
FlowSim Simulation Benchmarking Platform

Jonathan Bogdoll, Holger Hermanns, Lijun Zhang

Department of Computer Science, Saarland University, Germany
{bogdoll,hermanns,zhang}@cs.uni-sb.de

Abstract— Probabilistic model checking has emerged as a versatile sys-
tem verification approach, but is frequently facing state-space explosion
problems. One promising attack to this is to construct an abstract model
which simulates the original model, and to perform model checking on
that abstract model. Recently, efficient algorithms and optimizations
for deciding simulation of probabilistic models have been proposed,
which reduces the theoretical complexity bounds of existing algorithm
drastically. In this paper we present a tool to compare the performance
of these approaches for deciding the simulation preorder ofprobabilistic
models.

I. I NTRODUCTION

System performance and dependability become more and more
important with the ubiquity of computing systems. Discrete-time
and continuous-time Markov chains (DTMCs and CTMCs) [1] are
widely used to model and analyze performance and dependability of
such probabilistic systems. Probabilistic automata (PAs)[2] extend
DTMCs with nondeterminism, which constitute a natural model
of concurrent computation involving random phenomena. Similarly,
continuous-time probabilistic automata (CPAs) [3] are obtained by
extending CTMCs with nondeterminism, just as PAs extend DTMCs.
CPAs are a natural semantic model for various performance and
dependability modelling formalisms including stochasticactivity net-
works [4], generalised stochastic Petri nets [5].

Model checking has successfully been applied to automatically
verify whether the probabilistic system satisfies a specification, which
is expressed by PCTL [6] formulas for discrete-time models or
CSL [7] formulas for continuous-time models. For instance the
probabilistic reachability property “the probability to reach a set of
bad states is at most 3%” can be expressed in PCTL. Model checkers,
such asPRISM [8] and MRMC [9], are available for checking such
properties over these probabilistic models. However, thisapproach
is limited by the infamous state space explosion problem. Among
other solutions, simulation relations [10], [2] have been proposed
for these models, which, in correspondence to the non-probabilistic
setting, preserve relevant fragments of the logics PCTL andCSL,
respectively.

Let m and n denote the number of transitions and states re-
spectively. For PAs, Baieret al. [11] introduced a polynomial
decision algorithm with time complexityO((mn6 + m2n3)/ log n)
and space complexityO(n2), by exploiting a network flow algorithm.
Exploiting parametric maximum flow algorithms, the time complexity
has been drastically improved in [12] toO(m2n), while the space
complexity is increased toO(m2). Since space requirements often
become the practical bottleneck, a space-efficient algorithm based on
partition refinement has also been studied in [13] for probabilistic
models.

In this paper we present the toolFlowSim to compare the perfor-
mance of these approaches for deciding simulation of both discrete-
time and continuous-time probabilistic models.FlowSim supports

This work is supported by the DFG as part of the TransregionalCollabora-
tive Research Center SFB/TR 14 AVACS, and by the European Community’s
Seventh Framework Programme under grant agreement no 214755.

additional useful optimizations of the algorithms proposed in [14].
FlowSim is free software under the terms of the GNU General
Public License as published by the Free Software Foundation.

II. K EY FEATURES

Primarily, FlowSim is used to measure the time and memory
resources needed to find the simulation relation for a probabilistic
model. Starting from the algorithm in [11], we consider different
improvements and optimizations:

• State partitioning – In the first iteration of the refinement
loop [11], states fulfilling certain similarity criteria are grouped
into equivalence classes and simulation is decided between
representative states instead of all states.

• Parametric maximum flow– An algorithm [12] which drastically
improves the theoretical time complexity, but uses more space.

• P-Invariant checking– A heuristic which verifies the simple
condition on maximum flow networks that source-side edge
capacities must be less or equal to the sum of sink-side edge
capacities connected to it. This can sometimes avoid more
complex computations.

• Significant arc detection– A combination of parametric maxi-
mum flow and P-Invariant checking which immediately discards
certain maximum flow networks. A network is discarded if an
edge deletion causes the P-Invariant to be violated.

• Quotient– A space efficient algorithm [13] based on partition
refinement.

The above improvement and optimisations can be applied for
concrete input models (dtmc,ctmc,pa,cpa). Moreover, a key
feature of FlowSim is the ability to work on random models
(random) generated on demand. This allows the user to investigate
the properties of individual algorithms with respect to certain model
properties while abstracting to some degree from the statistical
interdependencies inherent in ”real world” models. The structure
of these randomly generated models can be adjusted in a gradual
fashion. For example, inuniformly random models, any two states are
equally likely to have a transition going from one to the other, but it
is possible to modify this likelihood in order to create clusters in the
model where the transition density is higher within certainclusters
and lower between these clusters. We refer to such a deviation from
uniformity as abias. The following biases can be specified:

• probability bias: pb ∈ [0; 1], which describes whether the
transition probabilities from one state to a set of successors
are distributed uniformly across that set (pb = 0) or randomly
(pb = 1).

• fanout bias: fb ∈ [−1; 1], which defines if a state is more likely
to have the minimum (fb < 0) or maximum (fb > 0) number
of successors.

• linearity bias: lb ∈ [0; 1], which defines how likely it is that
the model contains cycles: Atlb = 0, transitions are completely
random and thus likely to form cycles, atlb = 1, the model is
acyclic.

• clustering bias: cb ∈ [0; 1] together with an integer number of
clusters,cb specifies the degree of separation between randomly
chosen clusters. Atcb = 0, no clusters are formed whereas at
cb = 1, there is no transition between any two states of two
different clusters.

• successor bias: sb ∈ [0; 1] specifies the likelihood for a certain,
randomly chosen set of states to be chosen as successors more
frequently than the remaining states. Atsb = 0, no bias is
present; atsb = 1, there is at least one common successor for
all states.

Randomly generated models are specified as 16-tuples storedas
space-separated sequences. Consider the following example:
200 4 16 1 $x 0 0 0 0 5 -1 1 0 0 10 2
This sequence is interpreted as a random model with 200 states,

each of which has between 4 and 16 successors. Two different labels
are distributed across the state space. Furthermore, the fanout bias will
be set to ten different values between−1 and1. The precise meaning
of each element is explained further in theFlowSim manual. Biases
can also be used as plot variables, i.e. it is possible to create a plot
over the effect of a bias on a certain resource, such as time ormemory.

Averaging the results over a number of different runs makes the re-
sults less prone to random fluctuations. Similarly, generating multiple
instances of a random model with certain parameters helps isolate the
effects of model properties from those of random fluctuations. These
settings can all be adjusted by the user.

The user interface of our tool is currently via command-line. The
results can be printed in plain text, in LaTeX table format ready to
be included in an article or paper, or exported as a gnuplot script and
corresponding data file.

III. U SAGE EXAMPLES

As an example, consider the Leader Election model from
PRISM [8] with three leaders. In the leader election family of models
only one state has a larger number (denoted byk) of successors
while the remaining states have a unique successor. We would
like to see a comparison between the resource usage (in this case,
processing time and the number of times that a maximum flow is
computed) of the straightforward, unoptimized algorithm [11], the
parametric maximum flow algorithm [12] and the state partitioning
optimization [14].

The resulting tables are shown as Table I and Table II for different
k values. Since the required CPU time directly depends on the
processing power of the underlying system, Table I only serves
to investigate relative differences between the methods. The data
displayed in Table II on the other hand, is of deterministic nature and
independent from the platform. Given knowledge of the underlying
algorithms, it sheds more light on the relative differencesobserved
in Table I.
FlowSim offers data about other kinds of resources than the two

used as examples above to be tabulated, offering more insight into
the operation of the different algorithms and optimizations thereof on
different models of interest.

By using randomly generated models, we can investigate the
impact of certain model properties such as transition density and
biases. For example, we can change the fanout bias and observe the
effect on how frequently the maximum flow algorithm is invoked
without optimization and with state partitioning [14]. SeeTable III.

IV. I MPLEMENTATION AND AVAILABILITY

FlowSim is written in C/C++ for Linux/Unix platforms and makes
use of the Boost Graph Library (BGL). The sources of the tool are

leader3 leader4 leader5 leader6
States 61 135 257 439
Transitions 87 198 381 654
No Optimization 0.007 0.102 1.253 10.583
State Partitioning 0.003 0.014 0.063 0.243
Parametric Max. Flow 0.006 0.100 1.249 10.557

TABLE I
T IME (IN SECONDS) TO COMPUTE THE SIMULATION RELATION.

leader3 leader4 leader5 leader6
No Optimization 1388 4634 18571 88580
State Partitioning 1103 4549 18323 72701
Parametric Max. Flow 1616 5788 22831 100358

TABLE II
NUMBER OF MAXIMUM FLOW COMPUTATIONS.

Fanout Bias No Optimization State Partitioning
-1.000 17833 17833
-1.778 18170 780
-1.556 18592 367
-0.333 18779 202
-0.111 19369 165
0.111 19545 162
0.333 19681 215
1.556 19701 186
1.778 19761 348
1.000 19823 19823

TABLE III
NUMBER OF MAXIMUM FLOW COMPUTATIONS ON RANDOM MODEL.

distributed under GPL, and are available under:http://depend.
cs.uni-sb.de/∼zhang/flowsim/index.htm.

REFERENCES

[1] W. J. Stewart,Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[2] R. Segala and N. A. Lynch, “Probabilistic simulations for probabilistic
processes.”Nord. J. Comput., vol. 2, no. 2, pp. 250–273, 1995.

[3] M. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[4] W. H. Sanders and J. F. Meyer, “Reduced base model construction
methods for stochastic activity networks.”IEEE Journal on Selected
Areas in Communications, vol. 9, no. 1, pp. 25–36, 1991.

[5] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschi-
nis, “Modelling with generalized stochastic petri nets.”SIGMETRICS
Performance Evaluation Review, vol. 26, no. 2, p. 2, 1998.

[6] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability.” Formal Asp. Comput., vol. 6, no. 5, pp. 512–535, 1994.

[7] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton, “Verifying contin-
uous time Markov chains.” inCAV, 1996, pp. 269–276.

[8] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A Tool for Automatic Verification of Probabilistic Systems,” in TACAS,
2006, pp. 441–444.

[9] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model
checker.” inQEST, 2005, pp. 243–244.

[10] B. Jonsson and K. G. Larsen, “Specification and refinement of proba-
bilistic processes,” inLICS, 1991, pp. 266–277.

[11] C. Baier, B. Engelen, and M. E. Majster-Cederbaum, “Deciding bisim-
ilarity and similarity for probabilistic processes.”J. Comput. Syst. Sci.,
vol. 60, no. 1, pp. 187–231, 2000.

[12] L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen, “Flow faster:
Efficient decision algorithms for probabilistic simulations,” Special Issue
on TACAS 2007, Logical Method in Computer Science (LMCS), 2008.

[13] L. Zhang, “A space-efficient probabilistic simulationalgorithm,” in
CONCUR, 2008, pp. 248–263.

[14] J. Bogdoll, H. Hermanns, and L. Zhang, “An experimentalevaluation of
probabilistic simulation,” inFORTE, 2008, pp. 37–52.

