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Abstract

We introduce a novel variant of BSS machines called Sepa-
rate Branching BSS machines (S-BSS in short) and develop a
Fagin-type logical characterisation for languages decidable
in nondeterministic polynomial time by S-BSSmachines.We
show that NP on S-BSS machines is strictly included in NP
on BSS machines and that every NP language on S-BSS ma-
chines is a countable disjoint union of closed sets in the
usual topology ofRn . Moreover, we establish that onBoolean
inputs NP on S-BSS machines without real constants char-
acterises a natural fragment of the complexity class ∃R (a
class of problems polynomial time reducible to the true ex-
istential theory of the reals) and hence lies between NP and
PSPACE. Finally we apply our results to determine the data
complexity of probabilistic independence logic.

CCS Concepts: • Theory of computation → Complex-

ity theory and logic; Finite Model Theory; Models of

computation; • Mathematics of computing → Proba-

bility and statistics.

Keywords: Blum-Shub-Smalemachines, descriptive complex-
ity, team semantics, independence logic, real arithmetic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
h�ps://doi.org/10.1145/3373718.3394773

ACM Reference Format:

Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni
Virtema. 2020.Descriptive complexity of real computation and prob-
abilistic independence logic. In Proceedings of the 35th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS ’20), July 8–11, 2020,

Saarbrücken, Germany.ACM,NewYork, NY,USA, 15 pages. h�ps://doi.org/10.1145/3373718.3394773

©Authors 2020. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published
in Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany, ACM, New
York, NY, USA, https://doi.org/10.1145/3373718.3394773.

1 Introduction

The existential theory of the reals consists of all first-order
sentences that are true about the reals and are of the form

∃x1 . . . ∃xnϕ(x1, . . . , xn),

where ϕ is a quantifier-free arithmetic formula containing
inequalities and equalities. Known to beNP-hard on the one
hand, and in PSPACE on the other hand [6], the exact com-
plexity of this theory is a major open question. The exis-
tential theory of the reals is today attracting considerable
interest due to its central role in geometric graph theory.
First isolated as a complexity class in its own right in [25],
∃R is defined as the closure of the existential theory of the
reals under polynomial-time reductions. In the past decade
several algebraic and geometric problems have been classi-
fied as complete for ∃R; a recent example is the art gallery
problem of deciding whether a polygon can be guarded by
a given number of guards [1].
The existential theory of the reals is closely connected to

Blum-Shub-Smale machines (BSS machine for short) which
are essentially random access machines with registers that
can store arbitrary real numbers and which can compute
rational functions over reals in a single time step. Many
complexity classes from classical complexity theory trans-
fer to the realm of BSS machines, such as nondeterministic
polynomial time (NPR) over languages consisting of finite
strings of reals. While the focus is primarily on languages
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over some numerical domain (e.g., reals or complex num-
bers), also Boolean inputs (strings over {0, 1}) can be con-
sidered. In this context ∃R corresponds to the Boolean part

of NP0
R
(BP(NP0

R
)), obtained by restricting NPR to Boolean

inputs and limiting the use of machine constants to 0 and 1,
as feasibility of Boolean combinations of polynomial equa-
tions is complete for both of these classes [5, 26].
BSS computations can also be described logically. This re-

search orientation was initiated by Grädel and Meer who
showed thatNPR is captured by a variant of existential second-
order logic (ESOR) overmetafinite structures [15]. Metafinite
structures are two-sorted structures that consist of a finite
structure, an infinite domain with some arithmetics (such as
the reals with multiplication and addition), and weight func-
tions bridging the two sorts [13]. Since the work by Grädel
and Meer, others (see, e.g., [8, 18, 24]) have shed more light
upon the descriptive complexity over the reals mirroring the
development of classical descriptive complexity. In addition
to metafinite structures, the connection between logical de-
finability encompassing numerical structures and computa-
tional complexity has received attention in constraint databases
[2, 14, 23]. A constraint database models, e.g., geometric
data by combining a numerical context structure, such as the
real arithmetic, with a finite set of quantifier-free formulae
defining infinite database relations [20].
In this paper we investigate the descriptive complexity of

so-called probabilistic independence logic in terms of the BSS
model of computation and the existential theory of the re-
als. Probabilistic independence logic is a recent addition to
the vast family of new logics in team semantics. In team se-
mantics [27] formulae are evaluated with respect to sets of
assignments which are called teams. During the past decade
research on team semantics has flourished with interesting
connections to fields such as database theory [17], statistics
[7], hyperproperties [22], and quantum information theory
[19], just to mention a few examples. The focus of this arti-
cle is probabilistic team semantics that extends team based
logicswith probabilistic dependency notions.While the first
ideas of probabilistic teams trace back to [11, 19], the system-
atic study of the topic was initiated by the works [9, 10].
At the core of probabilistic independence logic FO(⊥⊥c)

is the concept of conditional independence. The models of
this logic are finite first-order structures but the notion of a
team is replaced by a probabilistic team, i.e., a discrete prob-
ability distribution over a finite set of assignments. In [10] it
was observed that probabilistic independence logic is equiv-
alent to a restriction of ESOR in which the weight functions
are distributions. The exact complexity and relationship of
FO(⊥⊥c) to ESOR and NPR was left as an open question; in
this paperwe present a (strict) sublogic of ESOR and a (strict)
subclass of NPR that both capture FO(⊥⊥c).
Our contribution. In this paper we introduce a novel

variant of BSS machines called Separate Branching BSS ma-
chines (S-BSS machines for short) and characterise its NP

BP(S-NP0
[0,1]
) BP(NP0

R
)

NP ⊆

= ∗ ⊆

=

⊆ PSPACE

∃[0, 1]≤ ∃R

S-NP0
[0,1]

NP0
R≡ ∗ ⊂∗

≡

L-ESO[0,1][+,×, ≤, 0, 1] ESOR[+,×, ≤, 0, 1]

≡ ∗

FO(⊥⊥c)

Table 1. Known complexity results and logical character-
isations together with the main results of this paper. The
results of this paper are marked with an asterisk (*). The
top figure is with respect to Boolean inputs; on the bottom
figure, the inputs can include real numbers.

languages (denoted by S-NP
[0,1]) with L-ESO[0,1][+,×, ≤, (r )r ∈R]

that is a natural sublogic of ESOR. Likewise, we isolate a
fragment ∃[0, 1]≤ of the complexity class ∃R and show that
it coincides with the class of Boolean languages in S-NP0

[0,1]
.

Moreover we establish a topological characterisation of the
languages decidable by S-BSS machines; we show that, un-
der certain natural restrictions, languages decidable by S-
BSS machines are countable disjoint unions of closed sets
in the usual topology of Rn . The topological characterisa-
tion separates the languages decidable by BSS machines and
S-BSS machines, respectively. Moreover it enables us to sep-
arate the complexity classes S-NP0

[0,1]
and NP0

R
. Finally we

show the equivalence of the logics L-ESO[0,1][+,×, ≤, 0, 1]
and FO(⊥⊥c), implying that FO(⊥⊥c) ≡ S-NP0

[0,1]
. Table 1 sum-

marises the main results of the paper.
Structure of the paper. Section 2 gives the basic defini-

tions on descriptive complexity, BSS machines, and logics
on R-structures required for this paper. Section 3 focuses
in giving logical characterisations of variants of NP on S-
BSS machines. In Section 4 we establish the aforementioned
topological characterisation of S-BSS decidable languages.
In Section 5 we prove a hierarchy of the related complexity
classes; in particular we separate S-NP0

[0,1]
andNP0

R
. Section

6 deals with probabilistic team semantics and establishes
that FO(⊥⊥c) ≡ S-NP0

[0,1]
. Section 7 concludes the paper.

2 Preliminaries

A vocabulary is relational (resp., functional) if it consists of
only relation (resp., function) symbols. A structure is rela-
tional if it is defined over a relational vocabulary. We let
Var1 and Var2 denote disjoint countable sets of first-order
and function variables (with prescribed arities), respectively.
We write ®x to denote a tuple of first-order variables and | ®x |
to denote the length of that tuple. The arities of function
variables f and relation symbolsR are denoted by ar(f ) and
ar(R), respectively. If f is a function with domain Dom(f )
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and A a set, we define f ↾ A to be the function with do-
main Dom(f ) ∩ A that agrees with f for each element in
its domain. Given a finite set D, a function f : D → [0, 1]
that maps elements of D to elements of the closed interval
[0, 1] of real numbers such that

∑

s ∈D f (s) = 1 is called a
(probability) distribution.

2.1 R-structures

Let τ be a relational vocabulary. A τ -structure is a tuple
A = (A, (RA)R∈τ ), whereA is a nonempty set and eachRA an
ar(R)-ary relation on A. The structure A is a finite structure
if τ and A are finite sets. In this paper, we consider struc-
tures that enrich finite relational τ -structures by adding real
numbers (R) as a second domain sort and functions that map
tuples over A to R.

Definition 2.1. Let τ and σ be respectively a finite rela-
tional and a finite functional vocabulary, and let X ⊆ R. An
X -structure of vocabulary τ ∪ σ is a tuple

A = (A,R, (RA)R∈τ , (д
A)д∈σ ),

where the reduct of A to τ is a finite relational structure,
and each дA is a weight function from Aar(д) to X . Addition-
ally, an d[0, 1]-structure A is defined analogously, with the
exception that the weight functions дA are distributions.

An assignment is a total function s : Var1 → A that
assigns a value for each first-order variable. The modified
assignment s[a/x] is an assignment that maps x to a and
agrees with s for all other variables.
Next, we define a variant of functional existential second-

order logic with numerical terms (ESOR) that is designed
to describe properties of R-structures. As first-order terms
we have only first-order variables. For a set σ of function
symbols, the set of numerical σ -terms i is generated by the
following grammar:

i ::= c | f (®x) | i × i | i + i | SUM ®y i,

where c ∈ R is a real constant denoting itself, f ∈ σ , and ®x
and ®y are tuples of first-order variables from Var1 such that
the length of ®x is ar(f ). The value of a numerical term i in
a structure A under an assignment s is denoted by [i]As . In
addition to the natural semantics for the real constants, we
have the following rules for the numerical terms:

[f (®x)]As := f A(s(®x)), [i × j]As := [i]As · [j]
A

s ,

[i + j]A := [i]A + [j]A, [SUM®y i]
A

s :=
∑

®a∈A | ®y |

[i]A
s[ ®a/®y]

,

where +, ·,
∑

are the addition, multiplication, and summa-
tion of real numbers, respectively.

Definition 2.2 (Syntax of ESOR). Let τ be a finite relational
vocabulary and σ a finite functional vocabulary. Let O ⊆

{+,×, SUM}, E ⊆ {=, <, ≤}, and C ⊆ R. The set of τ ∪ σ -
formulae of ESOR[O, E,C] is defined via the grammar:

ϕ ::= x = y | ¬x = y | i e j | ¬i e j | R(®x ) | ¬R(®x) |

ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ | ∃f ψ ,

where i and j are numerical σ -terms constructed using op-
erations from O and constants from C , and e ∈ E, R ∈ τ is
a relation symbol, f is a function variable, x and y are first-
order variables and ®x a tuple of first-order variables, and ψ
is a τ ∪ (σ ∪ { f })-formula of ESOR[O, E,C].

Note that the syntax of ESOR[O, E,C] allows first-order
subformulae to appear only in negation normal form. This
restriction however does not restrict the expressiveness of
the language.
The semantics of ESOR[O, E,C] is defined viaR-structures

and assignments analogous to first-order logic; note that
first-order variables are always assigned to a value inAwhereas
functions map tuples over A to R. In addition to the clauses
of first-order logic,we have the following semantical clauses:

A |=s i e j ⇔ [i]
A

s e [j]
A

s , A |=s ¬i e j ⇔ A 6 |=s i e j,

A |=s ∃f ϕ ⇔ A[h/f ] |=s ϕ for some h : Aar(f ) → R, (1)

where A[h/f ] is the expansion of A that interprets f as h.
Given S ⊆ R, we define ESOS [O, E,C] as the variant of

ESOR[O, E,C] in which (1) is modified such thath : Aar(f ) →

S , and ESOd [0,1][O, E,C] as the variant in which (1) is mod-

ified such that h : Aar(f ) → [0, 1] is a distribution, that is,
Σ ®a∈Aar(f )h(®a) = 1. Note that in the setting of ESOd [0,1][O, E,C]
the value f A of a 0-ary function symbol f is always 1.

Loose fragment. For both S ⊆ R and S = d[0, 1], de-
fine L-ESOS [O, E,C] as the loose fragment of ESOS [O, E,C]

in which negated numerical atoms¬i e j are disallowed. We
want to point out that as long as= ∈ E and 0, 1 ∈ C , the logic
L-ESOS [O, E,C] subsumes existential second-order logic over
finite structures (a precise formulation is given later by Propo-
sition 3.1).

Expressivity comparisons. Fix a relational vocabulary τ
and a functional vocabulary σ . Let L and L ′ be some log-
ics over τ ∪ σ defined above, and let X ⊆ R or X = d[0, 1].
For a formula ϕ ∈ L, define StrucX (ϕ) to be the class of
X -structures A of vocabulary τ ∪ σ such that A |= ϕ. We
write L ≤X L ′ if for all sentences ϕ ∈ L there is a sen-
tenceψ ∈ L ′ such that StrucX (ϕ) = StrucX (ψ ). As usual, the
shorthand ≡X stands for ≤X in both directions. For X = R,
we write simply ≤ and ≡.

In plain words, the subscript S in ESOS [O, E,C] consti-
tutes the class of functions available for quantification, whereas
the superscript X in StrucX (ϕ) constitutes the class of func-
tions available for function symbols in the vocabulary. Thus,
ϕ ∈ ESOS [O, E,C] defines a class StrucX (ϕ), even if S and X
are different.
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2.2 Blum-Shub-Smale Model

We will next give a definition of BSS machines (see e.g. [3]).
We define R∗ :=

⋃

{Rn | n ∈ N}. The size |x | of x ∈ Rn is
defined as n. The space R∗ can be seen as the real analogue
of Σ∗ for a finite set Σ. We also define R∗ as the set of all
sequences x = (xi )i ∈Z where xi ∈ R. The members of R∗
are thus of the form (. . . , x−2, x−1, x0, x1, x2, . . .). Given an
element x ∈ R∗ ∪ R∗ we write xi for the ith coordinate of
x . The space R∗ has natural shift operations. We define shift
left σl : R∗ → R∗ and shift right σr : R∗ → R∗ as σl (x)i :=
xi+1 and σr (x)i := xi−1.

Definition 2.3 (BSS machines). A BSS machine consists of
an input space I = R∗, a state space S = R∗, and an output
space O = R∗, together with a connected directed graph
whose nodes are labelled by 1, . . . ,N . The nodes are of five
different types.

1. Input node. The node labeled by 1 is the only input
node. The node is associated with a next node β(1)
and the input mapping дI : I → S.

2. Output node. The node labeled byN is the only output
node. This node is not associated with any next node.
Once this node is reached, the computation halts, and
the result of the computation is placed on the output
space by the output mapping дO : S → O.

3. Computation nodes. A computation nodem is associ-
ated with a next node β(m) and a mapping дm : S →
S such that for some c ∈ R and i, j,k ∈ Z the mapping
дm is identity on coordinates l , i and on coordinate
i one of the following holds:
• дm(x)i = x j + xk (addition),
• дm(x)i = x j − xk (subtraction),
• дm(x)i = x j × xk (multiplication),
• дm(x)i = c (constant assignment).

4. Branch nodes.Abranchnodem is associatedwith nodes
β−(m) and β+(m). Given x ∈ S the next node is β−(m)
if x0 ≤ 0, and β+(m) otherwise.

5. Shift nodes. A shift node m is associated either with
shift left σl or shift right σr , and a next node β(m).

The input mapping дI : I → S places an input (x1, . . . , xn)
in the state

(. . . , 0,n, x1, . . . , xn, 0, . . .) ∈ S,

where the size of the input n is located at the zeroth coordi-
nate. The output mapping дO : S → O maps a state to the
string consisting of its first l positive coordinates, where l
is the number of consecutive ones stored in the negative
coordinates starting from the first negative coordinate. For
instance, дO maps

(. . . , 2, 1, 1, 1,n, x1, x2, x3, x4, . . .) ∈ S,

to (x1, x2, x3) ∈ O. A configuration at any moment of com-
putation consists of a node m ∈ {1, . . . ,N } and a current
state x ∈ S. The (sometimes partial) input-output function

fM : R∗ → R∗ of a machineM is now defined in the obvious
manner. A function f : R∗ → R∗ is computable if f = fM
for some machineM . A language L ⊆ R∗ is decided by a BSS
machineM if its characteristic function χL : R∗ → R∗ is fM .

Deterministic complexity classes. AmachineM runs in

(deterministic) time t : N → N, if M reaches the output in
t(|x |) steps for each input x ∈ I. The machine M runs in
polynomial time if t is a polynomial function. The complex-
ity class PR is defined as the set of all subsets of R∗ that are
decided by some machineM running in polynomial time.

Nondeterministic complexity classes. A language L ⊆
R
∗ is decided nondeterministically by a BSS machineM , if

x ∈ L if and only if fM ((x , x
′)) = 1, for some x ′ ∈ R∗,

when a slightly different input mapping дI : I → S, which
places an input (x1, . . . , xn, x ′1, . . . , x

′
m) in the state

(. . . , 0,n,m, x1, . . . , xn, x
′
1, . . . , x

′
m, . . .) ∈ S,

where the sizes of x and x ′ are respectively placed on the
first two coordinates, is used. When we consider languages
that a machine M decides nondeterministically, we call M
nondeterministic. Sometimes when we wish to emphasize
that this is not the case, we call M deterministic. Moreover,
we say thatM is [0,1]-nondeterministic, if the guessed strings
x ′ are required to be from [0, 1]∗. L is decided in time t : N→
N, if, for every x ∈ L, M reaches the output 1 in t(|x |) steps
for some x ′ ∈ R∗. Themachine runs in polynomial time if t is
a polynomial function. The class NPR consists of those lan-
guages L ⊆ R∗ for which there exists a machineM that non-
deterministically decides L in polynomial time. Note that, in
this case, the size of x ′ above can be bounded by a polyno-
mial (e.g., the running time ofM) without altering the defini-
tion. The complexity class NPR has many natural complete
problems such as 4-FEAS, i.e., the problem of determining
whether a polynomial of degree four has a real root [4].

Complexity classes with Boolean restrictions. If we re-
strict attention to machinesM that may use only c ∈ {0, 1}
in constant assignment nodes, then the corresponding com-
plexity classes are denoted using an additional superscript
0 (e.g., as in NP0

R
). Complexity classes over real computa-

tion can also be related to standard complexity classes. For
a complexity class C over the reals, the Boolean part of C,
written BP(C), is defined as {L ∩ {0, 1}∗ | L ∈ C}.

Descriptive complexity. Similar to Turingmachines, also
BSS machines can be studied from the vantage point of de-
scriptive complexity. To this end, finite R-structures are en-
coded as finite strings of reals using so-called rankings that
stipulate an ordering on the finite domain. Let A be an R-
structure over τ ∪ σ where τ and σ are relational and func-
tional vocabularies, respectively. A ranking ofA is any bijec-
tion π : Dom(A) → {1, . . . , |A|}. A ranking π and the lexico-
graphic ordering onNk induce ak-ranking πk : Dom(A)k →
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{1, . . . , |A|k } for k ∈ N. Furthermore, π induces the follow-
ing encoding encπ (A). First we define encπ (RA) and encπ (f A)
for R ∈ τ and f ∈ σ :

• Let R ∈ τ be a k-ary relation symbol. The encoding
encπ (RA) is a binary string of length |A|k such that the
jth symbol in encπ (RA) is 1 if and only if (a1, . . . ,ak ) ∈
RA , where πk (a1, . . . ,ak ) = j .
• Let f ∈ σ be a k-ary function symbol. The encod-
ing encπ (f A) is string of real numbers of length |A|k

such that the jth symbol in encπ (f A) is f A(®a), where
πk (®a) = j .

The encoding encπ (A) is then the concatenation of the string
(1, . . . , 1) of length |A| and the encodings of the interpre-
tations of the relation and function symbols in τ ∪ σ . We
denote by enc(A) any encoding encπ (A) of A.
Let C be a complexity class and ESOS [O, E,C] a logic,

where O ⊆ {+,×, SUM}, E ⊆ {=, <, ≤}, C ⊆ R, and S ⊆ R
or S = d[0, 1]. Let X ⊆ R or X = d[0, 1], and let S be an ar-
bitrary class of X -structures over τ ∪ σ that is closed under
isomorphisms. We write enc(S) for the set of encodings of
structures in S. Consider the following two conditions:

(i) enc(S) = {enc(A) | A ∈ StrucX (ϕ)} for some ϕ ∈
ESOS [O, E,C][τ ∪ σ ]},

(ii) enc(S) ∈ C.

If (i) implies (ii), we write ESOS [O, E,C] ≤X C, and if the
vice versa holds, we write C ≤X ESOS [O, E,C]. If both di-
rections hold, then we write ESOS [O, E,C] ≡X C. We omit
the subscript X in the notation if X = R.
The following results due to Grädel and Meer extend Fa-

gin’s theorem to the context of real computation.1

Theorem 2.4 ([15]). ESOR[+,×, ≤, (r )r ∈R] ≡ NPR and

ESOR[+,×, ≤] ≡ NP0
R
.

2.3 Separate Branching BSS

We now define a restricted version of the BSS model which
branches with respect to two separated intervals (−∞, ϵ−]
and [ϵ+,∞). We will later relate these BSS machines to cer-
tain fragments of ESOR and the existential theory of the re-
als.

Definition 2.5 (Separate Branching BSS Machine). Sepa-
rate branching BSS machines (S-BSS machines for short) are
otherwise identical to the BSSmachines of Definition 2.3, ex-
cept that the branch nodes are replaced with the following
separate branch nodes.

• Separate branch nodes. A separate branch node m is
associated with ϵ−, ϵ+ ∈ R, ϵ− < ϵ+, and nodes β+(m)
and β−(m). Given x ∈ S the next node is β+(m) if

1Only the first equivalence is explicitly stated in [15]. The second, how-
ever, is a simple corollary, using the fact that 0 and 1 can be identified in
ESOR[+, ×, ≤]; these two are the only idempotent reals for multiplication,
and 0 is the only idempotent real for addition.

x0 ≥ ϵ+, β−(m) if x0 ≤ ϵ−, and otherwise the input is
rejected.

Note that for a given S-BSS machine it is easy to write an
equivalent BSS machine. A priori it is not clear whether the
converse is possible; in fact, we will later show that in some
cases the converse is not possible.
We can now define the variants of the complexity classes

PR, P0R, NPR, and NP0
R
that are obtained by replacing BSS

machines with S-BSSmachines in the definitions of the com-
plexity classes. Furthermore, we define NP[0,1], and NP0

[0,1]

as the variants of NPR, and NP0
R
in which the input x may

be any element from R∗ but the guessed element x ′ must
be taken from [0, 1]∗. Let C be one of the aforementioned
complexity classes. We define S-C to be the variant of C,
where, instead of BSS machines, S-BSS machines are used.
If C includes the superscript 0, this means that not only the
parameter c in constant assignment, but also ϵ− and ϵ+ in
separate branching are from {0, 1}.

3 Descriptive complexity of

nondeterministic polynomial time in
S-BSS

Wenow show that S-NP
[0,1] corresponds to a numerical vari-

ant of ESO in which quantified functions take values from
the unit interval and numerical inequality atoms only ap-
pear positively. Later we show that both of these restrictions
are necessary in the sense that removing either one lifts
expressiveness to the level of ESOR[+,×, ≤, (r )r ∈R] which
captures NPR. On the other hand, we give a logical proof,
based on topological arguments, that S-NP

[0,1] < NPR. The

proof of Theorem 3.3 is a nontrivial adaptation of the proof
of Theorem 2.4 (see [15, Theorem 4.2]). In the proof we ap-
ply Lemma 3.2 and, by Proposition 3.1, assume without loss
of generality built-in ESO definable predicates on the finite
part.
Let 0 and 1 be distinct constants, d a (k + 1)-ary distri-

bution, and R a k-ary relation on a finite domain A of size
n. We say that d is the characteristic distribution of R (w.r.t.
0 and 1) if ®a ∈ R implies d(®a, 1) = 1

nk
, and ®a < R implies

d(®a, 0) = 1
nk

. The next proposition implies that it is possi-
ble to simulate existential quantification of ESO definable
predicates on the finite domain using function (or distribu-
tion) quantification; in particular, we may assume without
loss of generality built-in predicates such as a linear order-
ing and its induced successor relation on the finite domain.
Clearly, any predicate that is ESO-definable over finite struc-
tures is also ESO-definable (w.r.t. the finite domain) over R-
structures.
Below, we write L-ESOS [O, E,C,∃X ] to denote the exten-

sion of L-ESOS [O, E,C] by existential quantification of rela-
tions over the finite domain with the usual semantics.
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Proposition 3.1. Let {0, 1} ⊆ S and O, E,C be arbitrary.

For every formula ϕ ∈ L-ESOS [O, E,C,∃X ] there exist for-

mulas ϕ ′ ∈ L-ESOS [O, E ∪ {=},C ∪ {0, 1}] and ϕ ′′ ∈ L-
ESOd [0,1][O, E ∪ {=},C] such that, for every R-structure A

and assignment s ,

A |=s ϕ ⇔ A |=s ϕ
′ ⇔ A |=s ϕ

′′
.

Proof. The sentence ϕ ′ (ϕ ′′, resp.) is obtained from ϕ by a
translation that is the identity function, except that, for second-
order variables X of arity k , we rewrite the quantifications
∃X as ∃fX , where fX is a k-ary ((k + 1)-ary, resp.) function
variable, and the atoms X (®x) and ¬X (®x) by fX (®x) = 1 and
fX (®x) = 0 (fX (®x, 1) = u(®x) and fX (®x, 0) = u(®x), resp.), re-
spectively. Here, u is the k-ary uniform distribution which
is definable in L-ESOd [0,1][=] by ∀®x ®x ′u(®x) = u(®x ′). �

Lemma 3.2. If {0, 1} ⊆ C , we have L-ESO[0,1][+,×, ≤,C] ≡
L-ESO[−1,1][+,×, ≤,C].

Proof. Left-to-right direction is straightforward; the quan-
tification ∃f ψ in L-ESO[0,1][+,×, ≤,C] can be simulated in
L-ESO[−1,1][+,×, ≤,C] by the formula ∃f (∀®x 0 ≤ f (®x) ∧ψ ).

The converse direction is nontrivial. Let ϕ be an arbitrary
L-ESO[−1,1][+,×, ≤,C]-formula. We will show how to con-
struct an equivalent L-ESO[0,1][+,×, ≤,C]-formulaϕ ′. By the
standard Skolemization argument we may assume that ϕ is
in the prenex normal form. Moreover, we assume that ev-
ery atomic formula of the form t1 ≤ t2 is written such that
t1 and t2 are multivariate polynomials where function terms
f (®x) play the role of variables; this normal form is obtained
by using the distributive laws of addition andmultiplication.
Let M be the smallest set that includes every term of poly-
nomials t1 and t2 such that t1 ≤ t2 is a subformula of ϕ, and
is closed under taking subterms. Clearly M is a finite set,
for its cardinality is bounded by the length of ϕ. For each
p ∈ M with m variables, we introduce an m-ary function
дp that will be interpreted as the sign function for the term
p. Let ®xp be the related tuple of variables. The idea is that
дp (®a) = 0 (дp (®a) = 1) if p(®a) < 0 (p(®a) ≥ 0).

We are now ready to define the translationϕ 7→ ϕ ′, where

ϕ = ∃f1 . . . ∃fmQ1x1 . . .Qnxnψ

is in the normal form mentioned above. We define

ϕ ′ := ∃
p ∈M

дp∃f1 . . . ∃fmQ1x1 . . .Qnxn(θ ∧ψ
◦),

where the recursively defined translation ◦ is homomorphic
for the Boolean connectives and identity for first-order lit-
erals.
For atomic formulae t1 ≤ t2 of the form s1 + · · · + sl ≤

r1 + · · ·+ rm the translation is defined as follows. The trans-
lation makes certain that every term (of polynomial) of the
inequation after the translation has a non-negative value;
this is done by moving terms to the other side of the inequa-
tion. Denote I = {1, . . . , l} and J = {1, . . . ,m}, and define

(t1 ≤ t2)
◦ as

∨

I ⊆I
J ⊆J

(
∧

i ∈I
j∈J

дsi (®xsi ) = 1 ∧ дr j (®xr j ) = 1

∧
∧

i ∈I\I
j∈J\J

дsi (®xsi ) = 0 ∧ дr j (®xr j ) = 0

∧
∑

i ∈I

si +
∑

j∈J\J

r j ≤
∑

i ∈I\I

si +
∑

j∈J

r j

)

.

Finally the subformula θ makes sure that the signs of the
terms in p ∈ M propagate correctly from subterms to terms.
Define θ as

∧

p ∈M
c ∈M∩[0,∞]
d ∈M∩[−∞,0)

∀®x
(

дp (®x) = 0 ∨ дp (®x) = 1
)

∧ дc = 1 ∧ дd = 0

∧
∧

p,q,r ∈M
p=q×r

(

(

дq(®xq) = дr (®xr ) ∧ дp (®xp) = 1
)

∨
(

дq(®xq) = 0 ∧ дr (®xr ) = 1 ∧ дp (®xp ) = 0
)

∨
(

дq(®xq) = 1 ∧ дr (®xr ) = 0 ∧ дp (®xp ) = 0
)

)

.

Note that the sign function maps terms of value 0 to either
0 or 1, since for the purpose of the construction the sign of
0 valued terms does not matter. �

Theorem 3.3. L-ESO[0,1][+,×, ≤, (r )r ∈R] ≡ S-NP
[0,1].

Proof. Right-to-le� direction. Suppose L ∈ S-NP
[0,1] is a

class of R-structures that is closed under isomorphisms. By
Lemma 3.2 it suffices to construct an L-ESO[−1,1][+,×, ≤,R]
sentence ϕ such that A |= ϕ iff A ∈ L for all R-structures A.
LetM be an S-BSS machine such thatM consists ofN nodes,
and for each input x it accepts (x , x ′) for some x ′ ∈ [0, 1]∗ in
time |x |k

∗
iff x = enc(A) for some A ∈ L, where k∗ is some

fixed natural number. We may assume that |x ′ | is of size
|x |k

∗
. Let k be a fixed natural number such that |x |k

∗
≤ |A|k ;

such a k always exists since |enc(A)| is polynomial in |A|.
The computation of M on a given input enc(A) can be rep-
resented using functions f : A2k+1 → (−1, 1), д : A2k+1 →

(0, 1], and h1, . . . ,hN : Ak → {0, 1} such that

(a) f (®s, ®t)/д(®s, ®t) is the content of register ®s at time ®t ;
(b) hi (®t) is 1 if i is the node label at time ®t , and 0 otherwise.

Note that ®s is (k + 1)-ary because we need to store |A|k posi-
tive and negative register contents. We may assume k such
that registers with index greater than |A|k do not contribute
to the final outcome, i.e., their contents are never shifted to
registers associated with the nodes of M . Construct a for-
mula

ψ (f ,д,h) := θpre ∧ θinitial ∧ θcomp ∧ θaccept
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of L-ESO[−1,1][+,×, ≤, (r )r ∈R] such that A |= ∃f дhψ iff M

accepts enc(A). By Proposition 3.1 we may assume a built-
in ordering ≤fin and its induced successor relation S and
constants 0, 1,max on the finite domain. Likewise, we may
extend ≤fin to order also k-tuples from the finite domain.
Under such ordering we then write ®x + 1 (®x − 1) for the
element succeeding (preceding) a k-tuple ®x , and ®n for the n-
th k-tuple. First, θpre is the conjunction of a formula stating
that the ranges of д and h are as stated, and another formula

∀®y f (®y)2 + д(®y) = 1, (2)

where f (®y)2 is a shorthand for f (®y) × f (®y). Observe that (2)
implies

f (®y)

д(®y)
=

f (®y)

(1 − f (®y)2)
.

Also, x 7→ x/(1 − x2) is a bijection from (−1, 1) to R. That
the range of f is (−1, 1)will follow from the remaining con-
juncts ofψ , described below.
Initial configuration.Wegive a description of θinitial such that

(A, f ,д, ®h) |= θinitial

iff (f ,д, ®h) satisfies (a) & (b) at time ®0. (3)

For clause (b) it suffices to add to θinitial

h1(®0) = 1 ∧ h2(®0) = 0 ∧ . . . ∧ hN (®0) = 0.

Consider then clause (a). We denote by ®s0 the ⌊|Ak+1 |/2⌋th
k + 1-tuple with respect to ≤fin. The sequence ®s0, which is
clearly definable in ESO, now represents the zeroth coordi-
nate of R∗. To encode that |x | is placed on zeroth coordinate
we add to θinitial

∃ϵ∃fcount

(

fcount(0) = ϵ (4)

∧ ∀xy
(

S(x ,y) → fcount(y) = fcount(x) + ϵ
)

∧ fcount(max) = 1 ∧ f (®s0, ®0) = p(1/ϵ) × д(®s0, ®0)
)

,

where ϵ is a nullary function variable (i.e., a real from [−1, 1]),
p is a polynomial such that |enc(A)| = p(|A|), and the last
conjunct of (4) is a shorthand for

ϵdeg(p) × f (®s0, ®0) = p
∗(ϵ) × д(®s0, ®0),

where deg(p) is the degree of the polynomial p, and p∗ is
the polynomial obtained by multiplying p by ϵdeg(p) (that
is ϵdeg(p) × p(1/ϵ) = p∗(ϵ)). It follows from (2) and (4) that
f (®s0, ®0) ∈ (−1, 1) and f (®s0, ®0)/д(®s0, ®0) = |enc(A)|. To en-
code that |x ′| is placed on the first coordinate we also add
to θinitial a formula stipulating that f (®s0, ®0)k

∗
/д(®s0, ®0)k

∗
=

f (®s0 + 1, ®0)/д(®s0 + 1, ®0).
Let f ∗ ∈ τ be a function symbol and let rf ∗ be a natural

number that indicates the starting position of the encoding
of f ∗ in enc(A). Clearly rf ∗ is a definable real number as
it is the value of a fixed univariate polynomial. We use the
shorthand ®s = ®y + rf ∗ to denote that in the ordering of k-
tuples (induced from ≤fin) the ordinal number of ®s is the

sum of the ordinal number of ®y and rf ∗ . Clearly ®s = ®y+rf ∗ is
expressible in our logic. We then add the following to θinitial:

∀®s ®y
∧

f ∗∈τ

(

®s = ®y + rf ∗ →
(

f (®s, ®0) = f ∗(®y) × д(®s, ®0)
)

)

(5)

Note that (2) and (5) imply that f (®s, ®0) ∈ (−1, 1); for, by
(2), | f (s, 0)| = 1 leads to д(s, 0) = 0 which contradicts (5).
The interpretations of relations in σ are treated analogously.
For all the remaining positions ®s > ®s0 we stipulate that 0 ≤
f (®s, ®0) ≤ д(®s, ®0), and for all positions ®s < ®s0 we stipulate
that f (®s, ®0) = 0. In the first case f (®s, ®0)/д(®s, ®0) is some value
guessed from the unit interval [0, 1] and in the second case
it is 0. We conclude that (3) holds by this construction.
Computation configurations. Then we define θcomp such that

(A, f ,д, ®h) |= θcomp

iff (f ,д, ®h) satisfies (a) and (b) at time ®t > ®0. (6)

We let

θcomp := ∀®s ®t
(

∨

1≤m<m′≤N

(

hm(®t) = 0 ∨ hm′(®t) = 0
)

∧

∨

1≤m≤N

(

hm(®t) = 1 ∧ θm
)

)

,

where each θm describes the instruction of nodem. Suppose
m is a computation node associated with a mapping дm that
is the identity on coordinates l , i and on coordinate i de-
fined as дm(x)i = x j +xk . Let us write f®s,®t and д®s,®t for f (®s, ®t)

and д(®s, ®t), and ®si , ®sj , ®sk for the tuples that correspond to the
ith, jth, and kth input coordinates. Clearly, these tuples are
definable. We define

θm :=hβ (m)(®t + 1) = 1 ∧ f®si ,®t+1 × д®sj ,®t × д®sk ,®t

= д®si ,®t+1 × (f®sj ,®t × д®sk ,®t + д®sj ,®t × f®sk ,®t )∧

®s , ®si → (f®s,®t+1 = f®s,®t ∧ д®s,®t+1 = д®s,®t ).

The other computation nodes are described analogously. For
a shift left nodem we define

θm :=hβ (m)(®t + 1) = 1∧

®s < ®max→ (f®s,®t+1 = f®s+1,®t ∧ д®s,®t+1 = д®s+1,®t ),

and the case for shift right node is analogous. For a separate
branch nodem we define

θm :=
(

(

hβ+(m)(®t + 1) = 1 ∧ f®s0,®t ≥ ϵ
+
)

∨

(

hβ−(m)(®t + 1) = 1 ∧ f®s0,®t ≤ ϵ
−)
)

∧

f®s,®t+1 = f®s,®t ∧ д®s,®t+1 = д®s,®t .

Our formulae now imply that (6) follows by the construc-
tion. In particular, keeping the values of f in (−1, 1) ensures
that the arithmetical operations are encoded correctly.
Finally, to express that the value of the characteristic func-

tion fM is 1 we may stipulate without loss of generality that
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coordinates−2,−1, 1 respectively contain 0, 1, 1;we also need
to state that the machine is in node N at the last step:

θaccept :=hN ( ®max) = 1 ∧ f®s0+1, ®max = д®s0+1, ®max

∧ f®s0−1, ®max = д®s0−1, ®max ∧ f®s0−2, ®max = 0.

We conclude that A |= ∃f д®hψ iff M accepts enc(A).
Le�-to-right direction. Let ϕ ∈ L-ESO[0,1][+,×, ≤,R] be

a sentence over some vocabulary σ ∪ τ . As in the previous
lemma, we may assume that ϕ is of the form

∃f1 . . . ∃fmQ1x1 . . .Qnxnψ ,

where ψ is quantifier-free. We may further may transform
ϕ to an equivalent form

∃f1 . . . ∃fm∃дil+1 . . . ∃дin∀xi1 . . . ∀xil ψ
′
, (7)

where дi j are Skolem functions on the finite domain andψ ′

is obtained from ψ by replacing each occurrence of xi j , l +
1 ≤ j ≤ n, with дi j (®x j ). Note that (7) is an intermediate
expression which is not anymore in L-ESO[0,1][+,×, ≤,R].
We may assume ψ ′ is in disjunctive normal form

∨

i ∈I Ci ,
where I is a finite set of indices.

Suppose the relational and function symbols in σ ∪ τ ∪
{ f1, . . . , fm} are of arity at most n′ ≥ n. First, a fixed ini-
tial segment of negative coordinates is allocated with the
following intention:

• one coordinate a for separate branching,
• three coordinates i, j,k for numerical identity atoms,

• two sequences of coordinates ®b = (b1, . . . ,bn) and ®c =
(c1, . . . , cn′) for elements of the finite domain.

We construct a machine M which runs in polynomial time
and accepts (x , x ′) iff

1. x = enc(A) where A is a model over σ ∪ τ , and

2. (x , x ′) is a concatenation of enc((A, ®f , ®д)) and indices

i ®a ∈ I such that (A, ®f , ®д, ®a) |= Ci ®a for each ®a ∈ Al .

We may suppose that ®f and (®д, (i ®a) ®a∈Al ) are respectively en-
coded as strings of reals and integers.
Let p ′ be a polynomial such that for each A over σ ∪τ we

have p ′(|A|) = enc(A). The machine first checks whether
there is a natural number d such that p ′(d) = |x |. For this, it
first sets xi ← 1 and xa ← x0 − p

′(xi ), where initially x0 =
|x |. If xa = 0, then x0 ← xi , and if xa ≥ 1, then xi ← xi + 1
and the process is repeated. Otherwise, if xa < {0} ∪ [1,∞),
the input is rejected. This type of branching can be imple-
mented repeating separate branching twice. Provided that
the input is not rejected, this process terminates with x0 = d
where p ′(d) = |x |. The machine then checks whether item 1
holds; given |A | this is straightforward. Checking that (x , x ′)

is a concatenation of enc((A, ®f , ®д)), for some functions ®f , ®д,
and some indices i ®a is analogous.
It remains to be checked that the last claim of item 2

holds. We go through all tuples ®a ∈ Al , calculate the val-
ues of the Skolem functions, and check that the disjunct

Ci ®a holds for the calculated value of the variables. For each

®a = (a1, . . . ,al ) ∈ {0, . . . ,d − 1}l , placed on the coordinates
b1, . . . ,bl , the machine uses x0 and ®c for retrieving and plac-
ing дil+1 (®al+1), . . . ,дin (®an) on the coordinates bl+1, . . . ,bn .
The machine then retrieves the index i ®a and checkswhether

Ci ®a holds true with respect to the values on coordinates ®b.
Once this process is completed for all value combinations
(a1, . . . ,al ) ∈ {0, . . . ,d − 1}l the computation halts with ac-
cept.
The contents of the input are accessed using shifts which

fix the contents of the allocated coordinates. That is, we use
operations σX

l
, where X is a finite set of coordinates, such

that σX
l
(x)i = xi if i ∈ X , and otherwise σX

l
(x)i = x j where

j = min{k ∈ N | k > i,k < X }. For instance,σ {0}
l

is obtained
by first swapping x0 and x1 and then shifting left.
Also, if Ci ®a contains a numerical atom f (®t0) ≤ д(®t1) ×

h(®t2), then the values of its constituent function terms with

respect to ®b are placed on coordinates i, j,k . The machine
then sets xa ← xi − x j × xk , and if xa ≤ 0, then it continues
to the next atom in Ci ®a , and else it rejects. If Ci ®a contains
a relational atom R(®x0), then the value of its characteristic

function with respect to ®b is placed on coordinate a. If xa =
1, then the machine moves to the next atom inCi ®a , and else
it rejects. Negated relational atoms are treated analogously,
and the stated branching is straightforward to implement
with separate branch nodes.

It follows from our construction that M runs in polyno-
mial time and accepts (x , x ′) iff items 1 and 2 hold. Hence,
we conclude that L-ESO[0,1][+,×, ≤, (r )r ∈R] ≤ S-NP

[0,1]. �

Suppose we above consider (i) guesses from R instead of
[0, 1], or (ii) BSS instead of S-BSS machines. Then slightly
modified proofs yield (i) L-ESOR[+,×, ≤, (r )r ∈R] ≡ S-NP

R
,

and (ii) ESO[0,1][+,×, ≤, (r )r ∈R] ≡ NP[0,1]. Furthermore, log-
ical constants r ∈ R \ {0, 1} are only needed to capture
c in constant assignment and ϵ+, ϵ− in separate branching,
and for the converse direction only thosemachine constants
r ∈ R\{0, 1}which explicitly occur in the logical expression
are needed. Thus we obtain the following corollary.

Corollary 3.4.

1. L-ESOR[+,×, ≤, (r )r ∈R] ≡ S-NP
R
,

2. L-ESOR[+,×, ≤, 0, 1] ≡ S-NP0
R
,

3. L-ESO[0,1][+,×, ≤, 0, 1] ≡ S-NP0
[0,1]

,

4. ESO[0,1][+,×, ≤, (r )r ∈R] ≡ NP[0,1],

5. ESO[0,1][+,×, ≤, 0, 1] ≡ NP0
[0,1]

.

In the following two sections we investigate how S-BSS
computability relates to BSS computability, and in particular
how S-NP

[0,1] relates to NPR. On the one hand it turns out

that S-NP
[0,1] is strictly weaker thanNPR. On the other hand

both obvious strengthenings of S-NP
[0,1], namely S-NP

R
and

NP[0,1], collapse to NPR.
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4 Characterisation of S-BSS decidable
languages

We give a characterisation of languages decidable by S-BSS
machines using the ideas from the previous section. The
goal of this section is to establish the following theorem:

Theorem 4.1. Every language that can be decided by a) a

deterministic S-BSS machine, or b) a [0, 1]-nondeterministic

S-BSS machine in time t , for some function t : N → N, is a
countable disjoint union of closed sets in the usual topology of

R
n .

The result complements an analogous characterisation of
BSS-decidable languages thus giving insight on the differ-
ence of the computational powers of BSS machines and S-
BSS machines.

Theorem4.2 ([3, Theorem 1]). Every language decidable by
a (deterministic) BSS machine is a countable disjoint union of

semi-algebraic sets.

These characterisations are based on the fact that the com-
putation of BSS and S-BSS machines can be encoded by for-
mulae of first-order real arithmetic.

Existential theory of the real arithmetic. Formulae of
the existential real arithmetic are given by the grammar

ϕ ::= i ≤ i | i < i | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ, (8)

where i stands for numerical terms given by the grammar

i ::= 0 | 1 | x | i × i | i + i,

where x is a first-order variable. The semantics is defined
over a fixed structure (R,+,×, ≤, 0, 1) of real arithmetic in
the usual way. Relations definable by such formulae with
additional real constants are called semi-algebraic.
Let M be an S-BSS machine and n, t ∈ N positive natu-

ral numbers. We denote by Lnt (M) (L
n
≤t (M), resp.) the set of

strings s ∈ Rn accepted byM in time exactly (at most, resp.)
t , and define Ln(M) := L(M) ∩ Rn . The following restricted
fragment of ∃FO is enough to encode S-BSS computations.

Existential theory of the loose [0, 1]-guarded real arith-
metic. Formulae of the existential loose [0, 1]-guarded real

arithmetic are defined as in (8), but without i < i and replac-
ing ∃xϕ with ∃x(0 ≤ x ≤ 1 ∧ ϕ).

Lemma 4.3. Given a deterministic or [0, 1]-nondeterminis-

tic S-BSS machine M and positive n, t ∈ N it is possible to

construct, in polynomial time, formulas ϕ andψ of loose [0, 1]-
guarded real arithmetic, with free variables x1, . . . , xn , that

may use real constants used inM such that

{
(

s(x1), . . . , s(xn)
)

| (R,+,×, ≤, (r )r ∈R) |=s ϕ} = L
n
t (M),

{
(

s(x1), . . . , s(xn)
)

| (R,+,×, ≤, (r )r ∈R) |=s ψ } = L
n
≤t (M).

Proof. For a given input of length n, the computation of M
consists of t many configurations ®c1, . . . ®ct of M , where ®c1

and ®ct are the initial configuration and a terminal configu-
ration, respectively, and, for 1 ≤ m < t , ®cm+1 is a succes-
sor configuration of ®cm . Each configuration is a string of
real numbers of length O(t). We can use a similar technique
as in the right-to-left direction of Theorem 3.3 and encode
the contents of registers by pairs of real numbers from the
unit interval [0, 1]. In order to encode the computation, it
suffices to encode the values of O(t2) registers; thus O(t2)
variables suffice. We then construct a formula of existential
loose [0, 1]-guarded real arithmetic of size O(t2) that first ex-
istentially quantifies O(t2)-many variables in order to guess
the whole computation of M on the given input and then
expresses, using perhaps at most polynomially many extra
variables, that the computation is correct and accepting. We
omit further details, for the encoding is done in a similar
manner as in the right-to-left direction of Theorem 3.3. �

Given a deterministic S-BSS machine M , it is easy to see
that the sets Lnt (M), for n, t ∈ N, are disjoint. However, the
same does not need to hold for nondeterministic machines,
for the time it takes to accept an input string x might depend
on the guessed value for the string x ′ (and there may bemul-
tiple accepting runs with different values for x ′). This prob-
lem can be evaded for languages L that can be decided by a
[0, 1]-nondeterministic S-BSSmachineN in time f , for some
function f : N → N. In this case Ln(N ) = Ln

≤f (n)
(N ), for

each n ∈ N. Now since L(M) =
⋃

n,t ∈N L
n
t (M) and L(N ) =

⋃

n∈N L
n(N ) where the unions are disjoint, we obtain the

following characterisation.

Theorem 4.4. Every language decidable by a) a determin-

istic S-BSS machine or b) a [0, 1]-nondeterministic S-BSS ma-

chine in time t , for some t : N → N, is a countable disjoint

union of relations defined by existential loose [0, 1]-guarded
real arithmetic formulae that may use real constants from

some finite set.

The rest of this section is dedicated on proving the fol-
lowing theorem, which together with Theorem 4.4 implies
Theorem 4.1.

Theorem4.5. Every relation defined by some existential loose

[0, 1]-guarded real arithmetic formula ϕ(x1, ..., xn) with real

constants is closed in Rn .

Point-set topology. The proof of the theorem relies on
some rudimentary notions and knowledge from point-set
topology summarised in the following two lemmas (for ba-
sics of point-set topology see, e.g., the monograph [28]). In
order to simplify the notation, for a topological space X , we
use X to denote also the underlying set of the space. Like-
wise, in this section, we let [0, 1] denote the topological
space that has domain [0, 1] and the metric of Euclidean
distance.



LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

Lemma 4.6. Let X and Y be topological spaces, f : X → Y a

continuous function, A and B closed sets in X , and C a closed

set in Y . Then

• X , A ∩ B, A ∪ B, and f −1[C] are closed in X ,

• the product A ×C is closed in the product space X × Y ,
• if Y ⊇ A is a subspace of X then A is closed in Y .

Lemma 4.7. Let X be a topological space, Y a compact topo-

logical space, A a closed set in the product space X ×Y , and f
the projection function X × Y → X . Then the image f [A] of

A is closed in X .

Proof of Theorem 4.5. We prove the following claim by in-
duction on the structure of the formulae: Let ®x be a k-tuple
of distinct variables andϕ(®x) an existential loose [0, 1]-guarded
real arithmetic formula with real constants, and its free vari-
ables in ®x . The relation defined by ϕ(®x) is closed in Rk .

• Assumeϕ = t1 ≤ t2. Recall that t1(®x) and t2(®x) aremul-
tivariate polynomials. Define д(®x) as the multivariate
polynomial t1(®x) − t2(®x) and consider the preimage
д−1[(−∞, 0]]. Since (−∞, 0] is closed inR andд : Rk →
R is a continuous function, it follows that д−1[(∞, 0]]
is closed. Clearly д−1[(−∞, 0]] is the relation defined
by ϕ(®x).
• The cases of disjunctions and conjunctions are clear,
for the union and intersection of closed sets is closed.
• Assume ϕ = ∃y(0 ≤ y ≤ 1∧ψ (®x ,y)). Let Rψ be the re-
lation defined byψ (®x ,y), which by induction hypoth-
esis is closed in Rk+1. Define R′

ψ
:= Rψ ∩ (Rk × [0, 1]).

Since [0, 1] is closed in R, it follows from Lemma 4.6
that R′

ψ
is closed both in Rk+1 and Rk × [0, 1]. Let R∗

ψ

be the projection of R′
ψ
to its k first columns. Since R′

ψ

is closed in Rk × [0, 1], and [0, 1] is a compact topolog-
ical space, it follows from Lemma 4.7 that R∗

ψ
is closed

in Rk . Clearly R∗
ψ
is the relation defined byψ (®x). �

5 Hierarchy of the complexity classes

The main result of this section is the separation of the com-
plexity classes S-NP

[0,1] and NPR. We have already done

most of the work required for the separation as the result
follows directly from the topological argument of Section
4.5 that more generally separates S-BSS computations from
BSS computations. The characterisations of Section 3 then
yield the separation of the related logics onR-structures.We
also give logical proofs implying that the obvious strength-
enings of S-NP

[0,1] coincide with NPR. Finally we study the

restriction of S-NP0
[0,1]

on Boolean inputs and establish that

it coincides with a natural fragment of ∃R.

5.1 Separation of S-NP
[0,1] and NPR

We can now use Theorem 4.5 to prove the following:

Theorem 5.1. The following separations hold:

1. S-NP0
[0,1]
< NP0

R
and S-NP

[0,1] < NPR,

2. L-ESO[0,1][+,×, ≤, 0, 1] < ESOR[+,×, ≤, 0, 1],
3. L-ESO[0,1][+,×, ≤, (rr ∈R)] < ESOR[+,×, ≤, (r )r∈R].

Proof. We prove 1. by showing that there are languages in
NP0
R
that are not in S-NP

[0,1]. The claims 2. and 3. then fol-

low from the logical characterisations of Corollary 3.4.
Let L be a language in S-NP

[0,1]
andM an S-NP

[0,1]
S-BSS

machine such that L(M) = L. Let p be a polynomial func-
tion that bounds the running time of M . Fix n ∈ N. Now
Ln = Ln

≤p(n)
. By Lemma 4.3 Ln

≤p(n)
, and hence Ln , is defin-

able by an existential loose [0, 1]-guarded real arithmetic for-
mula ϕ(x1, ..., xn) that uses real constants fromM . By Theo-
rem 4.5 Ln is a closed set in the product space Rn , which is
not true for all languages in NP0

R
; for instance, a language P

consisting of all finite strings of positive reals can be decided
in NP0

R
(using branching), but Pn is not closed in Rn . �

5.2 Robustness of NPR

We have just seen that S-NP
[0,1]

is a complexity class strictly

belowNPR.We now give purely logical proofs implying that
the obvious strengthenings of S-NP

[0,1] collapse toNPR. The

proofs are based on the logical characterisations established
in Corollary 3.4.
The first obvious question is: Are S-NP

R
and S-NP0

R
strictly

below NPR and NP0R? In logical terms this boils down to the
expressivity of the logic L-ESOR[+,×, ≤, (r )r ∈R]. We answer
to this question in the negative.

Proposition5.2. L-ESOR[+,×, ≤, 0, 1] ≡ ESOR[+,×, ≤] and
L-ESOR[+,×, ≤, (r )r ∈R] ≡ ESOR[+,×, ≤, (r )r ∈R].

Proof. The left-to-right direction is immediate as the con-
stants 0 and 1 are definable in ESOR[+,×, ≤]. For the con-
verse direction, note that the numerical atom¬i ≤ j is equiv-
alent to the statement j < i . We show that < is definable in
L-ESOR[+,×, ≤, 0, 1]. First note that every strictly positive
real number r ∈ R can be expressed by a ratio of two real
numbers n,m ∈ R such that n,m ≥ 1. Moreover note that,
for every such n andm, the ratio n/m > 0. It is easy to see
that the following L-ESOR[+,×, ≤, 0, 1]-formula

∃r∃n∃m(1 ≤ n ∧ 1 ≤ m ∧ n = r ×m ∧ i + r = j),

where r ,n, andm are 0-ary function variables, expresses that
i < j . �

Theorem 2.4, Proposition 5.2, Corollary 3.4 together then
yield the following:

Corollary 5.3. S-NP
R
= NPR and S-NP0R = NP0

R
.

The second natural question is: Are NP[0,1] and NP0
[0,1]

strictly below NPR and NP0
R
? Again, the answer is no. The

proof of the following proposition follows directly from the
observation that arbitrary real numbers can be encoded as
ratios x/(1−x), where x ∈ [0, 1], using an additional marker
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for sign. It is crucial to note that with negated numerical
atoms one can express that the denominators of such encod-
ings are positive; in the loose fragment this is not possible.
The encodings needed can be clearly expressed in ESO[0,1][+,×, ≤].
We omit the proof.

Proposition5.4. ESO[0,1][+,×, ≤, 0, 1] ≡ ESOR[+,×, ≤, 0, 1]
and ESO[0,1][+,×, ≤, (r )r ∈R] ≡ ESOR[+,×, ≤, (r )r ∈R].

Hence Corollary 3.4 yields the following:

Corollary 5.5. NP[0,1] = NPR and NP
0
[0,1]
= NP0

R
.

Finally we consider a weakening of L-ESOR[+,×, ≤, 0, 1]
by removing the constant 1 from the language. It turns out
that this small weakening has profound implications to the
expressivity of the logic when restricted to function-free vo-
cabularies.

Proposition 5.6. Let 0 ∈ S ⊆ R. Then L-ESOS [+,×, ≤] ≡

FO with respect to R-structures on function-free vocabularies.

Proof. The direction FO ≤ L-ESOS [+,×, ≤] is self-evident.
We give a proof for the converse. Let A be an R-structure of
a function-free vocabulary τ , ϕ ∈ L-ESOS [+,×, ≤][τ ] a for-
mula, and s an assignment for the first-order variables. Note
thatϕ can be regarded also as a formula of L-ESO{0}[+,×, ≤];
we write ϕ0 to denote this interpretation. Let ϕ⊤ denote the
FO-formula obtained fromϕ by removing the function quan-
tifications in ϕ and replacing every numerical atom i ≤ j

in ϕ with the formula ∃x x = x . Now note that there is a
homomorphism from the first-order structure (S,+,×, ≤) to
({0},+,×, ≤), and consequently, A |=s φ ⇔ A |=s φ0. Here
we note that φ0 implies φ since the second structure is a
substructure of the first, and truth of existential formulae is
preserved to extensions. Conversely, φ implies φ0 because
atoms i ≤ j appear only positively, and the truth of formu-
laewith only positive literals are preserved to homomorphic
images. Since in the evaluation of ϕ0 every numerical term
is evaluated to 0 it follows that A |=s ϕ0 ⇔ A |=s ϕ⊤. �

5.3 Separate branching on Boolean inputs and the

existential theory of the reals

It is known that on Boolean inputs NP0
R
coincides with the

complexity class ∃R (i.e., the class of problems polynomially
reducible to the existential theory of the reals) [5, 26]. In this
section we show an analogous result for S-NP0

[0,1]
.

Definition5.7. Define ∃[0, 1]≤ to be the set of all languages
L ⊆ {0, 1}∗ for which there is a polynomial-time reduc-
tion f from {0, 1}∗ into sentences of existential loose [0, 1]-
guarded real arithmetic such thatx ∈ L iff (R,+,×, ≤, 0, 1) |=
f (x).

We show the following theorem:

Theorem 5.8. ∃[0, 1]≤ = BP(S-NP0
[0,1]
).

Proof. Note that the right-to-le� direction of this theorem
follows immediately fromLemma4.3 by noting that the only
real constants used by S-NP0

[0,1]
S-BSSmachinesM are 0 and

1, and that the Boolean inputs toM can be defined in∃[0, 1]≤

by using the constants 0 and 1.
Le�-to-right.There exists a deterministic polynomial time

Turing machineM that given an input string computes the
corresponding sentence ϕ of existential loose [0, 1]-guarded
real arithmetic. Letp be the polynomial that bounds the run-
ning time of M . Without loss of generality we may assume
that, for any given input i of lengthn, the formula computed
by M from input i uses only variables x1, . . . , xp(n). Let M

∗

be a nondeterministic S-BSS machine that, for a given input
i of length n, first guesses p(n)many real numbers from the
unit interval [0, 1] (these will correspond to the values of the
variables x1, . . . , xp(n)). ThenM

∗ simulates the run of the de-
terministic polynomial time Turing machine M on input i .
Let ϕ be the formula computed this way. Finally we can use
M∗ to check the matrix of ϕ using the values guessed for the
variables x1, . . . , xp(n). We omit further details, for the eval-
uation of the matrix can done essentially in the same way
as in the left-to-right direction of Theorem 3.3. �

6 Probabilistic team semantics

The purpose of this section is to characterise the descriptive
complexity of probabilistic independence logic [10]. The for-
mulae of this logic, and other logics that make use of depen-
dency concepts involving quantities, are interpreted in prob-
abilistic team semantics which generalises team semantics
by adding weights on variable assignments. A finite model
together with a probabilistic team can then be seen as a par-
ticular metafinite structure, and thus a natural approach to
computational complexity comes from BSS machines.
Let D be a finite set of first-order variables, A a finite set,

and X a finite set of assignments (i.e., a team) from D to A.
A probabilistic team X is then defined as a function

X : X → [0, 1]

such that
∑

s ∈X X(s) = 1. Also the empty function is con-
sidered a probabilistic team. We call D and A the variable
domain and value domain of X, respectively.
Probabilistic independence logic (FO(⊥⊥c)) is defined as the

extension of first-order logicwith probabilistic independence
atoms ®y⊥⊥®x ®z whose semantics is the standard semantics of
conditional independence in probability distributions. An-
other probabilistic logic, FO(≈), is obtained by extending
first-order logic with marginal identity atoms ®x ≈ ®y which
state that the marginal distributions on ®x and ®y are iden-
tically distributed. The semantics for complex formulae are
defined compositionally by generalising the team semantics
of dependence logic to probabilistic teams. For details, not
necessary in this paper, we refer the reader to [10]. In princi-
ple, the point is that formulae of probabilistic independence



LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

logic define properties of (A,X) where A is a finite model
and X a probabilistic team with value domain Dom(A).

Example 6.1. Suppose we flip a coin. If we get heads, we
roll two dice x and y. If we get tails, we roll only x and
copy the same value for y. Repeating this procedure infin-
itely many times yields at the limit a probabilistic team (i.e.,
a joint probability distribution) over variables x and y satis-
fying

(x ⊥⊥ y ∨ x = y) ∧ ∀z x ≈ z.

By definition ϕ ∨ψ is true for a probabilistic team X if X is
a mixture of two teams with respective properties ϕ and ψ
(here independence and (row-wise) identity between x and
y). By definition ∀zϕ is true for a probabilistic team X if
the extension of X with a uniform distribution for z has the
propertyϕ (here identity between marginal distributions on
x and z).

Wewill now show that the descriptive complexity of prob-
abilistic independence logic is exactly S-NP0

[0,1]
. For this we

need some background definitions and results.

Expressivity comparisons wrt. probabilistic team se-

mantics. Fix a relational vocabulary τ . For a probabilistic
teamXwith variable domain {x1, . . . , xn} and value domain
A, the function fX : An → [0, 1] is defined as the probabil-
ity distribution such that fX(s(®x)) = X(s) for all s ∈ X . For a
formulaϕ ∈ FO(⊥⊥c) of vocabulary τ and with free variables
{x1, . . . , xn}, the class Struc(ϕ) is defined as the class of R-
structures A over τ ∪ { f } such that (A ↾ τ ) |=X ϕ, where
fX = f A and A ↾ τ is the finite τ -structure underlying A.
Let L be any of the logics defined in Section 2. We write

FO(⊥⊥c) ≤ L if for every formulaϕ ∈ FO(⊥⊥c) of vocabulary
τ there is a sentenceψ ∈ L of vocabulary τ ∪ { f } such that
Struc(ϕ) = Strucd [0,1](ψ ). Vice versa, we write L ≤ FO(⊥⊥c)
if for every sentence ψ ∈ L of vocabulary τ ∪ { f } there is
a formula ϕ ∈ FO(⊥⊥c) of vocabulary τ such that Struc(ϕ) =
Strucd [0,1](ψ ).

Complexity characterisations wrt. probabilistic team

semantics. Let FO(⊥⊥c) be a logic with vocabularyτ andC a
complexity class. Let S be an arbitrary class of R-structures
over τ ∪ { f } that is closed under isomorphisms and where
the interpretations of f are distributions. We write enc(S)
for the set of encodings of structures in S. Consider the fol-
lowing two conditions:

(i) enc(S) = {enc(A) | A ∈ Struc(ϕ)} for some ϕ ∈
FO(⊥⊥c)}.

(ii) enc(S) ∈ C.

If (i) implies (ii), we write FO(⊥⊥c) ≤ C, and if the vice versa
holds, we write C ≤ FO(⊥⊥c).
It is already known that probabilistic independence logic

captures a variant of loose existential second-order logic
in which function quantification ranges over distributions.
This result was shown in two stages. First, it was proven

in [10] that the logic FO(⊥⊥c,≈) is expressively equivalent
to L-ESOd [0,1][SUM,×,=].

2 Later, it was proven in [16] that
marginal identity can be expressed using independence, that
is, FO(⊥⊥c,≈) is expressively equivalent to FO(⊥⊥c).3

Theorem 6.2 ([10, 16]). FO(⊥⊥c) ≡ L-ESOd [0,1][SUM,×,=].

We will now improve this result by removing the con-
dition that restricts function quantification to distributions.
For this we utilize a normal form lemma from [10]. Observe
that we restrict attention to d[0, 1]-structures, that is, all
function symbols from the underlying vocabulary are inter-
preted as distributions.

Lemma6.3 ([10]). For every L-ESOd [0,1][SUM,×,=]-formula

ϕ there is an L-ESOd [0,1][SUM,×,=]-formula ϕ∗ such that

Strucd [0,1]ϕ = Strucd [0,1]ϕ∗, where ϕ∗ is of the form ∃ ®f ∀®xθ ,

where θ is quantifier-free and such that its second sort iden-

tity atoms are of the form fi (®u, ®v) = fj (®u) × fk ( ®v) or fi (®u) =

SUM ®v fj (®u, ®v) for distinct fi , fj , fk such that at most one of

them is not quantified.

Lemma 6.4. L-ESOd [0,1][SUM,×,=]
≡d [0,1] L-ESOd [0,1][+,×,=] ≡d [0,1] L-ESO[0,1][+,×,=, 0, 1].

Proof. We prove the claim in three steps, without relying
on multiplication at any step. By Proposition 3.1 we may
assume that the finite domain is enriched with a successor
function S for tuples, its transitive derivatives <, ≤, and its

minimal andmaximal tuples ®min and ®max (of an appropriate
arity), obtained by the lexicographic ordering induced from
some linear ordering ≤fin. Additionally, we may assume a
constant c on the finite domain.
Step 1: L-ESOd [0,1][SUM,×,=] ≤d [0,1] L-ESOd [0,1][+,×,=].
We may assume that any L-ESOd [0,1][SUM,×,=] formula is
of the form stated in Lemma 6.3. Thus it suffices to express
in L-ESOd [0,1][+,×,=] each numerical identity of the form
f (®u) = SUM®x f

′(®u, ®x). First, we quantify a 2m-ary distribu-
tion variable д upon which we impose:

∀®x ®y
[

д(®x, ®min) + д(®x, ®min) = f ′(®u, ®x)∧ (9)
(

®y < ®max→

д(S(®y), S(®y)) + д(S(®y), S(®y)) = д(S(®y), ®y) + д(®y, ®y)
)

∧
(

S(®y) < ®x →

д(®x, S(®y)) + д(®x , S(®y)) = д(®x, ®y)
) ]

.

The point is to calculate partial sums SUM ®x ≤y f
′(®u, ®x) and

store sufficiently small fractions of them in д(®y, ®y). Suppose

2In [10] equi-expressivity with ESOd [0,1][SUM, ×, =] is erroneously
stated; the results in the paper actually entail equi-expressivity with
L-ESOd [0,1][SUM, ×, =].
3In fact, FO(⊥⊥c) is expressively equivalent to FO(⊥⊥)which is the extension
of first-order logic withmarginal independence atoms ®x ⊥⊥ ®y , the semantics
of which is the standard semantics of marginal independence in probability
distributions [16].
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®y is the nth tuple. Then

д(®y, ®y) =
1

2n
(f ′(®u, ®min) + . . . + f ′(®u, ®y)),

and for ®x > ®y,

д(®x, ®y) =
1

2n
f ′(®u, ®x).

Consequently, the sum of all д(®x , ®y) where ®x ≥ ®y is at most
1. By allocating the remaining weights to (®x, ®y) such that
®x < ®y, it follows that д is a distribution.
Furthermore, we quantify a 2m-ary distribution variable

h satisfying:

∀®x[h( ®min) + h( ®min) = f (®u)∧

®x < ®max→ h(S(®x)) + h(S(®x)) = h(®x)].

It follows that h(®y) = 1
2n f (®u). Consequently, д( ®max, ®max) =

h( ®max) if and only if f (®u) = SUM ®x f
′(®u, ®x). Note thath is not

a distribution since the weights do not add up to 1. However,
we may increment the arity of h by one and replace h(®x)
above with h(®x , c). Then h is a distribution if the remaining
weights are pushed to h(®x,y), where y , c . This concludes
the proof of Step 1.
Step 2: We show a stronger claim: L-ESOd [0,1][+,×,=] ≤
L-ESO[0,1][+,×,=, 0, 1]. For this, it suffices to show how to
express in L-ESO[0,1][+,=, 0, 1] that a function f is a distri-
bution. The following formula expresses just that:

∃д
(

д( ®min) = f ( ®min)∧

∀®x(®x < ®max→ д(S(®x)) = д(®x) + f (S(®x))) ∧ д( ®max) = 1
)

.

Step 3:We show a stronger claim: L-ESO[0,1][+,×,=, 0, 1]
≤[0,1] L-ESOd [0,1][SUM,×,=]. Suppose ϕ is some formula in
L-ESO[0,1][+,×,=, 0, 1]. Let k be the maximal arity of any
function variable/symbol appearing in ϕ, and suppose n is
the size of the finite domain; the total sum of the weights of
a function is thus at most nk . We now show how to obtain
from ϕ an equivalent formula in L-ESOd [0,1][SUM,×,=]; the

idea is to scale all function weights by 1/nk . We have two
cases:
Function variables. If f is anm-ary quantified function vari-
able, we replace it with an (m+1)-ary quantified distribution
variable df satisfying

∀®x∃d ′∀®y d ′(®y, c) = df (®x, c),

whered ′ is a (k+1)-ary distribution variable. Nownkdf (®x, c) ≤

1 because d ′ is a distribution, and thus df (®x, c) ≤
1
nk
.

Function symbols. Suppose f (®x) is a function term which ap-
pears as a term or subterm in ϕ, and f is a function symbol
from the underlying vocabulary. We quantify a (k + 1)-ary
distribution variable df ( ®x ) satisfying

∀®x(SUM®ydf ( ®x )(®y, c) = f (®x) ∧ ∀®y®zdf ( ®x )(®y, c) = df ( ®x )(®z, c)).

It follows that df ( ®x )(®x, c) =
1
nk
f (®x). Since f (®x) ≤ 1, we may

define df ( ®x ) as a distribution.

Observe now that each numerical atom appearing in ϕ

is an identity between two multivariate polynomials over
function terms.Without loss of generality all the constituent
monomials in these atoms are of a fixed degree D and have
coefficient one; note that each monomial with degree less
than D can be appended in L-ESO[0,1][+,×,=, 0, 1] with a
quantified nullary function n taking value 1. We now re-
place in each numerical atom i = j function terms f (®x)with
df (®x, c) or df ( ®x )(®x, c), depending on whether f is a function
variable or a function symbol. Thus we represent i = j in
L-ESOd [0,1][SUM,×,=] as

i
nDk
=

j

nDk
, wherefore not only

its truth value, but also that of ϕ, is preserved in the trans-
formation. �

By combining Corollary 3.4.3, Theorem 6.2, and Lemma
6.4, we finally obtain the following result.

Theorem 6.5. FO(⊥⊥c) ≡ S-NP0
[0,1].

7 Concluding remarks

Applications of logic in AI and advanced data management
require probabilistic interpretations, a role that is well ful-
filled by probabilistic team semantics. On the other hand, in
the theory of computation and automated reasoning, com-
putation and logics over the reals are well established with
solid foundations. In this paper we have provided bridges
between the two worlds. We introduced a novel variant of
BSSmachines and provided a logical and topological charac-
terisation of its computational power. In addition, we deter-
mined the expressivity of probabilistic independence logic
with respect to the BSS model of computation.

There are many interesting directions of future research.
One is to consider the additive fragment of BSS computa-
tion. Restricted to Boolean inputs it is known that, if unre-
stricted use of machine constants is allowed, the additive
NPR branching on equality collapses to NP and branching
on inequality capturesNP/poly [21].What canwe say about
the additive fragment of S-BSS computation? Another di-
rection is to devise logics that characterise other important
complexity classes over S-BSS machines. Grädel and Meer
[15] established a characterisation of polynomial time on
rankedR-structures using a variant of least fixed point logic.
In the setting of team semantics and classical computation,
Galliani and Hella [12] showed that the so-called inclusion

logic characterises polynomial time on ordered structures.
Canwe extend the applicability of these results to the realms
of S-BSS computation and probabilistic team semantics? Fi-
nally, we would like to devise natural complete problems for
the complexity classes defined by S-BSS machines. In par-
ticular, we would like to obtain a natural complete problem
for ∃[0, 1]≤; a weakening of the art gallery problem is one
promising candidate. We conclude with a few open prob-
lems:
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• Is ∃[0, 1]≤ strictly included in ∃R? A positive answer
would be a major breakthrough, as it would separate
NP from PSPACE.
• We know that NP ≤ ∃[0, 1]≤ ≤ ∃R ≤ PSPACE. Can
we establish a better upper bound for ∃[0, 1]≤? In par-
ticular, is ∃[0, 1]≤ contained in the polynomial hierar-
chy?
• We established that S-BSS computable languages are
included in the class of BSS computable languages that
are countable disjoint unions of closed sets. Does the
converse hold?
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