𝑗 , 𝑥𝑘 , and 𝑥ℓ . Hence, the 𝑗-th equation of 𝑀𝐼 (𝑅)𝑥 = 0̄ implies that

proj𝐼 (𝑠) takes a minimal value at exactly two of the indices { 𝑗, 𝑘, ℓ}. We have thus reduced the

situation to the first case. □

The statement of Theorem 5.2 follows from Claim 5.3 and Claim 5.5. □

We are now ready for the proof of our characterisation of temporal CSPs in FP and FPC.

Proof of Theorem 1.3. Let B be a temporal structure.

“(1)⇒(2)”: Trivial because FP is a fragment of FPC.

“(2)⇒(3)”: Lemma 5.1 implies that B does not pp-construct ({0, 1}; 1IN3); Theorem 4.23 and

Theorem 2.7 show that B does not pp-construct (Q; X).
“(3)⇒(4)”: Since B does not pp-construct ({0, 1}; 1IN3), by Theorem 2.14, B is preserved by min,

mi, mx, ll, the dual of one of these operations, or by a constant operation. If B is preserved by mx but

neither by min nor by a constant operation, then B pp-defines X by Theorem 5.2, a contradiction to

(3). If B is preserved by dual mx but neither by max nor by a constant operation, then B pp-defines

−X by the dual version of Theorem 5.2. Since (Q; X) and (Q;−X) are homomorphically equivalent,

we get a contradiction to (3) in this case as well. Thus (4) must hold for B.
“(4)⇒(1)”: If B has a constant polymorphism, then CSP(B) is trivial and thus expressible in FP. If

B is preserved by min, mi, or ll, then every relation of B is pp-definable in (Q; <, R≤
min
) by Lemma 3.4,

or in (Q; Rmi, Smi,≠) by Lemma 3.9, or in (Q; Rll, Sll,≠) by Lemma 3.21. Thus, CSP(B) is expressible
in FP by Proposition 3.7, Proposition 3.15, or Proposition 3.27 combined with Theorem 2.7. Each of

the previous statements can be dualized to obtain expressibility of CSP(B) in FP if B is preserved

by max, dual mi, or dual ll. □

We finally prove our characterisation of the temporal CSPs in FPR2.

Proof of Theorem 1.4. If B pp-constructs all finite structures, then B pp-constructs in particular

the structure EZ3,3. It follows from work of Grädel and Pakusa [37] that CSP(EZ3,3) is inexpressible
in FPR2 (see the comments after Theorem 6.8 in [34]). Theorem 2.7 then implies that CSP(B) is
inexpressible in FPR2 as well by.

For the backward direction suppose that B does not pp-construct all finite structures. Then B is

preserved by one of the operations listed in Theorem 2.14. If B is preserved by min, mi, ll, the dual

of one of these operations, or by a constant operation, then B is expressible in FP by Theorem 1.3

and thus in FPR2. If B has mx as a polymorphism, then every relation of B is pp-definable in the

structure (Q; X) by Lemma 4.2. Thus, CSP(B) is expressible in FPR2 by Proposition 4.11 combined
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with Theorem 2.7. Dually, if B has the polymorphism dual mx, then CSP(B) is expressible in FPR2

as well. □

6 CLASSIFICATION OF TCSPS IN DATALOG

In this section, we classify temporal CSPs with respect to expressibility in Datalog. In some of our

syntactic arguments in this section it will be convenient to work with formulas over the structure

(Q; ≤,≠) instead of the structure (Q; <). A {≤,≠}-formula is called Ord-Horn if it is a conjunction
of clauses of the form 𝑥1 ≠ 𝑦1 ∨ · · · ∨𝑥𝑚 ≠ 𝑦𝑚 ∨𝑥 ≤ 𝑦 where the last disjunct is optional [10]. Nebel

and Bürckert [52] showed that satisfiability of Ord-Horn formulas can be decided in polynomial

time. Their algorithm shows that if a all relations of a template B are definable by Ord-Horn

formulas, then CSP(B) can be solved by a Datalog program. In [52], Ord-Horn was introduced as

the greatest tractable subclass of Allen’s interval algebra containing all basic relations. Among

temporal structures, the Ord-Horn fragment is not even maximal w.r.t. tractability of the CSP as it

is properly contained in the tractable class of temporal structures preserved by ll [15]. However, it

is the greatest element w.r.t. expressibility of the CSP in Datalog apart from temporal structures

preserved by a constant operation, as we show in Theorem 1.2. We first prove in Proposition 6.1

that Ord-Horn definability of temporal relations can be characterized in terms of admitting certain

polymorphisms. The condition in Proposition 6.1 can be simplified to preservation by ll and dual ll,

a characterisation we use in Theorem 1.2. Later we will prove that there is no characterisation of

expressibility in Datalog in terms of identities for polymorphism clones (see Proposition 7.8).

Proposition 6.1. A temporal relation is definable by an Ord-Horn formula if and only if it is preserved
by every binary injective operation on Q that preserves ≤.

Proposition 6.1 is proved using the syntactic normal form for temporal relations preserved by pp

from [11] and the syntactic normal form for temporal relations preserved by ll from [10].

Proposition 6.2 ([11]). A temporal relation is preserved by pp if and only if it can be defined by a
conjunction of formulas of the form 𝑧1 ◦ 𝑧 ∨ · · · ∨ 𝑧𝑛 ◦𝑛 𝑧 where ◦𝑖 ∈ {≤,≠} for each 𝑖 ∈ {1, . . . , 𝑛}.

Lemma 6.3. Every temporal relation preserved by pp or ll can be defined by a conjunction of formulas
of the form 𝑥1 ≠ 𝑦1 ∨ · · · ∨ 𝑥𝑚 ≠ 𝑦𝑚 ∨ 𝑧1 ≤ 𝑧 ∨ · · · ∨ 𝑧ℓ ≤ 𝑧.

Proof. If𝑅 is a temporal relation preserved by pp then the statement follows from Proposition 6.2.

Let 𝑅 be a temporal relation preserved by ll. Then 𝑅 is definable by a conjunction of clauses

𝜙 B
∧

𝑖 𝜙𝑖 where each clause 𝜙𝑖 is as in Proposition 3.23. For an index 𝑖 , let𝜓𝑖 be obtained from 𝜙𝑖
by dropping the inequality disjuncts of the form 𝑥 ≠ 𝑦. So𝜓𝑖 is of the form

(1) 𝑧1 < 𝑧 ∨ · · · ∨ 𝑧ℓ < 𝑧, or of the form

(2) 𝑧1 < 𝑧 ∨ · · · ∨ 𝑧ℓ < 𝑧 ∨ (𝑧 = 𝑧1 = · · · = 𝑧ℓ ).
If𝜓𝑖 is of the form (1), then𝜓𝑖 is a formula preserved by min (Proposition 3.6). If𝜓𝑖 is of the form

(2), then it is easy to see that𝜓𝑖 is equivalent to∧
𝑗 ∈[ℓ ]

©«𝑧 𝑗 ≤ 𝑧 ∨
∨

𝑘∈[ℓ ]\{ 𝑗 }
𝑧𝑘 < 𝑧

ª®¬ .
which is a formula preserved by min as well (Proposition 3.6). In particular, in both cases 𝜓𝑖 is

preserved by pp. Since𝜓𝑖 is preserved by pp, it is equivalent to a conjunction𝜓 ′𝑖 of clauses as in
Proposition 6.2. We replace in each 𝜙𝑖 the disjunct𝜓𝑖 by𝜓

′
𝑖 . By use of distributivity of ∨ and ∧, we

can then rewrite 𝜙𝑖 into a definition of 𝑅 that has the desired form. □
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A {≤,≠}-formula 𝜙 is said to be in conjuctive normal form (CNF) if it is a conjunction of clauses; a
clause if a disjunction of literals, i.e., atomic {≤,≠}-formulas or negations of atomic {≤,≠}-formulas.

We say that 𝜙 is reduced if for any literal of 𝜙 , the formula obtained by removing a literal from 𝜙 is

not equivalent to 𝜙 over (Q; ≤,≠). The next lemma is a straightforward but useful observation.

Definition 6.4. The 𝑘-ary operation lex on Q is defined by

lex𝑘 (𝑡) B lex

(
𝑡 [1], lex

(
𝑡 [2], . . . lex(𝑡 [𝑘 − 1], 𝑡 [𝑘]) . . .

) )
.

Proof of Proposition 6.1. The forward direction is straightforward: every clause of an Ord-

Horn formula is preserved by every injective operation on Q that preserves ≤. For the backward di-
rection, let𝑅 be a temporal relation preserved by every binary injective operation onQ that preserves

≤. In particular, 𝑅 is preserved by ll and by 𝑓 : Q2 → Q defined by 𝑓 (𝑥,𝑦) B lex3 (max(𝑥,𝑦), 𝑥,𝑦).
Let 𝜙 be a definition of 𝑅 provided by Lemma 6.3. Note that if we remove literals from 𝜙 , then the

resulting formula is still of the same syntactic form, so we may assume that 𝜙 is a reduced CNF

definition. Let𝜓 = (𝑥1 ≠ 𝑦1 ∨ · · · ∨ 𝑥𝑚 ≠ 𝑦𝑚 ∨ 𝑧1 ≤ 𝑧 ∨ · · · ∨ 𝑧ℓ ≤ 𝑧) be a conjunct of 𝜙 . We claim

that ℓ ≤ 1. Otherwise, since 𝜙 is in reduced CNF, there exist tuples 𝑡1, 𝑡2 ∈ 𝑅 such that 𝑡1 does not

satisfy all disjuncts of𝜓 except for 𝑧1 ≤ 𝑧 and 𝑡2 does not satisfy all disjuncts of𝜓 except for 𝑧2 ≤ 𝑧.

Without loss of generality, we may assume that 𝑡1[𝑧] = 𝑡2[𝑧], because otherwise we may replace 𝑡1
with 𝛼𝑡1 for some 𝛼 ∈ Aut(Q;<) that maps 𝑡1[𝑧] to 𝑡2[𝑧]. Note that 𝑓 (𝑡1, 𝑡2) does not satisfy 𝑧𝑖 ≤ 𝑧

for every 𝑖 ∈ {3, . . . , ℓ} because 𝑓 preserves <. Also note that 𝑡1[𝑧] < 𝑡1[𝑧2
] and 𝑡2[𝑧] < 𝑡2[𝑧1

]. Since

𝑡1[𝑧] = 𝑡2[𝑧], we have 𝑓 (𝑡1, 𝑡2)[𝑧] < 𝑓 (𝑡1, 𝑡2)[𝑧1
] and 𝑓 (𝑡1, 𝑡2)[𝑧] < 𝑓 (𝑡1, 𝑡2)[𝑧2

] by the definition of 𝑓 .

But then 𝑓 (𝑡1, 𝑡2) does not satisfy𝜓 , a contradiction to 𝑓 being a polymorphism of 𝑅. Hence ℓ ≤ 1.

Since𝜓 was chosen arbitrarily, we conclude that 𝜙 is Ord-Horn. □

Let Rmin be the temporal relation defined by 𝑦 < 𝑥 ∨ 𝑧 < 𝑥 that was already mentioned

in the introduction. Recall that CSP(Q; Rmin) is inexpressible in Datalog [15]. The reason for

inexpressibility is not unbounded counting width, but the combination of the two facts that

CSP(Q; Rmin) admits unsatisfiable instances of arbitrarily high girth, and that all proper projections

of Rmin are trivial. The counting width of CSP(Q; Rmin) is bounded because co-CSP(Q; Rmin) is
definable using the FP sentence ∃𝑥 [dfp𝑈 ,𝑥∃𝑦, 𝑧 (𝑈 (𝑦) ∧𝑈 (𝑧) ∧Rmin (𝑥,𝑦, 𝑧))] (𝑥), see the paragraph
below Theorem 2.3. We show in Theorem 6.5 that the inability of a temporal structure with a

polynomial-time tractable CSP to pp-define Rmin can be characterised in terms of being preserved by

a constant operation, or by the operations from Proposition 6.1 which witness Ord-Horn definability.

Theorem 6.5. Let B be a temporal structure that admits a pp-definition of <. Then exactly one of the
following two statements is true:
(1) B admits a pp-definition of the relation Rmin or of the relation −Rmin,
(2) B is preserved by every binary injective operation on Q that preserves ≤.

Proof. “(2)⇒(1)”: If (2) holds, then B is in particular preserved by ll and dual ll. But then, by

Proposition 2.1, neither Rmin nor −Rmin has a pp-definition in B because Rmin is not preserved by

dual ll and −Rmin is not preserved by ll [15].

“(1)⇒(2)”: Suppose that (2) does not hold. The Betweenness problemmentioned in the introduction

can be formulated as the CSP of a temporal structure (Q; Betw) where
Betw B {(𝑥,𝑦, 𝑧) ∈ Q3 | 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥}.

Claim 6.6. (Q; Betw, <) pp-defines both relations Rmin and −Rmin.

Proof. We show that 𝜙 (𝑥,𝑦, 𝑧) B ∃𝑎, 𝑏
(
Betw(𝑎, 𝑥, 𝑏) ∧𝑦 < 𝑎 ∧ 𝑧 < 𝑏

)
is a pp-definition of Rmin.

Then it will be clear that −Rmin has the pp-definition ∃𝑎, 𝑏
(
Betw(𝑎, 𝑥, 𝑏) ∧ (𝑎 < 𝑦) ∧ (𝑏 < 𝑧)

)
.
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“⇒”: Let 𝑡 ∈ Rmin be arbitrary. We may assume with loss of generality that 𝑡 [3] < 𝑡 [1]. Then any

𝑎, 𝑏 ∈ Q such that 𝑡 [3] < 𝑎 < 𝑡 [1] and max(𝑡 [1], 𝑡 [2]) < 𝑏 witness that 𝑡 satisfies 𝜙 .

“⇐”: Let 𝑡 ∈ Q3 \ Rmin be arbitrary. Then 𝑡 [1] ≤ 𝑡 [2] and 𝑡 [1] ≤ 𝑡 [3]. Suppose that there exist

𝑎, 𝑏 ∈ Q witnessing that 𝑡 satisfies 𝜙 . Then 𝑡 [1] ≤ 𝑡 [2] < 𝑎 and 𝑡 [1] ≤ 𝑡 [3] < 𝑏, a contradiction to

Betw(𝑎, 𝑡 [1], 𝑏). Thus, 𝑡 does not satisfy 𝜙 . □

Now suppose that B does not pp-define Betw. Then by Lemma 10 and Lemma 49 in [14], B is

preserved by some operation 𝑔 ∈ {pp, ll, dual pp, dual ll}. If B is preserved by pp or ll then we can

apply Lemma 6.3. The case where B is preserved by dual pp or dual ll can be shown analogously

using a dual version of Lemma 6.3. The proof strategy is as follows. We fix any relation 𝑅 of B
which is not preserved by some binary injective operation 𝑓 on Q that preserves ≤. Lemma 6.3

implies that 𝑅 has a definition of a particular form. It turns out that the projection onto a particular

set of three entries in 𝑅 behaves like Rmin modulo imposing some additional constraints onto the

remaining variables. These additional constraints rely on the pp-definability of <.

Let 𝑅 be a relation of arity 𝑛 with a pp-definition in B such that 𝑅 is not preserved by a binary

operation 𝑓 on Q preserving ≤. Let 𝜙 (𝑢1, . . . , 𝑢𝑛) be a definition of 𝑅 of the form as described

in Lemma 6.3; since the removal of literals from 𝜙 preserves the form in Lemma 6.3, we may

additionally assume that 𝜙 is in reduced CNF. Then 𝜙 must have a conjunct𝜓 of the form

𝑥1 ≠ 𝑦1 ∨ · · · ∨ 𝑥𝑚 ≠ 𝑦𝑚 ∨ 𝑧1 ≤ 𝑧 ∨ · · · ∨ 𝑧ℓ ≤ 𝑧

that is not preserved by 𝑓 . Since 𝑓 is injective and preserves ≤, it preserves all Ord-Horn formulas.

Hence, ℓ ≥ 2. Since 𝜙 is reduced, there are tuples 𝑡1 and 𝑡2 satisfying 𝜙 such that for 𝑖 ∈ {1, 2}
• 𝑡𝑖 satisfies the disjunct 𝑧𝑖 ≤ 𝑧 of𝜓 ;

• 𝑡𝑖 does not satisfy all other disjuncts of𝜓 .

Let𝜓Rmin
(𝑧, 𝑣1, 𝑣2) be the formula obtained by existentially quantifying all variables except for 𝑧, 𝑣1,

and 𝑣2 in the following formula

𝑣1 < 𝑧1 ∧ 𝑣2 < 𝑧2 ∧ 𝑅(𝑢1, . . . , 𝑢𝑛) ∧
∧

𝑗 ∈{3,...,ℓ }
𝑧 < 𝑧 𝑗 ∧

∧
𝑖∈[𝑚]

𝑥𝑖 = 𝑦𝑖 . (5)

We claim that𝜓Rmin
is a pp-definition of 𝑅min over (Q; <, 𝑅). For the forward direction let 𝑡 ∈ Rmin.

First suppose that 𝑡 [𝑣1
] < 𝑡 [𝑧]. Let 𝛼 be any automorphism of (Q; <) that sends

• 𝑡1[𝑧] to 𝑡 [𝑧], and
• 𝑡1[𝑧1

] to some rational number 𝑞 with 𝑡 [𝑣1
] < 𝑞 ≤ 𝑡 [𝑧].

Then 𝛼 (𝑡1) provides witnesses for the variables 𝑢1, . . . , 𝑢𝑛 in (5) showing that 𝑡 satisfies𝜓Rmin
. The

case where 𝑡 [𝑧] ≤ 𝑡 [𝑣1
] and 𝑡 [𝑧] > 𝑡 [𝑣2

] can be treated analogously, using 𝑡2 instead of 𝑡1.

For the backward direction, suppose that 𝑠 ∈ Q𝑛+2 satisfies (5). In particular, 𝑠[𝑧] < 𝑠[𝑧 𝑗 ] for every

𝑗 ∈ {3, . . . , ℓ} and 𝑠[𝑥𝑖] = 𝑠[𝑦𝑖] for every 𝑖 ∈ {1, . . . ,𝑚}, and hence 𝑠[𝑧1
] ≤ 𝑠[𝑧] or 𝑠[𝑧2

] ≤ 𝑠[𝑧] because

𝑠 satisfies 𝜓 . If 𝑠[𝑧1
] ≤ 𝑠[𝑧] then 𝑠[𝑣1

] < 𝑠[𝑧1
] ≤ 𝑠[𝑧] and hence (𝑠[𝑧], 𝑠[𝑧1

], 𝑠[𝑧2
]) ∈ Rmin. Similarly, if

𝑠[𝑧2
] ≤ 𝑠[𝑧] then 𝑠[𝑣2

] < 𝑠[𝑧2
] ≤ 𝑠[𝑧] and again (𝑠[𝑧], 𝑠[𝑧1

], 𝑠[𝑧2
]) ∈ Rmin. □

We are ready for the proof of our second classification result; it combines Theorem 2.7, Proposi-

tion 6.1, Theorem 6.5, and results from previous sections.

Proof of Theorem 1.2. Let B be a temporal structure.

“(1)⇒(2)”: If CSP(B) is expressible in Datalog, then B does not pp-construct ({0, 1}; 1IN3);
otherwise we get a contradiction to the expressibility of CSP(B) in Datalog by Theorem 1.3,

because Datalog is a fragment of FP. Moreover, B does not pp-construct (Q,Rmin); otherwise we
get a contradiction to the inexpressibility of CSP(Q, Rmin) in Datalog (Theorem 5.2 in [15]) through

Theorem 2.7.
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“(2)⇒(3)”: Since B does not pp-construct ({0, 1}; 1IN3), Theorem 2.14 implies that B is preserved

by min, mi, mx, ll, the dual of one of these operations, or by a constant operation. In the case

where B is preserved by a constant operation we are done, so suppose that B is not preserved by a

constant operation. First consider the case that < is pp-definable in B. Since Rmin and −Rmin are

not pp-definable in B, Theorem 6.5 shows that B is preserved by every binary injective operation

on Q preserving ≤. In particular, B is preserved by ll and dual ll.

Now consider the case that < is not pp-definable. Since none of the temporal relations Cycl,

Betw, Sep listed in Theorem 12.3.1 in [10] is preserved by any of the operations min,mi,mx, ll, or

their duals, the theorem implies that Aut(B) contains all permutations of Q. This means that B
is an equality constraint language as defined in [13]. The structure B has a polymorphism which

depends on two arguments but it does not have a constant polymorphism. Therefore, B has a binary

injective polymorphism, by Theorem 4 in [13]. Since B is an equality constraint language with a

binary injective polymorphism, by Lemma 2 in [13], B is preserved by every binary injection on Q.
In particular, B is preserved by ll and dual ll.

“(3)⇒(1)”: If B has a constant polymorphism, then CSP(B) is trivial and thus expressible in

Datalog. Otherwise, B is preserved by both ll and dual ll. Then also the expansion B′ of B by < is

preserved by both ll and dual ll. The latter implies that B′ cannot pp-define Rmin because 𝑅min is not

preserved by dual ll [15]. Thus, Theorem 6.5 implies that B′ is preserved by every binary injective

operation on Q that preserves ≤. Then Proposition 6.1 then shows that all relations of B′ and in

particular of B are Ord-Horn definable. Therefore, CSP(B) is expressible in Datalog by Theorem 22

in [52]. □

7 ALGEBRAIC CONDITIONS FOR TEMPORAL CSPS

In this section, we consider several candidates for general algebraic criteria for expressibility of

CSPs in FP and Datalog stemming from the well-developed theory of finite-domain CSPs. These

criteria have already been displayed in Theorem 1.1.

Our results imply that none of them can be used to characterise expressibility of temporal CSPs

in FP or in Datalog. However, we also present a new simple algebraic condition which characterises

expressibility of both finite-domain and temporal CSPs in FP, proving Theorem 1.7. We assume

basic knowledge of universal algebra; see, e.g., the textbook of Burris and Sankappanavar [51].

Definition 7.1. An identity is a formal expression 𝑠 (𝑥1, . . . , 𝑥𝑛) ≈ 𝑡 (𝑦1, . . . , 𝑦𝑚) where 𝑠 and 𝑡 are
terms built from function symbols and the variables 𝑥1, . . . , 𝑥𝑛 and 𝑦1, . . . , 𝑦𝑚 , respectively. An

(equational) condition is a set of identities. Let A be a set of operations on a fixed set 𝐴. For a set

𝐹 ⊆ 𝐴, a condition E is satisfied in A on 𝐹 if the function symbols of E can be assigned functions

in A in such a way that all identities of E become true for all possible values of their variables in

𝐹 . If 𝐹 = 𝐴, then we simply say that E is satisfied in A .

7.1 Failures of known equational conditions

If we add to the assumptions of Theorem 1.1 that all polymorphisms 𝑓 of B are idempotent, i.e.,
satisfy 𝑓 (𝑥, . . . , 𝑥) ≈ 𝑥 , then the list of equivalent items can be prolonged further. In this setting, a

prominent condition is that the variety of Pol(B) is congruence meet-semidistributive, short SD(∧),
which can also be studied over infinite domains. By Theorem 1.7 in [54], in general SD(∧) is
equivalent to the existence of so-called (3 + 𝑛)-polymorphisms for some 𝑛; these are idempotent
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operations 𝑓 , 𝑔1, 𝑔2 where 𝑔1 is𝑚-ary, 𝑔2 is 𝑛-ary, and 𝑓 is (𝑚 + 𝑛)-ary, that satisfy
𝑓 (𝑥, . . . , 𝑥,𝑦

𝑖

, 𝑥, . . . , 𝑥) ≈ 𝑔1 (𝑥, . . . , 𝑥,𝑦
𝑖

, 𝑥, . . . , 𝑥) for every 𝑖 ≤ 𝑚,

𝑓 (𝑥, . . . , 𝑥,𝑦
𝑛+𝑖
, 𝑥, . . . , 𝑥) ≈ 𝑔2 (𝑥, . . . , 𝑥,𝑦

𝑖

, 𝑥, . . . , 𝑥) for every 𝑖 ≤ 𝑛.

Proposition 7.2 below implies that the correspondence between SD(∧) and expressibility in Datalog

/ FP / FPC fails for temporal CSPs. A set of identities E is called

• idempotent if, for each operation symbol 𝑓 appearing in the condition, 𝑓 (𝑥, . . . , 𝑥) ≈ 𝑥 is a

consequence of E, and
• trivial if E can be satisfied by projections over a set𝐴 with |𝐴| ≥ 2, and non-trivial otherwise.

An 𝑛-ary operation 𝑓

• depends on the 𝑖-th argument if there exist 𝑎1, . . . , 𝑎𝑛, 𝑎 with 𝑎𝑖 ≠ 𝑎 and

𝑓 (𝑎1, . . . , 𝑎𝑛) ≠ 𝑓 (𝑎1, . . . , 𝑎𝑖−1, 𝑎, 𝑎𝑖+1, . . . , 𝑎𝑛);
• is injective in the 𝑖-th argument if the above inequality holds for all 𝑎1, . . . , 𝑎𝑛, 𝑎 with 𝑎𝑖 ≠ 𝑎.

Let 𝐼𝑓 be the set of all indices 𝑖 ∈ [𝑛] such that 𝑓 depends on the 𝑖-th argument. Then 𝐼𝑓 =

{𝑖1, . . . , 𝑖𝑚} for some 𝑖1 < · · · < 𝑖𝑚 . We define the essential part of an operation 𝑓 as the map

(𝑥1, . . . , 𝑥𝑚) ↦→ 𝑓 (𝑥` (1) , . . . , 𝑥` (𝑛) ) where ` : [𝑛] → [𝑚] is any map that satisfies ` (𝑖 𝑗 ) = 𝑗 for each

𝑗 ∈ [𝑚]. This is well-defined because 𝑓 does not depend on any argument from [𝑛] \ 𝐼𝑓 . Note that
an operation is a projection if and only if its essential part is the identity map.

Proposition 7.2. The polymorphism clone of (Q;≠, Sll) does not satisfy any non-trivial idempotent
condition (but CSP(Q,≠, 𝑆ll) is expressible in FP).

Proof. We first prove that for every idempotent 𝑓 ∈ Pol(Q; Sll,≠) the operation 𝑓 ess is unary.

Clearly, 𝑓 ess is idempotent and at least unary because ≠ has no constant polymorphism. Note

that the relation 𝐼4 B {𝑡 ∈ Q4 | 𝑡 [1] = 𝑡 [2] ⇒ 𝑡 [3] = 𝑡 [4]} has the pp-definition 𝑆ll (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∧
𝑆ll (𝑥1, 𝑥2, 𝑥4, 𝑥3) in (Q;≠, 𝑆ll). It is easy to see that if a polymorphism of 𝐼4 depends on the 𝑖-th

argument, then it is already injective in the 𝑖-th argument; see, e.g., the proof of Proposition 6.1.4

in [10]. Thus, 𝑓 ess is injective. We claim that 𝑓 ess is unary. Suppose for contradiction that 𝑓 ess has

more than one argument. Let 𝑐 B 𝑓 ess (0, . . . , 0, 1). Note that 𝑓 ess (𝑐, . . . , 𝑐) = 𝑐 by the idempotence

of 𝑓 ess, and hence 𝑓 ess (0, . . . , 0, 1) = 𝑓 ess (𝑐, . . . , 𝑐), contradicting the injectivity of 𝑓 ess. Thus, 𝑓 ess

must be unary. Since 𝑓 ess is idempotent and unary, it is the identity map. But then each idempotent

𝑓 ∈ Pol(Q; Sll,≠) is a projection. Hence, Pol(Q; Sll,≠) does not satisfy a non-trivial condition E
witnessed by some idempotent operations. □

Simply dropping idempotence in the definition of (3+𝑛)-terms does not provide a characterisation

of FP either, as Proposition 7.4 shows. In the proof of Proposition 7.4 we need the following result.

Lemma 7.3 (Lemma 4.4 in [5], see also Lemma 3 in [22]). Let B be an 𝜔-categorical structure and
𝑓1, 𝑔1, . . . , 𝑓𝑛, 𝑔𝑛 ∈ Pol(B) where 𝑓𝑖 and 𝑔𝑖 have the same arity. If for every 𝑖 ∈ {1, . . . , 𝑛} and every
finite 𝐹 ⊆ 𝐵 there exists 𝛼𝑖 ∈ Aut(B) such that 𝛼𝑖 ◦ 𝑓𝑖 (𝑡) = 𝑔𝑖 (𝑡) for all 𝑡 over 𝐹 , then there are
𝑒, 𝑒1, . . . , 𝑒𝑛 ∈ End(B) witnessing that Pol(B) satisfies

𝑒𝑖 ◦ 𝑓𝑖 (𝑥1, . . . , 𝑥𝑘𝑖 ) ≈ 𝑒 ◦ 𝑔𝑖 (𝑥1, . . . , 𝑥𝑘𝑖 ).
Moreover, if 𝛼𝑖 and 𝛼 𝑗 can always be chosen to be equal for some 𝑖, 𝑗 ∈ [𝑛], then additionally 𝑒𝑖 = 𝑒 𝑗 .

Proposition 7.4. The polymorphism clone of (Q; X) contains not necessarily idempotent (3 + 3)-
operations (but CSP(Q; X) is not expressible in FP).
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Proof. Consider the operations

𝑔2 (𝑥1, 𝑥2, 𝑥3) = 𝑔1 (𝑥1, 𝑥2, 𝑥3) B mx(mx(𝑥1, 𝑥2),mx(𝑥2, 𝑥3))
˜𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) B mx

(
𝑔1 (𝑥1, 𝑥2, 𝑥3), 𝑔1 (𝑥4, 𝑥5, 𝑥6)

)
.

Let 𝑆 be a finite subset of Q, and let B1 and B2 be the substructures of (Q; <) on the sets

{𝑔1 (𝑦, 𝑥, 𝑥), 𝑔1 (𝑥,𝑦, 𝑥), 𝑔1 (𝑥, 𝑥,𝑦) | 𝑥,𝑦 ∈ 𝑆}
and { ˜𝑓 (𝑦, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥), ˜𝑓 (𝑥,𝑦, 𝑥, 𝑥, 𝑥, 𝑥), ˜𝑓 (𝑥, 𝑥,𝑦, 𝑥, 𝑥, 𝑥) | 𝑥,𝑦 ∈ 𝑆},

respectively. Let 𝛼 and 𝛽 be the operations from the definition of mx. Consider the map

ℎ(𝑏) B
{
𝛽 (𝑏) if 𝑏 = 𝑔1 (𝑥, 𝑥, 𝑥) for some 𝑥 ∈ Q,
𝛼 (𝑏) otherwise.

We claim that ℎ is an isomorphism from B1 to B2. This is easy to show using Lemma 2.13 once

we have made the following observation. For every 𝑥 ∈ Q, we have 𝑔1 (𝑥, 𝑥, 𝑥) = 𝛽2 (𝑥) and
˜𝑓 (𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥) = 𝛽 ◦ 𝑔1 (𝑥, 𝑥, 𝑥) = 𝛽3 (𝑥). Moreover, for all distinct 𝑥,𝑦 ∈ Q, we have

𝑔1 (𝑦, 𝑥, 𝑥) = 𝛼2 (min(𝑥,𝑦))
𝑔1 (𝑥,𝑦, 𝑥) = 𝛽 ◦ 𝛼 (min(𝑥,𝑦))
𝑔1 (𝑥, 𝑥,𝑦) = 𝛼2 (min(𝑥,𝑦))

and

˜𝑓 (𝑦, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥) = 𝛼 (𝑔1 (𝑦, 𝑥, 𝑥)) = 𝛼3 (min(𝑥,𝑦))
˜𝑓 (𝑥,𝑦, 𝑥, 𝑥, 𝑥, 𝑥) = 𝛼 (𝑔1 (𝑥,𝑦, 𝑥)) = 𝛼 ◦ 𝛽 ◦ 𝛼 (min(𝑥,𝑦))
˜𝑓 (𝑥, 𝑥,𝑦, 𝑥, 𝑥, 𝑥) = 𝛼 (𝑔1 (𝑥, 𝑥,𝑦)) = 𝛼3 (min(𝑥,𝑦)).

By Lemma 2.13, if 𝑥 < 𝑦, then 𝛼 (𝑥) < 𝛽 (𝑦) which means that

𝑔1 (𝑦, 𝑥, 𝑥) = mx(𝛼 (𝑥), 𝛽 (𝑥)) = 𝛼2 (𝑥),
𝑔1 (𝑥,𝑦, 𝑥) = mx(𝛼 (𝑥), 𝛼 (𝑥)) = 𝛽 (𝛼 (𝑥))
𝑔1 (𝑥, 𝑥,𝑦) = mx(𝛽 (𝑥), 𝛼 (𝑥)) = 𝛼2 (𝑥),

If 𝑦 < 𝑥 , then 𝛼 (𝑦) < 𝛽 (𝑥) which means that

𝑔1 (𝑦, 𝑥, 𝑥) = mx(𝛼 (𝑦), 𝛽 (𝑥)) = 𝛼2 (𝑦),
𝑔1 (𝑥,𝑦, 𝑥) = mx(𝛼 (𝑦), 𝛼 (𝑦)) = 𝛽 (𝛼 (𝑦)),
𝑔1 (𝑥, 𝑥,𝑦) = mx(𝛽 (𝑥), 𝛼 (𝑦)) = 𝛼2 (𝑦).

The statement about
˜𝑓 follows easily from its definition. We prove that ℎ preserves <.

Let𝑏1, 𝑏2 be arbitrary elements of𝐵1. Clearly, ifℎ(𝑏1) = 𝛼 (𝑏1) andℎ(𝑏2) = 𝛼 (𝑏2), orℎ(𝑏1) = 𝛽 (𝑏1)
and ℎ(𝑏2) = 𝛽 (𝑏2), then 𝑏1 < 𝑏2 implies ℎ(𝑏1) < ℎ(𝑏2) because 𝛼 and 𝛽 preserve <. If ℎ(𝑏1) = 𝛼 (𝑏1)
and ℎ(𝑏2) = 𝛽 (𝑏2) or ℎ(𝑏1) = 𝛽 (𝑏1) and ℎ(𝑏2) = 𝛼 (𝑏2), then 𝑏1 < 𝑏2 implies ℎ(𝑏1) < ℎ(𝑏2) by
Lemma 2.13. Thus ℎ preserves < and it follows that ℎ is an isomorphism.

Since (Q; <) is homogeneous, there exists [ ∈ Aut(Q; <) extending ℎ, i.e.,

[ ◦ 𝑔1 (𝑦, 𝑥, 𝑥) = ˜𝑓 (𝑦, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥)
[ ◦ 𝑔1 (𝑥,𝑦, 𝑥) = ˜𝑓 (𝑥,𝑦, 𝑥, 𝑥, 𝑥, 𝑥)
[ ◦ 𝑔1 (𝑥, 𝑥,𝑦) = ˜𝑓 (𝑥, 𝑥,𝑦, 𝑥, 𝑥, 𝑥)

holds for all 𝑥,𝑦 ∈ 𝑆 . By symmetry of the operation mx, we also have that

[ ◦ 𝑔2 (𝑦, 𝑥, 𝑥) = ˜𝑓 (𝑥, 𝑥, 𝑥,𝑦, 𝑥, 𝑥)
[ ◦ 𝑔2 (𝑥,𝑦, 𝑥) = ˜𝑓 (𝑥, 𝑥, 𝑥, 𝑥,𝑦, 𝑥)
[ ◦ 𝑔2 (𝑥, 𝑥,𝑦) = ˜𝑓 (𝑥, 𝑥, 𝑥, 𝑥, 𝑥,𝑦)

holds for all 𝑥,𝑦 ∈ 𝑆 . Then Lemma 7.3 yields functions 𝑓 and 𝑔1 = 𝑔2 which are (3 + 3)-operations
in Pol(Q; X). □
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The requirement of the existence of non-idempotent (𝑚 + 𝑛)-operations is an example of a

so-called minor condition, which is a set of identities of the special form

𝑓1 (𝑥1

1
, . . . , 𝑥1

𝑛1

) ≈ · · · ≈ 𝑓𝑘 (𝑥1

𝑘
, . . . , 𝑥𝑘𝑛𝑘 ).

(such identities are sometimes also called height-one identities [8]1). Another example of minor

conditions can be found in item (5) and (6) of Theorem 1.1: an at least binary operation 𝑓 is called a

weak near-unanimity (WNU) if it satisfies

𝑓 (𝑦, 𝑥, . . . , 𝑥) ≈ 𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥) ≈ · · · ≈ 𝑓 (𝑥, . . . , 𝑥,𝑦).

Proposition 7.25 implies that another well-known characterisation of solvability of finite-domain

CSPs in FP, namely the inability to express systems of equations over finite non-trivial Abelian

groups, fails for temporal CSPs (Corollary 7.5). Recall the structures EG ,𝑘 from Definition 4.13.

Corollary 7.5. (Q; X) does not pp-construct EG ,3 for any finite non-trivial Abelian group G .

Proof. Suppose, on the contrary, that (Q; X) pp-constructs EG ,3 for a finite non-trivial Abelian

group G . Then, by Lemma 2.12, there exists a minion homomorphism b : Pol(Q; X) → Pol(EG ,3). By
Proposition 7.4, Pol(Q; X) has (not necessarily idempotent) (3 + 3)-terms. Since minion homomor-

phisms preserve satisfiability of minor conditions, it follows that Pol(EG ,3) also has such operations.

But, by definition, every polymorphism of EG ,3 is idempotent. This leads to a contradiction to

Theorem 1.1. Thus the statement of the corollary holds. □

Despite their success in the setting of finite-domain CSPs, finite minor conditions such as item

(6) in Theorem 1.1 are insufficient for classification purposes in the context of 𝜔-categorical CSPs.

Proposition 7.6. Let L be any logic at least as expressive as the existential positive fragment of FO.
Then there is no finite minor condition that would capture the expressibility of the CSPs of reducts of
finitely bounded homogeneous structures in L.

Proposition 7.6 is a consequence of the proof of Theorem 1.3 in [17]. Both statements rely on the

following result.

Theorem 7.7 ([25, 42]). For every finite set F of finite connected structures with a finite signature 𝜏 ,
there exists a 𝜏-reduct CSS(F ) of a finitely bounded homogeneous structure such that CSS(F ) embeds
precisely those finite 𝜏-structures which do not contain a homomorphic image of any member of F .

For𝜔-categorical structures, a statement that is stronger than in the conclusion of Proposition 7.6

has been shown in [32]; however, the proof in [32] does not apply to reducts of finitely bounded

homogeneous structures in general.

Proof of Proposition 7.6. Suppose, on the contrary, that there exists such a condition E. By
the proof of Theorem 1.3 in [17], there exists a finite family F of finite connected structures

with a finite signature 𝜏 such that Pol(CSS(F )) does not satisfy E. Recall the definition of the

canonical conjunctive query 𝑄A from Section 2.4. The existential positive sentence 𝜙CSS(F) B∨
A∈F 𝑄A defines the complement of CSP(CSS(F )). But then CSP(CSS(F )) is expressible in L, a

contradiction. □

1Linear identities are defined similarly, but also allow that the terms in the identities consist of a single variable, which is

more general. A finite minor condition therefore is a special case of what has been called a strong linear Maltsev condition in

the universal algebra literature).
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The satisfiability of minor conditions in polymorphism clones is preserved under minion homo-

morphisms, and the satisfiability of sets of arbitrary identities in polymorphism clones is preserved

under clone homomorphisms [8]. In Theorem 1.6 we use the latter to show that, for Datalog, Propo-

sition 7.6 can be strengthened to sets of arbitrary identities. We hereby give a negative answer to a

question from [17] concerning the existence of a fixed set of identities that would capture Datalog

expressibility for 𝜔-categorical CSPs. This question was in fact already answered negatively in

[32], however, our result also provably applies in the setting of finitely bounded homogeneous

structures. Recall the relation 𝑆ll defined before Lemma 3.21.

Proposition 7.8.

(1) (Q;≠, Sll) does not pp-construct (Q; Rmin).
(2) There exists a uniformly continuous clone homomorphism from Pol(Q;≠, Sll) to Pol(Q; Rmin).

Proof. For (1), suppose on the contrary that (Q;≠, Sll) pp-constructs (Q; Rmin). Since≠ and Sll are

Ord-Horn definable, CSP(Q;≠, Sll) is expressible in Datalog by Theorem 1.2. Then, by Theorem 2.7,

CSP(Q; Rmin) is expressible in Datalog, which contradicts the fact that CSP(Q; Rmin) is inexpressible
in Datalog by Theorem 5.2 in [15]. Thus (Q;≠, Sll) does not pp-construct (Q; Rmin).

For (2), we define b : Pol(Q;≠, Sll) → Pol(Q; Rmin) as follows. Let 𝑓 ∈ Pol(Q;≠, Sll) be arbitrary
and let 𝑛 be its arity. As in the definition of essential parts, let 𝐼𝑓 be the set of all indices 𝑖 ∈ [𝑛] such
that 𝑓 depends on the 𝑖-th argument. We define b (𝑓 ) as the map (𝑥1, . . . , 𝑥𝑛) ↦→ min{𝑥𝑖 | 𝑖 ∈ 𝐼𝑓 }.
The set 𝐼𝑓 is non-empty because ≠ is not preserved by any constant operation. Hence, b is well-

defined. We claim that b is a clone homomorphism. Clearly, b preserves arities and projections.

Let 𝑔1, . . . , 𝑔𝑛 be arbitrary𝑚-ary operations from Pol(Q;≠, Sll). To show that b (𝑓 (𝑔1, . . . , 𝑔𝑛)) =
b (𝑓 ) (b (𝑔1), . . . , b (𝑔𝑛)), we must show that

min{𝑥𝑖 | 𝑖 ∈ 𝐼𝑓 (𝑔1,...,𝑔𝑛) } = min{min{𝑥𝑖 | 𝑖 ∈ 𝐼𝑔𝑗 } | 𝑗 ∈ 𝐼𝑓 }.

Note that the right-hand side equals min{𝑥𝑖 | 𝑖 ∈
⋃

𝑗 ∈𝐼𝑓 𝐼𝑔𝑗 }. We show that

⋃
𝑗 ∈𝐼𝑓 𝐼𝑔𝑗 = 𝐼𝑓 (𝑔1,...,𝑔𝑛) .

The backward direction of the set inclusion is trivial: if 𝑖 ∉ 𝐼𝑔𝑗 for every 𝑗 ∈ 𝐼𝑓 , then clearly

𝑖 ∉ 𝐼𝑓 (𝑔1,...,𝑔𝑛) . So suppose that 𝑖 ∈ 𝐼𝑔𝑗 for some 𝑗 ∈ 𝐼𝑓 , i.e., 𝑔 𝑗 depends on the 𝑖-th argument and

𝑓 depends on the 𝑗-th argument. Recall from the proof of Proposition 7.2 that, since 𝑓 depends

on the 𝑗-th argument and preserves 𝑆ll, it is injective in the 𝑗-th argument. Since 𝑔 𝑗 depends on

the 𝑖-th argument and 𝑓 is injective in the 𝑗-th argument, it follows that 𝑓 (𝑔1, . . . , 𝑔𝑛) depends
on the 𝑖-th argument, i.e., 𝑖 ∈ 𝐼𝑓 (𝑔1,...,𝑔𝑛) . Finally, we show that b is uniformly continuous. For

every finite 𝐵′ ⊆ Q, we choose 𝐴′ B 𝐵′. If |𝐵′ | < 2, then clearly b (𝑓 ) and b (𝑔) agree on 𝐵′.
Otherwise, 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑔(𝑥1, . . . , 𝑥𝑛) for all 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴′ implies 𝐼𝑓 = 𝐼𝑔 since an operation

from Pol(Q;≠, Sll) depends on the 𝑖-th argument iff it is injective in the 𝑖-th argument. Thus, in

this case, b (𝑓 ) and b (𝑔) also agree on 𝐵′. This concludes the proof of (2). □

Proof of Theorem 1.6. Suppose, on the contrary, that there is a condition E which is preserved

by uniformly continuous clone homomorphisms and captures expressibility of temporal CSPs in

Datalog. Since CSP(Q;≠, Sll) is expressible in Datalog, Pol(Q;≠, Sll) must satisfy E. By Item (2) in

Proposition 7.8, Pol(Q; Rmin) satisfies E as well. By assumption, CSP(Q; Rmin) must be expressible

in Datalog, a contradiction to Theorem 5.2 in [15]. □

7.2 New minor conditions

The expressibility of temporal and finite-domain CSPs in FP / FPC can be characterised by a

family of minor conditions (Theorem 1.7). Inspired by [4, 5], we introduce general terminology

to conveniently reason with minor conditions. The following definition yields the same minor



On the Descriptive Complexity of Temporal Constraint Satisfaction Problems 45

conditions as the paragraph above Example 3.13 in [4] up to the addition of implied equalities

between terms and subsequent removal of the auxiliary terms on the left hand side.

Definition 7.9. Let A1,A2 be relational structures with a finite signature 𝜏 . We define the minor

condition E(A1,A2) as follows. For every 𝑅 ∈ 𝜏 and 𝑟 ∈ 𝑅A2
, we introduce a unique |𝑅A1 |-ary

function symbol 𝑔𝑅𝑟 . Also, for every 𝑅 ∈ 𝜏 , we arbitrarily fix an enumeration 𝑥1, . . . , 𝑥𝑚 of 𝑅A1
. The

elements of 𝐴1 will be used as names for variables in the following. For every 𝑎 ∈ 𝐴2, if there exist

𝑅, 𝑆 ∈ 𝜏 and 𝑟 ∈ 𝑅A2
, 𝑠 ∈ 𝑆A2

such that 𝑟 [𝑖] = 𝑎 = 𝑠[𝑗], then E(A1,A2) contains the identity
𝑔𝑅𝑟 (𝑥1

[𝑖], . . . , 𝑥𝑚 [𝑖]) ≈ 𝑔𝑆𝑠 (𝑦1
[𝑗], . . . , 𝑦𝑛 [𝑗])

where 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑛 are the fixed enumerations of 𝑅A1
and 𝑆A1

, respectively. There are

no other identities in E(A1,A2). If 𝑟 only appears in a single relation 𝑅A2
, then we set 𝑔𝑟 B 𝑔𝑅𝑟 .

The relation 1IN3 defined in the introduction can be generalised to

1IN𝑘 B {𝑡 ∈ {0, 1}𝑘 | 𝑡 [𝑖] = 1 for exactly one 𝑖 ∈ [𝑘]}.

Example 7.10. The existence of a 𝑘-ary WNU operation equals E(A1,A2) for
A1 B ({0, 1}; 1IN𝑘) and A2 B ({𝑎}; {(𝑎, . . . , 𝑎)}).

The following proposition is not essential to the present article but demonstrates the magnitude

of coverage of Definition 7.9. We include it here since it was not mentioned in [4].

Proposition 7.11. For every finite minor condition E, there exists a pair A1,A2 of finite structures in
a finite signature 𝜏 such that E and E(A1,A2) are equivalent with respect to satisfiability in minions.

Proof. Let E be an arbitrary finite minor condition. We define 𝐴1 as the set of all variables

occurring in E. Fix an arbitrary function symbol 𝑓 occurring in E. Let𝑚 be the arity of 𝑓 . We

implicitly define the 𝑘-tuples 𝑥1, . . . , 𝑥𝑚 by listing all the 𝑓 -terms occurring in E in an arbitrary but

fixed order: 𝑓 (𝑥1
[1], . . . , 𝑥𝑚 [1]), . . . , 𝑓 (𝑥1

[𝑘], . . . , 𝑥𝑚 [𝑘]). Without loss of generality, we may assume

that 𝑥1, . . . , 𝑥𝑚 are pairwise distinct, otherwise we can reduce the arity of 𝑓 without changing the

satisfiability of E in minions. Now, for every such 𝑓 , we require that 𝜏 contains a 𝑘-ary relation

symbol 𝑅𝑓 which interprets in A1 as {𝑥1, . . . , 𝑥𝑚}. Let ∼ be the smallest equivalence relation on the

terms which occur in E given by the identities in E. We define𝐴2 as the set of all equivalence classes

of ∼. For every function symbol 𝑓 which occurs in E, the relation 𝑅
A2

𝑓
consists of a single tuple 𝑡𝑓

of equivalence classes of ∼ of all 𝑓 -terms which occur in E, these equivalence classes appearing
in 𝑡𝑓 in the fixed order from above. It is easy to check that E(A1,A2) and E are identical up to

reduction of arities through removal of non-essential arguments and adding additional identities

which are implied by E. Thus, E and E(A1,A2) are equivalent. □

Recall from Corollary 7.5 that (Q; X) cannot pp-construct equations over any non-trivial finite

Abelian group. However, by Proposition 4.12, CSP(Q; X) can be reformulated as a decision problem

for systems of mod-2 equations. In particular, every homogeneous system of mod-2 equations of

length 3 without a non-trivial solution represents an unsatisfiable instance of CSP(Q; X). A similar

statement can also be made about some relations which are pp-definable in (Q; X) (see the proof
of Theorem 4.23). Using this fact and the theory developed in [4], it is possible to obtain many

non-trivial minor conditions which are unsatisfiable in CSP(Q; X). The question is then whether

some of these conditions are satisfied in all temporal structures whose CSP is expressible in FP. The

following theorem is a generalization of several observations from [4]. It allows us to reformulate

the satisfiability of a minor condition in a given 𝜔-categorical structure as a statement about the

existence of homomorphisms into pp-powers of the structure.
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Theorem 7.12. Let B be a countable 𝜔-categorical structure. For every pair A1,A2 of finite structures
in a finite signature 𝜏 , the following are equivalent:
(1) Pol(B) |= E(A1,A2).
(2) For every pp-power C of B, if A1 → C, then A2 → C.

Definition 7.13. We write E𝑘,𝑛 for E(A1,A2) if

A1 B ({0, 1}; 1IN𝑘) and A2 B ( [𝑛]; {𝑡 ∈ [𝑛]𝑘 | 𝑡 [1] < · · · < 𝑡 [𝑘]}) .
The minor condition E𝑘,𝑛 is properly contained in a minor condition called dissected WNUs in [32].

Example 7.14. The minor condition E3,4 equals

𝑔(1,3,4) (𝑦, 𝑥, 𝑥) ≈ 𝑔(1,2,4) (𝑦, 𝑥, 𝑥) ≈ 𝑔(1,2,3) (𝑦, 𝑥, 𝑥),
𝑔(2,3,4) (𝑦, 𝑥, 𝑥) ≈ 𝑔(1,2,4) (𝑥,𝑦, 𝑥) ≈ 𝑔(1,2,3) (𝑥,𝑦, 𝑥),
𝑔(2,3,4) (𝑥,𝑦, 𝑥) ≈ 𝑔(1,3,4) (𝑥,𝑦, 𝑥) ≈ 𝑔(1,2,3) (𝑥, 𝑥,𝑦),
𝑔(2,3,4) (𝑥, 𝑥,𝑦) ≈ 𝑔(1,3,4) (𝑥, 𝑥,𝑦) ≈ 𝑔(1,2,4) (𝑥, 𝑥,𝑦).

By Theorem 7.12, Pol(Q; X) does not satisfy E3,4 because

({0, 1}; 1IN3) → (Q; X) while ( [4]; {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}) ↛ (Q; X).

Note that E𝑘,𝑛 is implied by the existence of a single 𝑘-ary WNU operation. Also note that E𝑘,𝑛
implies E𝑘,𝑘+1 for all 𝑛 > 𝑘 > 1. We first give a short proof of Theorem 7.12; then we restrict our

attention to the family (E𝑘,𝑛). To prove the equivalence of (1) and (2) in Theorem 7.12, we need

the following lemma.

Lemma 7.15.
(1) For any structure D, if Pol(D) satisfies E(A1,A2) on the image of a homomorphism from A1 to

D, then there exists a homomorphism from A2 to D.
(2) For every countable 𝜔-categorical structure B, every finite 𝐹 ⊆ 𝐵, and every finite structure A1,

there exists an |𝐹 | |𝐴1 |-dimensional pp-power B𝐹 (A1) of B such that A1 → B𝐹 (A1) and
A2 → B𝐹 (A1) iff Pol(B) |= E(A1,A2) on 𝐹 .

The proof of Lemma 7.15(1) is similar to the proof of Lemma 3.14(2) in [4], and the proof of

Lemma 7.15(2) is similar to the proof of Theorem 3.12(1) in [4]. The notion of a free structure plays
a central role in [4]. The connection to our work is that the structure B𝐹 (A1) in Lemma 7.15(2) is

homomorphically equivalent to the free structure of the “minion of local functions defined on 𝐹 ”

generated by A1. However, since Lemma 7.15(2) has an elementary proof, it is not necessary to

introduce the extra terminology from [4].

Proof. For (1), let 𝑓 : A1 → D be a homomorphism such that Pol(D) |= E(A1,A2) on 𝑓 (𝐴1).
Consider the map ℎ : 𝐴2 → 𝐷 defined as follows. If 𝑎 ∈ 𝐴2 does not appear in any tuple from

a relation of A2, then we set ℎ(𝑎) to be an arbitrary element of 𝐷 . If there exists 𝑟 ∈ 𝑅A2
such

that 𝑎 = 𝑟 [𝑖], then we take the operation 𝑔𝑅𝑟 ∈ Pol(D) witnessing E(A1,A2) on 𝑓 (𝐴1) and set

ℎ(𝑎) B 𝑔𝑅𝑟 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑚))[𝑖] where 𝑥1, . . . , 𝑥𝑚 is the fixed enumeration of 𝑅A1
fromDefinition 7.9.

The map ℎ is well-defined: if 𝑟 [𝑖] = 𝑎 = 𝑠[𝑗] for some 𝑟 ∈ 𝑅A2
and 𝑠 ∈ 𝑆A2

, then

𝑔𝑅𝑟 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑚))[𝑖] = 𝑔𝑆𝑠 (𝑓 (𝑦1), . . . , 𝑓 (𝑦𝑛))[𝑗]

by the definition of E(A1,A2). It remains to show that ℎ is a homomorphism. Let 𝑅 ∈ 𝜏 and 𝑟 ∈ 𝑅A2

be arbitrary. Since 𝑓 is a homomorphism, we have 𝑓 (𝑥𝑖 ) ∈ 𝑅D
for every 𝑖 ∈ [𝑚]. Since 𝑔𝑅𝑟 is a

polymorphism of D, we have ℎ(𝑟 ) = 𝑔𝑅𝑟 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑚)) ∈ 𝑅D
.
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For (2), we fix a finite 𝐹 ⊆ 𝐵 and a finite 𝜏-structure A1. Let 𝑓1, . . . , 𝑓𝑑 be an arbitrary fixed

enumeration of all possible maps from 𝐴1 to 𝐹 . Let 𝑅 be an arbitrary symbol from 𝜏 , and let

𝑘 B ar(𝑅). We fix an arbitrary enumeration 𝑥1, . . . , 𝑥𝑚 of 𝑅A1
. The domain of B𝐹 (A1) is 𝐵𝑑 , and, for

every 𝑅 ∈ 𝜏 with 𝑘 = ar(𝑅), the relation 𝑅B𝐹 (A1)
consists of all tuples (𝑡1, . . . , 𝑡𝑘 ) ∈ (𝐵𝑑 )𝑘 for which

there exists𝑚-ary 𝑔 ∈ Pol(B) such that (𝑡1[𝑖], . . . , 𝑡𝑘 [𝑖]) = 𝑔(𝑓𝑖 (𝑥1), . . . , 𝑓𝑖 (𝑥𝑚)) for every 𝑖 ∈ [𝑑].
Since Pol(B) is closed under taking compositions of operations, the relation

{(𝑡1[1], . . . , 𝑡1[𝑑], . . . , 𝑡𝑘 [1], . . . , 𝑡𝑘 [𝑑]) | (𝑡1, . . . , 𝑡𝑘 ) ∈ 𝑅B𝐹 (A1) }

is preserved by every polymorphism of B. Hence, by Theorem 4 in [18], it has a pp-definition in B.
Consequently, B𝐹 (A1) is a 𝑑-dimensional pp-power of B.

Next we show that themapℎ : 𝐴1 → 𝐵𝑑 defined byℎ(𝑥) B (𝑓1 (𝑥), . . . , 𝑓𝑑 (𝑥)) is a homomorphism

from A1 to B𝐹 (A1). Let 𝑡 be an arbitrary tuple from 𝑅A1
for some 𝑅 ∈ 𝜏 , and let 𝑘 be the arity of 𝑅.

Then there exists 𝑗 ∈ [𝑚] such that 𝑡 = 𝑥 𝑗 where 𝑥1, . . . , 𝑥𝑚 is the fixed enumeration of 𝑅A1
from

the definition of 𝑅B𝐹 (A1)
. Hence, ℎ(𝑡) is of the form (𝑡1, . . . , 𝑡𝑘 ) ∈ (𝐵𝑑 )𝑘 where (𝑡1[𝑖], . . . , 𝑡𝑘 [𝑖]) =

proj𝑗 (𝑓𝑖 (𝑥1), . . . , 𝑓𝑖 (𝑥𝑚)) for every 𝑖 ∈ [𝑑]. It follows that ℎ(𝑡) ∈ 𝑅B𝐹 (A1)
.

It remains to show that A2 → B𝐹 (A1) if and only if Pol(B) |= E(A1,A2) on 𝐹 .

“⇐”: Suppose that Pol(B) |= E(A1,A2) on 𝐹 . Consider the map b which sends an𝑚-ary operation

𝑓 on 𝐵 to its component-wise action (𝑡1, . . . , 𝑡𝑚) ↦→ 𝑓 (𝑡1, . . . , 𝑡𝑚) on 𝐵𝑑 . Since Pol(B𝐹 (A1)) is a
pp-power of B, we have b (𝑓 ) ∈ Pol(B𝐹 (A1)) for every 𝑓 ∈ Pol(B). Moreover, the images under b of

the operations witnessing Pol(B) |= E(A1,A2) on 𝐹 witness that Pol(B𝐹 (A1)) |= E(A1,A2) on 𝐹𝑑 .

Note that 𝐹𝑑 contains the image of the homomorphism ℎ : A1 → B𝐹 (A1), 𝑥 ↦→ (𝑓1 (𝑥), . . . , 𝑓𝑑 (𝑥))
from the previous paragraph. This means that Pol(B𝐹 (A1)) |= E(A1,A2) on ℎ(𝐴1) and thus the

requirements in item (1) are satisfied. It now follows from item (1) that A2 → B𝐹 (A1).
“⇒”: Suppose that there exists a homomorphism ℎ : A2 → B𝐹 (A1). Then, for every 𝑅 ∈ 𝜏 and

every 𝑡 ∈ 𝑅A2
, by the definition of 𝑅B𝐹 (A1)

, there exists an𝑚-ary 𝑔𝑅
𝑡
∈ Pol(B) such that ℎ(𝑡) is of

the form (𝑡1, . . . , 𝑡𝑘 ) ∈ (𝐵𝑑 )𝑘 where (𝑡1[𝑖], . . . , 𝑡𝑘 [𝑖]) = 𝑔𝑅
𝑡
(𝑓𝑖 (𝑥1), . . . , 𝑓𝑖 (𝑥𝑚)) for every 𝑖 ∈ [𝑑]. Now,

for every 𝑎 ∈ 𝐴2 such that there exist 𝑅, 𝑆 ∈ 𝜏 and 𝑟 ∈ 𝑅A2
, 𝑠 ∈ 𝑆A2

with 𝑟 [𝑖] = 𝑎 = 𝑠[𝑗], we have

ℎ(𝑟 [𝑖]) = ℎ(𝑠[𝑗]), where

ℎ(𝑟 [𝑖]) = (𝑔𝑅𝑟 (𝑓1 (𝑥1), . . . , 𝑓1 (𝑥𝑚))[𝑖], . . . , 𝑔𝑅𝑟 (𝑓𝑑 (𝑥1), . . . , 𝑓𝑑 (𝑥𝑚))[𝑖]),
ℎ(𝑠[𝑗]) = (𝑔𝑆𝑠 (𝑓1 (𝑥1), . . . , 𝑓1 (𝑥𝑚))[𝑗], . . . , 𝑔𝑆𝑠 (𝑓𝑑 (𝑥1), . . . , 𝑓𝑑 (𝑥𝑚))[𝑗]).

By the definition of 𝑓1, . . . , 𝑓𝑑 , the operations 𝑔
𝑅
𝑡
witness that Pol(B) |= E(A1,A2) on 𝐹 . □

Proof of Theorem 7.12. “(1)⇒(2)”: Suppose that Pol(B) |= E(A1,A2). If C is a pp-power of B,
then, by Proposition 2.1, each polymorphism of B represents a polymorphism of C through its

component-wise action. This means that Pol(C) |= E(A1,A2). If additionally A1 → C, then it

follows from Lemma 7.15(1) that A2 → C.
“(2)⇒(1)”: For every finite 𝐹 ⊆ 𝐵, the structure B𝐹 (A1) from Lemma 7.15(2) is a pp-power

of B. Also, A1 → B𝐹 (A1). By assumption, we have that A2 → B𝐹 (A1) for every finite 𝐹 ⊆ 𝐵.

Using Lemma 7.15(2), we conclude that Pol(B) |= E(A1,A2) on 𝐹 for every finite 𝐹 ⊆ 𝐵. By a

compactness argument, e.g., Lemma 9.6.10 in [10], we have that Pol(B) |= E(A1,A2), which finishes
the proof. □

Example 7.16. Let A1 and A2 be the structures from the definition of E𝑘,𝑛 (Definition 7.13). Then

Theorem 7.12 implies that E𝑘,𝑛 is non-trivial: indeed, first note that there is no homomorphism

from A2 to A1. Choose C B B B A1; then trivially A1 → C but A2 ̸→ C, and hence Pol(B), which
only contains the projections, does not satisfy E𝑘,𝑛 .
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Example 7.17. We claim that the structures (Q;≠, Sll) and (Q; Rmin) are incomparable w.r.t. pp-

constructibility. We already know from Proposition 7.8(1) that (Q;≠, Sll) does not pp-construct
(Q; Rmin). The reason there was thatCSP(Q;≠, Sll) is expressible in Datalog whereasCSP(Q; Rmin) is
not, and that pp-constructions preserve the expressibility of CSPs in Datalog. This argument clearly

cannot be used the other way around. However, note that Pol(Q; Rmin) contains the ternary WNU

operation (𝑥,𝑦, 𝑧) ↦→ min(𝑥,𝑦, 𝑧). By Theorem 7.12, Pol(Q;≠, Sll) does not contain a ternary WNU

operation if and only if there exists a pp-powerC of (Q;≠, Sll) such thatA1 = ({0, 1}; 1IN3) → C and

A2 = ({𝑎}; {(𝑎, 𝑎, 𝑎)}) ↛ C. And indeed, such a pp-power exists: the structure C B (Q; {(𝑥,𝑦, 𝑧) |
𝑥 ≠ 𝑦 ∨ 𝑥 < 𝑧}) is even pp-definable in Pol(Q;≠, Sll). Now if follows that (Q; Rmin) does not pp-
construct (Q;≠, Sll), otherwise Lemma 2.12 would yield a contradiction to the fact that Pol(Q;≠, Sll)
does not contain any ternary WNU operation.

Lemma 7.18. For 𝑛 ≥ 2, Pol(EZ𝑛,3) satisfies E𝑘,𝑘+1 if and only if gcd(𝑘, 𝑛) = 1.

Proof. First suppose that gcd(𝑘, 𝑛) = 1. There exists _ ∈ Z𝑛 such that 𝑘_ = 1 mod 𝑛. We

write 𝑔𝑖 instead of 𝑔𝑡 for 𝑡 ∈ [𝑘 + 1]𝑘 with 𝑡 [1] < · · · < 𝑡 [𝑘] that omits 𝑖 as an entry. Then E𝑘,𝑘+1
is witnessed by a set of 𝑘-ary WNU operations 𝑔1, . . . , 𝑔𝑘+1 given by the affine combinations

𝑔 𝑗 (𝑥1, . . . , 𝑥𝑘 ) B
∑𝑘

𝑖=1
_𝑥𝑖 .

Next, suppose that Pol(EZ𝑛,3) satisfies E𝑘,𝑘+1. It is well-known that, for every 𝑘 ≥ 1, the structure

EZ𝑛,𝑘 has a pp-definition in EZ𝑛,3. In particular, the structure C B (Z𝑛 ;𝑅) where 𝑅 B {𝑡 ∈ (Z𝑛)𝑘 |∑𝑘
𝑖=1

𝑡 [𝑖] = 1 mod 𝑛} has a pp-definition in EZ𝑛,3. Let A1 and A2 be as in Definition 7.13. Clearly

A1 → C. By Theorem 7.12, we have thatA2 → C. This means that the inhomogeneous system of𝑘+1

mod-2 equations of the form

∑
𝑗 ∈[𝑘+1]\{𝑖 } 𝑥 𝑗 = 1 mod 𝑛 has a solution. By summing up the equations

and subtracting 𝑘 on both sides, we get that 𝑘𝑥1 + · · · +𝑘𝑥𝑘+1 −𝑘 = 𝑘 (𝑥1 + · · · +𝑥𝑘+1 − 1) = 1 mod 𝑛.

This can be the case only if gcd(𝑘, 𝑛) = 1. □

Our next goal is the proof of Theorem 1.7, which states that for temporal CSPs and finite-domain

CSPs, the condition E𝑘,𝑘+1 characterises expressibility in FP. For the proof of we need to introduce

some new polymorphisms of temporal structures. Recall the operation lex𝑘 from Definition 6.4.

Definition 7.19. Let 𝑘 ∈ N≥2. The following definitions specify 𝑘-ary operations on Q:

min𝑘 (𝑡) B min{𝑡 [1], . . . , 𝑡 [𝑘]},
twin𝑘 (𝑡) B min{max(𝑡 [𝑖], 𝑡 [𝑗]) | 𝑖, 𝑗 ∈ [𝑘] and 𝑖 ≠ 𝑗},

mi𝑘 (𝑡) B lex𝑘+2 (min𝑘 (𝑡), twin𝑘 (−𝜒 (𝑡)),−𝜒 (𝑡)),
ll𝑘 (𝑡) B lex𝑘+2 (min𝑘 (𝑡), twin𝑘 (𝑡), 𝑡).

Remark 7.20. Note that twin𝑘 (𝑡) equals the smallest value in 𝑡 if it appears in at least two entries, and

otherwise the second smallest value in 𝑡 . Consequently, twin𝑘 is a near unanimity (NU) operation,

i.e., it satisfies the identity

𝑓 (𝑦, 𝑥, . . . , 𝑥) ≈ 𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥) ≈ · · · ≈ 𝑓 (𝑥, . . . , 𝑥,𝑦) ≈ 𝑥 .

The involvement of a NU operation in the definitions of mi𝑘 and ll𝑘 is necessary for the proofs of

Theorem 1.7 and Proposition 7.27 to work, even though we do not mention this fact explicitly in

the proofs. One could also choose any other NU operation such that Proposition 7.21 holds for the

resulting operations mi𝑘 and ll𝑘 .

Proposition 7.21. Let B be a temporal structure and 𝑘 ∈ N≥2.
(1) If B is preserved by mi, then also by mi𝑘 .
(2) If B is preserved by ll, then also by ll𝑘 .
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Proof. We first prove the following claim.

Claim 7.22. Let 𝑓 ∈ {mi𝑘 , ll𝑘 }, and let 𝑡1, 𝑡2 ∈ Q𝑘 be arbitrary.
• If 𝑓 (𝑡1) = 𝑓 (𝑡2), then min𝑘 (𝑡1) = min𝑘 (𝑡2) and 𝜒 (𝑡1) = 𝜒 (𝑡2) if 𝑓 = mi𝑘 , and 𝑡1 = 𝑡2 if 𝑓 = ll𝑘 .
• If 𝑓 (𝑡1) < 𝑓 (𝑡2), then min𝑘 (𝑡1) ≤ min𝑘 (𝑡2) and there exists ℓ ∈ [𝑘] such that

min𝑘 (𝑡1) = 𝑡1[ℓ] < 𝑡2[ℓ].

Proof. The first part is a direct consequence of the following two facts:

• mi𝑘 compares (min𝑘 (𝑡1), 𝜒 (𝑡1)) and (min𝑘 (𝑡2), 𝜒 (𝑡2)) lexicographically, and
• ll𝑘 compares 𝑡1 and 𝑡2 lexicographically.

We prove the second part by two separate case distinctions, starting with mi𝑘 .

Case 1: min𝑘 (𝑡1) < min𝑘 (𝑡2). Then we can choose any ℓ such that the ℓ-th entry is minimal in 𝑡1.

Case 2: min𝑘 (𝑡1) = min𝑘 (𝑡2) and twin𝑘 (−𝜒 (𝑡1)) < twin𝑘 (−𝜒 (𝑡2)) . Then the smallest value in

both tuples only appears in one entry of 𝑡2 but in at least two entries of 𝑡1. Clearly, we can choose

the index of one of these two entries as ℓ .

Case 3: min𝑘 (𝑡1) = min𝑘 (𝑡2), twin𝑘 (−𝜒 (𝑡1)) = twin𝑘 (−𝜒 (𝑡2)), and lex𝑘 (−𝜒 (𝑡1)) < lex𝑘 (−𝜒 (𝑡2)).
Then we define ℓ ∈ [𝑘] as the leftmost index on which −𝜒 (𝑡1) is pointwise smaller than −𝜒 (𝑡2).

Case 1: min𝑘 (𝑡1) < min𝑘 (𝑡2). Then we can choose any ℓ such that the ℓ-th entry is minimal in 𝑡1.

Case 2: min𝑘 (𝑡1) = min𝑘 (𝑡2) and twin𝑘 (𝑡1) < twin𝑘 (𝑡2). Then the smallest value in both tuples

only appears in one entry of 𝑡2 but in at least two entries of 𝑡1. Clearly, we can choose the index of

one of these two entries as ℓ .

Case 3: min𝑘 (𝑡1) = min𝑘 (𝑡2), twin𝑘 (𝑡1) = twin𝑘 (𝑡2), and lex𝑘 (𝑡1) < lex𝑘 (𝑡2). Then we define ℓ as

the leftmost index on which 𝑡1 is pointwise smaller than 𝑡3. □

For (1), by Lemma 3.9, it suffices to prove that mi𝑘 preserves (Q; Rmi, Smi,≠).
We start with the relation ≠. Suppose that 𝑡1, 𝑡2 ∈ Q𝑘 satisfy mi𝑘 (𝑡1) = mi𝑘 (𝑡2). Then, by

Claim 7.22, 𝑡1[ℓ] = 𝑡2[ℓ] for every ℓ ∈ [𝑘] such that the ℓ-th entry of 𝑡1 is minimal. We conclude that

mi𝑘 preserves ≠.

We continue with the relation Smi. Suppose that 𝑡1, 𝑡2, 𝑡3 ∈ Q𝑘 satisfy (mi𝑘 (𝑡1),mi𝑘 (𝑡2),mi𝑘 (𝑡3)) ∉
Smi. Then mi𝑘 (𝑡1) = mi𝑘 (𝑡2) and mi𝑘 (𝑡1) < mi𝑘 (𝑡3). By Claim 7.22, min𝑘 (𝑡1) = min𝑘 (𝑡2) and
𝜒 (𝑡1) = 𝜒 (𝑡2), and there exists ℓ ∈ [𝑘] such that min𝑘 (𝑡1) = 𝑡1[ℓ] < 𝑡3[ℓ]. Then (𝑡1[ℓ], 𝑡2[ℓ], 𝑡3[ℓ]) ∉ Smi.

We conclude that mi𝑘 preserves Smi.

Finally, consider the relation Rmi. Suppose that 𝑡1, 𝑡2, 𝑡3 ∈ Q𝑘 satisfy (mi𝑘 (𝑡1),mi𝑘 (𝑡2),mi𝑘 (𝑡3)) ∉
Rmi. Then mi𝑘 (𝑡1) ≤ mi𝑘 (𝑡2) and mi𝑘 (𝑡1) < mi𝑘 (𝑡3). By Claim 7.22, min𝑘 (𝑡1) ≤ min𝑘 (𝑡2) and there

exists ℓ ∈ [𝑘] such that min𝑘 (𝑡1) = 𝑡1[ℓ] < 𝑡3[ℓ]. Then (𝑡1[ℓ], 𝑡2[ℓ], 𝑡3[ℓ]) ∉ Rmi. We conclude that mi𝑘

preserves Rmi.

For (2), by Lemma 3.21, it suffices to show that ll𝑘 preserves (Q; Rll, Sll,≠).
We start with the relation ≠. Clearly, ll𝑘 preserves ≠ because it is injective.

We continue with the relation Sll. Suppose that 𝑡1, . . . , 𝑡4 ∈ Q𝑘 satisfy (ll𝑘 (𝑡1), . . . , ll𝑘 (𝑡4)) ∉ Sll.

Then ll𝑘 (𝑡1) = ll𝑘 (𝑡2) and ll𝑘 (𝑡4) < ll𝑘 (𝑡3). By Claim 7.22, we have 𝑡1 = 𝑡2, and there exists ℓ ∈ [𝑘]
such that 𝑡4[ℓ] < 𝑡3[ℓ]. Then (𝑡1[ℓ], . . . , 𝑡4[ℓ]) ∉ Sll. We conclude that ll𝑘 preserves Sll.

Finally, consider the relation Rll. Suppose that 𝑡1, 𝑡2, 𝑡3 ∈ Q𝑘 satisfy (ll𝑘 (𝑡1), ll𝑘 (𝑡2), ll𝑘 (𝑡3)) ∉ Rll.

Then, without loss of generality, ll𝑘 (𝑡1) ≤ ll𝑘 (𝑡2) and ll𝑘 (𝑡1) < ll𝑘 (𝑡3). By Claim 7.22, min𝑘 (𝑡1) ≤
min𝑘 (𝑡2) and there exists ℓ ∈ [𝑘] such that min𝑘 (𝑡1) = 𝑡1[ℓ] < 𝑡3[ℓ]. Then (𝑡1[ℓ], 𝑡2[ℓ], 𝑡3[ℓ]) ∉ Rll. We

conclude that ll𝑘 preserves Rll. □

Note that the proofs that mi𝑘 preserves Rmi and that ll𝑘 preserves Rll are almost identical (but not

entirely). The reason is that 𝑅ll (𝑥,𝑦, 𝑧) is equivalent to 𝑅mi (𝑥,𝑦, 𝑧) ∧𝑅mi (𝑥, 𝑧,𝑦), and ll𝑘 is essentially
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an injective version of mi𝑘 . By Proposition 2.1, 𝑅ll is preserved by mi𝑘 . However, it is not hard to

see that 𝑅mi is not preserved by any injective operation of arity 𝑘 ≥ 2, in particular not by ll𝑘 .

Proof of Theorem 1.7. We start with the case where B is a temporal structure. Suppose that

B is neither preserved by min, mi, mx, ll, the dual of one of these operations, nor by a constant

operation. Then, by Theorem 2.14, B pp-constructs ({0, 1}; 1IN3). By Lemma 2.12, there exists a

minion homomorphism from Pol(B) to Pol({0, 1}; 1IN3), the projection clone. By Theorem 7.12, for

every 𝑘 ≥ 2, the condition E𝑘,𝑘+1 is non-trivial (see Example 7.16). Since minion homomorphisms

preserve minor conditions such as E𝑘,𝑘+1 it follows that Pol(B) cannot satisfy E𝑘,𝑘+1. Next, we
distinguish the subcases where B is a temporal structure preserved by one of the operations listed

above.

Case 1: B is preserved by a constant operation. Clearly, E𝑘,𝑘+1 is witnessed by a set of 𝑘-ary constant
operations for every 𝑘 ≥ 1.

Case 2: B is preserved by min. Then E𝑘,𝑘+1 is witnessed by a set of 𝑘-ary minimum operations for

every 𝑘 ≥ 2.

Case 3: B is preserved by mx. By Theorem 5.2, either B is preserved by min or by a constant

operation, which are cases that we have already treated, or otherwise B admits a pp-definition

of X. We claim that Pol(Q; X) does not satisfy E𝑘,𝑘+1 for every odd 𝑘 > 1. By Theorem 4.6, the

temporal relation 𝑅mx

[𝑘 ],𝑘 = {𝑡 ∈ Q𝑘 | ∑𝑘
ℓ=1

𝜒 (𝑡)[ℓ] = 0 mod 2} is preserved by mx. By Lemma 4.2,

𝑅mx

[𝑘 ],𝑘 is pp-definable in (Q; X). Let A1 and A2 be as in Definition 7.13. Since 𝑘 is odd, there

exists a homomorphism from A1 to (Q;𝑅mx

[𝑘 ],𝑘 ). However, there exists no homomorphism from

A2 to (Q;𝑅mx

[𝑘 ],𝑘 ). This is because the homogeneous system of 𝑘 + 1 mod-2 equations of the form∑
𝑗 ∈[𝑘+1]\{𝑖 } 𝑥 𝑗 = 0 mod 2 has no non-trivial solution, which means that A2 has no free set by

Lemma 4.1. Hence, Theorem 7.12 implies that Pol(Q; X) does not satisfy E𝑘,𝑘+1 = E(A1,A2).
Case 4: B has mi as a polymorphism. We proceed similarly as in the proof of Proposition 4.10

in [5], but using our Theorem 7.12. Let A1 and A2 be as in Definition 7.13 for a fixed 𝑘 ≥ 3. Let

C be an arbitrary 𝑑-dimensional pp-power of B with the same signature as A1 for which there

exists a homomorphism ℎ : A1 → C. We denote the unique relation of C (of arity 𝑘) by 𝑅. Since B
is preserved by mi, by Proposition 7.21, it is also preserved by mi𝑘 . For every 𝑖 ∈ [𝑘], we define
𝑡𝑖 B (ℎ(0), . . . , ℎ(0), ℎ(1), ℎ(0), . . . , ℎ(0)) where ℎ(1) appears in the 𝑖-th entry. Since C is a pp-

power of B and 𝑡𝑖 ∈ 𝑅 for every 𝑖 ∈ [𝑘], it follows from Proposition 2.1 that mi𝑘 (𝑡1, . . . , 𝑡𝑘 ) ∈ 𝑅,
where mi𝑘 acts doubly component-wise:

mi𝑘 (𝑡1, . . . , 𝑡𝑘 ) =
©«

mi𝑘 (ℎ(1), . . . , ℎ(0))
...

mi𝑘 (ℎ(0), . . . , ℎ(1))

ª®®¬ =
©«

©«
mi𝑘 (ℎ(1)[1], . . . , ℎ(0)[1])

...

mi𝑘 (ℎ(1)[𝑑], . . . , ℎ(0)[𝑑])

ª®®¬
...©«

mi𝑘 (ℎ(0)[1], . . . , ℎ(1)[1])
...

mi𝑘 (ℎ(0)[𝑑], . . . , ℎ(1)[𝑑])

ª®®¬

ª®®®®®®®®®®®®¬
.

Let 𝑡 B (ℎ(0), . . . , ℎ(0)). We claim that mi𝑘+1 (𝑡1, . . . , 𝑡𝑖−1, 𝑡, 𝑡𝑖 , . . . , 𝑡𝑘 ) ∈ 𝑅 for every 𝑖 ∈ [𝑘 +1]. Note
that, for all 𝑥,𝑦, 𝑥 ′, 𝑦 ′ ∈ Q and all 𝑖, 𝑗 ∈ [𝑘], we have

mi𝑘 (𝑥, . . . , 𝑥,𝑦
𝑖

, 𝑥, . . . , 𝑥) < mi𝑘 (𝑥 ′, . . . , 𝑥 ′, 𝑦 ′
𝑗

, 𝑥 ′, . . . , 𝑥 ′) (∗)

iff one of the following holds:

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
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• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) = 𝑥 < 𝑥 ′, or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′), 𝑥 < 𝑦, 𝑥 ′ < 𝑦 ′, and 𝑗 < 𝑖 , or

• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′), 𝑦 < 𝑥 , 𝑦 ′ < 𝑥 ′, and 𝑖 < 𝑗 .

In all four cases, the order in (∗) remains invariant if we replace mi𝑘 with mi𝑘+1 and expand the

inputs on the left- and the right-hand side by the variables 𝑥 and 𝑥 ′, respectively, inserted into the

same argument with an index from [𝑘 + 1]. This means that, when viewed as (𝑘 · 𝑑)-dimensional

tuples over Q, mi𝑘 (𝑡1, . . . , 𝑡𝑘 ) and mi𝑘+1 (𝑡1, . . . , 𝑡𝑖−1, 𝑡, 𝑡𝑖 , . . . , 𝑡𝑘 ) have the same order type for every

𝑖 ∈ [𝑘+1]. Then, by the homogeneity of (Q; <), for every 𝑖 ∈ [𝑘+1], there exists𝛼𝑖 ∈ Aut(Q; <) such
that mi𝑘+1 (𝑡1, . . . , 𝑡𝑖−1, 𝑡, 𝑡𝑖 , . . . , 𝑡𝑘 ) = 𝛼𝑖 ◦mi𝑘 (𝑡1, . . . , 𝑡𝑘 ). Now the claim follows from Proposition 2.1.

Consider the map 𝑔 : [𝑘 + 1] → Q𝑑 given by 𝑔(𝑖) B mi𝑘+1 (ℎ(0), . . . , ℎ(1), . . . , ℎ(0)) where ℎ(1)
appears in the 𝑖-th entry. Note that 𝑔(1, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑘 + 1) = mi𝑘+1 (𝑡1, . . . , 𝑡𝑖−1, 𝑡, 𝑡𝑖 , . . . , 𝑡𝑘 )
for every 𝑖 ∈ [𝑘 + 1]. Hence, 𝑔 is a homomorphism from A2 to C. Since C was chosen arbitrarily, it

follows from Theorem 7.12 that Pol(B) |= E𝑘,𝑘+1 for all 𝑘 ≥ 3.

Case 5: B has ll as a polymorphism. We repeat the strategy above using ll𝑘 instead of mi𝑘 . For all

𝑥,𝑦, 𝑥 ′, 𝑦 ′ ∈ Q and all 𝑖, 𝑗 ∈ [𝑘], we have

ll𝑘 (𝑥, . . . , 𝑥,𝑦
𝑖

, 𝑥, . . . , 𝑥) < ll𝑘 (𝑥 ′, . . . , 𝑥 ′, 𝑦 ′
𝑗

, 𝑥 ′, . . . , 𝑥 ′)

iff one of the following holds:

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) and 𝑥 < 𝑥 ′, or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′), 𝑥 = 𝑥 ′ < 𝑦 ′, and 𝑗 < 𝑖 , or

• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′), 𝑥 = 𝑥 ′, 𝑖 = 𝑗 , and 𝑦 < 𝑦 ′.

The cases 2-5 can be dualized in order to obtain witnesses for E𝑘,𝑘+1 for 𝑘 ≥ 3 in the cases where

B is preserved by max, dual mi, dual ll, and show that Pol(B) does not satisfy E𝑘,𝑘+1 for odd 𝑘 > 1

if it admits a pp-definition of −X.

If B is a finite structure, then CSP(B) is in FP / FPC if and only if B does not pp-construct EZ𝑛,3
for every 𝑛 ≥ 2 by Theorem 1.1. Then the claim follows from Lemma 7.18. □

We can confirm the condition for expressibility in FP from Theorem 1.7 also for the structures

CSS(F ) from Theorem 7.7.

Theorem 7.23. Let F be a finite set of finite connected structures with a fixed finite signature, and
let B B CSS(F ). Then
(1) CSP(B) is expressible in FP / FPC, and
(2) Pol(B) satisfies E𝑘,𝑘+1 for all but finitely many 𝑘 ∈ N.

Proof. CSP(CSS(F )) is expressible in FP because it is even expressible in existential positive

first-order logic. Pol(CSS(F )) satisfies E𝑘,𝑘+1 for all but finitely many arities, because it contains

WNU operations for all but finitely many arities by Lemma 5.4 in [17]. □

7.3 Failures of known pseudo minor conditions

In the context of infinite-domain 𝜔-categorical CSPs, most classification results are formulated

using pseudo minor conditions [5] which extend minor conditions by outer unary operations, i.e.,

they are of the form

𝑒1 ◦ 𝑓1 (𝑥1

1
, . . . , 𝑥1

𝑛1

) ≈ · · · ≈ 𝑒𝑘 ◦ 𝑓𝑘 (𝑥1

𝑘
, . . . , 𝑥𝑘𝑛𝑘 ).

For instance, the following generalization of aWNU operation was used in [10] to give an alternative

classification of the computational complexity of TCSPs. An at least binary operation 𝑓 ∈ Pol(B) is
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called pseudo weak near-unanimity (pseudo-WNU) if there exist 𝑒1, . . . , 𝑒𝑛 ∈ End(B) such that

𝑒1 ◦ 𝑓 (𝑥, . . . , 𝑥,𝑦) ≈ 𝑒2 ◦ 𝑓 (𝑥, . . . , 𝑥,𝑦, 𝑥) ≈ · · · ≈ 𝑒𝑛 ◦ 𝑓 (𝑦, 𝑥, . . . , 𝑥).

Theorem 7.24 ([10]). Let B be a temporal structure. Then either B has a pseudo-WNU polymorphism
and CSP(B) is in P, or B pp-constructs all finite structures and CSP(B) is NP-complete.

It is natural to ask whether pseudo minor conditions can be used to formulate a generalization

of the 3-4 WNU condition from item 7 of Theorem 1.1 that would capture the expressibility in

FP for the CSPs of reducts of finitely bounded homogeneous structures. One such generalization

was considered in [16]. Proposition 7.25 shows that the criterion provided by Theorem 8 in [16] is

insufficient in general.

Proposition 7.25. There exist pseudo-WNU polymorphisms 𝑓 , 𝑔 of (Q; X) that satisfy

𝑓 (𝑥, 𝑥,𝑦) ≈ 𝑔(𝑥, 𝑥, 𝑥,𝑦).

Proof of Proposition 7.25. Consider the terms

𝑓 (𝑥1, 𝑥2, 𝑥3) B mx(mx(𝑥1, 𝑥2),mx(𝑥2, 𝑥3)),
𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4) B mx(mx(𝑥1, 𝑥2),mx(𝑥3, 𝑥4)) .

It is easy to see that, for all distinct 𝑥,𝑦 ∈ Q, we have

𝑓 (𝑥, 𝑥,𝑦) = 𝑓 (𝑦, 𝑥, 𝑥) = 𝛼2 (min(𝑥,𝑦)),
𝑓 (𝑥,𝑦, 𝑥) = 𝛽 (𝛼 (min(𝑥,𝑦))),

𝑔(𝑥, 𝑥, 𝑥,𝑦) = · · · = 𝑔(𝑦, 𝑥, 𝑥, 𝑥) = 𝛼2 (min(𝑥,𝑦)),

where 𝛼, 𝛽 are as in the definition of mx. We also have 𝑓 (𝑥, 𝑥, 𝑥) = 𝛽2 (𝑥) = 𝑔(𝑥, 𝑥, 𝑥, 𝑥) for all 𝑥 ∈ Q.
Clearly, 𝑔 is a WNU, and 𝑓 (𝑥, 𝑥,𝑦) = 𝑔(𝑥, 𝑥, 𝑥,𝑦) holds for all 𝑥,𝑦 ∈ Q. It remains to show that 𝑓 is

a pseudo-WNU. Our argumentation here is similar to the one in the proof of Proposition 7.4, and in

fact even simpler because we do not need any of the witnessing unary operations to be equal. Let 𝑆

be a finite subset of Q. We define B1 and B2 as the substructures of (Q; <) on {𝑓 (𝑦, 𝑥, 𝑥) | 𝑥,𝑦 ∈ 𝑆}
and {𝑓 (𝑥,𝑦, 𝑥) | 𝑥,𝑦 ∈ 𝑆}, respectively. We claim that ℎ(𝑓 (𝑦, 𝑥, 𝑥)) B 𝑓 (𝑥,𝑦, 𝑥) is an isomorphism

from B1 to B2.

To show that ℎ is well-defined, we must to show that 𝑓 (𝑦, 𝑥, 𝑥) = 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′) implies 𝑦 = 𝑦 ′

and 𝑥 = 𝑥 ′ for all 𝑥,𝑦, 𝑥 ′, 𝑦 ′ ∈ 𝑆 . If 𝑥 = 𝑦 and 𝑥 ′ = 𝑦 ′ or 𝑥 ≠ 𝑦 and 𝑥 ′ ≠ 𝑦 ′, then this follows

directly from the fact that 𝛼 and 𝛽 preserve <. If 𝑥 = 𝑦 and 𝑥 ′ ≠ 𝑦 ′, then 𝑓 (𝑦, 𝑥, 𝑥) = 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′)
implies 𝛽2 (𝑥) = 𝛼2 (min(𝑥 ′, 𝑦 ′)). By Lemma 2.13, this is impossible. Thus, in this case, the claim

that 𝑓 (𝑦, 𝑥, 𝑥) = 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′) implies 𝑦 = 𝑦 ′ and 𝑥 = 𝑥 ′ holds trivially. The remaining case 𝑥 ≠ 𝑦

and 𝑥 ′ = 𝑦 ′ is analogous to the previous one.

Nextwe show thatℎ is a homomorphism, i.e., that 𝑓 (𝑦, 𝑥, 𝑥) < 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′) implies that 𝑓 (𝑥,𝑦, 𝑥) <
𝑓 (𝑥 ′, 𝑦 ′, 𝑥 ′) for all 𝑥,𝑦, 𝑥 ′, 𝑦 ′ ∈ 𝑆 . Again, if 𝑥 = 𝑦 and 𝑥 ′ = 𝑦 ′ or 𝑥 ≠ 𝑦 and 𝑥 ′ ≠ 𝑦 ′, then this follows

directly from the fact that 𝛼 and 𝛽 preserve <. In the remaining two cases we need to additionally

use Lemma 2.13.

Case 1: 𝑥 = 𝑦 and 𝑥 ′ ≠ 𝑦 ′. Suppose that 𝑓 (𝑦, 𝑥, 𝑥) < 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′). Then 𝛽2 (𝑥) < 𝛼2 (min(𝑥 ′, 𝑦 ′)),
which implies 𝑥 < min(𝑥 ′, 𝑦 ′) by Lemma 2.13. Then 𝛽2 (𝑥) < 𝛽 ◦ 𝛼 (min(𝑥 ′, 𝑦 ′)) by Lemma 2.13

and because 𝛽 preserves <. Thus 𝑓 (𝑥,𝑦, 𝑥) < 𝑓 (𝑥 ′, 𝑦 ′, 𝑥 ′).
Case 2: 𝑥 ≠ 𝑦 and 𝑥 ′ = 𝑦 ′. Suppose that 𝑓 (𝑦, 𝑥, 𝑥) < 𝑓 (𝑦 ′, 𝑥 ′, 𝑥 ′). Then 𝛼2 (min(𝑥,𝑦)) < 𝛽2 (𝑥 ′),

which implies 𝑥 ≤ min(𝑥 ′, 𝑦 ′) by Lemma 2.13. Then 𝛽 ◦ 𝛼 (min(𝑥,𝑦)) < 𝛽2 (𝑥 ′) by Lemma 2.13 and

because 𝛽 preserves <. Thus 𝑓 (𝑥,𝑦, 𝑥) < 𝑓 (𝑥 ′, 𝑦 ′, 𝑥 ′).
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Hence, ℎ is an isomorphism. Since (Q; <) is homogeneous, there exists [ ∈ Aut(Q; <) extending
ℎ. By Lemma 7.3, there exist 𝑒 ′ and 𝑒 such that 𝑒 ′ ◦ 𝑓 (𝑥, 𝑥,𝑦) = 𝑒 ◦ 𝑓 (𝑥,𝑦, 𝑥) holds for all 𝑥,𝑦 ∈ Q.
Note that then also 𝑒 ′ ◦ 𝑓 (𝑦, 𝑥, 𝑥) = 𝑒 ◦ 𝑓 (𝑥,𝑦, 𝑥) holds for all 𝑥,𝑦 ∈ Q. This completes the proof. □

Another characterisation of finite-domain CSPs in FP that fails for temporal CSPs is the existence

of pseudo-WNU polymorphisms for all but finitely many arities (Proposition 7.27).

Definition 7.26. For 𝑘 ∈ N≥2, the 𝑘-ary mx operation on Q is defined by

mx𝑘 (𝑡) B
{

mx(𝑡) if 𝑘 = 2,

mx

(
mx𝑘−1 (𝑡 [1], . . . , 𝑡 [𝑘 − 1]),mx𝑘−1 (𝑡 [2], . . . , 𝑡 [𝑘])

)
if 𝑘 > 2.

By definition, every structure preserved by mx is also preserved by mx𝑘 for 𝑘 ≥ 3. Recall the

operations min𝑘 ,mi𝑘 , and ll𝑘 from Definition 7.19.

Proposition 7.27. For every 𝑘 ≥ 3, min𝑘 , mx𝑘 , mi𝑘 , and ll𝑘 are pseudo-WNU operations.

Proof. The statement trivially holds for min𝑘 . To show the statement for the operation mx𝑘 , we

first prove the following claim. Let 𝛼, 𝛽 ∈ End(Q;<) from the definition of mx. For every 𝑘 ≥ 2

and 𝑖 ∈ Z, we define 𝑓𝑘,𝑖 (𝑥,𝑦) ≔ mx𝑘 (𝑥1, . . . , 𝑥𝑘 ) where, for every 𝑗 ∈ [𝑘], 𝑥 𝑗 equals 𝑦 if 𝑗 = 𝑖 and

𝑥 otherwise. Clearly, if 𝑖 ∉ [𝑘], then 𝑓𝑘,𝑖 (𝑥,𝑦) = mx𝑘 (𝑥, . . . , 𝑥).
Claim 7.28. For every 𝑘 ≥ 2 and 𝑖 ∈ Z, there exist ℎ𝑘,𝑖,1, . . . , ℎ𝑘,𝑖,𝑘−2 ∈ {𝛼, 𝛽} such that, for all distinct
𝑥,𝑦 ∈ Q,

𝑓𝑘,𝑖 (𝑥,𝑦) =
{
ℎ𝑘,𝑖,𝑘−2 ◦ · · · ◦ ℎ𝑘,𝑖,1 ◦ 𝛼 (min(𝑥,𝑦)) if 𝑖 ∈ [𝑘],
𝛽𝑘−1 (𝑥) otherwise.

Proof of Claim 7.28. We prove the statement by induction on 𝑘 .2 In the base case 𝑘 = 2, the

statement is trivially true by the definition of mx. In the induction step, suppose that the statement

holds for 𝑘 − 1. By the definition of mx𝑘 , 𝑓𝑘,𝑖 (𝑥,𝑦) = mx(𝑓𝑘−1,𝑖 (𝑥,𝑦), 𝑓𝑘−1,𝑖−1 (𝑥,𝑦)) for all distinct
𝑥,𝑦 ∈ Q. We have the following four cases:

Case 1: 𝑖 ∈ [𝑘 − 1] and 𝑖 − 1 ∈ [𝑘 − 1]. Then there exist ℎ𝑘−1,𝑖,1, . . . , ℎ𝑘−1,𝑖,𝑘−3 ∈ {𝛼, 𝛽} and
ℎ𝑘−1,𝑖−1,1, . . . , ℎ𝑘−1,𝑖−1,𝑘−3 ∈ {𝛼, 𝛽} such that 𝑓𝑘−1,𝑖 (𝑥,𝑦) = ℎ𝑘−1,𝑖,𝑘−3 ◦ · · · ◦ℎ𝑘−1,𝑖,1 ◦𝛼 (min(𝑥,𝑦)) and
𝑓𝑘−1,𝑖−1 (𝑥,𝑦) = ℎ𝑘−1,𝑖−1,𝑘−3 ◦ · · · ◦ℎ𝑘−1,𝑖−1,1 ◦ 𝛼 (min(𝑥,𝑦)). By a repeated application of Lemma 2.13

and the fact that 𝛼 and 𝛽 preserve <, we get that either 𝑓𝑘−1,𝑖 (𝑥,𝑦) < 𝑓𝑘−1,𝑖−1 (𝑥,𝑦), 𝑓𝑘−1,𝑖 (𝑥,𝑦) =
𝑓𝑘−1,𝑖−1 (𝑥,𝑦), or 𝑓𝑘−1,𝑖 (𝑥,𝑦) > 𝑓𝑘−1,𝑖−1 (𝑥,𝑦) holds uniformly for all distinct 𝑥,𝑦 ∈ Q. If 𝑓𝑘−1,𝑖 (𝑥,𝑦) <
𝑓𝑘−1,𝑖−1 (𝑥,𝑦), then 𝑓𝑘,𝑖 (𝑥,𝑦) = 𝛼 (𝑓𝑘−1,𝑖 (𝑥,𝑦)). We can set ℎ𝑘,𝑖,𝑘−2 B 𝛼 and ℎ𝑘,𝑖, 𝑗 B ℎ𝑘−1,𝑖, 𝑗 for every

𝑗 ∈ [𝑘−3]. If 𝑓𝑘−1,𝑖 (𝑥,𝑦) = 𝑓𝑘−1,𝑖−1 (𝑥,𝑦), then 𝑓𝑘,𝑖 (𝑥,𝑦) = 𝛽 (𝑓𝑘−1,𝑖 (𝑥,𝑦)). We can setℎ𝑘,𝑖,𝑘−2 B 𝛽 and

ℎ𝑘,𝑖, 𝑗 B ℎ𝑘−1,𝑖, 𝑗 for every 𝑗 ∈ [𝑘 −3]. If 𝑓𝑘−1,𝑖 (𝑥,𝑦) > 𝑓𝑘−1,𝑖−1 (𝑥,𝑦), then 𝑓𝑘,𝑖 (𝑥,𝑦) = 𝛼 (𝑓𝑘−1,𝑖−1 (𝑥,𝑦)).
We can set ℎ𝑘,𝑖,𝑘−2 B 𝛼 and ℎ𝑘,𝑖, 𝑗 B ℎ𝑘−1,𝑖−1, 𝑗 for every 𝑗 ∈ [𝑘 − 3].

Case 2: 𝑖 ∈ [𝑘 − 1] and 𝑖 − 1 ∉ [𝑘 − 1]. Then there exist ℎ𝑘−1,𝑖,1, . . . , ℎ𝑘−1,𝑖,𝑘−3 ∈ {𝛼, 𝛽} such that

𝑓𝑘−1,𝑖 (𝑥,𝑦) = ℎ𝑘−1,𝑖,𝑘−3 ◦ · · · ◦ ℎ𝑘−1,𝑖,1 ◦ 𝛼 (min(𝑥,𝑦)), and 𝑓𝑘−1,𝑖−1 (𝑥,𝑦) = 𝛽𝑘−2 (𝑥). By a repeated ap-

plication of Lemma 2.13 and the fact that 𝛼 and 𝛽 preserve <, we get that 𝑓𝑘−1,𝑖 (𝑥,𝑦) < 𝑓𝑘−1,𝑖−1 (𝑥,𝑦)
holds uniformly for all distinct 𝑥,𝑦 ∈ Q. Then 𝑓𝑘,𝑖 (𝑥,𝑦) = 𝛼 (𝑓𝑘−1,𝑖 (𝑥,𝑦)). We can set ℎ𝑘,𝑖,𝑘−2 B 𝛼

and ℎ𝑘,𝑖, 𝑗 B ℎ𝑘−1,𝑖, 𝑗 for every 𝑗 ∈ [𝑘 − 3].
Case 3: 𝑖 ∉ [𝑘 −1] and 𝑖−1 ∈ [𝑘 −1]. This case is analogous to the one above. We have 𝑓𝑘,𝑖 (𝑥,𝑦) =

𝛼 (𝑓𝑘−1,𝑖−1 (𝑥,𝑦)). Hence we can set ℎ𝑘,𝑖,𝑘−2 B 𝛼 and ℎ𝑘,𝑖, 𝑗 B ℎ𝑘−1,𝑖−1, 𝑗 for every 𝑗 ∈ [𝑘 − 3].
Case 4: 𝑖 ∉ [𝑘 − 1] and 𝑖 − 1 ∉ [𝑘 − 1]. Then 𝑓𝑘−1,𝑖 (𝑥,𝑦) = 𝛽𝑘−2 (𝑥) and 𝑓𝑘−1,𝑖−1 (𝑥,𝑦) = 𝛽𝑘−2 (𝑥).

Then 𝑓𝑘,𝑖 (𝑥,𝑦) = 𝛽𝑘−1 (𝑥). □

2
It is possible to prove stronger statements, e.g., that ℎ𝑘,𝑖,𝑗 = 𝛼 for some 𝑗 ∈ [𝑘 − 2] implies ℎ𝑘,𝑖,𝑗′ = 𝛼 for every 𝑗 ′ ∈ [ 𝑗 ],
but these are irrelevant for the proof of Proposition 7.27.
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𝑥1 𝑥2 𝑥𝑘 𝑥𝑘+1𝑥𝑘−1𝑥3 · · ·

𝑓
𝑓 ′ 𝑓 ′′

Fig. 7. An illustration of the term 𝑓 = mx𝑘+1 (𝑥1, . . . , 𝑥𝑘+1) and its subterms.

Let 𝑘 ≥ 3, and let 𝑆 be an arbitrary finite subset of Q. For a fixed 𝑖 ∈ [𝑘 − 1], let B1 be

the substructure of (Q;<) on {mx𝑘 (𝑥, . . . , 𝑥,𝑦, 𝑥, . . . , 𝑥) | 𝑥,𝑦 ∈ 𝑆} where 𝑦 appears in the 𝑖-th

entry, and let B2 be the substructure of (Q;<) on {mx𝑘 (𝑥, . . . , 𝑥,𝑦) | 𝑥,𝑦 ∈ 𝑆}. Consider the map

ℎ(mx𝑘 (𝑥, . . . , 𝑥,𝑦, 𝑥, . . . , 𝑥)) B mx𝑘 (𝑥, . . . , 𝑥,𝑦). It follows from Claim 7.28, Lemma 2.13, and the

fact that 𝛼 and 𝛽 preserve < that ℎ is a well-defined isomorphism from B1 to B2. Since (Q;<) is
homogeneous, there exists [ ∈ Aut(Q;<) extending ℎ. Now the statement that mx𝑘 is a pseudo-

WNU operation follows directly from Lemma 7.3.

Next, we consider the operations mi𝑘 and ll𝑘 . We proceed exactly as with the operation mx𝑘 ,

using homogeneity of (Q; <) and Lemma 7.3. The argument boils down to showing that, for both

𝑓 ∈ {mi𝑘 , ll𝑘 }, all 𝑥,𝑦, 𝑥 ′, 𝑦 ′ ∈ Q, and every 𝑖 ∈ [𝑘], we have
𝑓 (𝑥, . . . , 𝑥,𝑦

𝑖

, 𝑥, . . . , 𝑥) < 𝑓 (𝑥 ′, . . . , 𝑥 ′, 𝑦 ′
𝑖

, 𝑥 ′, . . . , 𝑥 ′) iff 𝑓 (𝑥, . . . , 𝑥,𝑦) < 𝑓 (𝑥 ′, . . . , 𝑥 ′, 𝑦 ′).

This is the case because both the left- and the right-hand side are true if and only if one of the

following cases applies. For 𝑓 = mi𝑘 :

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) = 𝑥 < 𝑥 ′;

for 𝑓 = ll𝑘 :

• min(𝑥,𝑦) < min(𝑥 ′, 𝑦 ′), or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′) and 𝑥 < 𝑥 ′, or
• min(𝑥,𝑦) = min(𝑥 ′, 𝑦 ′), 𝑥 = 𝑥 ′, and 𝑦 < 𝑦 ′.

This finishes the proof. □

7.4 New pseudo minor conditions

We present a new candidate for an algebraic condition given by pseudo minor identities that could

capture the expressibility in FP for CSPs of reducts of finitely bounded homogeneous structures.

Let E ′
𝑘,𝑘+1 be the pseudo minor condition obtained from E𝑘,𝑘+1 by replacing each 𝑔𝑡 in E𝑘,𝑘+1 with

𝑒𝑡 ◦𝑔 where 𝑒𝑡 is unary and 𝑔 has arity 𝑘 . For instance, up to further renaming the function symbols,

E ′
3,4 is the following condition:

𝑏 ◦ 𝑔(𝑦, 𝑥, 𝑥) ≈ 𝑐 ◦ 𝑔(𝑦, 𝑥, 𝑥) ≈ 𝑑 ◦ 𝑔(𝑦, 𝑥, 𝑥),
𝑎 ◦ 𝑔(𝑦, 𝑥, 𝑥) ≈ 𝑐 ◦ 𝑔(𝑥,𝑦, 𝑥) ≈ 𝑑 ◦ 𝑔(𝑥,𝑦, 𝑥),
𝑎 ◦ 𝑔(𝑥,𝑦, 𝑥) ≈ 𝑏 ◦ 𝑔(𝑥,𝑦, 𝑥) ≈ 𝑑 ◦ 𝑔(𝑥, 𝑥,𝑦),
𝑎 ◦ 𝑔(𝑥, 𝑥,𝑦) ≈ 𝑏 ◦ 𝑔(𝑥, 𝑥,𝑦) ≈ 𝑐 ◦ 𝑔(𝑥, 𝑥,𝑦).

Note that E ′
𝑘,𝑘+1 implies the non-trivial minor condition E𝑘,𝑘+1. Also note that the existence of a

𝑘-ary WNU operation implies E ′
𝑘,𝑘+1. However, E

′
𝑘,𝑘+1 is in general not implied by the existence of

a 𝑘-ary pseudo-WNU operation: Pol(Q; X) contains a 𝑘-ary pseudo-WNU operation for every 𝑘 ≥ 2
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(Proposition 7.27) but does not satisfy E𝑘,𝑘+1 for every odd 𝑘 ≥ 3. The latter statement follows

from Theorem 1.7, because CSP(Q; X) is not in FP (Theorem 4.23). The proof of Theorem 7.23

shows that the statement of the theorem remains true if we replace E𝑘,𝑘+1 with E ′𝑘,𝑘+1. Theorem 1.7

also remains true under such replacement; in its proof, we can simply use Lemma 7.3 instead of

Theorem 7.12 for the cases where B is a temporal structure preserved by mi, ll, or their duals.

Corollary 7.29. Let B be as in Theorem 1.7 or Theorem 7.23. The following are equivalent.

(1) CSP(B) is expressible in FP / FPC.
(2) Pol(B) satisfies E ′

𝑘,𝑘+1 for all but finitely many 𝑘 ∈ N.

We would also like to point out that under fairly general assumptions on B it is possible to

algorithmically test wether Pol(B) satisfies the pseudo-minor condition E ′
𝑘,𝑘+1; more specifically, ifB

is a homogeneous finitely bounded Ramsey structure (see [10] for the definition of Ramsey structures

and how to appropriately represent such structures on a computer; all first-order expansions of

(Q; <) satisfy the given conditions) then this can be shown as in the proof of Theorem 11.6.7 in [10].

Such decidability results are not known for minor conditions such as E𝑘,𝑘+1.

8 OPEN QUESTIONS

We have completely classified expressibility of temporal CSPs in the logics FPC, FP, and Datalog. Our

results show that all of the characterisations known for finite-domain CSPs fail for temporal CSPs.

However, we have also seen new universal-algebraic conditions that characterise expressibility

in FP simultaneously for finite-domain CSPs and for temporal CSPs. It is an open problem to find

such conditions in the more general setting of the infinite-domain tractability conjecture:

Conjecture 8.1 ([5]). Let B be a reduct of a finitely bounded homogeneous structure. Then one of the
following holds.

(1) B pp-constructs ({0, 1}; 1IN3) (and consequently, CSP(B) is NP-complete);
(2) B is solvable in polynomial time.

For B as in Conjecture 8.1, we ask the following questions:

(1) Is CSP(B) inexpressible in FP whenever Pol(B) does not satisfy the minor condition E𝑘,𝑘+1
for all but finitely many 𝑘 ≥ 2?

(2) We ask the previous question for the pseudo-minor condition E ′
𝑘,𝑘+1 instead of E𝑘,𝑘+1.

(3) If CSP(B) is in FPC, is it also in FP? To the best of our knowledge, this could hold for CSPs in

general, even without the additional assumptions on B.

It is also an open question whether FP extended with rank operators modulo all prime numbers

(FPR) captures Ptime for finite-domain CSPs. Another important candidate is choiceless polynomial

time (CPT) [9]. We propose to extend both candidates to the setting of Conjecture 8.1:

(4) Does FPR/CPT capture Ptime for CSPs of reducts of finitely bounded homogeneous structures?

In the case of CPT, it is not even clear how to show inexpressibility for CSP({0, 1}; 1IN3). In the

case of FPR, the inexpressibility of CSP({0, 1}; 1IN3) follows from Theorem 2.7 and the results in

[37] because ({0, 1}; 1IN3) pp-constructs all finite structures.
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