
An Experimental Evaluation of Probabilistic

Simulation ⋆

Jonathan Bogdoll, Holger Hermanns and Lijun Zhang

Department of Computer Science, Saarland University, Saarbrücken, Germany
{bogdoll,hermanns,zhang}@cs.uni-sb.de

Abstract. Probabilistic model checking has emerged as a versatile sys-
tem verification approach, but is frequently facing state-space explosion
problems. One promising attack to this is to construct an abstract model
which simulates the original model, and to perform model checking on
that abstract model. Recently, efficient algorithms for deciding simula-
tion of probabilistic models have been proposed. They reduce the theo-
retical complexity bounds drastically by exploiting parametric maximum
flow algorithms. In this paper, we report on experimental comparisons
of these algorithms, together with various interesting optimizations. The
evaluation is carried out on both standard PRISM example cases as well
as randomly generated models. The results show interesting time-space
tradeoffs, with the parametric maximum flow algorithms being superior
for large, dense models.

1 Introduction

System performance and dependability becomes more and more important with
the ubiquity of computing systems. Discrete-time and continuous-time Markov
chains (DTMCs and CTMCs) [18] are widely used to model and analyze perfor-
mance and dependability of such systems. A related model, which in addition
supports nondeterminism, is the model of probabilistic automata (PAs) [17].
For all these three models, tool support is available, in the form of probabilistic
model checkers such as Prism [12] or Mrmc [15]. They enable the automatic
verification of performance and dependability models for specifications expressed
by PCTL [11, 6] or CSL [1, 3] formulas. PCTL is a discrete probabilistic variant
of the temporal logic CTL interpreted over DTMCs and PAs, and CSL is its
continuous stochastic extension, tailored to CTMCs.

Despite the remarkable versatility of this approach, its power is limited by the
infamous state space explosion problem. Several approaches are being pursued
to alleviate that problem. Notably, minimizing the system to the bisimulation
quotient is a favorable approach [14]. As a more aggressive attack to the prob-
lem, simulation relations [13, 4, 5] have been proposed for these models, which,
in correspondence to the non-probabilistic setting, preserve relevant fragments

⋆ This work is supported by the NWO-DFG bilateral project VOSS and by the DFG
as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS.

of the logics PCTL and CSL, respectively. In particular, they provide the prin-
cipal ingredients to perform abstractions of the models, while preserving safe
fragments of the respective logics [5, 17].

The kernel of simulation, simulation equivalence, preserves both safe and live
fragments of PCTL. Since simulation equivalence is coarser than bisimulation,
the induced quotient is thus smaller. This means that as long as one is interested
in safety or liveness properties, it is favorable to perform model checking on
the simulation equivalence quotient. To strive for the quotient, an algorithm
for deciding simulation preorder is needed. Since the bisimulation algorithm
is generally faster than the simulation algorithm, one can combine them by
constructing the simulation quotient based on the bisimulation quotient.

In many applications the specification can not be easily expressed by the logic
PCTL or CSL: it is rather a probabilistic model itself. Examples of this kind
include various recent wireless network protocols, such as ZigBee [10], Firewire
Zeroconf [7], or the novel IEEE 802.11e, where the central mechanism is selecting
among different-sided dies, readily expressible as a probabilistic automaton [16].
For such cases, a decision algorithm for simulation preorder can be applied as
a specification checker: The model satisfies the specification if the automaton
for the specification simulates the automaton for the model. We believe that
such specification checking is the only formal validation technique that is in
reach for verifying implementations of the above protocols. Given the emergence
of ever more wireless standards of that sort, there is an obvious motivation to
study the principal technological basis: the decision algorithm for probabilistic
simulation. This paper attacks the very problem of efficient decision algorithms
for probabilistic simulation.

Let n denote the number of states, and m denote the number of transitions.
Baier et al. [2] introduced a polynomial decision algorithm for simulation with
time complexity O(n7/ logn) and space complexity O(n2), by tailoring a net-
work flow algorithm to the problem, embedded into an iterative refinement loop.
This complexity can be improved to time complexity O(m2n) by exploiting the
parametric maximum flow algorithm [8] to solve the maximum flows for the aris-
ing sequences of similar networks [21]. This improvement however comes with
a penalty in space complexity O(m2), since one has to store networks across
iterations. Lately, the algorithm developed in [21] has been extended to handle
probabilistic automata and their continuous-time extension [20].

The purpose of this paper is to complement the theoretical complexity results
with practical evidence concerning which algorithmic approach has the most po-
tential in practical applications. We provide, for the first time, systematic exper-
imental results of the space and time requirements of the available algorithms,
also comparing several optimizations and heuristics to accelerate the algorithm.
As a base algorithm we use an implementation of decision algorithm [2] without
any optimizations. The parametric maximum flow variation is treated as one par-
ticular optimization. We also consider the effect of the following optimizations
which can be applied selectively:

– Partitioning: By grouping states with identical probabilistic structure into
equivalence classes, computations can be performed on representative ele-
ments for each class.

– Invariant checking: Some pairs can be removed from the simulation by as-
serting an invariant on the arc capacities in the corresponding maximum flow
network, which is computationally less complex than the maximum flow al-
gorithm. This invariant is referred to as the P-Invariant in the remainder of
this paper.

– Significant arcs: As the algorithm progresses, arcs will be deleted from max-
imum flow networks as a result of pairs being removed from the simulation
relation. If deleting such an arc will cause the network’s flow to be less than
1, it is called significant. By deciding which arcs are significant in advance,
some networks will be discarded as part of the update process and do not
have to be considered in the following iteration.

We apply our approach to a variety of case studies taken from the Prism web-
page http://www.prismmodelchecker.org. In order to avoid a bias in the selec-
tion of models, we also evaluate the algorithms on randomly generated Markov
models. This is inspired by [19] where the authors experimentally evaluated al-
gorithms for classical automata constructions on random generated automata.
Our experimental approach follows the same strategy. On randomly generated
Markov chains, we have two interesting parameters to adjust in our studies: the
density of transitions and the density of labels. We study the performance curve
for various density combinations.

In a nutshell, we observe that state partitioning performs best on models with
low to medium transition densities while P-Invariant checking, significant arc
detection and parametric maximum flow perform better on models with medium
to high transition densities. We also observe that significant arc detection and
parametric maximum flow is not commendable in cases where memory usage is
a concern.

Organization of the paper. Section 2 recalls the decision algorithm. We discuss
various optimization strategies in Section 3. In Section 4 different combinations
of the optimizations are compared on regular models, uniform random models
and non-uniform random models. Section 5 concludes the paper.

2 Preliminaries

Let AP be a fixed, finite set of atomic propositions. For a finite set S, a distribu-
tion µ on S is a function µ : S → [0, 1] satisfying the condition µ(S) ≤ 1. We let
Dist(S) denote the set of distributions over the set S. The support of µ is defined
by Supp(µ) = {s | µ(s) > 0}, and the size of µ is defined by |µ| = |Supp(µ)|.
The distribution µ is called stochastic if µ(S) :=

∑
s∈S

µ(s) = 1, absorbing if
µ(S) = 0, and sub-stochastic otherwise. We use an auxiliary state (not a real
state) ⊥ 6∈ S and set µ(⊥) = 1 − µ(S). Further, let S⊥ denote the set S ∪ {⊥},
and let Supp⊥(µ) = Supp(µ) ∪ {⊥} if µ(⊥) > 0.

Probabilistic Automata [17]. A probabilistic automaton (PA) is a tuple M =
(S,Act,P, L) where S is a finite set of states, Act is a finite set of actions,
P ⊆ S ×Act×Dist(S) is a finite set, called the probabilistic transition matrix,
and L : S → 2AP is a labeling function.

For (s, α, µ) ∈ P, we use s
α
−→ µ as a shorthand notation, and call µ an

α-successor distribution of s. The PAM is a fully probabilistic system (FPS) if

Act = {α} is a singleton and for s ∈ S, there is at most one transition s
α
−→ µ.

A discrete-time Markov chain (DTMC) is an FPS where all distributions are
either stochastic or absorbing. For ease of notation, we give a simpler definition
for FPSs by dropping the single action: An FPS is a tupleM = (S,P, L) where
S,L as defined for PAs, and P : S × S → [0, 1] is the probabilistic transition
matrix such that P(s, ·) ∈ Dist(S) for all s ∈ S. The fanout of the FPS M is
defined by maxs∈S |P(s, ·)|.

Simulation requires that every α-successor distribution of one state have a
corresponding α-successor distribution of the other state. The correspondence of
distributions is naturally defined with the concept of weight functions [13]. For
µ, µ′ ∈ Dist(S) and R ⊆ S × S, a weight function for (µ, µ′) with respect to R,
denoted by µ ⊑R µ′, is a function ∆ : S⊥ × S⊥ → [0, 1] such that

1. ∆(s, s′) > 0 implies (s, s′) ∈ R or s = ⊥,
2. µ(s) = ∆(s, S⊥) for s ∈ S⊥,
3. µ′(s′) = ∆(S⊥, s

′) for s′ ∈ S⊥.

The relation R ⊆ S × S is a simulation [17] on M iff for all s1, s2 with

(s1, s2) ∈ R: L(s1) = L(s2) and if s1
α
−→ µ1 then there exists a transition

s2
α
−→ µ2 with µ1 ⊑R µ2. We say that s2 simulates s1, denoted by s1 -M s2, iff

there exists a simulation R on M such that (s1, s2) ∈ R. Obviously -M is the
coarsest simulation relation forM.

For (s1, s2) ∈ R, we say that s2 simulates s1 up to R, denoted s1 -R s2,

if L(s1) = L(s2) and if s1
α
−→ µ1 then there exists a transition s2

α
−→ µ2 with

µ1 ⊑R µ2. Otherwise we write s1 6-R s2. Note that s1 -R s2 does not imply
s1 -M s2 unless R is a simulation, since only the first step is considered for -R.

Algorithm for deciding simulation. The algorithm [2] takes as a parameter a
model, which, for now, is an FPS M. To calculate the simulation relation for
M, the algorithm starts with the trivial relation Rinit = {(s1, s2) ∈ S × S |
L(s1) = L(s2)} and removes each pair (s1, s2) if s2 cannot simulate s1 up to
the current relation R, i. e., s1 6-R s2. This proceeds until there is no such pair
left, i. e., Rnew = R. Invariantly throughout the loop it holds that R is at least
as coarse as -M. Hence, we obtain the simulation preorder -M = R, once the
algorithm terminates.

The decisive part of the algorithm is the check whether s1 -R s2. As the con-
dition L(s1) = L(s2) is easy to check, it remains to check whether P(s1, ·) ⊑R

P(s2, ·) holds. This is reduced to a maximum flow computation on the network
N (s1, s2, R) constructed out of P(s1, ·), P(s2, ·) and R. This network is con-
structed via a graph containing a copy t ∈ S⊥ of each state t ∈ S⊥ where

S⊥ = {t | t ∈ S⊥} defined as follows: Let 1 (the source) and % (the sink) be two
additional vertices not contained in S⊥ ∪ S⊥. For µ, µ

′ ∈ Dist(S) and a relation
R ⊆ S×S we define the network N (µ, µ′, R) = (V,E, u) with the set of vertices

V = {1,%} ∪ Supp⊥(µ) ∪ Supp⊥(µ
′)

and the set of edges (or arcs) E defined by

E = {(s, t) | (s, t) ∈ R ∨ s = ⊥} ∪ {(1, s), (t,%)}

where s ∈ Supp⊥(µ) and t ∈ Supp⊥(µ
′). The capacity function u is defined as

follows: u(1, s) = µ(s) for all s ∈ S⊥, u(t,%) = µ′(t) for all t ∈ S⊥, u(s, t) =
∞ for all (s, t) ∈ E and u(v, w) = 0 otherwise. Obviously, N (s1, s2, R) is a
bipartite network. For two states s1, s2, we let N (s1, s2, R) denote the network
N (P(s1, ·),P(s2, ·), R).

The crucial relationship exploited in [2] is that P(s1, ·) ⊑R P(s2, ·) iff the
maximum flow in N (s1, s2, R) is 1. Thus we can decide s1 -R s2 by comput-
ing the maximum flow in N (s1, s2, R). A key observation we made in [21] is
that the networks N (s1, s2, ·) constructed later in successive iterations are very
similar: They differ from iteration to iteration only by deletion of some edges
induced by the successive clean up of R. The algorithm, hence, exploits this fact
by leveraging maximum flow already computed in the last iteration rather than
re-starting maximum flow computation from scratch each time. In more detail,
we consider the initial network N (s1, s2, Rinit) for an arbitrary pair s1, s2 ∈ S.
Recall Rinit denotes the initial relation {(s1, s2) ∈ S × S | L(s1) = L(s2)}.
Let D1, . . . , Dk be pairwise disjoint subsets of Rinit , which correspond to the
pairs deleted from Rinit in iteration i. Let N (s1, s2, Ri) denote N (s1, s2, Rinit)
if i = 1, and N (s1, s2, Ri−1 \Di−1) if 1 < i ≤ k+1. Let fi denote the maximum
flow of the network N (s1, s2, Ri) for i = 1, . . . , k + 1. The problem of checking
|fi| = 1 for all i = 1, . . . , k+1 can be checked efficiently by exploiting a variation
of the parametric maximum flow algorithm [8] (called algorithm for a sequence
of maximum flows in [21]). Based on this, an algorithm with time complexity
O(m2n) is introduced for FPSs, CTMCs in [21], and for PAs in [20]. This im-
provement however comes with a penalty in space complexity: it is increased
from O(n2) to O(m2), due to the need to store of the maximum flow values of
the corresponding networks across iterations.

3 Optimization Options

Our implementation of the principal algorithm uses the following optimizations
and heuristics to eliminate redundant or trivial computations. All of the opti-
mizations and heuristics presented apply to DTMCs, CTMCs and PAs directly.
Throughout this section, we fix an FPSM and a pair of states s1, s2. The same
considerations can also be directly applied to CTMCs and PAs. Let n denote the
number of states and m denote the number of transitions ofM. Let N (s1, s2, R)
denote the network as defined earlier. Furthermore, let V denote the set of the
vertices, and E denote the set of the edges of N (s1, s2, R).

Compact Maximum Flow. The algorithm used to compute the maximum flow
is based on the existing push-relabel based preflow algorithm [9] and tailored
specially to the needs of the decision algorithm in order to save memory and
to omit computations for cases that never arise in the scenario considered. In
a complete maximum flow implementation, the value of the flow is computed.
However, for the purpose at hand, it is sufficient to determine whether or not the
flow equals 1. To decide the simulation preorder, we consider bipartite networks
in which source and sink and all arcs connected with them are not relevant to
the computation and can be omitted. Furthermore, the fact that all remaining
(not connected to source or sink) arcs have infinite capacity allows us to ignore
the concept of arc capacity altogether.

The use of this tailored algorithm greatly reduces the memory usage (by a
factor of approximately 4 to 6) in comparison to a more generic implementation
while its runtime stays almost unchanged in most cases. It should be noted that
this implementation does not use certain known optimizations for the push-
relabel based method and is inferior in speed to implementations which use
these optimizations.

Parametric Maximum Flow. Premise: By saving the result of previous maximum
flow computations and keeping the network consistent with the constraints of a
valid flow when deleting arcs as described in [8], the time required to recompute
the maximum flow repeatedly on the same network can be reduced.

This adds a O(|E|) time overhead for updating each network. Additional
space in the order of O(m2) is needed to store all the networks (O(|E|) per
network) such that they can be passed to the next iteration. Depending on the
structure of a maximum flow network, the time needed to compute the flow
varies greatly.

State Partitioning. Premise: In large models, many states will be structurally
identical. This can be exploited by grouping states with identical probabilistic
structure together into an equivalence class. This forms a partition of the state
space. The equivalence classes are also referred to as blocks. Given two blocks
B1 and B2 of the partition, simulation algorithm will yield the same result for
any pair (s1, s2) with s1 ∈ B1 and s2 ∈ B2. Thus, it suffices to decide simulation
once for an arbitrary pair of states picked from B1 and B2.

Two states s1 and s2 have an identical probabilistic structure if their succes-
sors have pairwise the same labels and the same respective transition probabil-
ities. It is important to note that state partitioning is only correct in the first
iteration of the simulation algorithm when the initial relation is defined solely on
the basis the labels, thus is an equivalence relation. As soon as the relation is not
an equivalence relation any more, state partitioning can no longer be applied.

State partitioning adds an overhead of O(n logn) for sorting states and suc-
cessor sets. This is necessary for being able to compute the partition and to be
able to test whether two states should belong to the same block in linear time
with respect to the number of transitions in the model. State partitioning uses
an extra O(n + h2) space, where h is the number of blocks in the partition. In

order to store which block a state belongs to we need O(n), and in order to store
the result of whether one block simulates another block we need O(h2).

P-Invariant Checking. Premise: For a relation R ⊆ S × S, we define R(s) :=
{s′ ∈ S | (s, s′) ∈ R} and R−1(s) := {s′ ∈ S | (s′, s) ∈ S}. The maximum flow
of a network can only be 1 if the following two constraints are met:

1. µ(s) ≤ µ′(R(s)) for all s ∈ S,
2. µ′(s′) ≤ µ(R−1(s′)) for all s′ ∈ S.

The complexity of verifying these constraints is in the order of O(|E|) per net-
work and O(m2) overall. This operation needs an additional O(|V |) space while
performing the checks. Additionally, if the condition P(s1, S) > P(s2, S) holds,
(s1, s2) /∈ R is implied. The test of this constraint can be performed in O(n)
time once before the simulation algorithm and it requires O(n) space during the
operation.

Significant Arc Detection. Premise: The P-Invariant constraints are only checked
when a network is created. However, it would be desirable to check whether or
not the constraints are still fulfilled after a certain arc has been deleted as a
result of its corresponding pair having been removed from the relation. This can
be done as follows: For a network which satisfies the P-Invariant constraints, an
arc is called significant iff its removal would cause the network to violate the
constraints. The detection of these arcs takes O(|V |2) time in addition to that of
P-Invariant checking and O(|E|) space per network for storing the flag for every
arc. Removing an arc takes constant time if the arc is significant, otherwise
O(|E|) time to recompute the significance of the remaining arcs.

Significant arc detection is an extension of parametric maximum flow. It
requires that networks be stored rather than recomputed from scratch, otherwise
it is equivalent to P-Invariant checking.

4 Case studies

The following section examines the performance of the algorithm with the various
optimizations turned on and off in respect to different models.

In the case studies, we refer to the different configurations of optimizations
considered in this paper by binary numbers constituting combinations of the fol-
lowing strategies: State Partitioning (0001), P-Invariant Checking (0010), Sig-
nificant Arcs (0100), Parametric Maximum Flow (1000). Reported run-times
measure the amount of CPU time (user mode only) spent computing the sim-
ulation. Time used on parsing the model prior to simulation and cleaning up
memory after simulation is not accounted for. By omitting time spent in system
mode, the result is not affected by virtual memory operations. The code was
compiled with compiler optimizations turned off to demonstrate the advantage
achieved by the heuristics alone. With compiler optimizations turned on, an
additional speed-up of up to three times is achieved in some cases. The lowest
amount of time/memory is marked in bold print in the tables.

Table 1. Time and memory used for Leader Election models under various optimiza-
tions. Memory statistics represent peak values throughout the process of deciding sim-
ulation preorder, excluding memory used by the relation map which is present in all
configurations (Map size)

States 439 1031 2007 3463 439 1031 2007 3463
Trans. 654 1542 3006 5190 654 1542 3006 5190

Unit Time (sec) Time (min) Space (kB)

Map size 47.158 259.763 983.900 2928.669

0000 6.62001 196.25106 47.409 421.233 754.500 4156.195 15742.382 46858.687

0001 0.22081 2.07773 0.234 1.181 754.515 4156.210 15742.398 46858.703
0010 0.14801 0.69684 0.049 0.209 754.500 4156.195 15742.382 46858.687
0011 0.09101 0.39202 0.026 0.113 754.516 4156.211 15742.398 46858.703
1000 6.59761 196.70669 47.632 422.430 3910.007 20711.601 81310.734 266355.210
1001 0.19201 2.04513 0.235 1.180 2589.883 13113.180 53140.984 182841.039
1110 0.10681 0.59084 0.043 0.170 4015.472 21263.984 83497.390 273674.011
1111 0.06600 0.32102 0.022 0.084 2651.290 13412.281 54388.648 187375.586

4.1 Regular case studies

Leader Election Models. The leader election family of models have a very simple
structure, namely that of one state in each model with a large number, denoted
by k, of successors while the remaining states have only one successor. As such,
these models are a prime example for a successful application of partitioning.
Due to the structural similarity of the models, the number of blocks of the
state partition is 4 for all leader election models and the number of times that
the maximum flow algorithm is actually invoked is drastically decreased. For
the simulation of three leaders and k = 8 (1031 states, 1542 transitions) with
uniform distribution of three different labels, the maximum flow algorithm is
invoked 369859 times without any optimization, and 228109 times with state
partitioning.

The time advantage achieved by this becomes apparent in Table 1 (0000 vs.
0001). Due to the simplistic structure of the models, parametric maximum flow
yields only a small advantage on the leader election models as recomputing from
scratch is not very complex. In general, using the parametric maximum flow
algorithm by itself is not desirable for sparse models because the advantage is
negligible in comparison to the time and memory overhead. Table 1 illustrates
the additional amount of time and memory required for parametric maximum
flow (1000) versus the approach without any optimizations (0000).

Additionally, maximum flow usage statistic shows that the maximum flow
algorithm is invoked more often (although by a relatively small margin) with
parametric maximum flow enabled than not. This is due to the fact that certain
trivial networks are discarded during construction without ever computing their
maximum flow. However if a network was not initially trivial but becomes trivial
after an arc is deleted, this is only detected upon reconstruction of the same
network, but not upon updating and recomputing the network if it was saved.

Significant arc detection works against this by effectively performing P-Invariant
checking every time an arc is removed from a network.

P-Invariant checking and significant arc detection have little effect in reducing
the number of times that the maximum flow algorithm is used on models similar
to leader election when used alone. This is due to the fact that almost all states
(all except for the first) have exactly one successor and consequently almost
all networks have either one arc or none at all. Those with no edges at all are
filtered out in advance and those with one edge have

∑
s′∈S

P (s, s′) = 1 for both
s1 and s2 so that P-Invariant checking cannot achieve any additional filtering.
The small reduction in maximum flow usage is due to the first state which has
more than one successor but is unfortunately negligible.

We also note that the time advantage achieved by P-Invariant checking and
significant arc detection is exceptionally large compared to the reduction in
maximum flow usage. This is because a small number of networks which appear
in the leader election models and are filtered out by these optimizations, are
inefficient to compute under the maximum flow implementation used in this
study. Therefore, the time spent computing maximum flow decreases significantly
even though the algorithm is still used almost as much.

Overall, it is notable that the minimum time for simulating leader election is
consistently achieved by the configuration 1111. It can be said that in general,
the combination of all presented optimizations is beneficial for extremely sparse
models such as leader election. If memory usage is a concern, 0011 should be
preferred over 1111 as it works without ever storing more than one maximum
flow problem in memory at a time (cf. Table 1) while only slightly inferior to
1111 in speed.

Molecular Reactions. For CTMCs we consider the Molecular Reactions as a case
study. In particular, we focus on the reaction Mg + 2Cl ←→ Mg+2 + 2Cl−.
Models for other reactions found on the PRISM web-site are very similar in
structure and do not offer any additional insight.

While the structure of this family of models is relatively simple, few opti-
mizations show any notable effect. All states have between 1 and 4 successors
with the average being around 3.8 for all models, but the transition rates are
different between almost all states. As a consequence, state partitioning fails
entirely. With a few minor exceptions, all blocks of the partition contain exactly
one state, which means that no speed-up can be achieved at all. In particular,
the reduction in maximum flow usage is always below 1%.

Although the optimizations are not very effective, you will note that in com-
parison to the leader election models, the algorithm terminates very quickly on
this family of models (See also Table 1 and Table 2): 7 hours for Leader Elec-
tion with 3463 States and 5190 Transitions (cf. 0000), 9 seconds for Molecular
Reaction with 4032 States and 15750 Transitions (cf. 0000). This is because the
simulation relation is empty except for the identity relation for all these models
which is known after just two iterations of the algorithm. The leader election
family on the other hand needs four iterations and does not have a trivial sim-
ulation relation, which makes the process of deciding simulation preorder more

Table 2. Time and memory used for Molecular Reaction models under various opti-
mizations. Memory statistics represent peak values throughout the process of deciding
simulation preorder, excluding memory used by the relation map which is present in
all configurations (Map size)

States 676 1482 2601 4032 5776 676 1482 2601 4032 5776
Trans. 2550 5700 10100 15750 22650 2550 5700 10100 15750 22650

Unit Time (ms) Time (sec) Memory (MB)

Map size 0.11 0.52 1.61 3.88 7.95

0000 226.0 1158.9 3.622 9.261 19.840 0.88 4.28 13.19 31.72 65.12

0001 234.8 1169.3 3.751 9.487 20.650 1.33 6.42 19.79 47.60 97.70
0010 204.0 976.1 3.059 7.660 16.960 0.88 4.28 13.19 31.72 65.12
0011 212.0 1039.3 3.375 8.321 18.552 1.33 6.42 19.79 47.60 97.70
1000 227.2 1139.3 3.610 9.039 19.458 1.09 5.50 17.16 40.99 85.49
1001 232.8 1181.7 3.788 9.571 20.386 1.52 7.44 23.08 55.73 114.53
1110 194.8 954.1 3.027 7.761 16.754 0.90 4.37 13.53 32.54 66.88
1111 215.2 1077.7 3.349 8.744 19.107 1.46 7.21 22.29 53.92 110.80

complex. (Additionally, the leader election family also has some networks for
which the maximum flow is hard to compute.) This is also why the memory
values are all relatively close to each other (see Table 2), specifically the con-
figurations which use parametric maximum flow (1***). Intuitively this is true
because almost every pair is immediately discarded and does not have to be
saved for later iterations. This implies that parametric maximum flow does not
hold any benefit for this type of model.

The only optimization which shows some promise for this type of model is P-
Invariant checking (0010). Only surpassed by configuration 1110 in a few cases,
it has the greatest performance boost of all, although it is relatively small when
compared to the approach without any optimizations (0000). While P-Invariant
checking consistently reduces maximum flow computation by about 99.2%, the
largest part of the run-time is taken up by the remaining set of pairs which are
not discarded until the second iteration. Significant arc detection, which builds
upon P-Invariant checking and parametric maximum flow computation, does not
hold any benefit for this model due to the failure of parametric maximum flow.
While faster than pure P-Invariant checking in some cases as a result of the
left-over pairs not discarded in the first iteration, the speed-up is not consistent
and only in the range of about 1.5% to 5.25%.

Dining Cryptographers. We use the Dining Cryptographers model from the
PRISM web-site to study the performance of our algorithm on PAs. In this
study, we reduce the set of configurations to 0000, 0001, 0010 and 0011, ex-
cluding significant arcs and parametric maximum flow which have not yet been
implemented.

Table 3 shows that state partitioning (0001) is clearly the best choice for this
model. While the average size of the partition is relatively small, a speedup of
about 50% is achieved on average.

Table 3. Time and memory used on Dining Cryptographers models.

Cryptographers 3 4 5 3 4 5

States 381 2166 11851 381 2166 11851
Trans. 780 5725 38778 780 5725 38778

Actions 624 4545 30708 624 4545 30708

Time Space (MB)

Map size 0.03488 1.11959 33.49911

0000 71.00 ms 2.037 s 86.788 s 0.36649 11.91495 357.08298

0001 40.00 ms 0.977 s 39.839 s 0.36916 11.95903 357.72893
0010 79.01 ms 2.248 s 89.793 s 0.36649 11.91495 357.08298
0011 42.00 ms 1.068 s 42.056 s 0.36916 11.95903 357.72893

It is notable that P-Invariant checking is actually slower on this model than
approach 0000. This is because of the structure of the models. Since every action
has either one or two equally likely successors, a pair will almost never be dis-
carded due to violating the P-Invariant constraint which can be seen as follows.
All networks have at most two vertices on the left and two on the right. Consider
a network and assume first that there is at least a vertex which has no arcs con-
nected to it. In this case the network is discarded as trivial since the maximum
flow must be below 1. Now assume that each vertex in the network has at least
an arc connected to it. In this case it is easy to see that the maximum flow of
the network is 1. Consequentially, the benefit of P-Invariant checking is very low
in the first iteration, which accounts for the bulk of the total runtime and the
computational overhead prevails.

For the same reason as described above, the combination of state partitioning
and P-Invariant checking does not outperform state partitioning on its own.

4.2 Randomly Generated Models

Uniform models. In addition to regular case studies, we consider randomly
generated DTMCs with uniform distributions, that is, all transitions from a
state s have equal probabilities. If not stated explicitly, we also use three dif-
ferent labels which are uniform distributed. Furthermore, these random mod-
els can be described by three parameters n, a and b such that |S| = n and
a ≤ |post(s)| ≤ b ∀s ∈ S. We will reference random uniform model by the
parameters n, a, b. Table 4 illustrates required time, memory and number of in-
vocations of the maximum flow algorithm with respect to different model sizes
for random uniform models.

This study is particularly remarkable because it demonstrates the strength of
parametric maximum flow. In comparison to other cases studied above, leading
configurations in the study at hand use parametric maximum flow. This is due
to the density of the model, i.e. the larger number of successors per state in
comparison to the other case studies in this paper. It is also remarkable that, in
contrast to other case studies above, all optimizations hold some (even though
limited) benefit.

Table 4. Comparison of all optimizations on uniform random models 400, 1, B with
varying numbers of B. Values are in milliseconds.

B 10 20 30 40 50 60 70 80

0000 7.93 36.60 83.81 140.34 224.68 372.66 650.67 718.48
0001 3.13 28.04 66.64 117.97 185.61 303.72 521.30 573.94
0010 6.90 34.37 81.47 151.68 229.28 395.62 649.67 671.28
0011 2.77 26.43 60.64 97.14 196.08 276.15 473.63 520.97
1000 8.00 34.80 78.97 126.47 195.01 319.29 543.03 612.57
1001 3.17 27.37 64.54 109.37 166.64 272.08 449.16 510.20
1010 7.10 34.54 80.57 138.21 211.98 349.39 573.07 637.74
1011 2.77 26.50 61.24 96.44 183.28 268.75 455.56 493.56

1100 9.47 40.30 89.01 137.24 214.05 356.22 601.07 685.98
1101 3.90 31.04 72.24 117.64 181.38 296.05 490.80 555.77
1110 7.37 36.87 84.64 132.37 207.65 344.99 583.04 660.61
1111 2.90 27.47 63.24 99.57 174.71 278.78 469.56 509.00

State partitioning performs well on the lower end of the range, yielding a
speed-up of about 80% at best and about 20% at worst. While a larger speed-up
may be desirable, this is a very good result since it means that state partitioning
will never slow down the process on this kind of model.

P-Invariant checking is beneficial in most cases, particularly towards the up-
per end of the range, but in a few cases (40 ≤ B ≤ 65) it is actually slower
than approach 0000 and it is also slower than state partitioning in general. Con-
sequentially, P-Invariant checking should not be applied on its own. Coupled
with state partitioning however (see configuration 0011), P-Invariant checking
performs better and is in fact one of the best configurations in the study at hand.

While faster in a few cases, significant arc detection does not yield a consis-
tent performance boost in any configuration. Significant arc detection is most
powerful in gradual simulation decision processes where few arcs are deleted in
one iteration. The simulation relations in this study however are decided in only
three to four iterations, indicating that most pairs of states are deleted from
the relation in the first iteration already, but significant arc detection can only
speed up the decision on pairs which are not deleted immediately. It stands
to reason that significant arc detection would perform better in models with a
larger minimum number of successors per state.

Parametric maximum flow shows good results in this study. Clocking in at
speeds faster than P-Invariant checking in many cases, this is the kind of model
for which parametric maximum flow is beneficial. At its worst, parametric max-
imum flow is about 4% slower than approach 0000. At its best, it is faster by
18%.

The best configuration for this model is a tie between 1001 and 1011. While
1111 sometimes achieves times better than 1001 or 1011, it also requires more
memory and has about the same average performance as either 1001 or 1011.

Consider also Figure 1 which compares the performances of all configura-
tions1 on uniform random models with different numbers of labels. All opti-
mizations except state partitioning (0001) and configurations making use of it
have monotone falling curves because more labels means that the initial relation
will be smaller. Configurations using state partitioning however are affected in
a different manner, displaying a very low value at one label, a maximum at two
labels and a monotone curve after that. The reason for this behavior is that
having only one label works in favor of the partitioning algorithm, enabling it
to partition the state space into fewer blocks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Labels

0010

0011

1110

1111

Fig. 1. Comparison of configurations on random uniform models 200, 1, 25 (left)and
200, 1, 50 (right) with respect to varying numbers of labels. Values are averaged over 4
independently generated models of the same class.

Non-uniform models. In addition to random uniform models, we also briefly
consider randomly generated DTMCs with varying degrees of structure. For
this purpose, we define several structural features called biases which loosely
represent the probability that a certain feature is present or not. We define the
following biases:

– Probability Bias, pb ∈ [0; 1], defines whether or not the transition probabili-
ties are distributed uniformly (pb = 0) or randomly (pb = 1)

– Fanout Bias, fb ∈ [−1; 1], defines if a state is more likely to have the mini-
mum (fb < 0) or maximum (fb > 0) number of successors

It must be noted that, in case of pb > 0, the generated probabilities are not
random values. Rather, the partition of the successor set into subsets of succes-
sors, each of which have different transition probabilities, is random. This means
that the distribution for state s is equal to the distribution for state s′ w.r.t. tran-
sition probabilities iff |post(s)| = |post(s′)| and the successor sets are partitioned
into subsets of equal sizes. As a consequence, the state partitioning optimization

1 To get a readable picture, we plot only the representative configurations, i.e., con-
figurations showing extreme performances. This holds also for Figure 2.

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 with State Partitioning (***1)

0001

0011

1011

1101

 500

 550

 600

 650

 700

 750

 800

 850

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

s)

Probability Distribution Bias

Configurations on 200,10,20 without State Partitioning (***0)

0000

0010

1010

1100

 0

 1

 2

 3

 4

 5

 6

-1 -0.5 0 0.5 1

T
im

e
(s

)

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-1 -0.5 0 0.5 1

N
um

be
r

of
 M

ax
im

um
 F

lo
w

 In
vo

ca
tio

ns

Fanout Bias

Fanout Bias on 100,1,50

0000

0001

1110

1111

Fig. 2. Comparison on random nonuniform models with probability bias and fanout
bias

is still likely to find useful partitions, even though the same optimization would
be useless for models with truly randomized transition probabilities.

Consider Figure 2 (first row) which plots the time needed for simulation for
200, 10, 20 models with different values of probability bias. On the left, we have
all configurations which use state partitioning (***1). On the right, we have all
remaining configurations. We observe that state partitioning (left) performs best
with uniform distributions and gets progressively slower for higher values of the
bias. Intuitively this is because the partitioning algorithm is able to create fewer
blocks when more distributions are uniform. All other configurations are only
insignificantly affected by the bias (right). In these cases, only the complexity
of computing the maximum flow depends on the distributions, which accounts
for a comparatively small portion of the run-time in models with a low number
of successors per state. In both subsets, the configurations using P-Invariant
checking (**1*) perform better compared to the remaining configurations for
higher values of the bias, because nonuniform distributions are more likely to
violate the P-Invariant constraints.

In Figure 2 we also compare the impact of different fanout biases on the set
of representative configurations. We observe, as one might expect, that a higher
fanout bias increases the run-time of the algorithm. An exception to this are
configurations which use state partitioning (***1), which are only insignificantly
affected by the bias, except for the special case of fb = 1. For this value, all
states are in the same block and thus state partitioning cannot improve the run-

time. The right plot shows that the increase in run-time is not directly linked to
the number of times the maximum flow algorithm is invoked. In particular, the
maximum (disregarding corners) for configurations which use state partitioning
(***1) is at fb = 0, the value which represents the highest entropy and the high-
est number of blocks. For other configurations (***0), the maximum is reached
by fb > 0, in which case only a statistically insignificant number of maximum
flow computations is trivial. However, the run-time of the algorithm still rises
because the complexity of the individual maximum flow computations increases.
We conclude that this result depends to a high degree on the complexity of
maximum flow computation more than the number of such computations, which
means that it will vary greatly for different ranges of numbers of successors.

5 Conclusions

This paper has investigated an experimental approach to algorithm design, espe-
cially for Markov models. Starting off with a published simulation algorithm, we
experimented with different models to determine ways of further improving upon
this algorithm. At the end of this empirical process we have several promising
concepts, implemented as optimizations to the fundamental algorithm. Using a
collection of well-chosen case studies as well as randomly generated models we
studied the practical performance of the concepts.

One of the most interesting observations of our experimental studies is the not
uncommon imbalance between theoretical complexity and runtime in practice.
While the parametric maximum flow based method [21, 20] offered a tremendous
drop in theoretical complexity, its practical implementation comes with an over-
head that makes it considerably weaker in many practical applications than more
straightforward approaches. Its strength are large, dense models which require
several iterations to terminate. These cases seem seldom in models commonly
used for case studies. The gap between theoretical and practical efficiency is not
caused by ”the constant factors” but by the fact that the corner cases that blow
up the worst case complexity are rare in practice.

We were surprised to find that simpler and more intuitive approaches like
state partitioning and P-Invariant checking actually produced promising results
in general in our practical studies, in comparison to our theoretically proven
algorithm. In particular, state partitioning works very well on models with low
to medium transition densities and near-uniform or uniform probability distri-
butions. On the other hand, P-Invariant checking performs very well on models
with non-uniform probability distributions.

As future work we plan to make the tool available such that the optimiza-
tions and achievements are at hand for deciding simulation preorders for Markov
chains and probabilistic automata. We also plan to extend the implementation
to compute weak simulation for Markov chains. Additionally, we plan to develop
heuristics to determine internally where to selectively apply optimizations to
achieve an even better performance. Another direction is to compute the pre-

orders symbolically, i. e., using MTBDDs (multi-terminal BDDs) to fight state
space explosion problems.

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous time
Markov chains. In CAV, pages 269–276, 1996.

2. C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231, 2000.

3. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng., 29(6):524–
541, 2003.

4. C. Baier, J.-P. Katoen, H. Hermanns, and B. Haverkort. Simulation for continuous-
time Markov chains. In CONCUR, pages 338–354, 2002.

5. C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time
semantics for Markov chains. Inf. Comput, 200(2):149–214, 2005.

6. A. Bianco and L. de Alfaro. Model Checking of Probabilistic and Nondeterministic
Systems. In FSTTCS, LNCS 1026:499-513. Springer, 1995.

7. H. C. Bohnenkamp, P. van der Stok, H. Hermanns, and F. W. Vaandrager. Cost-
optimization of the ipv4 zeroconf protocol. In DSN, pages 531–540, 2003.

8. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. Comput., 18(1):30–55, 1989.

9. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988.

10. C. Groß, H. Hermanns, and R. Pulungan. Does clock precision influence ZigBee’s
energy consumptions? In OPODIS, pages 174–188, 2007.

11. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Asp. Comput., 6(5):512–535, 1994.
12. A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In TACAS, pages 441–444, 2006.
13. B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic pro-

cesses. In LICS, pages 266–277, 1991.
14. J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen. Bisimulation minimisation

mostly speeds up probabilistic model checking. In TACAS, pages 87–101, 2007.
15. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In

QEST, pages 243–244, 2005.
16. S. Mangold, Z. Zhong, G. R. Hiertz, and B. Walke. Ieee 802.11e/802.11k wireless

lan: spectrum awareness for distributed resource sharing. Wireless Communica-

tions and Mobile Computing, 4(8):881–902, 2004.
17. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes.

Nord. J. Comput., 2(2):250–273, 1995.
18. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, 1994.
19. D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-

structions. In LPAR, pages 396–411, 2005.
20. L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In

ATVA, pages 207–222, 2007.
21. L. Zhang, H. Hermanns, F. Eisenbrand, and D.N. Jansen. Flow faster: Efficient

decision algorithms for probabilistic simulations. In TACAS, pages 155–169, 2007.

