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Abstract— Probabilistic model checking has emerged as a versatile sys-
tem verification approach, but is frequently facing state-pace explosion
problems. One promising attack to this is to construct an absact model
which simulates the original model, and to perform model checking on
that abstract model. Recently, efficient algorithms and opmmizations
for deciding simulation of probabilistic models have been poposed,
which reduces the theoretical complexity bounds of existig algorithm
drastically. In this paper we present a tool to compare the pdormance
of these approaches for deciding the simulation preorder oprobabilistic
models.

I. INTRODUCTION

additional useful optimizations of the algorithms prombse [14].
Fl owSi mis free software under the terms of the GNU General
Public License as published by the Free Software Foundation

Il. KEY FEATURES

Primarily, FI owSi mis used to measure the time and memory
resources needed to find the simulation relation for a piitibtb
model. Starting from the algorithm in [11], we consider ei#nt
improvements and optimizations:

o State partitioning— In the first iteration of the refinement

System performance and dependability become more and more 00p [11], states fulfilling certain similarity criteria @rgrouped

important with the ubiquity of computing systems. Discriiee
and continuous-time Markov chains (DTMCs and CTMCs) [1] ar
widely used to model and analyze performance and depeitgadil
such probabilistic systems. Probabilistic automata (HRk)extend

into equivalence classes and simulation is decided between
e representative states instead of all states.
o Parametric maximum flow An algorithm [12] which drastically
improves the theoretical time complexity, but uses moreapa

DTMCs with nondeterminism, which constitute a natural miode e P-Invariant checking— A heuristic which verifies the simple

of concurrent computation involving random phenomena.il&ity,
continuous-time probabilistic automata (CPAs) [3] areaoted by
extending CTMCs with nondeterminism, just as PAs extend [TEM

condition on maximum flow networks that source-side edge
capacities must be less or equal to the sum of sink-side edge
capacities connected to it. This can sometimes avoid more

CPAs are a natural semantic model for various performance an Complex computations.

dependability modelling formalisms including stochastativity net-
works [4], generalised stochastic Petri nets [5].

Model checking has successfully been applied to automigtica
verify whether the probabilistic system satisfies a speatifio, which

« Significant arc detectior- A combination of parametric maxi-
mum flow and P-Invariant checking which immediately dissard
certain maximum flow networks. A network is discarded if an
edge deletion causes the P-Invariant to be violated.

is expressed by PCTL [6] formulas for discrete-time models o o Quotient— A space efficient algorithm [13] based on partition

CSL [7] formulas for continuous-time models. For instante t
probabilistic reachability property “the probability teach a set of
bad states is at most 3%” can be expressed in PCTL. Model ergck
such asPRI SM[8] and MRMC [9], are available for checking such
properties over these probabilistic models. However, #gproach
is limited by the infamous state space explosion problemoAgn
other solutions, simulation relations [10], [2] have beaoposed
for these models, which, in correspondence to the non-pritidtic
setting, preserve relevant fragments of the logics PCTL @,
respectively.

refinement.

The above improvement and optimisations can be applied for
concrete input modelsd{ nt, ct nt, pa, cpa). Moreover, a key
feature of Fl owSi m is the ability to work on random models
(random) generated on demand. This allows the user to investigate
the properties of individual algorithms with respect totagr model
properties while abstracting to some degree from the &tatis
interdependencies inherent in "real world” models. Theicttire
of these randomly generated models can be adjusted in aaradu
fashion. For example, ianiformly random modejsny two states are

Let m and n denote the number of transitions and states requally likely to have a transition going from one to the oot it

spectively. For PAs, Baieet al. [11] introduced a polynomial
decision algorithm with time complexit)((mn® + m?n3)/logn)
and space complexit§(n?), by exploiting a network flow algorithm.
Exploiting parametric maximum flow algorithms, the time quexity
has been drastically improved in [12] t8(m?n), while the space

is possible to modify this likelihood in order to create ¢krs in the
model where the transition density is higher within certelinsters
and lower between these clusters. We refer to such a deviftim
uniformity as abias The following biases can be specified:

« probability bias pb € [0;1], which describes whether the

complexity is increased t@(m?). Since space requirements often  transition probabilities from one state to a set of sucassso

become the practical bottleneck, a space-efficient algoribased on
partition refinement has also been studied in [13] for praisic
models.

In this paper we present the tdel owSi mto compare the perfor-
mance of these approaches for deciding simulation of battrelie-
time and continuous-time probabilistic modeH. owSi m supports
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are distributed uniformly across that seb (= 0) or randomly
(pb=1).

« fanout bias fb € [—1; 1], which defines if a state is more likely
to have the minimum b < 0) or maximum (b > 0) number
of successors.

o linearity bias b € [0;1], which defines how likely it is that
the model contains cycles: Ab = 0, transitions are completely
random and thus likely to form cycles, &t = 1, the model is
acyclic.



« clustering bias cb € [0; 1] together with an integer number of leader3 | leader4 | leader5 | leader6
o . States 61 135 257 439
clusterscb specifies the degree of separation between randomly

Transitions 87 198 381 654
chosen clusters. Atb = 0, no clusters are formed whereas at |"No Optimization 0.007 0.102 1.253 | 10.583
c¢b = 1, there is no transition between any two states of two| State Partitioning 0.003 0.014 0.063 0.243
different clusters. Parametric Max. Flow 0.006 0.100 1.249 | 10.557

« successor biassb € [0; 1] specifies the likelihood for a certain, TABLE |

randomly chosen set of states to be chosen as successors more TIME (IN SECONDS TO COMPUTE THE SIMULATION RELATION.
frequently than the remaining states. A& = 0, no bias is

present; atsb = 1, there is at least one common successor for - leader3 | leader4 | leader5 | leader6
all states No Optimization 1388 4634 18571 88580
’ State Partitioning 1103 4549 18323 72701

Randomly generated models are specified as 16-tuples sagred | Parametric Max. Flow 1616 5788 22831 | 100358
space-separated sequences. Consider the following egampl

200416 1 $x 00 005-1100102

This sequence is interpreted as a random model with 200sstate
each of which has between 4 and 16 successors. Two diffexelsl

TABLE Il
NUMBER OF MAXIMUM FLOW COMPUTATIONS.

are distributed across the state space. Furthermore,rtbatfaias will Fanout Bias| No Optimization | State Partitioning
be set to ten different values betweei and1. The precise meaning -1.000 17833 17833
of each element is explained further in theowSi mmanual. Biases i;gg igégg ;gg
can also be used as plot variables, i.e. it is possible tae@alot .0.333 18779 202
over the effect of a bias on a certain resource, such as timeorory. -0.111 19369 165

Averaging the results over a number of different runs makesé- 0.111 19545 162
sults less prone to random fluctuations. Similarly, gemaganultiple gggg igggi iég
instances of a random model with certain parameters hedfetésthe 1778 19761 348
effects of model properties from those of random fluctuatidrhese 1.000 19823 19823

settings can all be adjusted by the user.

The user interface of our tool is currently via command-lifibe
results can be printed in plain text, in LaTeX table formaddye to
be included in an article or paper, or exported as a gnupfgttsand
corresponding data file.

TABLE Il
NUMBER OF MAXIMUM FLOW COMPUTATIONS ON RANDOM MODEL.

distributed under GPL, and are available undrt p: / / depend.
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